
Contemporary Mathematics 
Volume 147, 1993 

Induced Circuits in Graphs on Surfaces 

ALEXANDER SCHRIJVER 

ABSTRACT. We show that for any fixed surface S there exists a 
polynomial-time algorithm to test if there exists an induced circuit 
traversing two given vertices r and s of an undirected graph G em
bedded on S. (An induced circuit is a circuit without chords.) The 
general problem (not fixing S) is NP-complete. In fact, for each fixed 
surface S there exists a polynomial-time to find a maximum number of 
r - s paths in G such that any two form an induced circuit. 

1. Introduction 

In this paper we show that the following problem is solvable in polynomial 
time, for any fixed compact surface S: 

(1) given: an undirected graph G = ( V, E) embedded on S and 
two vertices r and s of G; 

find: an induced circuit in G that traverses r and s. 

An induced circuit is a circuit having no chords. The problem is NP-complete 
for general undirected graphs, as was shown by Bienstock [l]. In [2] the problem 
was shown to be solvable in polynomial time for planar graphs. In fact we show 
that for any fixed compact surface S the problem: 

(2) given: an undirected graph G = (V, E) embedded on S and 
two vertices rand s of G; 

find: a maximum number of r - s paths in G any two of 
which form an induced circuit; 

is solvable in polynomial time. 
Our method uses a variant of a method developed in [3] to derive, for any 

fixed k, a polynomial-time algorithm for the k disjoint paths problem in directed 
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planar graphs. (This problem is NP-complete for general directed graphs, even 
for k = 2.) The present method is based on cohomology over free boolean groups. 

2. Free boolean groups 

The free boolean group Bk is the group generated by g1, 92, ... , gk, with rela-
tions g] = 1 for j = 1, ... , k. So Bk consists of all words b1b2 ... bt where t ~ O 
and b1 , ... , bt E {g1 , ... , gk} such that bi "I- bi-1 for i = 2, ... t. The product x · y 
of two such words is obtained from the concatenation xy by deleting iteratively 
all occurrences of any pair gj9j· This defines a group, with unit element 1 equal 
to the empty word 0. 

We call g1 , ... , 9k generators or symbols. Note that 

(3) 

The size lxl of a word x is the number of symbols occurring in it, counting 
multiplicities. A word y is called a segment of word w if w = xyz for certain 
words x, z. If w = yz for some word z, y is called a beginning segment of w, 
denoted by y ::; w. This partial order gives trivially a lattice if we extend Bk 
with an element oo at infinity. Denote the meet and join by /\ and V. 

We prove two useful lemmas. 

LEMMA 1. For all x, y, z E Bk one has: 

(4) x :S y · z and z ::; y- 1 · x ~ x- 1 · y · z = 1 or y = xwz- 1 

for some word w. 

Proof. "'*=== being easy, we show==?. Let w := x- 1 ·y· z. As x ::; y · z, y· z = xw; 
and as z :S y- 1 · x, y- 1 · x = zw- 1 , that is, x- 1 · y = wz- 1 • Hence if w =J. 1 then 
xwz- 1 = x · w · z- 1 = y. I 

LEMMA 2. Let x, y E Bk. If x 1:. y then the first symbol of x- 1 is equal to the 
first symbol of x-1 · y. 

Proof. Let z := x /\ y. So x-1 · y is the concatenation of x- 1 · z and z- 1 · y. 
Since x- 1 z "I- 1, the first symbol of x- 1 · y is equal to the first symbol of x-1 · z. 
Since x- 1 z # 1 and z :S x, the first symbol of x- 1 · z is equal to the first symbol 
of x- 1 . Hence the first symbol of x- 1 is equal to the first symbol of x- 1 · y. I 

3. The cohomology feasibility problem for free boolean groups 

Let D = (V, A) be a weakly connected directed graph, let r E V, and let (G, ·) 
be a group. Two functions </;,'I/; : A --+ G are called r-cohomologous if there 
exists a function f : V --+ G such that 

(5) (i) f(r) = 1; 

(ii) 'lj;(a) = f(u)- 1 ·</;(a)· f(w) for each arc a= (u,w). 
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This clearly gives an equivalence relation. 
Consider the following cohomology feasibility problem (for free boolean groups): 

(6) given: a weakly connected directed graph D = (V, A), a 
vertex r, and a function</>: A--+ Bk; 

find: a function 7/J : A --+ Bk such that 7/J is r-
cohomologous to</> and such that 17/J(a)I ::S: 1 for each 
arc a (if there is one). 

We give a polynomial-time algorithm for this problem. The running time of the 
algorithm is bounded by a polynomial in IAI +a+ k, where a is the maximum 
size of the words </>(a) (without loss of generality, a 2: 1). 

We may assume that with each arc a = ( u, w) also a- 1 := ( w, u) is an arc of 
D, with </>(a- 1) = </>(a)-1. 

Note that, by the definition of r-cohomologous, equivalent to finding a 7/J as in 
(6), is finding a function f : V --+ Bk satisfying: 

(7) (i) f(r) = l; 

(ii) for each arc a= (u, w): lf(u)- 1 ·</>(a)· f(w)I ::S: 1. 

We call such a function f J easible. 
It turns out to be useful to introduce the concept of 'pre-feasible' function. A 

function f : V --+ Bk is pre-feasible if 

(8) (i) J(r) = l; 
(ii) for each arc a= (u,w): if lf(u)-1 ·</>(a)· J(w)I > 1 

then c/>(a) = f(u)yf(w)- 1 for some wordy. 

Pre-feasibility behaves nicely with respect to the partial order :S on the set 
BY of all functions f : V --+ Bk induced by the partial order :S on Bk as: 
f :S g -R f(v) :S g(v) for each v E V. It is easy to see that BY forms a lattice if 
we add an element oo at infinity. Let /\ and V denote the meet and join. Then: 

PROPOSITION 1. If Ji and h are pre-feasible, then so is f :=Ji /\ ]2. 

Proof. Clearly f(r) = 1. Suppose Jj(u)- 1 ·</>(a) · f(w)I > 1 for some arc 
a= (u, w). We show </>(a) = f(u)yf(w)- 1 for some y. By (4) we may assume 
by symmetry that f(u) i </>(a)· f(w). Since f(w) = fi(w) /\ h(w), there is an 
i E {l, 2} such that f(u)- 1 ·</>(a)· fi(w) contains f(u)- 1 · c/>(a) · j(w) as a begin
ning segment. Without loss of generality, i = 1. So lf(u)-1 · c/>(a) ·Ji (w)I > 
1. As f(u) i cfi(a) · f(w), by Lemma 2, the first symbols of f(u)- 1 and 
f(u)- 1 · <P(a) · f(w) are equal. Since f(u)- 1 ·</>(a)· f(w) :S f(u)- 1 · <fi(a) ·Ji (w), it 
follows that the first symbols of f(u)- 1 and f(u)- 1 · <fi(a) · f 1 (w) are equal. 
So fi(u)- 1 · <f;(a) · f 1 (w) contains J(u)- 1 · cfi(a) · fi(w) as segment. Hence 
lfi(u)-1 ·</>(a)· fi(w)J > l. As Ji is pre-feasible, </>(a)= fi(u)y'fi(w)- 1 for 
some y'. Since f(u)::; fi(u) and f(w) ::S: fi(w) this implies <f;(a) = f(u)yf(w)- 1 

for some y. I 
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So for any function f : V _____., Bk there exists a unique smallest pre-feasible 
function f ~ f, provided there exists at least one pre-feasible function g ~f. If 
no such g exists we set f := oo. In the next section we show that f can be found 
in polynomial time for any given f. 

We first note: 

PROPOSITION 2. If J is finite then 

(9) (i) f(r) = l; 
(ii) lf(v)I < (O' + l)IVI for each vertex v; 

(iii) f(u) S </>(a)· f(w) or f(w) S <j>(a)- 1 · f(u) for each 
arc a= (u, w) with lf(u)- 1 ·</>(a)· f(w)I > 1. 

Proof. Let J be finite. Trivially J(r) S f(r) = 1. Moreover, let a 1 , ... , at form 
a simple path from r to v. By induction on tone shows lf(v)I S (O'+l)t. (Indeed, 
let at = (u, v). If If ( u)- 1 ·</>(a)· f( v )I S 1 then by induction If ( u)I S (O'+l) (t-1 ), 

and hence lf(v)I S f(u)I + l<P(a)I + 1 ::; (O' + l)t. If lf(u)- 1 ·</!(a)· f(v)I > 1 
then by (8) f(v) is a segment of <f>(a) and hence lf(v)I S O' :::; (O' + l)t.) So 

lf(v)I S lf(v)I < (O' + l)IVI· 
To see (iii), assume that f(u) 1:. <f>(a) · f(w) and f(w) 1:. <f>(a- 1 ) · f(u). So by 

Lemma 2 the first symbol of f ( u )- 1 · </>(a) · f ( w) is equal to the first symbol of 
f(u)- 1 . Similarly, the last symbol of f(u)- 1 ·</>(a)·f(w) is equal to the last symbol 
off ( w). Since f (u) S f ( u) and f ( w) :S f( w), it follows that f (u)- 1 ·</>(a)· f (w) 
is a segment of J(u)- 1 · <P(a) · f(w). So lf(u)- 1 ·</!(a)· f(w)I > 1. As f is pre
feasible this implies that </>(a) = f(u)yf(w)- 1 for some y. Hence, since f :::; f, 
</>(a)= J(u)y'J(w)- 1 for some y'. So f(u) S f(u)y' = <f>(a) · f(w), contradicting 
our assumption. I 

4. A subroutine finding J 

Let input D = (V, A), r, </>for the cohomology feasibility problem (6) be given. 
We may assume that for any arc a= (u, w) , a- 1 = (w, u) is also an arc of D, 
with </>(a- 1 ) = </>(a)- 1 . Let moreover f: V ____,Bk be given. 

If f is pre-feasible output f := f. If f violates (9) output f := oo. If none of 
these applies, perform the following iteration: 

Iteration: Choose an arc a= (u, w) satisfying lf(u)- 1 · <f>(a) · j(w)I > 1 and 
f(w) f:. <j>(a)- 1 · f(u). (Such an arc exists by (4). As (9)(iii) is not violated, we 

know f(u) :S </>(a)· f(w).) 
Let x be obtained from c/>(a) · f(w) by deleting the last symbol; reset f(u) := x, 

and iterate. 

PROPOSITION 3. At each iteration, :Zv If ( v) I strictly increases. 
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Proof. Since f(u) :::::; </J(a) · f(w) and lf(u)- 1 · </J(a) · f(w)I > 1, x is strictly 
larger than the original f ( u). I 

This directly implies: 

PROPOSITION 4. After at most (a+ 1) IVl2 iterations the subroutine stops. 

Proof. After (a+ l)IVl2 iterations, by Proposition 3 there exists a vertex u 
such that lf(u)I ~ (a-+ I)IVI- Then (9)(ii) is violated. I 

Moreover we have: 

PROPOSITION 5. In the iteration, resetting f does not change f. 

Proof. We must show that x :::; J ( u) if J is finite. If there exists y such that 
</>(a)= f(u)yf(w)- 1 then 

(10) f(w):::::; f(w):::::; f(w)y- 1 = </J(a)- 1 · f(u) S </J(a)- 1 · f(u) 

(since f ( u) :::::; J ( u) :::::; </>(a)). This contradicts the choice of a in the iterations. 
Therefore, since J is pre-feasible, we know lf(u)- 1 ·</>(a)· f(w)I S 1. 

Since f ( w) i. </>(a-1 ) · f (u), by Lemma 2 the last symbol off ( u)- 1 ·</>(a)· J( w) is 
equal to the last symbol off ( w). Hence (since f (w) :::::; /( w)) f ( u)- 1 ·</>(a)· f(w) :::; 
f(u)- 1 · </J(a) · f(w). Since f(u) :::::; </J(a) · f(w) it follows that </>(a) · f(w) :::; 
</J(a) · f(w). Let y be obtained from </>(a) · f(w) by deleting the last symbol. 
Then x:::::; y S f(u), since lf(u)- 1 · </J(a) · }(w)I S 1. I 

5. Algorithm for the cohomology feasibility problem 

Let input D = (V, A), r, </>for the cohomology feasibility problem (6) be given. 
Again we may assume that for each arc a = ( u, w), a- 1 = ( w, u) is also an arc, 
with q'J(a- 1) = </>(a)- 1 . We find a feasible function f (if there is one) as follows. 

Let W be the set of pairs ( v, x) with v E V and x E Bk such that there exists an 
arc a= (v,w) with 1 =I- x:::; </>(a). For every (v,x) E W let fv,x be the function 
defined by: fv,x(v) := x and fv,x(v') := 1 for each v' =I- v. Let Ebe the set of 
pairs {(v,x), (v',x')} from W for which fv,x V fv',x' is finite and pre-feasible. Let 
E' be the set of pairs {(u,x), (w, z)} from W for which there is an arc a= (u, w) 
with </>(a) = xz- 1 . We search for a subset X of W such that each pair in X 
belongs to E and such that X intersects each pair in E'. This is a special case 
of the 2-satisfiability problem, and hence can be solved in polynomial time. 

PROPOSITION 6. If X exists then the function f := V fv,x is feas'ible. If X 
(v,x)EX 

does not exist then there is no feasible function. 

Proof. First assume X exists. Since fv,x V fv' ,x' is finite and pre-feasible for each 
two ( v, x), (v', x') in X, f is finite and f (r) = 1. Moreover, suppose If (u)- 1 ·</>(a). 
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f(w)I > 1 for some arc a= (u, w). By definition off there are (v, x), (v', x') EX 
such that f(u) = fv,x(u) and f(w) = fv',x'(w) for (v, x), (1/, x') E X. As 
fv,x V fv',x' is pre-feasible, <f;(a) = fv,x(u)yfv 1 ,x1 (w)- 1 for some y. Then IYI > 1. 
Split y = bc1 with band c nonempty. Then (u, f(u)b) EX or (w, f(w)c) EX 
since X intersects each pair in E'. If (u, f(u)b) EX then f(u)b = fu,J(u)b(u) :::; 
fu,J(u)b(u) :::; f(u), a contradiction. If (w, f(w)c) E X one obtains similarly a 
contradiction. 

Assume conversely that there exists a feasible function f. Let X be the set 
of pairs (v,x) EX with the property that x:::; f(v). Then X intersects each 
pair in E'. For suppose that for some arc a = (u, w) with <f;(a) = xz- 1 and 
x -1- 1 -1- z, one has (u,x) rf_ X and (w,z) rf_ X, that is, x '/:_ f(u) and z '/:_ f(w). 
This however implies lf(u)- 1 ·</>(a)· f(w)I 2:: 2, a contradiction. 

Moreover, each pair in X belongs to E. For let (v,x), (v', x') EX. We show 
that {(v, x), (v', x')} EE, that is, f' := fv,x V ]v',x' is pre-feasible. As fv,x:::; f 
and fv' ,x' :::; f, f' is finite and f' ( r) = 1. Consider an arc a = ( u, w) with 
lf'(u)- 1 ·.P(a) -f'(w)I > 1. We may assume f'(u) = fv,x(u) and f'(w) = fv',x'(w) 
(since fv,x and fv',x' themselves are pre-feasible). To show ef>(a) = f'(u)yf'(w)- 1 

for some y, by (4) we may assume f'(w) i. q)(a-1 ) · f'(u). So by Lemma 2, the 
last symbol of J' ( u )- 1 · </.>(a) · f' ( w) is equal to the last symbol of f' ( w). 

Suppose now that f'(u) '/:_ q)(a) · f'(w). Then by Lemma 2, the first symbol 
of f'(u)- 1 · cf;(a) · f'(w) is equal to the first symbol of f'(u)- 1 . Since f':::; f 
this implies that f'(u)- 1 • <f;(a) · f'(w) is a segment of f(u)- 1 ·</>(a)· f(w). This 
contradicts the fact that lf(u)- 1 · c/>(a) · f(w)I :::; 1. 

So f'(u):::; <P(a)-f'(w). As fv 1 ,x1 (u):::; f'(u) and lf'(u)- 1 ·</.>(a)f(w)I > 1 it fol
lows that lfv 1 ,x1 (u)- 1 ·</!(a)-f'(w)I > 1. As f'(w) = fv 1 ,x1 (w) we have lfv',x'(u)- 1 • 

cp(a)·fv1 ,x1 (w)I > 1. As fv',x' is pre-feasible, cp(a) = fv 1 ,x1 (u)yfv 1 ,x1 (w)- 1 for some 
y. So f'(u):::; <f;(a) · f'(w) = fv',x'(u)y. Hence fv',x'(u)y = f'(u)y' for some y'. 
It follows that cf;(a) = f'(u)y'f'(w)- 1 . I 

Thus we have: 

THEOREM 1. The cohomology feasibility problem for free boolean groups is solv
able in time bounded by a polynomial in IAI +a+ k. 

6. Graphs on surfaces and homologous functions 

Let G = (V, E) be an undirected graph embedded in a compact surface. For 
each edge e of G choose arbitrarily one of the faces incident with e as the left
hand face of e, and the other as the right-hand face of e. (They might be one 
and the same face.) Let F denote the set of faces of G, and let R be one of the 
faces of G. We call two functions cp, 'ljJ : E --+ Bk R-homologous if there exists 
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a function f : F --+ Bk such that 

(11) (i) J(R) = 1; 

(ii) f(F)- 1 · <f>(e) · f(F') = 'lj;(e) for each edge e, where 
F and F' are the left-hand and right-hand face of e 
respectively. 

The relation to cohomologous is direct by duality. The dual graph G* = 
(F, E*) of G has as vertex set the collection F of faces of G, while for any edge 
e of G there is an edge e* of G* connecting the two faces incident with e. Let 
D* be the directed graph obtained from G* by orienting each edge e* from the 
left-hand face of e to the right-hand face of e. Define for any function </> on E 
the function </>* on E* by </>*(e*) := </>(e) for each e E E. Then </> and '!/; are 
R-homologous (in G), if and only if</>* and 'lj;* are R-cohomologous (in D*). 

7. Enumerating homology classes 

Let G = (V, E) be an undirected graph embedded in a surface and let r, s E V, 
such that no loop is attached at r or s. We call a collection II= (Pi, ... , Pk) of 
r - s walks an r - s join (of size k) if: 

(12) (i) each Pi traverses r and s only as first and last vertex 
respectively; 

(ii) each edge is traversed at most once by the P1, ... , Pk; 

(iii) Pi does not cross itself or any of the other Pj; 

(iv) P 1 , ... ,Pk occur in this order cyclically at r. 

Note that any solution of (2) can be assumed to be an r - s join. 
For any r - s join II= (Pi, ... , Pk) let </Jn : E --+Bk be defined by: 

(13) </>n(e) := gi if walk Pi traverses e (i = 1, ... , k); 
:= 1 if e is not traversed by any of the Pi. 

Let R be one of the faces of G. Note that if</> is R-homologous to efJn then for 
each vertex v ::/= r, s we have 

(14) 

where Fo, e1, F1 , ... , Ft_ 1, et, Ft are the faces and edges incident with v in cyclic 
order (with Ft= F0 ), and where cj := +l if Fj-l is the left-hand face of ej and 
Fj is the right-hand face of ej, and Ej := -1 if Fj-l is the right-hand face of 
ej and Fj is the left-hand face of ej. (If Fj-l = Fj we should be more careful.) 
This follows from the fact that (14) holds for </> = </>n and that (14) is invariant 
for R-homologous functions. 
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We now consider the following problem: 

(15) given: a connected undirected graph cellularly embedded 
on a surface S, vertices r, s of G, such that G - { r, s} 
is connected and r and s are not connected by an 
edge, a face R of G, and a natural number k; 

find: functions </>1, ... , </JN : E - Bk such that for each 
r - s join II of size k, </>n is R-homologous to at least 
one of r/J1, ... , rj; N. 

(A graph is cellularly embedded if each face is homeomorphic with an open disk.) 

THEOREM 2. For any fixed surface S, problem (15) is solvable in time bounded 
by a polynomial in IVI + IEI. 

Proof. If e is any edge connecting two different vertices-:/= r, s, we can contract 
e. Any solution of (15) for the modified graph directly yields a solution for the 
original graph (by (14)). So we may assume V = {r, s, v} for some vertex v. 
Similarly, we may assume that G has no loops that bound an open disk. 

Call two edges parallel if and only if they form the boundary of an open disk 
in S not containing R. Let p be the number of parallel classes and let f' denote 
the number of faces that are bounded by at least three edges. So 2p ~ 3 f'. By 
Euler's formula, 4 + f' ~ p + x(S), where x(S) denotes the Euler characteristic 
of S. This implies 12 + 2p ~ 12 + 3f' ~ 3p + 3x(S) and hence p ::; 12 - 3x(S). 
That is, for fixed S, p is bounded. 

Let E' be a subset of E containing one edge from every parallel class. Note 
that any Bk-valued function on Eis R-homologous to a Bk-valued function that 
has value 1 on all edges not in E'. 

Let II = ( P1, ... , Pk) be an r - s join such that no Pi traverses two edges e, e' 
consecutively that are parallel. For any 'path' e, v, e' in E' of length two, with 
e and e' incident with vertex v and e and e' not parallel, let f (II, e, v, e') be 
the number of times the pi contain e, v, e'' for some e parallel to e and some e' 
parallel to e'. (Here e or e' is assumed to have an orientation if it is a loop.) 

Now up to R-homology and up to a cyclic permutation of the indices of 
P1, ... , Pk, II is fully determined by the numbers f(II, e, v, e'). This follows 
directly from the fact that the Pi do not have (self-)crossings. 

So to enumerate </> 1 , ... , r/JN it suffices to choose for each path e, v, e' a number 
g(e, v, e') S IEI. Since IE'I = p S 9-3x(S) there are at most (IEI + 1)(12 - 3x(S)) 2 

such choices. For each choice we can find in polynomial time an r - s join II with 
f(II, e, v, e') = g(e, v, e') for all e, v, e' if it exists. Enumerating the c/>n gives the 
required enumeration. I 

8. Induced circuits 

THEOREM 3. For each fixed surface S, there is a polynomial-time algorithm 
that gives for any graph G = (V, E) embedded on S and any two vertices r, s of 
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G a maximum number of r - s paths each two of which form an induced circuit. 

Proof It suffices to show that for each fixed natural number k we can find in 
polynomial time k r - s paths each two of which form an induced circuit, if they 
exist. 

We may assume that G - { r, s} is connected, that r and s are not connected 
by an edge, and that G is cellularly embedded. Choose a face R of G arbitrarily. 
By Theorem 2 we can find in polynomial time a list of functions </J1, ... , </> N : 

A--+ Bk such that for each r - s join II, </Jn is R-homologous to at least one of 
the <Pi· 

Consider the (directed) dual graph D* = (F,A*) of G (see Section 6). We 
extend D* to a graph n+ = (.F, A+) as follows. 

For every pair of vertices F, F' of D* and every F - F' path n (not necessarily 
directed) on the boundary of one face or of two adjacent faces of D*, extend the 
graph with an arc a7r from F to F'. (Note that there are only a polynomially 
bounded number of such paths.) For each</>: A --+Bk define <jJ+ : A+ -----+ Bk 
by <,t>+(e*) := <f>(e) and 

(16) 

for any path 7r = (ei)e 1 ... (et)c:,. (Here .::1, ... , E:t E { +1, -1 }.) 
By Theorem 1 we can find, for each j = 1, ... , Nin polynomial time a function 

{} satisfying 

(17) (i) {} is R-cohomologous to <Pj in D+, and 

(ii) liJ(b) I :5 1 for each arc b of n+, 

provided that such a {} exists. 
If we find a function {}, for i = 1, ... , k let Q; be a shortest r - s path traversing 

only the set of edges e of G with 19( e*) = g;. If such paths Q1, ... , Q k exist, and 
any two of them form an induced circuit, we are done (for the current value of 
k). 

We claim that, doing this for all </>1, ... , <f>N, we find paths as required, if they 
exist. For let II:= (P1, ... , Pk) form a collection of k r-s paths any two of which 
form an induced circuit. Since IT is an r - s join, there exists a j E {1, ... , N} 
such that 4>rr and <Pi are R-homologous. 

We first show that there exists a function {} satisfying ( 17), viz. {} := <Pri. To 
see this, we first show that <Pri is R-cohomologous to <Pj in D+. Indeed, <Prr and 
if>i are R-homologous in G. Hence there exists a function f: F--+ Bk such that 
f (R) = 1 and such that 

(18) f(F)- 1 · ef>rr(e) · f(F') = <Pi(e) 

for each edge e, where F and F' are the left-hand and right-hand face of e 
respectively. This implies: 

(19) f(F)- 1 · <,t>ri(e*) · f(F') = <Pj(e*). 
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Moreover, for every pair of vertices Fo, Ft of D* and every Fa - Ft path 7r = 
(ei)E1 ... (en•• in D* on the boundary of at most two faces of D* we have 
(assuming (ei)" runs from Fi-l to Fi for i = 1, ... , t): 

(20) f(Fo)- 1 · <Pi!(a1') · f(Ft) 
= (f(Fo)-1 · 4>n(ei)01 f(F1)) · (J(F1)-1 · <Pn(e2)E2 f(F2)) · 
... · (f(Ft-1)-1 · <Prr(et)°' f(Ft)) 
= <Pj(e1)01 · </Jj(e2)02 · ... · 4>j(etY' = 4>j(a,,:). 

So <Pi! and <Pj are R-cohomologous. 
Next we show that l<Pii ( b) I :::; 1 for each arc b of n+. Indeed, for any edge e 

of G we have <Pi!(e*) = <Pn(e) E {l,91, ... ,gk}. So l<Pi!(e*)I S 1. Moreover, for 
any path 7r = (ei)01 (e2)02 ... (et)E' as above, <Pi!(a7r) = <Prr(e1)°1 · · · ... ·</Jn(et)«. 
Since there exist two vertices v', v" of G such that each of e1, ... , et is incident 
with at least one of v', v", we know that there exists at most one i E { 1, ... , k} 
such that Pi traverses at least one of the edges e1 , ... , Et. Hence there is at most 
one generator occurring in <Pn(e1) 01 · · · ... ·<Pn(et)"'· That is, 14>i!(a7r)I $ 1. This 
shows that '/J := <Pi! satisfies ( 17). 

Conversely, we must show that if-0 satisfies (17), then -0 gives paths Qi, ... , Qk 
as above. Indeed, since '/J is R-cohomologous to <Pi!, for each i = 1, ... , k, the 
set of edges e of G with -O(e*) = 9i contains an r - s path (since ( := <Pi! has 
the property that the subgraph (V, {e E El((e*) contains the symbol 9i an odd 
number of times}) of G has even degree at each vertex except at r and s, and 
since this property is maintained under R-cohomology). Choose for each i such 
a path Q;. Suppose that, for some i -:f. j, there exists an edge e = {v,v'} with 
Qi traversing v and Qj traversing v' (v,v' ~ {r,s}). Then there exist faces Fo 
and Ft of G and an Fo - Ft path n = (e1 )°1 ... (et) 0 ' in D* on the boundary of 
the faces v and v' of D* such that i9(ei)"1 · ... 19(et)« contains both symbol 9i 
and symbol gj. Now 

(21) -O(a7r) = i9(e;')"1 ..... i9(e;)e:', 

since this equation is invariant under R-cohomology and since it holds when '/J 
is replaced by <Pi!- So 19(an) contains both symbol 9i and 9j· This contradicts 
the fact that 1-D( a1') I $ 1. 

So there is no edge connecting internal vertices of Qi and Qj. Replacing each 
Qi by a chordless path Q; in G that uses only vertices traversed by Q;, we obtain 
paths as required. I 

We refer to [4] for an extension of the methods described above. 
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