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Abstract

We empirically show that Bayesian inference can be inconsistent under misspecifi-
cation in simple linear regression problems, both in a model averaging/selection and in
a Bayesian ridge regression setting. We use the standard linear model, which assumes
homoskedasticity, whereas the data are heteroskedastic, and observe that the posterior
puts its mass on ever more high-dimensional models as the sample size increases. To rem-
edy the problem, we equip the likelihood in Bayes’ theorem with an exponent called the
learning rate, and we propose the Safe Bayesian method to learn the learning rate from
the data. SafeBayes tends to select small learning rates as soon the standard posterior is
not ‘cumulatively concentrated’, and its results on our data are quite encouraging.

This arxiv publication is the very first, 2014, version of the paper:

P. D. Grünwald, and T. van Ommen. Inconsistency of Bayesian Inference for
Misspecified Linear Models, and a Proposal for Repairing It. Bayesian Analysis,
12(4), December 2017.

In 2017, the second version was posted which is exactly the same as the original version except
for this first page, and an updated bibliography.
The BA (Bayesian Analysis) 2017 version is quite different though: due to length constraints,

1. the BA version only reports on a small subset of the experiments done here, and refers
extensively to the additional experimental experiments done in the present paper.

2. the BA version contains less details about the analytic calculations of the generalized
posterior for regression.

3. the BA version contains no discussion of mix loss.

Otherwise, the paper has gone through many modifications and improvements. We refer to
the BA version for:

1. A much more concise and better explanation of why small learning rates can vastly
improve standard Bayes under misspecification, and why SafeBayes ‘works’.

2. A much more precise treatment of ‘hypercompression’, the phenomenon underlying
problems with misspecification.

3. A much updated discussion section.

4. A demonstration that standard theorems for consistency of Bayesian inference under
misspecification do not apply to our standard regression model.

Version 3 (2018) corrects the expression for bn,η in (14). We thank Tom Viering for spotting
this error!
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1 Introduction

The Problem We empirically demonstrate the inconsistency of Bayes factor model selec-
tion, model averaging and Bayesian ridge regression under model misspecification on a simple
linear regression problem with random design. We sample data (X1, Y1), (X2, Y2), . . . i.i.d.
from a distribution P ∗, where Xi = (Xi1, . . . , Xipmax) are high-dimensional vectors, and we
allow pmax = ∞. We use nested models M0,M1, . . . where Mp is a standard linear model,
consisting of conditional distributions P (· | β, σ2) expressing that

Yi = β0 +

p∑
j=1

βjXij + εi (1)

is a linear function of p ≤ pmax covariates with additive independent Gaussian noise εi ∼
N(0, σ2). We equip each of these models with standard priors on coefficients and the variance,
and also put a discrete prior on the models themselves. M :=

⋃
p=0..pmax

Mp does not contain
the conditional ‘ground truth’ P ∗(Y |X) (hence the model is ‘misspecified’), but it does contain
a P̃ that is ‘best’ in several respects: it is closest to P ∗ in KL (Kullback-Leibler) divergence,
it represents the true regression function (leading to the best squared error loss predictions
among all P ∈ M) and it has the true marginal variance (explained in Section 2.3). Yet,
while P̃ ∈ M0 and M0 receives substantial prior mass, as n increases, the posterior puts
most of its mass on complex Mp’s with higher and higher p’s, and, conditional on these
Mp’s, at distributions which are very far from P ∗ both in terms of KL divergence and in
terms of L2 risk, leading to bad predictive behavior in terms of squared error. Figure 1
and 2 illustrate a particular instantiation of our results, obtained when Xij are polynomial

basis functions, i.e. Xij = Sji and Si ∈ [−1, 1] uniformly i.i.d. We also show comparably bad
predictive behavior for various versions of Bayesian ridge regression, involving just a single,
high-but-finite dimensional model. In that case Bayes eventually recovers and concentrates
on P̃ , but only at a sample size that is incomparably larger than what can be expected if the
model is correct.

These findings contradict the folk wisdom that, if the model is incorrect, then “Bayes
tends to concentrate on neighborhoods of the distribution(s) in M that is/are closest to P ∗

in KL divergence.” Indeed, the strongest actual theorems to this end that we know of, (Kleijn
and Van der Vaart, 2006, De Blasi and Walker, 2013, Ramamoorthi et al., 2015), hold, as
the authors emphasize, under regularity conditions that are substantially stronger than those
needed for consistency when the model is correct (as by e.g. Ghosal et al. (2000) or Zhang
(2006a)), and our example shows that consistency may fail to hold even in relatively simple
problems.

The Solution: Generalized Posterior and Safe Bayes Bayesian updating can be
enhanced with a learning rate η, an idea put forward independently by several authors (Vovk,
1990, McAllester, 2003, Barron and Cover, 1991, Walker and Hjort, 2002, Zhang, 2006a) and
suggested as a tool for dealing with misspecification by Grünwald (2011, 2012). η trades off
the relative weight of the prior and the likelihood in determining the η-generalized posterior,
where η = 1 corresponds to standard Bayes and η = 0 means that the posterior always
remains equal to the prior. When choosing the ‘right’ η, which in our case is significantly
smaller than 1 but of course not 0, η-generalized Bayes becomes competitive again. In general,
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Figure 1: The conditional expectation E[Y |X] according to the full Bayesian posterior
based on a prior on models M0, . . . ,M50 with polynomial basis functions, given 100 data
points sampled i.i.d. ∼ P ∗ (about 50 of which are at (0, 0)). Standard Bayes overfits, not
as dramatically as maximum likelihood/unpenalized least squares, but still enough to show
dismal predictive behavior as in Figure 2. In contrast, Safe Bayes (which chooses learning
rate η ≈ 0.4 here) and standard Bayes trained only at the points for which the model is
correct (not (0, 0)) both perform very well.

Figure 2: The expected squared error risk obtained when predicting by the full Bayesian
posterior (brown curve) and the Safe Bayesian posterior (red curve) and the optimal predic-
tions (gray curve) as a function of sample size, for the setting of Figure 1. SafeBayes is the
R-log-version of SafeBayes defined in Section 4.2. Precise definitions and further explanation
in Section 5.1 and Section 5.2.
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the optimal η depends on the underlying ground truth P ∗, and the problem has always been
how to determine the optimal η empirically, from the data.

Recently, Grünwald (2012) proposed the Safe Bayesian algorithm for learning η, and
theoretically showed that it achieves good convergence rates in terms of KL divergence on a
variety of problems. Here we show empirically that Safe Bayes performs excellently in our
regression setting, being competitive with standard Bayes if the model is correct and very
significantly outperforming not just standard Bayes, but also cross-validation and approaches
such as AIC when the model is incorrect. We do this by providing a wide range of experiments,
varying parameters of the problem such as the priors and the true regression function and
studying various performance indicators such as the squared error risk, the posterior on the
variance etc.

We note that a Bayesian’s (and our) first instinct would be to learn η itself in a Bayesian
manner instead. Yet this does not solve the problem, as we show in Section 5.4, where we
consider a setting in which 1/η turns out to be exactly equivalent to the λ regularization
parameter in the Bayesian Lasso and ridge regression approaches. We find that selecting η
by (empirical) Bayes, as suggested by e.g. Park and Casella (2008), does not nearly regularize
enough in our misspecification experiments. In the Bayesian ridge regression setting with fixed
variance, the Safe Bayesian algorithm becomes very similar to learning λ by cross-validation
with squared-error loss, as is standard in frequentist ridge regression (cross-validation with
a logarithmic score does not work however). In the varying variance case, there is no such
straightforward interpretation of SafeBayes.

The Type of Misspecification The models are misspecified in that they make the stan-
dard assumption of homoskedasticity — σ2 is independent of X — whereas in reality, under
P ∗, there is heteroskedasticity, there being a region of X with low and a region with (rel-
atively) high variance. Specifically, in our simplest experiment the ‘true’ P ∗ is defined as
follows: at each i, toss a fair coin. If the coin lands heads, then sample Xi from a uniform
distribution on [−1, 1], and set Yi = 0 + εi, where εi ∼ N(0, σ2

0). If the coin lands tails, then
set (Xi, Yi) = (0, 0), so that there is no variance at all. The ‘best’ conditional density P̃ ,
closest to P ∗(Y | X) in KL divergence, representing the true regression function Y = 0 and
reliable in the sense of Section 2.3, is then given by (1) with all β’s set to 0 and σ̃2 = σ2

0/2.
In a typical sample of length n, we will thus have approximately n/2 points with Xi uniform
and Yi normal with mean 0, and approximately n/2 points with (Xi, Yi) = (0, 0). These
points seem ‘easy’ since they lie exactly on the regression function one would hope to learn;
but they really wreak severe havoc.

The In-Liers Cause the Problem While it is well-known that in the presence of out-
liers, Gaussian assumptions on the noise lead to problems, both for frequentist and Bayesian
procedures, in the present problem we have in-liers rather than outliers. Also, if we slightly
modify the setup so that homoskedasticity holds, standard Bayes starts behaving excellently,
as again depicted in Figure 1 and 2. Finally, while the figure shows what happens for poly-
nomials, we used independent multivariate X’s rather than nonlinear basis functions in the
main experiments below, getting essentially the same results. All this indicates that the in-
consistency is really caused by misspecification, in particular the presence of in-liers, and not
by anything else. The setup is inspired by the work of Grünwald and Langford (2004, 2007),
who gave a mathematical proof that Bayesian inference can be inconsistent under misspec-
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ification in a related but much more artificial classification setting. Here we show that this
can also happen in a much more natural regression setting. The setting being more natural,
it is also harder to analyze, and we only demonstrate the inconsistency empirically.

1.1 Overview of this Paper

KL-Associated Inference tasks Section 2 introduces our setting and the main concepts
needed to understand our results. A crucial point here is that, if Bayesian (or other likelihood-
based methods) converge at all to a distribution in the modelM, this distribution (often called
the ‘pseudo-truth’) is the P̃ ∈M that minimizes KL-divergence to the true distribution P ∗.
While the minimum KL divergence point is often not of intrinsic interest, for some (not all)
models, P̃ can be of interest for other reasons as well (Royall and Tsou, 2003): there may
be associated inference tasks for which P̃ is suitable as well. For standard linear models
with fixed σ2, the main associated task is squared error prediction: the KL-optimal P̃ is
also optimal, among all P ∈ M, in terms of squared error prediction risk. If additionally σ2

becomes a free parameter, then it is also reliable, which roughly means that it is optimal in
determining its own squared error prediction quality (Section 2.3; we have a lot more to say
about associated inference tasks in Section 7). Thus, whenever one is prepared to work with
linear models and one is interested in squared risk or reliability, then Bayesian inference would
seem the way to go, even if one suspects misspecification. . . at least if there is consistency.

The Safe Bayesian Algorithm Section 3 introduces the η-generalized posterior and in-
stantiates it to the linear model. Section 4 introduces the ‘Safe Bayesian’ algorithm, which
learns η from the data. This is done via Dawid’s (1984) prequential view on Bayesian infer-
ence. We then provide four instantiations of the SafeBayes method to linear models.

Section 5 discusses our experiments. We first provide the necessary preparation in Sec-
tion 5.1 and 5.2. Section 5.3 gives the results of our first experiment, a comparison of Bayesian
and SafeBayesian model averaging and selection in two settings, one with a correct model
and one with a model corrupted by 50% easy points as above, but with independent Gaus-
sian rather than polynomial inputs. Section 5.4 repeats these experiments for a Bayesian
ridge regression setting, Section 5.5 provides an ‘executive summary’. In all experiments Safe
Bayesian methods behave much better in terms of squared error risk and reliability than stan-
dard Bayes if the model is incorrect, and hardly worse (sometimes still better) than standard
Bayes if the model is correct.

Good vs. Bad Misspecification: Nonconcentration and Hypercompression In
and of itself, the fact that one obtains inconsistency with homoskedastic models and het-
eroskedastic data may not be very surprising; and indeed, whether similar phenomena occur
in real-world data needs further study. The main strength of our example is rather that it
clearly shows what can happen in principle, and indicates how one may go about solving it.
We explain this in Section 6, in particular on the basis of Figure 9 on page 34, the essential
picture to understand the phenomenon. Inconsistency can only arise under a ‘bad’ form of
misspecification, depicted by the figure. Under bad misspecification, the posterior may fail
to concentrate, and this causes trouble. As a theoretical contribution of this paper, we show
in this section that, under some conditions, a Bayesian strongly believes that her posterior
will, in some sense, concentrate fast. Indeed, SafeBayes will only select η � 1 if the stan-
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dard posterior is nonconcentrated, and may thus be (loosely) viewed as a particular ‘prior
predictive check’.

Posterior nonconcentration in turn can lead to ‘hypercompression’, the phenomenon that
the Bayes predictive distribution behaves substantially better under a logarithmic scoring rule
than the best distribution P̃ ∈M; this can happen because the Bayes predictive distribution
— a mixture of elements of M — behaves substantially differently from any of the elements
ofM. Somewhat paradoxically (Section 6.3), Bayes’ overly good log-loss behavior is exactly
what causes it to perform badly for the associated inference tasks (squared error prediction
and reliability, in our case). Thus, there can be an inherent tension between behavior under
log-loss and behavior under its associated tasks, a discrepancy which one can measure by
the mixability gap (Section 6.4), a theoretical concept introduced by Van Erven et al. (2011)
and Grünwald (2012). If one is interested in log-loss, standard Bayes is just fine; the Safe
Bayesian algorithm should be used if one wants to optimize behavior against the associated
tasks. Of course, whether such a task-dependent modification of Bayes is desirable needs
discussion, which we provide in Section 7.

Additional Experiments The paper is followed by a long list of appendices where we
provide a battery of experiments to check the robustness of our results. Specifically, we in-
vestigate what happens if we vary our models and priors (using e.g. a fixed σ2 and standard
priors used in the regression literature), our methods, and if we vary the data generating
distribution using e.g. ‘easy’ points that are close to, but not exactly (0, 0). Our main con-
clusion here is that, of the four versions of SafeBayes which we propose, one is uncompetitive
and among the other three, there is no clear winner — although they consistently outperform
Bayes under misspecification. Furthermore we show that AIC, BIC and cross-validation also
have serious problems in our regression setup. We also provide a proof for the theorem about
nonconcentration given in Section 6.4.

2 Preliminaries: Setting, Optimal KL Distribution, Regres-
sion Function

2.1 Setting, Logarithmic Risk, Optimal Distribution

In this paper we consider data Zn = Z1, Z2, . . . , Zn ∼ i.i.d. P ∗, where each Zi = (Xi, Yi) is an
independently sampled copy of Z = (X,Y ), X taking values in some set X , Y taking values
in Y and Z = X × Y. We are given a model M = {Pθ | θ ∈ Θ} parameterized by (possibly
infinite-dimensional) Θ, and consisting of conditional distributions Pθ(Y | X), extended to
n outcomes by independence. For simplicity we assume that all Pθ have corresponding con-
ditional densities fθ, and similarly, the conditional distribution P ∗(Y | X) has a conditional
f∗, all with respect to the same underlying measure. While we do not assume P ∗(Y | X) to
be in (or even ‘close’ to)M, we want to learn, from given data Zn, a ‘best’ (in a sense to be
defined below) element of M, or at least, a distribution on elements of M that can be used
to make predictions about future data. While our experiments focus on linear regression, the
discussion in this section holds for general conditional density models. The logarithmic score,
henceforth abbreviated to log-loss, is defined in the standard manner: the loss incurred when
predicting Y based on density f(· | x) and Y takes on value y, is given by − log f(y|x). A
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central quantity in our setup is then the expected log-loss or log-risk, defined as

risklog(θ) := E(X,Y )∼P ∗ [− log fθ(Y | X)],

where here as in the remainder of this paper, log denotes natural logarithm.
We let P ∗X be the marginal distribution of X under P ∗. The Kullback-Leibler (KL)

divergence D(P ∗‖Pθ) between P ∗ and conditional distribution Pθ is defined as the expected
KL-divergence, under X ∼ P ∗X , of the KL divergence D(P ∗(· | X)‖Pθ(· | X)) between Pθ
and the ‘true’ conditional P ∗(Y |X): D(P ∗‖Pθ) = EX∼P ∗X [D(P ∗(·|X)‖Pθ(·|X))]. A simple
calculation shows that for any θ, θ′,

D(P ∗‖Pθ)−D(P ∗‖Pθ′) = risklog(θ)− risklog(θ′),

so that the closer Pθ is to P ∗ in terms of KL divergence, the smaller its log-risk, and the
better it is, on average, when used for predicting under the log-loss.

Now suppose that M contains a unique distribution that is closest, among all P ∈M to
P ∗ in terms of KL-divergence. We denote such a distribution, if it exists, by P̃ . Then P̃ = Pθ
for at least one θ ∈ Θ; we pick any such θ and denote it by θ̃, i.e. P̃ = Pθ̃, and note that it
also minimizes the log-risk:

risklog(θ̃) = min
θ∈Θ

risklog(θ) = min
θ∈Θ

E(X,Y )∼P ∗ [− log fθ(Y | X)]. (2)

We shall call such a θ̃ optimal.
Since, in regions of about equal prior density, the log Bayesian posterior density is propor-

tional to the log likelihood ratio, we hope that, given enough data, with high P ∗-probability,
the posterior puts most mass on distributions that are close to Pθ̃ in KL-divergence, i.e.
that have log-risk close to optimal. Indeed, all existing consistency theorems for Bayesian
inference under misspecification express concentration of the posterior around Pθ̃.

2.2 A Special Case: The Linear Model

Fix some pmax ∈ {0, 1, . . .} ∪ {∞}. We observe data Z1, . . . , Zn where Zi = (Xi, Yi), Yi ∈ R
and Xi = (1, Xi1, . . . , Xipmax) ∈ Rpmax+1. Note that this is as in (1) but from now on we
adopt the standard convention to take X0i ≡ 1 as a dummy random variable. We denote
by Mp = {Pp,β,σ2 | (p, β, σ2) ∈ Θp} the standard linear model with parameter space Θp :=
{(p, β, σ2) | β = (β0, . . . , βp)

T ∈ Rp+1, σ2 > 0}, where the entry p in (p, β, σ2) is redundant
but included for notational convenience. We let Θ =

⋃
p=0..pmax

Θp. Mp states that for

all i, (1) holds, where ε1, ε2, . . . ∼ i.i.d. N(0, σ2). When working with linear models Mp,
we are usually interested in finding parameters β that predict well in terms of the squared
error loss function (henceforth abbreviated to square-loss): the square-loss on data (Xi, Yi)
is (Yi −

∑p
j=0 βjXij)

2 = (Yi −Xiβ)2. We thus want to find the distribution minimizing the
expected square-loss, i.e. squared error risk (henceforth abbreviated to ‘square-risk’) relative
to the underlying P ∗:

risksq(p, β) := E(X,Y )∼P ∗(Y −Ep,β,σ2 [Y | X])2 = E(X,Y )∼P ∗(Y −
p∑
j=0

βjXj)
2, (3)

where Ep,β,σ2 [Y | X] abbreviates EY∼Pp,β,σ2 |X [Y ]. Since this quantity is independent of the

variance σ2, σ2 is not used as an argument of risksq.
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2.3 KL-Associated Prediction Tasks for the Linear Model: The KL-Optimal
θ̃ = (β̃, p̃, σ̃2) is square-risk optimal and reliable

Suppose that an optimal P̃ ∈M exists in the regression model. We denote by p̃ the smallest
p such that P̃ ∈Mp, and define σ̃2, β̃ such that P̃ = Pp̃,β̃,σ̃2 . A straightforward computation

shows that for all (p, β, σ2) ∈ Θ:

risklog((p, β, σ2)) =
1

2σ2
risksq((p, β)) +

1

2
log(2πσ2), (4)

so that the (p, β) achieving minimum log-risk for each fixed σ2 is equal to the (p, β) with
the minimum square-risk. In particular, (p̃, β̃, σ̃2) must minimize not just log-risk, but also
square-risk. Moreover, the conditional expectation EP ∗ [Y | X] is known as the true regression
function. It minimizes the square-risk among all conditional distributions for Y | X. Together
with (4) this implies that, if there is some (p, β) such that E[Y | X] =

∑p
j=0 βjXj = Xβ, i.e.

(p, β) represents the true regression function, then (p̃, β̃) also represents the true regression
function. In all our examples, this will be the case: the model is misspecified only in that
the true noise is heteroskedastic; but the model does invariably contain the true regression
function.

Moreover, for each fixed (p, β), the σ2 minimizing risklog is, as follows by differentiation,
given by σ2 = risksq(p, β). In particular, this implies that

σ̃2 = risksq(p̃, β̃), (5)

or in words: the KL-optimal model variance σ̃2 is equal to the true expected (marginal, not
conditioned on X) square-risk obtained if one predicts with the optimal (p̃, β̃). This means
that the optimal (p̃, β̃, σ̃2) is reliable in the sense of Grünwald (1998, 1999): its self-assessment
about its square-loss performance is correct, independently of whether β̃ is equal to the true
regression function or not: (p̃, β̃, σ̃2) correctly predicts how well it predicts.

Summarizing, for misspecified models, (p̃, β̃, σ̃2) is optimal not just in KL/log-risk sense,
but also in terms of square-risk and in terms of reliability; in our examples, it also represents
the true regression function. We say that, for linear models, square-risk optimality, square-
risk reliability and regression-function consistency are KL-associated prediction tasks: if (as
we hope Bayes will do, but as we will see sometimes won’t) we can find the KL-optimal θ̃,
we automatically behave well in these associated tasks as well.

3 The Generalized Posterior

General Losses The original generalized posterior is a notion going back at least to Vovk
(1990) and has been developed mainly within the so-called (frequentist) PAC-Bayesian frame-
work McAllester (2003), Seeger (2002), Catoni (2007), Audibert (2004), Zhang (2006b); see
also Bissiri et al. (2016) and the discussion in Section 7. It is defined relative to a prior on
predictors rather than probability distributions. Depending on the decision problem at hand,
predictors can be e.g. classifiers, regression functions or probability densities. Formally, we
are given an abstract space of predictors represented by a set Θ, which obtains its meaning
in terms of a loss function ` : Z × Θ → R, writing `θ(z) as shorthand for `(z, θ). Following
e.g. Zhang (2006b), for any prior Π on Θ with density π relative to some underlying measure
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ρ, we define the generalized Bayesian posterior with learning rate η relative to loss function
`, denoted as Π | Zn, η, as the distribution on Θ with density

π(θ | zn, η) :=
e−η

∑n
i=1 `θ(zi)π(θ)∫

e−η
∑n
i=1 `θ(zi)π(θ)ρ(dθ)

=
e−η

∑n
i=1 `θ(zi)π(θ)

Eθ∼Π[e−η
∑n
i=1 `θ(zi)]

. (6)

Thus, if θ1 fits the data better than θ2 by a difference of ε according to loss function `, then
their posterior ratio is larger than their prior ratio by an amount exponential in ε, where the
larger η, the larger the influence of the data as compared to the prior.

If zi = (xi, yi) with yi ∈ R and xi = (1, xi1, . . . , xip), and the goal is to predict yi given xi,
then we may take as our prediction model e.g. the set of linear predictors that predict yi by∑
βjxij = xiβ, and as our loss function the squared error loss, `β(xi, yi) = (yi − xiβ)2. We

may then study the behavior of such a procedure in its own right, irrespective of a Bayesian
misspecification interpretation; the experiments we perform in Appendix A.1 and A.1.2 can
be interpreted in this manner.

Log-Loss and Likelihood Now if the set Θ represents a model of (conditional) distri-
butions M = {Pθ | θ ∈ Θ}, we may set, for zi = (xi, yi), `θ(zi) = − log fθ(yi | xi) to be
the log-loss as defined above. In this special case, the definition of η-generalized posterior
specializes to the definition of ‘generalized posterior’ as known within the Bayesian literature
(Walker and Hjort, 2002, Zhang, 2006a):

π(θ | zn, η) =
(f(yn | xn, θ))ηπ(θ)∫

(f(yn | xn, θ))ηπ(θ)ρ(dθ)
=

(f(yn | xn, θ))ηπ(θ)

Eθ∼Π[(f(yn | xn, θ))η]
. (7)

Again, the larger η, the larger the influence of the likelihood. Obviously η = 1 corresponds to
standard Bayesian inference, whereas if η = 0 the posterior is equal to the prior and nothing is
ever learned. Our algorithm for learning η will usually end up with values in between. It has
long been known that in model selection and nonparametric settings, there is an issue with
consistency proofs for full Bayes, Bayes MAP and MDL if we take the standard η = 1, and
indeed, this is part of the reason why the generalized posterior in the form (7) was derived
in the first place: for example, Barron and Cover (1991) give general consistency theorems
for 2-part MDL (closely related to Bayes MAP) and note that they hold for any η < 1; but
for η = 1, additional assumptions must be made. Zhang (2006a) gives an explicit example
in which the posterior shows anomalous behavior at η = 1. A connection to misspecification
was first made by Grünwald (2011) (see Section 7.1) and Grünwald (2012).

Generalized Predictive Distribution We also define the predictive distribution based
on the η-generalized posterior (7) as a generalization of the standard definition as follows:
for m ≥ 0,m′ ≥ m, we set

f̄(yi, . . . , yi+m | xi, . . . , xi+m′ , zi−1, η) := Eθ∼Π|zi−1,η[f(yi, . . . , yi+m | xi, . . . , xi+m′ , θ)]
= Eθ∼Π|zi−1,η[f(yi, . . . , yi+m | xi, . . . , xi+m, θ)]. (8)

where the first equality is a definition and the second follows by our i.i.d. assumption. We
always use the bar-notation f̄ to indicate marginal and predictive distributions, i.e. distri-
butions on data that are arrived at by integrating out parameters. If η = 1 then f̄ and π
become the standard Bayesian predictive density and posterior, and if it is clear from the
context that we consider η = 1, we leave out the η in the notation.
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The generalized posterior is created by exponentiating the likelihood according to indi-
vidual elements θ ∈ Θ =

⋃
p Θp in the model and renormalizing, which is not the same as

exponentiating marginal likelihoods and renormalizing. In particular, π(p | zn, η) as given
by (10) is in general not proportional to (f̄(yn | xn, p))ηπ(p). Similarly, for generalized
marginal distributions, as soon as η 6= 1, we have that in general

f̄(yi, yi+1 | xi, xi+1, z
i−1, η) 6= f̄(yi | xi, zi−1, η) · f̄(yi+1 | xi+1, z

i, η),

unlike for the standard Bayesian marginal distribution for which equality holds (in Sec-
tion 6.5 we encounter a further modification of the generalized posterior whose marginals
do satisfy this product rule).

3.1 Instantiation to Linear Model Selection and Averaging

Now consider again a linear model Mp as defined in Section 2.3. We instantiate the gener-
alized posterior and its marginals for this model. With prior π(β, σ2 | p) taken relative to
Lebesgue measure, (7) specializes to:

π(β, σ | zn, p, η) =
(2πσ2)−nη/2e−

η

2σ2

∑n
i=1(yi−xiβ)2π(β, σ | p)∫

(2πσ2)−nη/2e−
η

2σ2

∑n
i=1(yi−xiβ)2π(β, σ | p) dβ dσ

.

Note that in the numerator 1/σ2 and η are interchangeable in the exponent, but not in the
factor in front: their role is subtly different. For Bayesian inference with a sequence of models
M =

⋃
p=0..pmax

Mp, with π(p) a probability mass function on p ∈ {0, . . . , pmax}, we get:

π(θ | zn, η) =
f(yn | xn, θ)ηπ(θ)∫

θ∈Θ f(yn | xn, θ)ηπ(θ)ρ(dθ)
with θ = (β, σ2, p)

= π(β, σ, p | zn, η) =
(2πσ2)−nη/2e−

η

2σ2

∑n
i=1(yi−xiβ)2π(β, σ | p)π(p)∑pmax

p=0

∫
(2πσ2)−nη/2e−

η

2σ2

∑n
i=1(yi−xiβ)2π(β, σ | p)π(p) dβ dσ

(9)

The total generalized posterior probability of model Mp then becomes:

π(p | zn, η) =

∫
π(β, σ, p | zn, η) dβ dσ. (10)

Analogously to (8), for given p, we define (writing aji as shorthand for ai, . . . , aj), the η-
generalized Bayesian predictive distribution as:

f̄(yi+mi | xi+m′i , zi−1, p, η) := Eβ,σ2∼Π|zi−1,p,η[f(yi+mi | xi+m′i , β, σ2, p)]

= Eβ,σ2∼Π|zi−1,p,η[f(yi+mi | xi+mi , β, σ2, p)]. (11)

The previous displays held for general priors. The experiments in this paper adopt widely used
priors (see e.g. Raftery et al. (1997)): normal priors on the β’s and inverse gamma priors
on the variance. These conjugate priors allow explicit analytical formulas for all relevant
quantities for arbitrary η, provided below. We only consider the simple case of a fixed Mp

here; the more complicated formulas with an additional prior on p are given in Appendix D.

Fixed p and σ2 Let Xn = (xT1 , . . . , x
T
n )T be the design matrix. For a linear model Mp

with fixed variance σ2 and initial Gaussian prior on β given by N(β̄0, σ
2Σ0), the generalized

posterior on β is again Gaussian with mean

β̄n,η := Eβ∼Π|zn,p,ηβ = Σn,η(Σ
−1
0 β̄0 + ηXT

ny
n) (12)

and covariance matrix σ2Σn,η, where Σn,η = (Σ−1
0 + ηXT

nXn)−1.
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Fixed p, varying σ2 Now consider linear models with a Gaussian prior on β conditional
on σ2 as above, and a conjugate (inverse gamma) prior on σ2, i.e. π(σ2) = Inv-gamma(σ2 |
a0, b0) for some a0 and b0. Here we use the following parameterization of the inverse gamma
distribution:

Inv-gamma(σ2 | a, b) = σ−2(a+1)e−b/σ
2
ba/Γ(a). (13)

The posterior π(σ2, zn, p) is then given by Inv-gamma(σ2 | an,η, bn,η) where

an,η = a0 + ηn/2 ; bn,η = b0 +
1

2
β̄T0 Σ−1

0 β̄0 +
η

2
(yn)T yn − 1

2
β̄Tn,ηΣ

−1
n,ηβ̄n,η. (14)

The posterior expectation of σ2 can be calculated as

σ̄2
n,η :=

bn,η
an,η − 1

. (15)

Note that the posterior mean of β given σ2 does not depend on σ2.

4 The Safe Bayesian Algorithm

4.1 Introducing Safe Bayes via the Prequential View

We introduce SafeBayes via Dawid’s prequential interpretation of Bayes factor model selec-
tion. As was first noticed by Dawid (1984) and Rissanen (1984), we can think of Bayes factor
model selection as picking the model with index p that, when used for sequential prediction
with a logarithmic scoring rule, minimizes the cumulative loss. To see this, note that for any
distribution whatsoever, we have that, by definition of conditional probability,

− log f(yn) = − log

n∏
i=1

f(yi | yi−1) =

n∑
i=1

− log f(yi | yi−1).

In particular, for the standard Bayesian marginal distribution f̄(· | p) = f̄(· | p, η = 1) as
defined above, for each fixed p, we have

− log f̄(yn | xn, p) =
n∑
i=1

− log f̄(yi | xn, yi−1, p) =
n∑
i=1

− log f̄(yi | xi, zi−1, p), (16)

where the second equality holds by (11). If we assume a uniform prior on model index p, then
Bayes factor model selection picks the model maximizing π(p | zn), which by Bayes’ theorem
coincides with the model minimizing (16), i.e. minimizing cumulative log-loss. Similarly,
in ‘empirical Bayes’ approaches, one picks the value of some nuisance parameter ρ that
maximizes the marginal Bayesian probability f̄(yn | xn, ρ) of the data. By (16), which still
holds with p replaced by ρ, this is again equivalent to the ρ minimizing the cumulative log-
loss. This is the prequential interpretation of Bayes factor model selection and empirical
Bayes approaches, showing that Bayesian inference can be interpreted as a sort of forward
(rather than cross-) validation (Dawid, 1984, Rissanen, 1984, Hjorth, 1982).

We will now see whether we can use this approach with ρ in the role of the η for the
η-generalized posterior that we want to learn from the data. We continue to rewrite (16) as
follows (with ρ instead of p that can either stand for a continuous-valued parameter or for a
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model index but not yet for η), using the fact that the Bayes predictive distribution given ρ
and zi−1 can be rewritten as a posterior-weighted average of fθ:

ρ̆ := arg max
ρ
f̄(yn | xn, ρ) = arg min

ρ

n∑
i=1

(
− log f̄(yi | xi, zi−1, ρ)

)
= arg min

ρ

n∑
i=1

(
− log Eθ∼Π|zi−1,ρ[f(yi | xi, θ)]

)
. (17)

This choice for ρ̆ being entirely consistent with the Bayesian approach, our first idea is to
choose η̂ in the same way: we simply pick the η achieving (17), with ρ substituted by η.
However as Figure 13 will show (the blue line there depicts (17) for one of our experiments),
this will tend to pick η close to 1 and does not improve predictions under misspecification.
Indeed, we introduced η to deal with the case in which the Bayesian model assumptions are
violated, so we cannot expect that learning it in a Bayes-like way such as (17) will resolve the
issue. But it turns out that a slight modification of (17) does the trick: we simply interchange
the order of logarithm and expectation in (17) and pick the η minimizing

n∑
i=1

Eθ∼Π|zi−1,η [− log f(yi | xi, θ)] . (18)

In words, we pick the η minimizing the Posterior-Expected Posterior-Randomized log-loss,
i.e. the log-loss we expect to obtain, according to the η-generalized posterior, if we actually
sample from this posterior. This modified loss function has also been called Gibbs error
(Cuong et al., 2013), and while the abbreviation PEPR-log-loss would be more correct, we
simply call it the η-R-log-loss from now on.

A detailed explanation of why this works will have to wait until Section 6.3 and 6.4; for
now we just notice that by Jensen’s inequality, for any fixed η, for every sequence of data we
must have

Eθ∼Π|zi−1,η [− log f(yi | xi, θ)] ≥ − log Eθ∼Π|zi−1,η [f(yi | xi, θ)] , (19)

yet, the difference between both sides is small if the posterior is concentrated for (xi, yi), i.e.
for small ε and small positive δ, it puts 1 − δ of its mass on distributions which assign the
same density to yi given xi up to a factor 1 + ε — clearly, if δ = ε = 0 then both sides are the
same. Thus, at values for η at which the generalized posterior is ‘cumulatively concentrated’,
i.e. concentrated at most sample points, the objective function will be similar to the standard
Bayesian one. This is the clue to further analysis of the algorithm to follow later.

In practice, it is computationally infeasible to try all values of η and we simply have to
try out a number of values. For convenience we give a detailed description of the resulting
algorithm below, copied from Grünwald (2012). In this paper, we will invariably apply it with
zi = (xi, yi) as before, and `θ(zi) set to the (conditional) log-loss as defined before, although
it sometimes also has a second interpretation with `θ as square-loss.

Variation As we will see in Section 6.4, the crucial property to make inference about η
work is that the expression inside the sum in (17) is replaced by

Eθ∼Π′ [− log fθ(Yi | Xi)] (21)

where Π′ should be chosen such that the resulting log-loss is as small as possible. In (18) we
set Π′ = Π, but Π′ is allowed to be any distribution on θ under which the expected log-loss
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Algorithm 1: The (R-) Safe Bayesian Algorithm.

Input: data z1, . . . , zn, model M = {f(· | θ) | θ ∈ Θ}, prior Π on Θ, step-size κstep,
max. exponent κmax, loss function `θ(z)

Output: Learning rate η̂
Sn := {1, 2−κstep , 2−2κstep , 2−3κstep , . . . , 2−κmax};
for all η ∈ Sn do

sη := 0;
for i = 1 . . . n do

Determine generalized posterior Π(· | zi−1, η) of Bayes with learning rate η.
Calculate “posterior-expected posterior-randomized loss” of predicting actual
next outcome:

r := `Π|zi−1,η(zi) = Eθ∼Π|zi−1,η [`θ(zi)] (20)

sη := sη + r;

end

end
Choose η̂ := arg minη∈Sn{sη} (if min achieved for several η ∈ Sn, pick largest);

is small. The heuristic analysis of Section 6.4 suggests that the smaller the loss that can
be formed this way (see also under ‘Open Problems’ in Section 7), the better the resulting
method is expected to work.

Now by Jensen’s inequality, the η-in-model-log-loss or just η-I-log-loss, defined as,

n∑
i=1

[
− log f(yi | xi,Eθ∼Π|zi−1,η[θ])

]
, (22)

is always smaller than (18) for the linear models that we consider. This means that, instead
of finding the η minimizing (18), we may want to find the η minimizing (22), which is of
the form (21) with Π′ equal to a point mass on θ̄i,η := Eθ∼Π|zi−1,ηfθ. We call the version
of SafeBayes which minimizes the alternative objective function (22) in-model SafeBayes,
abbreviated to I-SafeBayes, and from now on use R-SafeBayes for the original version based
on the R-log-loss. We did not realize the potential benefits of using in-model SafeBayes at the
time of writing Grünwald (2012), and while the theoretical results of Grünwald (2012) can be
adjusted to deal with such modifications, we cannot get any better theoretical convergence
bounds as yet, but this may be an artifact of our proof techniques. A secondary goal of the
experiments in this paper is thus to see whether one can really improve SafeBayes by using
the ‘in-model’ version.

4.2 Instantiating SafeBayes to the Linear Model

Our experiments concern four instantiations of SafeBayes: R-SafeBayes and I-SafeBayes for
models with fixed variance, denoted R-square-SafeBayes and I-square-SafeBayes for reasons
that will become clear below, are the topic of experiments in Appendix A.1 and A.1.2.
The main text instead investigates, in Section 5, R-SafeBayes and I-SafeBayes for models
with varying variance, denoted R-log-SafeBayes and I-log-SafeBayes. Below we give explicit
formulas for each when conditioned on a fixed modelMp; the case with a posterior on p itself
can easily be derived from these.
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Fixed σ2: R-square- and I-square-SafeBayes When conditioned on a fixed p and σ2

(a situation with which we experiment in Section A.1.2), SafeBayes tries to minimize the
R-log-loss, which, as an easy calculation shows, is just the sum, from i = 0 to n− 1, of

Eβ∼Π|zi,p,η
[
− log f(yi+1 | xi+1, β, σ

2)
]

=
1

2
log(2πσ2) +

1

2σ2
(yi+1 − xi+1β̄i,η)

2 +
1

2
xi+1Σi,ηx

T
i+1, (23)

where β̄i,η and Σi,η are given as in and below (12). Note that β̄i,η depends on η but not on
σ, and note also that, since XT

nXn (as in (12)) tends to increase linearly in n and p, the final
term is of order p/(nη).

In the corresponding in-model version of SafeBayes, we use the in-model-loss as given by
− log f(yi+1 | xi+1, β̄i,η, σ

2), which is equal to (23) without the final term. Since the first
term of (23) does not depend on the data, this version of SafeBayes thus amounts to picking
the η̂ minimizing just the sum of square-loss prediction errors, which does not depend on
the chosen σ2. It thus becomes a standard version of ‘prequential model selection’ as based
on the square-loss, which in turn is similar to (though having different asymptotics than)
leave-one-out cross validation based on the square-loss.

Indeed, the fixed σ2 versions of SafeBayes can be interpreted in two ways: first, as we
did until now, in terms of SafeBayes with `θ in (20) set to the log-loss, i.e. as a tool for
dealing with misspecification. Second, with `θ in (20) set proportionally to the square-loss,
as a generic tool to learn good square-loss predictors (not distributions) in a pseudo-Bayesian
way. More precisely, I-SafeBayes with the log-loss for fixed σ2 is equivalent to the version of I-
SafeBayes we would get if we set `β,σ2(x, y) := C(y−xβ)2, for any constant C > 0. Similarly,
R-SafeBayes with the log-loss for fixed σ2 is equivalent to the version of R-SafeBayes we
would get if we set `β,σ2(x, y) := C(y − xβ)2, although now equivalence only holds if we set
C = 1/2σ2. For this reason we will now refer to them as I-square-SafeBayes and R-square-
SafeBayes, respectively.

Varying σ2: R-log- and I-log-SafeBayes Next consider the situation with fixed p and
varying σ2, with posterior on σ2 an inverse gamma distribution with parameters an,η and
bn,η as given by (14). Then the R-log-loss is given by

Eσ2,β∼Π|zi,p,η
[
− log f(yi+1 | xi+1, β, σ

2)
]

=
1

2
log 2πbi,η −

1

2
ψ(ai,η) +

1

2

(yi+1 − xi+1β̄i,η)
2

bi,η/ai,η
+

1

2
xi+1Σi,ηx

T
i+1

=
1

2
log 2πσ̄2

i,η +
1

2

(yi+1 − xi+1β̄i,η)
2

σ̄2
i,η

+
1

2
xi+1Σi,ηx

T
i+1 + r(i, η), (24)

where ψ is the digamma function, σ̄2
i,η is the η-posterior expectation of σ2 as given by (15) and

r(i, η) is a remainder function which is O(1/i) whenever
∑n

i=1(yi−xiβn,η)2 increases linearly
in i. This final approximation follows by (15) and because we have ψ(x) ∈ [log(x− 1), log x].
R-SafeBayes for varying σ2 minimizes (24), and, because there is now only a log-loss and not
a direct square-loss interpretation, we will call it R-log-SafeBayes from now on.

To calculate the corresponding in-model version of SafeBayes, I-log-SafeBayes, note that
it minimizes the sum of

− log f(yi+1 | xi+1, β̄i,η, σ̄
2
i,η) =

1

2
log 2πσ̄2

i,η +
1

2

(yi+1 − xi+1βi,η)
2

σ̄2
i,η

. (25)
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Comparing the four versions of SafeBayes, we see that the both R-SafeBayeses have an
additional term which decreases in η, increases in model dimensionality p (via the size of the
matrix Σi,η) but becomes negligible for n� p.

4.3 SafeBayes learns to predict as well as the Optimal Distribution

We first define the Cesàro-averaged posterior given data Zn by setting, for any subset Θ′ ⊂ Θ,

ΠCes(Θ
′ | Zn, η) :=

1

n

n∑
i=1

Π(Θ′ | Zi, η) (26)

to be the posterior probability of Θ′ averaged over the n posterior distributions obtained so
far. Predicting based on Cesàro-averaged posteriors was introduced independently by several
authors (Barron, 1987, Helmbold and Warmuth, 1992, Yang, 2000, Catoni, 1997) and has
received a lot of attention in the machine learning literature in recent years, also under the
name “on-line to batch conversion of Bayes” or progressive mixture rule (Audibert, 2007)
or mirror averaging (Juditsky et al., 2008, Dalalyan and Tsybakov, 2012), but is of course
unnatural from a Bayesian perspective.

The main result of Grünwald (2012) essentially states the following: suppose that, under
P ∗, the density ratios are uniformly bounded, i.e. there is a finite v such that for all θ, θ′ ∈ Θ,
P ∗(fθ(Y | X)/fθ′(Y | X) ≤ v) = 1. Suppose further that the prior Π assigns ‘sufficient mass’
in KL-neighborhoods of Pθ̃. Then ΠCes applied with the η̂ learned by the Safe Bayesian
algorithm concentrates on the optimal Pθ̃. That is, let Θδ be the subset of all θ ∈ Θ with
D(P ∗‖Pθ) ≥ D(P ∗‖Pθ̃) + δ. Then for all δ > 0, with P ∗-probability 1, as n → ∞, we have
that ΠCes(Θδ | Zn, η̂) goes to 0. Grünwald (2012) goes on to show that in several settings,
one can design priors such that the rate at which the posterior concentrates is minimax
optimal, i.e. no algorithm can do better in general. On the negative side, the requirement of
bounded density ratio is strong, and the replacement of the standard posterior by the Cesàro
one is awkward. On the positive side, the theorem has no further conditions and can be
applied to parametric and nonparametric cases alike. It is very likely that the requirement of
bounded density ratios can be dropped, cf. the developments of Grünwald and Mehta (2016);
it is not so easy to drop the Cèsaro-replacement, but we suspect that this is an artifact of
the proof technique. To see whether there is any practical difference, below we include
experimental results both for the Cesàro-averaged η-generalized posterior ΠCes(· | Zn, η̂) and
for the standard η-generalized posterior Π(· | Zn, η̂).
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5 Main Experiment: Varying σ2

In this section we provide our main experimental results, based on linear models Mp as
defined in Section 2.2 with a prior on both the mean and the variance. Figure 3–6 de-
pict, and Section 5.3 discusses the results of model selection/averaging experiments, which
choose/average between the models 0, . . . , pmax, where we consider first an incorrectly and
then a correctly specified model, both with pmax = 50 and later with pmax = 100. Section 5.4
contains and interprets additional experiments on Bayesian ridge regression, with a fixed p; a
multitude of additional experiments is provided in the appendices. Section 5.5 in this section
summarizes the relevant findings of these additional experiments.

5.1 Preparing Main Experiments: Model, Priors, Method, ‘Truth’

In this subsection we prepare the experiments: Section 5.1.1 describes our priors π; Sec-
tion 5.1.2 concerns the sampling (‘true’) distributions P ∗ with which we experiment; and
finally, Section 5.2 describes the data statistics that we will report.

5.1.1 The Priors

Prior on Models In our model selection/averaging experiments, we use a fat-tailed prior
on the models given by

π(p) ∝ 1

(p+ 2)(log(p+ 2))2
.

This prior was chosen because it remains well-defined for an infinite collection of models,
even though we only use finitely many in our experiments.

Variation. As a sanity check we did repeat some of our experiments with a uniform prior
on 0, . . . , pmax instead; the results were indistinguishable.

Prior on Parameters given Models Each model Mp has parameters β, σ2, on which
we put the standard conjugate priors as described in Section 3.1. We set the mean of the
prior on β to β̄0 = 0, and its covariance matrix to σ2Σ0. Our main experiments below are
based on an informative instantiation of Σ0, using the identity matrix Σ0 = Ip+1; this prior
equals the posterior we would get by starting with an improper Jeffreys’ prior on β and then
observing, for each coefficient βj , one extra point z = (x, 0) with xj = 1 and xi = 0 for i 6= j.

Variations We also ran experiments with a ‘slightly informative’ Σ0, where we set Σ0 =
1000 · Ip+1, comparable to observing points z = (x, 0) with xj = 1/

√
1000. Finally, following

the standard reference Raftery et al. (1997), we also used a prior with a level of informativeness
depending on the submodel, described in more detail in Appendix A.

As to the prior on σ2: Jeffreys’ prior is obtained for the choice a0 = b0 = 0 in (13). We
do not use this improper prior, because of the well-known issues with Bayes factors under
improper priors (O’Hagan, 1995). Moreover, to calculate the posterior’s reliability (defined
in Section 5.2 and shown in Figure 3) and also for the I-log-loss, we need to calculate the
posterior expectation of the variance σ2 quantity as given by (15), which is only well-defined
and finite for an > 1. We want to make π(σ2) as uninformative as possible while ensuring
that (for any positive learning rate) this variance exists for the posterior based on at least
one sample. This is accomplished by choosing a0 = 1: for standard Bayes, the posterior after
one observation has a1 = a0 + 1/2; for generalized Bayes, a1 = a0 + η/2. To set b0, we use
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that b0/a0 represents the sample variance of a virtual initial data sequence (Gelman et al.,
2013, Section 14.8). We choose b0 = 1/40 so that b0/a0 = 1/40, the true variance of the noise
in our data, as we describe next.

5.1.2 The “Truth” (Sampling Distribution)

Our experiments fall into two categories: correct-model and wrong-model experiments.

Correct-Model Experiments HereX1, X2, . . . are sampled i.i.d., with, for each individual
Xi = (Xi1, . . . , Xipmax), Xi1 . . . , Xipmax i.i.d. ∼ N(0, 1). Given each Xi, Yi is generated as

Yi = .1 · (Xi1 + . . .+Xi4) + εi, (27)

where the εi are i.i.d. ∼ N(0, σ∗2) with variance σ∗2 = 1/40.

Wrong-Model Experiments Now at each time point i, a fair coin is tossed independently
of everything else. If the coin lands heads, then the point is ‘easy’, and (Xi, Yi) := (0, 0). If
the coin lands tails, then Xi is generated as for the correct model, and Yi is generated as (27),
but now the noise random variables have variance σ2

0 = 2σ∗2 = 1/20. Thus, Zi = (Xi, Yi) is
generated as in the true model case but with a larger variance; this larger variance has been
chosen so that the marginal variance of each Yi is the same value σ∗2 in both experiments.

From the results in Section 2.3 we immediately see that, for both experiments, the optimal
model is Mp̃ for p̃ = 4, and the optimal distribution in M and Mp̃ is parameterized by
θ̃ = (p̃, β̃, σ̃2) with p̃ = 4, β̃ = (β̃0, . . . β̃4) = (0, .1, .1, .1, .1), σ̃2 = 1/40 (in the correct model
experiment, σ̃2 = σ∗2; in the wrong model experiment, since σ̃2 must be reliable, it must be
equal to the square-risk obtained with (p̃, β̃), which is (1/2) · (1/20) = 1/40). f(x) := xβ̃ is
then equal to the true regression function EP ∗ [Y | X].

Variations. We have already seen a variation of Experiments 1 and 2 depicted in Figure 1
and 2. In the correct model version of that experiment, P ∗ is defined by setting Xj = Sj ,
and let S be uniformly distributed on [−1, 1] and set Y = 0 + ε, where ε ∼ N(0, σ∗2),
with σ∗2 = 1/40; (X1, Y1), . . . are then sampled as i.i.d. copies of (X,Y ). Note that the
true regression function is 0 here. In Appendix C we briefly consider this and several other
variations of these ground truths.

5.2 The Statistics We Report

Figure 3 reports the results of the wrong-model, p = 50 experiment; Figure 4 shows correct-
model, p = 50; Figure 5 is about wrong-model, p = 100 and Figure 6 depicts the correct-
model, p = 100 setting. For all four experiments we measure three aspects of the performance
of Bayes and SafeBayes, each summarized in a separate graph. First, we show the behavior
of several prediction methods based on Safe Bayes relative to square-risk; second, we measure
whether the methods provide a good assessment of their own predictive capabilities in terms
of square-loss, i.e. whether they are reliable and not ‘overconfident’. Third, we check a form
of model identification consistency. Below we explain these three performance measures in
detail. We postpone all experiments with log-loss rather than square-loss to Section 6.4. We
also provide a fourth graph in each case indicating what η̂’s are typically selected by the two
versions of SafeBayes.
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Square-Risk For a given distribution W on (p, β, σ2), the regression function based on W ,
a function mapping covariate X to R, abbreviated to EW [Y | X], is defined as

EW [Y | X] := E(p,β,σ)∼WEY∼Pp,β,σ |X [Y ] = E(p,β,σ)∼W

 p∑
j=0

βjXj

 . (28)

If we take W to be the η-generalized posterior, then (28) is also simply called the η-posterior
regression function. The square-risk relative to P ∗ based on predicting by W is then defined
as an extension of (3) as

risksq(W ) := E(X,Y )∼P ∗(Y −EW [Y | X])2. (29)

In the experiments below we measure the square-risk relative to P ∗ at sample size i − 1
achieved by, respectively, (1), the η-generalized posterior, (2), the η-generalized posterior
conditioned on the MAP (maximum a posteriori) model, and, (3), the η-generalized Cesàro-
averaged posteriors, i.e.

EZi−1∼P ∗ [risk
sq(W )], with

W = Π | Zi−1, η ; W = Π | Zi−1, η, p̆map(Zi−1,η) ; W = ΠCes | Zi−1, η, (30)

respectively, where the MAP (maximum a posteriori) model p̆map(Zi−1,η) is defined as the

p achieving maxp∈0..pmax π(p | Zi−1, η), with π(p | Zi−1, η) defined as in (10), and ΠCes is
the Cesàro-averaged posterior as defined as in (26). We do this for three values of η: (a)
η = 1, corresponding to the standard Bayesian posterior, (b), η := η̂(Zi−1) set by the R-
log Safe Bayesian algorithm run on the past data Zi−1, and (c) η set by the I-log Safe
Bayesian algorithm. In the figures of Section 5.3, 1(a) is abbreviated to Bayes, 1(b) is R-log-
SafeBayes, 1(c) is I-log-SafeBayes, 2(a) is Bayes MAP, 2(b) is R-log-SafeBayes MAP, 2(c)
is I-log-SafeBayes MAP, and results with Cesàro-averaging are discussed but not explicitly
shown. In Section 5.4, additionally 3(a) is Bayes Cesàro, 3(b) is R-log-SafeBayes Cesàro,
and 3(c) is I-log-SafeBayes Cesàro.

Concerning the three square-risks that we record: The first choice is the most natural,
corresponding to the prediction (regression function) according to the ‘standard’ η-generalized
posterior; the second corresponds to the situation where one first selects a single submodel
p̆map and then bases all predictions on that model; it has been included because such methods
are often adopted in practice. The third choice, the Cesàro-averaged generalized posterior is
included because, when η = η̂ is set by Safe Bayes, this is the choice that Grünwald (2012)
provides theoretical convergence results for. But we are also interested in the results for the
Cesàro-average for η = 1, because this has been proposed earlier — albeit somewhat implicitly
and with different models — to stabilize Bayesian predictions in adversarial circumstances
(Helmbold and Warmuth, 1992), so we include these as well.

In Figure 3 and subsequent figures below, we depict these quantities by sequentially
sampling data Z1, Z2, . . . , Zmax i.i.d. from a P ∗ as defined above in Section 5.1.2, where max
is some large number. At each i, after the first i − 1 points Zi−1 have been sampled, we
compute the three square-risks given above. We repeat the whole procedure a number of
times (called ‘runs’); the graphs show the average risks over these runs.
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MAP-model identification/Occam’s Razor When the goal of inference is model iden-
tification, ‘consistency’ of a method is often defined as its ability to identify the smallest
modelMp̃ containing the ‘pseudo-truth’ (β̃, σ̃2). To see whether standard Bayes and/or Safe
Bayes are consistent in this sense, we check whether the MAP model p̆map(Zi−1,η) is equal to
p̃.

Reliability vs. Overconfidence Does Bayes learn how good it is in terms of squared
error? To answer this question, we define, for a predictive distribution W as in (29) above,

U
[W ]
i (a function of Xi, Yi and (through W ) of Zi−1), as

U
[W ]
i = (Yi −EW [Yi | Xi])

2.

This is the error we make if we predict Yi using the regression function based on pre-
diction method W . In the graphs in the next sections we plot the self-confidence ratio

EXi,Yi∼P ∗ [U
[W ]
i ]/EXi∼P ∗EYi∼W |Xi [U

[W ]
i ] as a function of i for the three prediction meth-

ods/choices of W defined above. We may think of this as the ratio between the actual
expected prediction error (measured in square-loss) one gets by using a predictor who based
predictions on W and the marginal (averaged over X) subjectively expected prediction error
by this predictor. We previously, in Section 2.3, showed that the KL-optimal (p̃, β̃, σ̃2) is reli-
able: this means that, if we would take W the point mass on (p̃, β̃, σ̃2) and thus, irrespective
of past data Zi−1, would predict by E(p̃,β̃,σ̃2)[Yi | Xi] =

∑p̃
j=0 β̃jXij , then the ratio would be

1. For the W learned from data considered above, a value larger than 1 indicates that W
does not implement a ‘reliable’ method in the sense of Section 2.3, but rather overconfident:
it predicts its predictions to be better than they actually are, in terms of square-risk.

5.3 Main Model Selection/Averaging Experiment

We run the Safe Bayesian algorithm of Section 4 with zi = (xi, yi) and `θ(zi) = − log fθ(yi | xi)
is the (conditional) log-loss as described in that section. As to the parameters of the algorithm
(page 13), in all experiments we set the step-size κstep = 1/3 and κmax := 8, i.e. we tried
the following values of η: 1, 2−1/3, 2−2/3, . . . , 2−8. The result of the wrong-model and correct-
model experiment as described above with pmax = 50 and pmax = 100, respectively, are given
in Figure 3–6.

Conclusion 1: Bayes performs well if model-correct, and dismally in model-
incorrect experiment The four figures show that standard Bayes behaves excellently
in terms of all quality measures (square-risk, MAP model identification and reliability) when
the model is correct, and dismally if the model is incorrect.

Conclusion 2: if (and only if) model incorrect, then the higher pmax, the worse
Bayes gets We see from Figure 4 and 6 that standard Bayes behaves excellently in terms of
all quality measures (square-risk, MAP model identification and reliability) when the model
is correct, both if pmax = 50 and if pmax = 100, the behavior at pmax = 100 being essentially
indistinguishable from the case with pmax = 50. These and other (unreported) experiments
strongly suggests that, when the data are sampled from a low-dimensional model, then,
when the model is correct, standard Bayes is unaffected (does not get confused) by adding
additional high-dimensional models to the model space. Indeed, the same is suggested by
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various existing Bayesian consistency theorems, such as those by Doob (1949), Ghosal et al.
(2000), Zhang (2006a).

At the same time, from Figure 3 and 5 we infer that standard Bayes behaves very badly in
all three quality measures in our (admittedly very ‘evilly chosen’) model-wrong experiment.
Eventually, at very large sample sizes, Bayes recovers, but the main point here to notice is
that the n at which a given level of recovery (measured in, say, square-loss) takes place is
much higher for the case pmax = 100 (Figure 5) than for the case pmax = 50 (Figure 3).
This strongly suggests that, when the model is incorrect but the best approximation lies in
a low-dimensional submodel, then standard Bayes gets confused by adding additional high-
dimensional models to the model space — recovery takes place at a sample size that increases
with pmax. Indeed, the graphs strongly suggest that in the case that pmax =∞ (with which
we cannot experiment), Bayes will be inconsistent in the sense that the risk of the posterior
predictive will never ever reach the risk attainable with the best submodel. Grünwald and
Langford (2007) showed that this can indeed happen with a simple, but much more unnatural
classification model; the present result indicates (but does not prove) that it can happen with
our standard model as well.

Conclusion 3: R-log-SafeBayes and I-log-SafeBayes generally perform well Com-
paring the four graphs for SafeBayes and I-log-SafeBayes, we see that they behave quite
well for both the model-correct and the model-wrong experiments, being slightly worse than,
though still competitive to, standard Bayes when the model is correct and incomparably
better when the model is wrong. Indeed, in the wrong-model experiments, about half of
the data points are identical and therefore do not provide very much information, so one
would expect that if a ‘good’ method achieves a given level of square-risk at sample size n in
the correct-model experiment, it achieves the same level at about 2n in the incorrect-model
experiment, and this is indeed what happens. Also, we see from comparing Figure 5 and 6
on the one hand to Figure 3 and 4 on the other that adding additional high-dimensional
models to the model space hardly affects the results — like standard Bayes when the model
is correct, SafeBayes does not get confused by the additional, larger model space.

Secondary Conclusions We see that both types of SafeBayes converge quickly to the
right (pseudo-true) model order, which is pleasing since they were not specifically designed
to achieve this. Whether this is an artifact of our setting or holds more generally would,
of course, require further experimentation. We note that at small sample sizes, when both
types of SafeBayes still tend to select an overly simple model, I-log-SafeBayes has significantly
more variability in the model chosen-on-average; it is not clear though whether this is ‘good’
or ‘bad’. We also note that the η’s chosen by both versions are very similar for all but
the smallest sample sizes, and are consistently smaller than 1. When instead of the full η-
generalized posteriors, the η-generalized posterior conditioned on the MAP p̆map is used, the
behavior of all method consistently deteriorates a little, but never by much.

For lack of space in the graphs, we did not show the Cesàro-versions of Bayes, R-log-
SafeBayes and I-log-SafeBayes (methods 3(a), 3(b), 3(c) in Section 5.2). Briefly, the curves
look as follows: Cesàro-Bayes performs significantly better than standard Bayes in all three
quality measures in the wrong-model experiments, but is still far from competitive with the
two (full-posterior) SafeBayes versions. When Cesàroified, the SafeBayes methods become a
bit smoother but not necessarily better. Very similar behavior of Cesàro (making bad methods
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significantly better but still not competitive, and good methods smoother, sometimes a bit
worse and sometimes a bit better) has been explicitly depicted in the ridge regression with
varying σ2 in Section 5.4 below.
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Figure 3: Four graphs showing respectively the square-risk, MAP model order, overconfi-
dence (lack of reliability), and selected η̂ at each sample size, each averaged over 30 runs, for
the wrong-model experiment with pmax = 50, for the methods indicated in Section 5.2. For
the selected-η̂ graph, the pale lines are one standard deviation apart from the average; all
lines in this graph were computed over η̂ indices (so that the lines depict the geometric mean
over the values of η̂ themselves).
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Figure 4: Same graphs as in Figure 3 for the correct-model experiment with pmax = 50.
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Figure 5: Same four graphs as in Figure 3, for the wrong-model experiment with pmax = 100.
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Figure 6: Same graphs as in Figure 3 for the correct-model experiment with pmax = 100.

5.4 Second Experiment: Ridge Regression, Varying σ2

We repeat the model-wrong and model-correct experiment of Figure 3 and 4, with just one
major difference: all posteriors are conditioned on p := pmax = 50. Thus, we effectively
consider just a fixed, high-dimensional model, whereas the best approximation θ̃ = (50, β̃, σ̃2)
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viewed as an element ofMp is ‘sparse’ in that it has only β1, . . . , β4 not equal to 0. We note
that the MAP model index graphs of Figure 3 and 4 are meaningless in this context (they
would be equal to the constant 50) so they are left out of the new Figure 7 and 8.

Instantiating Safe Bayes Since we noticed in preliminary experiments that some versions
of SafeBayes now have a tendency to select much smaller values of η than in the previous
experiments, we now set κmax = 16 (large enough so that in no experiment the optimal
η < 2−κmax); for computational reasons we also increased the step size and set κstep = 1.

Connection to Bayesian (B)ridge Regression From (12) we see that the posterior
mean parameter β̄i,η is equal to the posterior MAP parameter and depends on η but not on σ2,
since σ2 enters the prior in the same way as the likelihood. Therefore, the square-loss obtained
when using the generalized posterior for prediction is always given by (yi−xiβ̄i,η)2 irrespective
of whether we use the posterior mean, or MAP, or the value of σ2. Interestingly, if we fix
some λ and perform standard (nongeneralized) Bayes with a modified prior, proportional to
the original prior raised to the power λ := η−1, then the prior becomes normal N(β̄0, σ

2Σ′0)
where Σ′0 = ηΣ0 and the standard posterior given zi is then (by (12)) Gaussian with mean((

Σ′0
)−1

+ XT
nX
)−1
·
((

Σ′0
)−1

β̄0 + XT
ny

n
)

= β̄i,η. (31)

Thus we see that in this special case, the (square-risk of the) η-generalized Bayes poste-
rior mean coincides with the (square-risk of) the standard Bayes posterior mean with prior
N(β̄0, σ

2ηΣ0). But this means that the square-loss obtained by η-generalized Bayes on a
data sequence is precisely equal to the square-loss obtained by Bayesian ridge regression
with penalty parameter λ = η−1, as defined, by, e.g., Park and Casella (2008) (to be precise,
they call this method Bayesian ‘Bridge’ Regression with q = 2; the choice of q = 1 in their
formula gives their celebrated ‘Bayesian Lasso’). It is thus of interest to see what happens if
η (equivalently, λ) is determined by empirical Bayes, which is one of the methods Park and
Casella (2008) suggest. In addition to the graphs discussed earlier in Section 5.2, we thus
also show the results for η set in this alternative way. Whereas this empirical-Bayesian ridge
regression is usually a very competitive method (indeed in our model-correct experiment,
Figure 8, it performs best in al respects), we will see in Figure 7 (the green line) that, just
like other versions of Bayes, it breaks down under our type of misspecification.

We hasten to add that the correspondence between the η-generalized posterior means
and the standard posterior means with prior raised to power 1/η only holds for the β̄i,η
parameters. It does not hold for the σ̄2

i,η parameters, and thus, for fixed η, the overconfidence
of both methods may be quite different.

Conclusions for Model-Wrong Experiment For most curves, the overall picture of
Figure 7 is comparable to the corresponding model averaging experiment, Figure 3: when
the model is wrong, standard Bayes shows dismal performance in terms of risk and reliability
up to a certain sample size and then very slowly recovers, whereas both versions of SafeBayes
perform quite well even for small sample sizes. We do not show variations of the graph for
p = pmax = 100 (i.e. the analogue of Figure 5), since it relates to Figure 7 in exactly the same
way as Figure 5 relates to Figure 3: with p = 100, bad square-risk and reliability behavior of
Bayes goes on for much longer (recovery takes place at much larger sample size) and remains
equally good as for p = 50 with the two versions of SafeBayes.
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Figure 7: Bayesian Ridge Regression: Model-wrong experiment conditioned on p := pmax =
50. The graphs (square-risk, overconfidence ratio and chosen η as function of sample size) are
as in Figure 3–6, except for the third graph there (MAP model order), which has no meaning
here. The meaning of the curves is given in Section 5.2 except for empirical Bayes, explained
in Section 5.4.

The results for the Cesàro-versions of our methods are exactly as discussed at the end of
Section 5.3.

We also see that, as we already indicated in the introduction, choosing the learning rate
by empirical Bayes (thus implementing one version of Bayesian Bridge regression) behaves
terribly. This complies with our general theme that, to ‘save Bayes’ in general misspecification
problems, the parameter η cannot be chosen in a standard Bayesian manner.
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Figure 8: Bayesian Ridge Regression: same graphs as in Figure 7, but for the model-correct
experiment conditioned on p := pmax = 50.

Conclusions for Model-Correct Experiment The model-correct experiment for ridge
regression (Figure 8) offers a surprise: we had expected Bayes to perform best, and were
surprised to find that the SafeBayeses obtained smaller risk. Some followup experiments (not
shown here), with different true regression functions and different priors, shed more light on
the situation. Consider the setting in which the coefficients of the true function are drawn
randomly according to the prior. In this setting standard Bayes performs at least as good in
expectation as any other method including SafeBayes (the Bayesian posterior now represents
exactly what an experimenter might ideally know). SafeBayes (still in this setting) usually
chooses η = 1/2 or 1/4, and the difference in risks compared to Bayes is small. On the
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other hand, if the true coefficients are drawn from a distribution with substantially smaller
variance than a priori expected by the prior (a factor 1000 in the ‘correct’-model experiment
of Figure 8), then SafeBayes performs much better than Bayes. Here Bayes can no longer
necessarily be expected to have the best performance (the model is correct, but the prior is
“wrong”), and it is possible that a slightly reduced learning rate gives (significantly) better
results. It seems that this situation, where the variance of the true function is much smaller
than its prior expectation, is not exceptional: for example, Raftery et al. (1997) suggest
choosing the variance of the prior in such a way that a large region of parameter values
receives substantial prior mass. Following that suggestion in our experiments already gives
a variance that is large enough compared to the true coefficients that SafeBayes performs
better than Bayes even if the model is correct.

A Joint Observation for Model-Wrong and Model-Correct Experiment Finally
we note that we see an interesting difference between the two SafeBayes versions here: I-
log-SafeBayes seems better for risk, giving a smooth decreasing curve in both experiments.
R-log-SafeBayes inherits a trace of standard Bayes’ bad behavior in both experiments, with
a nonmonotonicity in the learning curve. On the other hand, in terms of reliability, R-log-
SafeBayes is consistently better than I-log-SafeBayes (but note that the latter is undercon-
fident, which is arguably preferable over being overconfident, as Bayes is). All in al, there is
no clear winner between the two methods.

5.5 Executive Summary: Joint Conclusions from Main and Additional
Experiments

Standard Bayes In almost all our experiments, Standard Bayesian inference fails in its
KL-associated prediction tasks (squared risk, reliability) when the model is wrong. Adopting
a different prior (such as the g-prior) does not help, with two exceptions in model averaging:
(a) when Raftery’s prior (Section A.3) is used, then Bayes works quite well, but there it fails
dramatically again (in contrast to SafeBayes) once the percentage of easy points is increased;
(b) when it is run with a fixed variance that is significantly larger than the ‘best’ (pseudo-
true) variance σ̃2. Moreover, in the ridge regression experiment with fixed σ2, we find that
standard Bayes can even perform much worse than SafeBayes when the model is correct —
so all in all we tentatively conclude that SafeBayes is safer to use for linear regression.

Safe Bayes R-square-SafeBayes is not competitive with the other SafeBayes methods and
can even get worse than Bayes sometimes; this is due to an unwanted dependence on the
specified scale σ2 as explained in Section A. The other three SafeBayes methods behave
reasonably well in all our experiments, and there is no clear winner among them. I-square-
SafeBayes usually behaves excellently for the square-risk but cannot directly be used to assess
its own performance. I-log-SafeBayes usually behaves excellently in terms of square-risk as
well but is underconfident about its own performance (which is perhaps acceptable, overcon-
fidence being a lot more dangerous). R-log-SafeBayes is usually good in terms of square-risk
though not as good as I-log-SafeBayes, yet it is highly reliable. However, in Appendix B.1,
we describe an initial idea for discounting the importance of the first few outcomes and
explain why this might improve performance. When combined with this discounting idea,
R-log-SafeBayes may actually always be competitive with the other two methods in terms of
square-risk as well.
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Learning η in Bayes- or Likelihood Way Fails Despite its intuitive appeal, fitting η
to the data by e.g. empirical Bayes fails both in the model-wrong ridge experiment with a
prior in σ2, where it amounts to Bayesian ridge regression (Figure 7) and in the model-wrong
fixed-variance ridge experiment (where it amounts to a method for learning the variance, see
Section A.1.2).

Robustness of Experiments It does not matter whether the Xi1, Xi2, . . . are independent
Gaussian, uniform or represent polynomial basis functions: all phenomena reported here
persist for all choices. If the ‘easy’ points are not precisely (0, 0), but have themselves a small
variance in both dimensions, then all phenomena reported here persist, but on a smaller scale.

Centering We repeated several of our experiments with centered data, i.e. preprocessed
data so that the empirical average of the Yi is exactly 0 Raftery et al. (1997), Hastie et al.
(2001). In none of our experiments did this affect any results. While this is not further
mentioned in the appendix, there we also looked at the case where the true regression function
has an intercept far from 0, and data are not centered. This hardly affected the SafeBayes
methods.

Other Methods We also repeated the wrong-model experiment for other methods of model
selection: AIC, BIC, and various forms of cross-validation. Briefly, we found that all these
have severe problems with our data as well. Whereas in these experiments, cross-validation
was used to identify a model index p and η played no role, in our final experiment we used
leave-one-out cross-validation again to learn η itself. With the squared error loss it worked
fine, which is not too surprising given its close similarity to I-square-SafeBayes. However,
when we tried it with log-loss (as a likelihoodist or information-theorist might be tempted to
do), it behaved terribly.
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6 Bayes’ Behavior Explained

In this section we explain how anomalous behavior of the Bayesian posterior may arise, taking
a frequentist perspective. Section 6.1 is merely provided to give some initial intuition and
may be skipped.

6.1 Explanation I: Variance Issues

Example 1 [Bernoulli] Consider the following very simple scenario: our ‘model’ consists of
two Bernoulli distributions, M = {Pθ | θ ∈ {0.2, 0.8}}, with Pθ expressing that Y1, Y2, . . . ∼
i.i.d. Ber(θ). We perform Bayesian inference based on a uniform prior on M. Suppose first
that the data are, in fact, sampled i.i.d. from Pθ∗ , where θ∗ is the ‘true’ parameter. The
model is misspecified, in particular we will take a θ∗ 6∈ {0.2, 0.8}. The log-likelihood ratio
between the two distributions for data Y n with n1 ones and n0 = n − n1 zeroes, measured
for convenience in bits (base 2), is given by

L = log2

f0.8(Y n)

f0.2(Y n)
= log2

(0.8)n1(0.2)n0

(0.2)n1(0.8)n0
= 2(n1 − n0). (32)

With uniform priors, the posterior will prefer θ = 0.2 as soon as L < 0.
First suppose θ∗ = 1/2. Then both distributions in M are equally far from θ∗ in terms

of KL divergence (or any other commonly used measure). By the central limit theorem,
however, we expect that the probability that |L| >

√
n/2 is larger than a constant for all

large n; in this particular case we numerically find that, for all n, it is larger than 0.32.
This implies, that, at each n, with ‘true’ probability at least 0.32, minθ∈{0.2,0.8} π(θ |

Y n) ≈ 2−
√
n/2. Thus, there is a nonnegligible ‘true’ probability that the posterior on one of

the two distributions is negligibly small, and a naive Bayesian who adopted such a model
would be strongly convinced that the other distribution would be better even though both
distributions are equally bad. While this already indicates that strange things may happen
under misspecification, we are of course more interested in the situation in which θ∗ 6= 1/2,
so that one of the two distributions in M is truly ‘better’. Now, if the ‘true’ parameter θ∗

is within O(1/
√
n) of 1/2, then, by the central limit theorem, the probability that L < 0

is nonnegligible. For example, if θ∗ is exactly 1/2 + 1/
√
n, then this probability is larger

than 0.16 for all n. Thus, for values of θ∗ this close to 1/2, there is no way we can even
expect Bayes to learn the ‘best’ value. For fixed (independent of n), larger values of θ∗,
like 0.6, the posterior will concentrate at 0.8 at an exponential rate, but the sample size at
which concentration starts is considerably larger than the sample sized needed when the true
parameter is, in fact 0.8. For example, at n = 50, P0.6(L < 0) ≈ 0.1, P0.8(L < 0) ≈ 2 · 10−5;
both probabilities go to 0 exponentially fast but their ratio increases exponentially with n.
So, under a fixed θ∗, with increasing n, Bayes may take longer to concentrate on the best θ̃ if
θ̃ 6= θ∗ (misspecification) than if θ̃ = θ∗, but it eventually ‘recovers’ (this was seen in the ridge
experiments of Section 5.4). Now, for larger models, the consequence of slower concentration
of the log-likelihood ratio L is that the probability that some ‘bad’ Pθ happens to ‘win’ is
substantially larger than with a correct model. Grünwald and Langford (2007) showed that,
in a classification context with an infinite-dimensional model, there are so many of such ‘bad’
Pθ that Bayes does not recover any more, and the posterior keeps putting most of its mass
on a bad model for ever (although the particular bad model on which it puts its mass, keeps
changing). In this paper we empirically showed the same in a regression problem.
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Now one might conjecture that the issues above are caused by the fact that the model
M is ‘disconnected’. In the Bernoulli example above, the problem indeed goes away if
instead of the model M, we adopt its ‘closure’ M′ = {Pθ | θ ∈ [0.2, 0.8]}. However, high-
dimensional regression problems exhibit the same phenomenon, even if their parameter spaces
are connected. It turns out that in general, to get concentration at the same rates as if the
model were correct, the model must be convex, i.e. closed under taking any finite mixture of
the densities, which is a much stronger requirement than mere connectedness. For standard
Gaussian regression problems with Y | X ∼ N(0, σ2), this would mean that we would have to
adopt a model in which Y | X can be any Gaussian mixture with arbitrarily many components
— which is clearly not practical (note that ‘convex’ refers to the densities, not the regression
functions (Grünwald and Langford, 2007, Section 6.3.5)).

6.2 Explanation II: Good vs. Bad Misspecification

Barron (1998) showed that sequential Bayesian prediction under a logarithmic score function
shows excellent behavior in a cumulative risk sense; for a related result see (Barron et al.,
1999, Lemma 4). Although Barron (1998) focuses on the well-specified case, this assumption
is not required for the proof and the result still holds even if the model M is completely
wrong. For a precise description and proof of this result emphasizing that it holds under
misspecification, see (Grünwald, 2007, Section 15.2). At first sight, this leads to a paradox,
as we now explain.

A Paradox? Let θ̃ index the KL-optimal distribution in Θ as in Section 2.1. The result of
Barron (1998) essentially says that, for arbitrary models Θ, for all n,

EZn∼P ∗

[
n∑
i=1

risklog(Π | Zi−1)− risklog(θ̃)

]
≤ redn, (33)

where risklog(W ), for a distribution W on Θ, is defined as the log-risk obtained when pre-
dicting by the W -mixture of fθ, i.e.

risklog(W ) = EX,Y∼P ∗ [− log Eθ∼W fθ(Y | X)]. (34)

In (33), this coincides with log-risk of the Bayes predictive density f̄(· | Zi−1), as defined
by (8). Here, as in the remainder of this section, we look at the standard Bayes predictive
density, i.e. η = 1. redn is the so-called relative expected stochastic complexity or redundancy
(Grünwald, 2007), which depends on the prior and for ‘reasonable’ priors is typically small.
The result thus means that, when sequentially predicting using the standard predictive dis-
tribution under a log-scoring rule, one does not lose much compared to when predicting with
the log-risk optimal θ̃.

When M is a union of a finite or countably infinite number of parametric exponential
families and p̃ < ∞ is well-defined, then, under some further regularity conditions, which
hold in our regression example, Grünwald (2007), the redundancy is, up to O(1), equal to
the BIC term (k̃/2) log n, where k̃ is the dimensionality of the smallest model containing θ̃.
In the regression case, Mp̃ has p̃ + 2 parameters (β0, . . . , βp, σ

2), so in the two experiments
of Section 5, k̃ = 6. Thus, in our regression example, when sequentially predicting with the
standard Bayes predictive f̄(· | Zi−1), the cumulative log-risk is at most n · risklog(θ̃) which
is linear in n, plus a logarithmic term that becomes comparatively negligible as n increases.
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This is confirmed by Figure 10 below. Now, for each individual θ = (p, β, σ2) we know from
Section 2.3 that, if its log-risk is close to that of θ̃, then its square-risk must also be close
to that of θ̃; and θ̃ itself has the smallest square-risk among all θ ∈ Θ. Hence, one would
expect the reasoning for log-risk to transfer to square-risk: it seems that when sequentially
predicting with the standard Bayes predictive f̄(· | Zi−1), the cumulative square-risk should
at most be n times the instantaneous square-risk of θ̃ plus a term that hardly grows with n;
in other words, the cumulative square-risk from time 1 to n, averaged over time by dividing
by n, should rapidly converge to the constant instantaneous risk of θ̃. Yet the experiments
of Section 5 clearly show that this is not the case: Figure 3 shows that, until n = 100, it is
about 3 times as large.

This ‘paradox’ is resolved once we realize that the Bayesian predictive density f̄(· |i−1)
is a mixture of various fθ, and not necessarily similar to fθ for any individual θ — the link
between log-risk and square-risk (4) only holds for individual θ = (p, β, σ2), not for mixtures
of them. Indeed, if at each point in time i, f̄(· | Zi) would be very similar (in terms of
e.g. Hellinger distance) to some particular fθi with θi ∈ Θ, then there would really be a
contradiction. Thus, the discrepancy between the good log-risk and bad square-risk results
in fact implies that at a substantial fraction of sample sizes i, f̄(· | Zi) must be substantially
different from every θ ∈ Θ. In other words, the posterior is not concentrated at such i. A
cartoon picture of this situation is given in Figure 9: the Bayes predictive achieves small
log-risk because it mixes together several distributions into a single predictive distribution
which is very different from any particular single fθ ∈ M. By Barron’s bound, (33), the
resulting f̄(· | Zi) must, averaged over i, have at most a risk almost as small as the risk of θ̃.
We can thus, at least informally, distinguish between “benign” and “bad” misspecification.
Bad misspecification occurs if there is a nonnegligible probability that for a range of sample
sizes, the predictive distribution is substantially different from any of the distributions in
M. As Figure 9 suggests, ‘bad’ misspecification cannot occur for convex models M — and
indeed, the results by Li (1999) suggest that for such models consistency holds under weak
conditions for any η < 1, even under misspecification.

6.3 Hypercompression

The picture suggests that, if, as in our regression model, the model is nonconvex (i.e. the set
of densities {fθ | θ ∈ Θ} is not closed under taking mixtures), then f̄(· | Zi) might in fact
be significantly better in terms of log-risk than the best θ̃, and its individual constituents
might even all be substantially worse than θ̃. If this were indeed the case then, with high
P ∗-probability, we would also get the analogous result for an actual sample (and not just in
expectation): the cumulative log-risk obtained by the Bayes predictive should be significantly
smaller than the cumulative log-risk achieved with the optimal f̃ . Figure 10 below shows that
this indeed happens with our data, until n ≈ 100.

The No-Hypercompression Inequality In fact, Figure 10 shows a phenomenon that is
virtually impossible if the Bayesian’s model and prior are ‘correct’ in the sense that data
Zn would behave like a typical sample from them: it easily follows from Markov’s inequality
(for details see (Grünwald, 2007, Chapter 3)) that, letting Π denote the Bayesian’s joint
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Figure 9: Benign vs. Bad Misspecification: P̃ = arg minP∈MD(P ∗‖P ) is the distribution in
modelM that minimizes KL divergence to the ‘true’ P ∗, but, since the model is nonconvex,
the Bayes predictive distribution P̄ may happen to be very different from any P ∈M. When
this happens, we can have ‘bad misspecification’ and then it may be necessary to decrease
the learning rate (in this simplistic drawing P̄ is a mixture of just two distributions; in our
regression example it mixes infinitely many). Yet if P ∗ were such that infP∈MD(P ∗‖P )
does not decrease if the infimum is taken over the convex hull of M (e.g. if Q rather than
P̃ reached the minimum), then any learning rate η < 1 is fine (‘benign’ misspecification). In
the picture, we even have D(P ∗‖P̄ ) < D(P ∗‖P̃ ); in this case we can get hypercompression.

distribution on Θ×Zn, for each K ≥ 0,

Π

{
(θ, Zn) :

n∑
i=1

(
− log f̄(Yi | Xi, Z

i−1)
)
≤

n∑
i=1

(
− log fθ(Yi | Xi, Z

i−1)
)
−K

}
≤ e−K ,

i.e. the probability that the Bayes predictive f̄ cumulatively outperforms fθ, with θ drawn
from the prior, by K log-loss units is exponentially small in K. Figure 10 below thus shows
that at sample size n ≈ 90, an a-priori formulated event has happened of probability less
than e−30, clearly indicating that something about our model or prior is quite wrong.

Since the difference in cumulative log-loss between f̄ and fθ can be interpreted as the
amount of bits saved when coding the data with a code that would be optimal under f̄ rather
than fθ, this result has been called the no hyper-compression inequality by Grünwald (2007).
The figure shows that for our data, we have substantial hypercompression.

The Safe Bayes Error Measure As seen from (18), SafeBayes measures the performance
of η-generalized Bayes not by the cumulative log-loss, as standard Bayes does, but instead by
the cumulative posterior-expected error when predicting by drawing from the posterior. One
way to interpret this alternative error measure is that, at least in expectation, we cannot get
hypercompression. Defining (compare to (34)!)

riskR-log(W ) = EX,Y∼P ∗Eθ∼W [− log fθ(Y | X)], (35)
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we get by Fubini’s theorem,

riskR-log(W )− risklog(θ̃) = Eθ∼WEX,Y∼P ∗ [[− log fθ(Y | X)]− [− log fθ̃(Y | X)]] ≥ 0, (36)

where the inequality follows by definition of θ̃ being log-risk optimal among Θ. There is
thus a crucial difference between riskR-log and risklog — for the latter we just argued that,
under misspecification, risklog(W ) − risklog(θ̃) ≤ 0 is very well possible. Thus, in contrast
to predicting with the mixture density Eθ∼W fθ, prediction by randomization (first sampling
θ ∼ W and then predicting with the sampled fθ) cannot ‘exploit’ the fact that mixture
densities might have smaller log-risk than their components. Thus, if the difference (36) is
small, then W must put most of its mass on distributions θ ∈ Θ that have small log-risk
themselves. For individual θ, we know that small log-risk implies small square- risk. This
implies that if (36) is small, then the (standard) posterior is concentrated on distributions
with small R-square-risk.

Experimental Demonstration of Hypercompression for Standard Bayes Figure 10
and Figure 11 show the predictive capabilities of Standard Bayes in the wrong model example
in terms of cumulative and instantaneous log-loss on a simulated sample. The graphs clearly
demonstrate hypercompression: the Bayes predictive cumulatively performs better than the
best single model/the best distribution in the model space, until at about n ≈ 100 there is
a phase transition. At individual points, we see that it sometimes performs a little worse,
and sometimes (namely at the ‘easy’ (0, 0) points) much better than the best distribution.
We also see that, as anticipated above, randomized and in-model Bayesian prediction do not
show hypercompression and in fact perform terribly on the log-loss until the phase transition
at n = 100, when they becomes almost as good as standard Bayes. We see that for η = 1,
they perform much worse. An important conclusion is that if we are only interested in log-
loss prediction, it is clear that we just want to use Bayes rather than randomized or in-model
prediction with different η.

As an aside, we note that the first few outcomes have a dramatic effect on cu-
mulative R-and I-log-loss (it disappears from Figure 11); this may be due to the
fact that our densities — other than those considered by Grünwald (2012) —
have unbounded support so that there is no v such that Theorem 1 below holds.
This observation inspired the idea described in Appendix B.1 about ignoring the
first few outcomes when determining the optimal η. Also, we emphasize that the
hypercompression phenomenon takes places more generally, not just in our re-
gression setup — for example, the classification inconsistency noted by Grünwald
and Langford (2007) can be understood in terms of hypercompression as well.

How Hypercompression arises in Regression Figure 12 gives some clues as to how
hypercompression is achieved: it shows the variance of the predictive distribution f̄(· | Z50) as
a function of S ∈ [−1, 1] for the polynomial example of Figure 1 in the introduction, at sample
size n = 50, where hypercompression takes place. Figure 1 gave the posterior mean (regression
function) at n = 100; the function at n = 50 looks similar, correctly having mean 0 at S = 0
but, incorrectly, mean far from 0 at most other S. The predictive distribution conditioned
on the MAP model Mp̆map(Z50)

is a t-distribution with approximately p̆map(Z50) ≈ 50 degrees

of freedom, which means that it is approximately normal. Figure 12 shows that its variance
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Figure 10: Cumulative standard, R-, and I-log-Loss as defined in (18) and (22) respectively
of standard Bayesian prediction (η = 1) on a single run for the model-averaging experiment
of Figure 3. We clearly see that standard Bayes achieves hypercompression, being better than
the best single model. And, as predicted by theory, randomized Bayes is never better than
standard Bayes, whose curve has negative slope because the densities of outcomes are > 1 on
average.

Figure 11: Instantaneous standard, R- and I-log-Loss of standard Bayesian prediction for
the run depicted in Figure 10.
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Figure 12: Variance of standard Bayes predictive distribution conditioned on a new input
S as a function of S after 50 examples for the model-wrong experiment (Figure 3), shown
both for the predictive distribution based on the full, model-averaging posterior and for the
posterior conditioned on the MAP model Mp̆map . For both posteriors, the posterior mean
of Y is incorrect for x 6= 0, yet f̄(Y | Z50, X) still achieves small risk because of its small
variance at X = 0.

is much smaller than the variance σ̃2 at S = 0; as a result, its log-risk conditional on U = 0
is smaller than that of θ̃ = (p̃, β̃, σ̃2) by some large amount A. Conditioned at S 6= 0, its
conditional mean is off by some amount, and its variance is, on average, slightly (but not
much) smaller than σ̃2, making its conditional log-risk given U 6= 0 larger than that of θ̃
by an amount A′ where, it turns out, A′ is smaller than A. Both events S = 0 and S 6= 0
happen with probability 1/2, so that the final, unconditional log-risk of f̄(· | Z50) is smaller
than that of θ̃.

Summarizing, hypercompression occurs because the variance of the predictive distribution
conditioned on past data and a new X is much smaller than σ̃2 at X = 0. This suggests that,
if instead of a prior on σ2 we use modelsMp with a fixed σ2, we can only get hypercompression
(and correspondingly bad square-risk behaviour) if σ2 � σ̃2, because the predictive variance
based on linear models Mp with fixed variance σ2 given X = x is, for all x, lower bounded
by σ2. Our experiments in Appendix A.1 confirm that this is indeed what happens.

6.4 Explanation III: The Mixability Gap & The Bayesian Belief in Con-
centration

As we indicated at the end of Section 6.2, bad misspecification can occur only if the standard
(η = 1) posterior is nonconcentrated1. Intriguingly, by formalizing ‘concentration’ in the
appropriate way, we will now show, under some conditions on the prior, that a Bayesian a
priori always believes that the posterior will concentrate very fast. Thus, if we observe data
Zn, and for many n′ ≤ n, the posterior based on Zn

′
is not concentrated, then we can view

this as an indication of bad misspecification. In the next subsection we will see that SafeBayes
selects a η̂ � 1 iff we have such nonconcentration at η = 1. Thus, SafeBayes can partially
be understood as a prior predictive check, i.e. a test whether the assumptions implied by the

1Things would simplify if we could say ‘bad misspecification can occur if and only if there is hypercom-
pression’, but we do not know whether that is the case, see Section 7.3.
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prior actually hold on the data (Box, 1980).

The Mixability Gap We express posterior nonconcentration in terms of the mixability
gap (Grünwald, 2012, de Rooij et al., 2014). In this section we only consider the special
case of η = 1 (standard Bayes), for which the mixability gap δi is defined as the difference
between 1-R-log-loss (18) and standard log-loss as obtained by predicting with the posterior
predictive, at sample size i:

δi := Eθ∼Π|zi−1 [− log f(yi | xi, θ)]−
(
− log Eθ∼Π|zi−1 [f(yi | xi, θ)]

)
= Eθ∼Π|zi−1 [− log fθ(yi | xi)]−

(
− log f̄(yi | xi, zi−1)

)
, (37)

Straightforward application of Jensen’s inequality as in (19) gives that δi ≥ 0. δi, which
depends on z1, . . . , zi, is a measure of the posterior’s concentratedness at sample size i when
used to predict yi given xi: it is small if fθ(yi | xi) does not vary much among the θ that
have substantial η-posterior mass; by strict convexity of − log, it is 0 iff there exists a set Θ0

with Π(Θ0 | Zi−1) = 1 such that for all θ, θ′ ∈ Θ0, fθ(yi | xi) = fθ′(yi | xi).
We set the cumulative mixability gap to be ∆n :=

∑n
i=1 δi.

The Bayesian Belief in Posterior Concentration As a theoretical contribution of this
paper, we now show that, under some conditions on model and prior, if the data are as
expected by the model and prior, then the expected mixability gap goes to 0 as O((log n)/n),
and hence a Bayesian automatically a priori believes that the posterior will concentrate fast.
For simplicity we restrict ourselves to a model M = {Pθ : θ ∈ Θ} where Θ is countable,
and we let all θ ∈ Θ represent a conditional distribution for Y given X, extended to n
outcomes by independence. We let π be a probability mass on Θ, and define the joint
Bayesian distribution Π on Θ × Yn | X n in the usual way, so that for measurable A ⊂ Yn,
Π((θ∗,A) | Xn = xn) = π(θ∗) · Pθ∗(A | Xn = xn). The random variable θ∗ refers to the θ
chosen according to density π. We will look at the Bayesian probability distribution of the
θ∗-expected mixability gap, δ̄n := Eθ∗ [δn].

Theorem 1 Consider a countable model with prior Π as above. Suppose that the density
ratios in Θ are uniformly bounded, i.e. there is a v > 1 such that for all x, y ∈ X × Y, all
θ, θ′ ∈ Θ, fθ(y | x)/fθ′(y | x) ≤ v. Suppose that for some η < 1 we have

∑
θ π(θ)η < ∞.

Then for every a > 0 there are constants C0 and C1 such that, for all n,

Π

(
δ̄n ≥ C0 ·

log n

n

)
≤ C1 ·

1

na
. (38)

Moreover, for any 0 < a′ ≤ 1, there exist C2 and C3 such that

Π
(

∆n ≥ C2 · na
′
)
≤ C3 ·

(log n)2

na′
, (39)

i.e. the Bayesian believes that the mixability gap will be small on average and that the cumu-
lative mixability gap will be small with high probability.

Thus, with high probability, ∆n grows only polylogarithmically, even though it is the differ-
ence of two quantities that are typically linear in n. This means that observing a large value
of ∆n strongly indicates misspecification.
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We hasten to add that the regularity conditions for Theorem 1 do not hold in the re-
gression problem we study in this paper; the theorem is merely meant to show that
∆n is believed to be small in idealized circumstances that have been simplified so as to
make mathematical analysis easier. Note however, that the regularity conditions do not
constrain Θ in the most important respect: by allowing countably infinite Θ, we can ap-
proximate nonparametric models arbitrarily well by suitable covers (Barron and Cover,
1991). In particular we do allow sets Θ for which maximum likelihood methods would
lead to disastrous overfitting at all sample sizes. Also the condition that

∑
π(θ)η <∞ is

standard in proving Bayesian and MDL convergence theorems (Barron and Cover, 1991,
Zhang, 2006a). In fact, since the constants C0 and C1 scale logarithmically in v, we
expect that Theorem 1 can be extended to the regression setting we are dealing with here
as long as all distributions in the model have exponentially small tails, using methods
similar to those in Grünwald and Mehta (2016).

Example 2 [Cumulative Nonconcentration can (and will) go together with Mo-
mentary Concentration: Example 1, Bernoulli, Cont.] Consider the first instance
of the Bernoulli Example 1 again, where we again look at what happens if both distri-
butions are equally bad: M = {P0.2, P0.8}, whereas Y1, Y2, . . . are i.i.d. ∼ Pθ∗ with θ∗ =
1/2. As we showed in that example, at any given n, with Pθ∗-probability at least 0.32,
minθ∈{0.2,0.8} π(θ | Y n) ≈ 2−

√
n/2: the posterior puts almost all mass on one θ. Lemma

6 of Van Erven et al. (2011) shows that in such cases δn is small; in this particular case,
δn ≤ 2(e − 2) minθ∈{0.2,0.8} π(θ | Y n) ≈ 1.42 · 2−

√
n/2. Thus, the posterior looks exceedingly

concentrated at time n, with nonnegligible probability (this unwarranted confidence is a sim-
plified version of what was called the fair balance paradox by Yang (2007), who conjectured
it is the underlying reason for the problem of ‘overconfident posteriors’ in Bayesian phyloge-
netic tree inference). However, Safe Bayes detects misspecification by looking at cumulative
concentration, i.e. the sum of the δ’s: L as in (32) can be interpreted as a random walk on
Z starting at the origin, with equal probabilities to move to the left and to the right. By the
central limit theorem, the random walk crosses the origin at time n with probability about
1/
√
nπ/2 = Õ(n−1/2), so that we may conjecture that, with high probability, it crosses the

origin Õ(n · n−1/2) = Õ(n1/2) times. Each time it crosses the origin, the posterior is uniform
and hence as nonconcentrated as it can be, and ∆n is increased by at least a fixed constant.
One would therefore expect (under the ‘true’ θ∗) that ∆n is of order

√
n, which by Theorem 1

is much larger than a Bayesian a priori expect it to be — the model fails the ‘prior predictive
check’.2

6.5 How Safe Bayes Works

In its simplest form, the in-model fixed variance case, SafeBayes finds the η̂ that minimizes
cumulative square-loss on the sample and thus can simply be understood as a pragmatic
attempt to find a η̂ that achieves small risk. However, the other versions of SafeBayes do not
have such an easy interpretation. To explain them further, we need to generalize the notion
of mixability gap in terms of the η′-flattened η-generalized Bayesian predictive density. The

2This heuristic argument can actually be formalized: if data are i.i.d. Bernoulli(1/2), then the expected
regret for every absolute loss predictor is of order Õ(n1/2) (Cesa-Bianchi and Lugosi, 2006), which implies, via
the connections between regret and ∆n given by de Rooij et al. (2014), that ∆n must also be of order n1/2;
we omit further details.
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latter is defined, for η, η′ ≤ 1, as:

f̄(yi | xi, zi−1, 〈η′〉; η) :=
(
Eθ∼Π|zi−1,η

[
fη
′

θ (yi | xi)
])1/η′

. (40)

By Jensen’s inequality, for any η′ ≤ 1, any (xi, yi), we have f̄(yi | xi, zi−1, 〈η′〉; η) ≤ f̄(yi |
xi, z

i−1, η). Indeed, intentionally, f̄(· | 〈η′〉; η) is a ‘defective’ density in the sense that∫
R f̄(y | xi, zi−1, 〈η′〉; η)dy < 1. The log-loss achieved by η-generalized, η′-flattened Bayesian

prediction is called (η, η′)-mix-loss from now on, following terminology from de Rooij et al.
(2014). For 0 < η ≤ η′ ≤ 1, the mixability gap δi,η,η′ is defined as the difference between the
η-R-log-loss and the η′-mix-loss:

δi,η,η′ := Eθ∼Π|Zi−1,η [− log fθ(Yi | Xi)]−
(
− log f̄(Yi | Xi, Z

i−1; 〈η′〉; η)
)
. (41)

We once again define a cumulative version ∆n,η,η′ =
∑n

i=1 δi,η,η′ , and note that the definitions
are compatible with the special cases δi := δi,1,1 and ∆n := ∆n,1,1 defined in the previous
subsection. Now we can rewrite the cumulative R-log-loss achieved by Bayes with the η-
generalized posterior as

n∑
i=1

Eθ∼Π|zi−1,η [− log fθ(yi | xi)] = ∆n,η,η′ + CMLn,η,η′ , (42)

where

CMLn,η,η′ =

(
n∑
i=1

− log f̄(yi | xi, zi−1, 〈η′〉; η)

)
is the cumulative (η, η′)-mix-loss. (42) holds for all 0 < η ≤ η′ ≤ 1. Consider first η′ = 1.
As was seen, if ∆n,1,1 is large, then this indicates potential bad misspecification. But (42)
still holds for smaller η′ < 1; by Jensen’s inequality, for any fixed η, decreasing η′ will make
∆n,η,η′ smaller as well. Indeed, for any fixed P ∗, defining

δ̄η′ := sup
W

EX,Y∼P ∗

[
Eθ∼W [− log fθ(Y | X)]−

(
− 1

η′
log Eθ∼W [fθ(Y | X)η

′
]

)]
,

where the supremum is over all distributions on Θ, we have

lim
η′↓0

δ̄η′ = 0,

so we have an upper bound on the expectation of ∆n,η,η′ independent of the actual data that,
for small enough η′, will become negligibly small. But the left-hand side of (42) does not
depend on η′, so if, by decreasing η′, we decrease ∆n,η,η′ , CMLn,η,η′ must increase by the
same amount — so as yet we have gained nothing. Indeed, not surprisingly, Barron’s bound
does not hold any more for CMLn,η,η′ with η = 1 and η′ < 1 (and in general, it does not
hold for η, η′ whenever η′ < η). But, it turns out, a version of Barron’s bound still holds
for CMLn,η′,η′ , for all η′ > 0: the cumulative log-risk of η′-flattened, η′-generalized Bayes is
still guaranteed to be within a small redn of the cumulative log-risk of θ̃, although redn
does monotonically increase as η′ gets smaller — simply because the prior becomes more
important relative to the data (standard results in learning theory show that CMLn,η,η is
monotonically decreasing in η, and can be upper bounded as O(1/η); see e.g. (de Rooij et al.,
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2014, Lemma 1). Thus, it makes sense to consider the special case η′ = η, and think of
SafeBayes as finding the η minimizing

n∑
i=1

Eθ∼Π|zi−1,η [− log fθ(yi | xi)] = ∆n,η,η + CMLn,η,η, (43)

since we have clear interpretations of both terms: the second indicates, by Barron’s bound,
how much worse the η-generalized posterior predicts in terms of log-loss compared to the
optimal θ̃; the first indicates how much is additionally lost if one is forced to predict by
distributions inside the model. The second term decreases in η, the first has an upper bound
which increases in η. SafeBayes can now be understood as trying to minimize both terms at
the same time.

Now broadly speaking, the central convergence result of Grünwald (2012) states that
∆n,η,η will be ‘sufficiently small’ for all η < 1, and under some further conditions even for
η = 1, if the model is correct or convex; and it will also be ‘sufficiently small’ if the model
is incorrect, as long as η is smaller than some ‘critical’ value ηcrit (which may depend on n
though). Here ‘sufficiently small’ means that it is not the dominating term in (43). Intuitively,
we would like the η̂ determined by SafeBayes to be the largest η that is smaller than ηcrit.
Grünwald (2012) shows that Safe Bayes indeed finds such an η, and that prediction based on
the generalized posterior with this η achieves good frequentist convergence rates.

Experimental Illustration: Consider the main wrong-model experiment of Section 5.
Figure 13 shows, as a function of η, in red, the cumulative η-R-log-loss achieved by Safe
Bayes, averaged over 30 runs of Experiment 1 (Bayesian model averaging with incorrect
model) of Figure 3. In each individual run, Safe Bayes picks the η̂ minimizing this quantity;
we thus get that on most runs, η̂ is close to 0.4. In contrast to η-R-log-loss, and as predicted
by theory, the η-mix-loss (in purple) decreases monotonically and coincides with the standard
Bayesian log-loss at η = 1 and with the η-R-log-loss as η ↓ 0. We also see hypercompression
again: near η = 1, both the Bayesian log-loss and the mix-loss are smaller than the log-loss
achieved by the best θ̃ in the model. At η = 0.5, there is a sudden sharp rise in ∆n,η,η

(the difference between the red and purple curves). We can think of Safe Bayes as trying to
identify this ‘critical’ ηcrit.

Theorem 1 shows that, if both model and prior are well-specified, then the Bayesian
posterior cumulatively concentrates in a very strong sense. More generally, if the model
is correct but also if there is ‘benign’ misspecification, then, under some conditions on the
prior, by the results of Grünwald (2012), the Bayesian posterior eventually cumulatively
concentrates at η = 1. One might thus be tempted to interpret ηcrit (the learning rate
which SafeBayes tries to learn) as ‘largest learning rate at which the posterior cumulatively
concentrates’. However, this interpretation works only if ηcrit = 1. If ηcrit < 1, we can
only show that, for every η < ηcrit, ∆n,η,η is small; true cumulative concentration would
instead mean that ∆n,η,1 is small for such η (note we must have ∆n,η,η ≤ ∆n,η,1 by
Jensen). The figure shows that ∆n,η,1 (the difference between the red and blue curve)
may indeed be large even at small η. A better interpretation is that, for every fixed η,
with decreasing η′, the geometry of the (η, η′)-mix-loss changes, so that the loss difference
between the mix loss and the R-log-loss obtained by randomization gets smaller. By then
further using the generalized posterior for the same η′, we guarantee that a version of
Barron’s bound holds for the (η′, η′)-mix-loss.
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Figure 13: Cumulative losses up to sample 100 (where the posterior has not converged yet)
as a function of η, averaged over 30 runs, for the experiment of Figure 3. η-B-log-loss is the
cumulative log-loss achieved by standard Bayes with the η-generalized posterior.

Replacing R- by I-loss Although the proofs of Grünwald (2012) are optimized for
R-SafeBayes, the same story as above can be told for any fixed transformation from the
posterior to a possibly randomized prediction, i.e. anything of the form (21); in particular
for the most extreme transformation where we replace the posterior predictive by the
distribution indexed by the posterior mean parameters so that instead of R-SafeBayes we
end up with I-SafeBayes. In fact, the importance of the distinction between ‘in-model’
and ‘out-model’ prediction under model misspecification has been emphasized before
(Grünwald, 2007, Barron and Hengartner, 1998, Kot lowski et al., 2010). In general,
although we do not know how to exploit this intuition to strengthen the convergence
proofs of Grünwald (2012), it seems more natural to replace the randomized predictions
by deterministic, in-model predictions.

7 Discussion, Open Problems and Conclusion

“If a subjective distribution Π attaches probability zero to a non-ignorable event, and if

this event happens, then Π must be treated with suspicion, and modified or replaced”

(emphasis added)

— A.P. Dawid (1982).

“Some models are obviously wrong, yet evidently useful”

— (very freely paraphrasing Box (1979)).

We already discussed the theoretical significance of the inconsistency result in the introduc-
tion. Extensive further discussion on Bayesian inference under misspecification is given by
Walker (2013) and Grünwald and Langford (2007). For us, it remains to discuss the place of
both the inconsistency result and our solution in Bayesian methodology.

Following the well-known Bayesian statisticians Box (1980), Good (1983), Dawid (1982,
2004) and Gelman (2004) (see also Gelman and Shalizi (2012)), we take the stance that
model checking is a crucial part of successful Bayesian practice. When there is a large dis-
crepancy between a model’s predictions and actual observations, it is not merely sufficient
to keep gathering data and update one’s posterior: something more radical is needed. In
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many such cases, the right thing to do is to go back to the drawing board and try to devise
a more realistic model. However, we think this story is incomplete: in machine learning and
pattern recognition, one often encounters situations in which the model employed is obviously
wrong in some respects, yet there is a model instantiation (parameter vector) that is pretty
adequate for the specific prediction task one is interested in. Examples of such obviously-
wrong-yet-pretty-adequate models are, like in this paper, assuming homoskedasticity in linear
regression when the goal is to approximate the true regression function and the true noise is
heteroskedastic3, but also the use of N -grams in language modeling (is the probability of a
word given the previous three words really independent of everything that was said earlier?),
logistic regression in e.g. spam filtering, and every single successful data compression method
that we know of (see Bayes and Gzip (Grünwald, 2007, Chapter 17, page 537)). The difference
with the more standard statistical (be it Bayesian or frequentist) mode of reasoning is elo-
quently described in Breiman’s (2001) the two cultures4. Bayesian inference is among the most
successful methods currently used in the obviously-wrong-yet-pretty-adequate-situation (to
witness, state-of-the-art data compression methods such as Context-Tree-Weighting Willems
et al. (1995) have a Bayesian interpretation). Yet the present paper shows that there is a
danger: even if the employed model is pretty adequate (in the sense of containing a pretty
good predictor), the Bayesian machinery might not be able to find it. The Safe Bayesian
algorithm can thus be viewed as an attempt to provide an alternative for the data-analysis
cycle (Gelman and Shalizi, 2012) to this, in some sense, less ambitious setting: just like in
the standard cycle, we do a model check, albeit a very specific one: we check whether there
is ‘cumulative concentration of the posterior’ (see Section 6.4). If there is not, we know that
we may not be learning to predict as well as the best predictor in our model, so we modify
our posterior. Not in the strong sense of ‘going back to the drawing board’, but in the much
weaker sense of making the learning rate smaller — we cannot hope that our model of reality
has improved, because we still employ the same model — but we can now guarantee that
we are doing the best we can with our given model, something which may be enough for the
task at hand and which, as our experiments show, cannot always be achieved with standard
Bayes.

Benign vs. Bad Misspecification One might argue that the example of this paper is
rather extreme, and that in practical situations, choosing a learning rate different from 1 may
never be a useful thing to do. A crucial point here is that one can have ‘benign’ and ‘bad’
misspecification (Section 6.2). Under benign misspecification, standard Bayes with η = 1 will
behave nicely under weak assumptions on the prior. While in our particular example, after
‘eyeballing’ the data one would probably have chosen a different, less misspecified model, it
may be the case that ‘bad’ misspecification (as in Figure 9) also occurs, at least to some
extent, in general, real-world data and is then not so easily spotted. Since we simply do not

3As long as, as in this paper, the tails of the conditional distribution of Y given X = x are sub-Gaussian,
for each x; if they are not, there may be real outliers and then one cannot say that the model is ‘pretty
adequate’ any more.

4The ‘two cultures’ does not refer to the Bayesian-frequentist divide, but to the modeling vs. prediction-
divide. We certainly do not take the extreme view that statisticians should only be interested in prediction
tasks such as classification and square-error prediction rather than density estimation and testing; our point
is merely that in some cases, the goal of inference is clearly defined (it could be classification, but it could
also be determination whether some random variables are (conditionally) (in)dependent), whereas part of our
model is unavoidably misspecified; and in such cases, one may want to use a generalized form of Bayesian
inference.
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know whether such situations occur in practice, to be on the safe side, it seems desirable
to have a theory about when we can get away with using standard Bayesian inference for
a given prediction task even if the model is wrong, and how we can still use it with little
modification if there is bad misspecification. Our work (esp. the theoretical counterpart to
this paper (Grünwald and Mehta, 2016)) is a first step in this direction.

Towards a Theory of Bayesian Inference under Misspecification What we have in
mind is a theory of Bayesian inference under misspecification, in which the goal of learning
plays a crucial role. The standard Bayesian approach is very ambitious: it can be used to
solve every conceivable type of prediction or inference task. Every such task can be encoded
as a loss or utility function, and, given the data and the prior, one merely has to calculate
the posterior, and then makes an optimal decision by taking the act that minimizes expected
loss or maximizes expected utility according to the posterior. Crucially, one uses the same
posterior, independently of the utility function at hand, implying that one believes that one’s
own beliefs are correct in every possible respect. We envision a more modest approach, in
which one acknowledges that one’s beliefs are only adequate in some respects, not in others;
how one proceeds then depends on how one’s model and loss function interact. For example,
if one is interested in data-compression then, this problem being essentially equivalent to
cumulative log-loss prediction, by Barron’s (1998) bound one can simply use the standard
(η = 1) Bayesian predictive distribution — even under misspecification, this will guarantee
that one predicts (at least!) as well as one could with the best element of one’s model. If,
on the other hand, one is interested in any of the KL-associated inference tasks (for linear
models, these are square-loss and reliability, Section 2.3), then using η = 1 is not sufficient
anymore, and one may have to learn η from the data, e.g. in the Safe Bayesian manner.
Finally, if we are interested in an inference task that is not KL-associated under our model
(i.e., a model instance can be good in the KL sense but bad in the task of interest), then a
more radical step is needed: either go back to the drawing board and design a new model
after all; or perhaps, the model can be changed in a more pragmatic way so that, for the
right η, η-generalized Bayes once again will find the best predictor for the task at hand. Let
us outline such a procedure for the case that the inference talk is simply prediction under
some loss function ` : Y × Ŷ → R. In this case, if the `-risk is not KL-associated this simply
means that, for some data, the log likelihood is not a monotonic function of the loss `. To
get the desired association, we may associate each conditional distribution Pθ(Y | X) in the
model with its associated Bayes act δθ: δθ(x) is defined as the act ŷ ∈ Ŷ which minimizes
Pθ | X = x-expected loss EY∼Pθ|X=x[`(y, ŷ)]. We can then define a new set of densities

fnewθ,γ (y | x) =
1

Z(γ)
e−γ`(y,δθ(x)), (44)

and perform (generalized) Bayesian inference based on these. Note that this effectively re-
places, for each θ, the full likelihood by a ‘likelihood’ in which some information has been
lost, and is thus reminiscent of what is done in pseudo-likelihood (Besag, 1975) substitu-
tion likelihood (Jeffreys, 1961, Dunson and Taylor, 2005), or rank-based likelihood (Gu and
Ghosal, 2009) approaches (as a Bayesian, one may not want to loose information, but whether
this still applies in nonparametric problems (Robins and Wasserman, 2000) let alone under
misspecification (Grünwald and Halpern, 2004) is up to debate).

(44) can be made precise in two ways: either one just sets γ and Z(γ) to 1, and allows the
fnewθ to be pseudo-densities, not necessarily integrating to 1 for each x. This is a standard
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approach in learning theory Zhang (2006b), Catoni (2007). One could then learn η by, e.g.,
the basic SafeBayes algorithm with `θ(x, y) := `(y, δθ(x)) instead of log-loss. Or, one could
define Z(γ) so that the densities normalize (how to achieve this if

∫
y e
−γ`(y,δθ(x))dy depends

on x is explained by Grünwald (2008)) and put a prior on γ as well (for linear models, this
is akin to putting a prior on the variance). This will make the loss ` KL-associated and the
KL-optimal θ̃ will also have the reliability property, see again Grünwald (2008) for details.
In this case we will get, with zi = (xi, yi), `θ(zi) := `(yi, δθ(xi)), and using a prior on Θ and
the scaling parameter γ, that the η-generalized posterior becomes

π(θ, γ | zn, η) ∝ 1

Z(γ)ηn
e−ηγ

∑n
i=1 `θ(zi) · π(θ, γ). (45)

This idea was, in essence, already suggested by (Grünwald, 1998, Example 5.4) (see also
Grünwald (1999)) under the name of entropification (however, Grünwald’s papers wrongly
suggest that, by introducing the scale parameter γ, it would be sufficient to only consider
η = 1); see also (Lacoste-Julien et al., 2011, Quadrianto and Ghahramani, 2015).

Now both ‘pure’ subjective Bayesians and ‘pure’ frequentists might dismiss this program
as severe ad-hockery: the strict Bayesian would claim that nothing is needed on top of the
Bayesian machinery; the strict frequentist would argue that Bayesian inference was never
designed to ‘work’ under misspecification, so in misspecified situations it might be better
to avoid Bayesian methods altogether rather than trying to ‘repair’ them. We strongly
disagree with both types of purism, the reason being the ever-increasing number of successful
applications of Bayesian methods in machine learning in situations in which models are
obviously wrong. We would like to challenge the pure subjective Bayesian to explain this
success, given that the statistician is using a priori distributions that reflect beliefs which she
knows to be false, and are thus not really her beliefs. We would like to challenge the pure
frequentist to come up with better, non-Bayesian methods instead. In summary, we would
urge both purists not to throw away the Bayesian baby with the misspecified bath water!

Moreover, from a prequential (Dawid, 1984), learning theory (citations see below) and
Minimum Description Length (MDL (Barron et al., 1998)) perspective, the extension from
Bayes to SafeBayes is perfectly natural. From the prequential perspective, SafeBayes seeks to
find the largest η at which the generalized Bayesian predictions have a predictive interpreta-
tion in terms of the loss of interest rather than the log-loss. The learning theory and MDL
perspectives are further explained in the next section.

7.1 Related Work I: Learning Theory and MDL

Learning Theory From the learning theory perspective, generalized Bayesian updating as
in (45) with Z(γ) set to 1 can be seen as the result of a simple regularized loss minimization
procedure (this was probably first noted by Williams (1980); see in particular Zhang (2006b)),
which means that it continues to make sense if exp(−γ`θ) as in (44) does not have a direct
probabilistic interpretation. Variations of such generalized Bayesian updating are known as
“aggregating algorithm”, “Hedge” or “exponential weights”, and often have good worst-case
optimality properties in nonstochastic settings (Vovk, 1990, Cesa-Bianchi and Lugosi, 2006)
— but to get these the learning rate must often be set as small as O(1/

√
n). Similarly, PAC-

Bayesian inference (Audibert, 2004, Zhang, 2006b, Catoni, 2007) (for a variation, see Freund
et al. (2004)) is also based on a posterior of form (44) and can achieve minimax optimal rates
in e.g. classification problems by choosing an appropriate η, usually also very small. From
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this perspective, SafeBayes can be understood as trying to find a larger η than the worst-case
optimal one, if the data indicate that the situation is not worst-case and faster learning is
possible. Finally, Bissiri et al. (2016) give a motivation for (45) (with Z(γ) ≡ 1) based on
coherence arguments that are more Bayesian in flavour.

MDL Of particular interest is the interpretation of the SafeBayesian method in terms of
the MDL principle for model selection, which views learning as data compression. When
several models for the same data are available, MDL picks the model that extracts the most
‘regularity’ from the data, as measured by the minimum number of bits needed to code
the data with the help of the model. This is an interpretation that remains valid even if a
model is completely misspecified (Grünwald, 2007). The resulting procedure (based on so-
called normalized maximum likelihood codelengths) is operationally almost identical to Bayes
factor model selection. Thus, it provides a potential answer to the question ‘what does a high
posterior belief in a model really mean, since one knows all models under consideration to
be incorrect any way?’ (asked by, e.g., Gelman and Shalizi (2012)): even if all models are
wrong, the information-theoretic MDL interpretation stands. However, our work implies that
there is a serious issue with these NML codes: note that any distribution P in a model M
can be mapped to a code (the Shannon-Fano code) that would be optimal in expectation
if data were sampled from P . Now, our work shows that if the data are sampled from
some P ∗ 6∈ M, then the codes based on Bayesian predictive distributions can sometimes
compress substantially better in expectation than can be done based on any P ∈ M —
this is the hypercompression phenomenon of Section 6.3. The same thing then holds for the
NML codes, which assign almost the same codelengths as the Bayesian ones. Our work thus
invalidates the interpretation of NML codelengths as ‘compression with the help of (and only
of!) the model’, and suggests that, similarly to in-model SafeBayes one should design and use
‘in-model’ versions of the NML codes instead — codes that are guaranteed not to outperform,
at least in expectation, the code based on the best distribution in the model.

7.2 Related Work II: Analysis of Bayesian Behavior under Misspecification

Consistency Theorems The study of consistency and rate of convergence under mis-
specification for likelihood-based and specifically Bayesian methods go back at least to Berk
(1966). For recent state-of-the-art work on likelihood-based, non-Bayesian methods see e.g.
Dümbgen et al. (2011) and the very general Spokoiny (2012). Recent work on Bayesian meth-
ods includes Kleijn and Van der Vaart (2006), De Blasi and Walker (2013) and Ramamoorthi
et al. (2015) who obtained results in quite general, i.i.d. nonparametric settings, non-i.i.d.
settings (Shalizi, 2009), and more specific settings (Sriram et al., 2013); see also Grünwald
and Mehta (2016). Yet, as explicitly remarked by De Blasi and Walker (2013), the conditions
on model and prior needed for consistency under misspecification are generally stronger than
those needed when the model is correct. Essentially, if the data are i.i.d. both according to
the model and the sampling distribution P ∗, then Theorem 1 (in particular its Corollary 1) of
De Blasi and Walker (2013) implies the following: if, for all ε > 0, the model can be covered
by a finite number of ε-Hellinger balls, then the Bayesian posterior eventually concentrates:
for all δ, γ > 0, the posterior mass on distributions within Hellinger distance δ of the Pθ̃
that is closest to P ∗ in KL divergence will become larger than 1 − γ for all n larger than
some nγ . This implies that both in the ridge regression (finite p) and in the model averaging
experiments (finite pmax), Bayes eventually ‘recovers’ — as we indeed see in our experimental
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results. However, if pmax = ∞, then the model has no finite Hellinger cover any more for
small enough ε and indeed the conditions for Theorem 1 of De Blasi and Walker (2013) do
not apply any more. Our results show that in such a case we can indeed have inconsistency if
the model is incorrect. On the other hand, even if pmax =∞, we do have consistency in the
setup of our correct-model experiment for the standard Bayesian posterior, as follows from
the results by Zhang (2006a).

The Limiting η = 1 Like several earlier results (Barron and Cover, 1991, Walker and
Hjort, 2002), Zhang’s consistency results for correct models hold under very weak conditions
for generalized Bayes with any η < 1, and only under much stronger conditions for η = 1.
Zhang provides an example of inconsistency-like behavior in the well-specified case with η = 1
that automatically disappears as soon as one picks η < 1, leading Zhang (2006a) to claim that
in general, generalized Bayesian methods (η < 1) are more stable than standard Bayesian
ones. Zhang’s example, and the example of Bayesian model selection inconsistency in a well-
specified model by Csiszár and Shields (2000) are closely related to ours, in that the Bayes
predictive distribution for η = 1 becomes significantly different from any distribution in the
model (see Figure 9). In their examples, the problem is resolved by taking any η < 1; in our
misspecification case, η should even be taken much smaller.

Anomalous Behavior and Modifications of Bayesian Posterior under Misspeci-
fication Anomalous behavior of Bayesian inference under misspecification was, of course,
observed before, e.g. (less dramatically than here) by Yang (2007), Müller (2013) and (as
dramatically, but involving a very artificial model) Grünwald and Langford (2007). Presum-
ably also related is the ‘brittleness’ of Bayesian inference that has been observed by Owhadi
and Scovel (2013). Not surprisingly then, we are not the first to suggest modification of
likelihood-based estimators (see e.g. White (1982), Royall and Tsou (2003), Kot lowski et al.
(2010)) and posteriors (Royall and Tsou, 2003, Hoff and Wakefield, 2012, Doucet and Shep-
hard, 2012, Müller, 2013). The latter three approaches (that extend the first) employ the
so-called sandwich posterior, in which the covariance matrix of the posterior is changed based
on a ‘sandwich formula’ involving the empirical variance; Müller (2013) provides extensive
explanation and experimentation. Compared to the sandwich approach, our proposal, besides
being applicable in fully nonparametric contexts, seems substantially more radical. This can
be seen from the regression applications in Müller (2013), which involve a noninformative
Jeffreys’ prior on the regression coefficient vector β. With such a prior (as well as any normal
prior scaled by variance σ2), the posterior mean of β, and thus also the frequentist square-risk
(which only depends on the posterior mean) remains unaffected by the sandwich modifica-
tion, so for square-risk the method would perform like standard Bayes in our model-wrong
experiments. Thus (Müller, 2013, Section 2.4) demonstrates its usefulness on other loss func-
tions. Nevertheless, both the sandwich and the safe Bayesian methods can be thought of as
methods for measuring the spread of a posterior, and it would be useful to compare the two
in detail, both in theory and practice.

7.3 Future Work and Open Problems

The results of this paper raise several issues and prompt the following research agenda:

1. The misspecification in our example would presumably be easily spotted in practice.
This raises the question whether ‘bad’ misspecification also arises for data sets that
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occur in practice and for which it would not be easily spotted. Currently, we know
only of one experiment in this direction: Jansen (2013) applied the Bayesian Lasso
(Park and Casella, 2008) to several real-world data sets, where the λ (i.e. 1/η) is taken
that minimizes the cumulative square-loss whereas at the same time σ2 is a free pa-
rameter. Thus it is a hybrid of I-square Safe Bayes and I-log SafeBayes, but equal to
neither; the method was (somewhat) outperformed by standard Bayes on most data
sets tried. However, we also tried this hybrid method in the model-wrong experiment
of this paper and found that it is not competitive with either of the two ‘true’ in-model
SafeBayes methods either; so the experiment does not ‘really’ test SafeBayes; more
precise experiments are needed.

2. Our method has one major disadvantage: even if the data do not have a natural or-
dering, the η̂ selected by SafeBayes will, in general, be order-dependent. Grünwald
(2011) suggested a very different (and in fact, the first) method to learn η̂, that does
not have this problem. However, it is only applicable to countable models, and has no
obvious computationally efficient implementation, so we do not know whether it has a
future. Another method that is clearly related to I-square SafeBayes is to determine
η using leave-one-out cross-validation based on the squared error. This method is also
order-independent and behaves comparably to I-square SafeBayes (Appendix A.1), but
it is not clear how to extend it to general misspecified models, While we show in the
same appendix that cross-validation based on log-loss of the Bayes predictive distribu-
tion fails dramatically, it may be that cross-validation based on log-loss of the Bayes
posterior mean would generally work fine, and this method can be applied to general
misspecified models, not just linear ones. Compared to I-log-SafeBayes this in-model
log-loss cross-validation would have the advantage that it is order independent, and
the disadvantage that it cannot (at least not straightforwardly) be used in an online
setting and/or for non-i.i.d. models. Also, we suspect that if the number of models is
exponential in the covariates (as in variable selection), cross-validation may be prone
to overfitting whereas SafeBayes would not be, but this is just extrapolation from the
well-specified case: it would be useful to investigate “in-model cross-validation” further.

3. What exactly are relations between the sandwich posterior (see above) and our ap-
proach? It would be good to test SafeBayes on the data sets used by Müller (2013).

4. It would be useful to establish exactly what properties of Bayesian updating remain
valid for generalized Bayesian updating, and what properties do not hold any more. For
example, telescoping (Cesa-Bianchi and Lugosi, 2006) holds for the standard posterior,
for the η-flattened, η-generalized posterior, but not for the (nonflattened) η-generalized
posterior.

5. As discussed at the end of Section 6.5, the final term in (23) is lacking in the in-model
versions of SafeBayes, and this does suggest that they should work better than the
randomization versions — the corresponding ∆η,η is always smaller. Yet we have no
theoretical results to this end, and our empirical results in this paper confirm this to
some extent (R-square-SafeBayes is not competitive), but not fully (R-log-SafeBayes is
competitive), so more research is needed here.

6. As we indicated in Section 6.3, hypercompression implies nonconcentration, but we do
not know whether the reverse implication holds as well, so we may perhaps have bad

48



misspecification yet no hypercompression. It would give significant insight if we knew
whether this indeed could happen.

7. In light of the discussion underneath (44), one would like to formulate a general theory
of substitution likelihoods so that likelihoods can be determined based on the inference
task of interest, so that this task becomes KL-associated, for arbitrary prediction tasks.
Ideally, (44) and approaches such as pseudo-likelihood and rank-based likelihood would
all become a special case. If this can be done, we would have a truly generalized
Bayesian method.
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A Experiments on Variations of the Prior and the Model

Apart from the priors on parameters given the models we used in our main experiments,
we tried several alternative prior distributions, described in the subsections below. The first
subsection describes experiments with fixed (i.e., a degenerate prior on) σ2.

A.1 Experiments with Fixed σ2

When models with fixed σ2 are used, our two SafeBayes methods become R-square- and
I-square-SafeBayes, as defined in Section 4.2. These also have a direct interpretation as
trying to find the best η for predicting with a square-loss function, as was explained in that
section. In this context, the value η = 1 has no special status, so we now also tried values
η > 1 (we did experiment with varying η in the previous varying σ2 experiments as well,
but there it did not make any substantial difference in the results). Specifically, we set Sn in
the Safe Bayesian algorithm to {2κmax , 2κmax−κstep , 2κmax−2κstep , . . . , 2−κmax}, with κstep = 1/2
and κmax = 6. All priors on the regression coefficients β remain as described in Section 5.1.

A.1.1 Model Averaging Experiment, Fixed σ2

The model-correct experiment showed no surprises (all methods performed well), so we only
show results for the model-wrong experiment, as described in Section 5.1, testing each of
Bayes, R-square- and I-square-SafeBayes twice: once based on a model with variance σ2

overly large (3 times σ̃2), and once with σ2 overly small (1/3 times σ̃2) variance. To allow
precise comparison with the results in the main text, we also show behavior of R-log-SafeBayes
with varying variance (defined precisely as in Figure 3) in Figure 14.

A.1.2 Ridge Regression Experiments, Fixed σ2

Again we only show results for the model-wrong experiment.
Note that here standard Bayes — as can be seen from plugging η = 1 into (12) — does

not depend on σ2 and thus coincides in terms of square-risk behavior with standard Bayes
in the variable σ2 case as in Figure 7. Also (see below (12)) I-square-SafeBayes for fixed σ2

does not itself depend on σ2 and simply minimizes the cumulative sum of squared errors.
Just as for ridge regression with variable σ2, one may equivalently interpret the η-

generalized-posterior means β̄i,η as the standard, nongeneralized Bayesian posterior means
that one would get with a modified prior on β, proportional to the original prior raised to the
power η−1 (see above (31), Section 5.4). It may then once again seem reasonable to learn η
itself in a Bayesian- or likelihood-based way such as empirical Bayes.5 Indeed, this was sug-
gested implicitly as early as 1999 by one of us (Grünwald, 1999). The procedure described in
Section 3.4.3 (‘hierarchical loss’) of Bissiri et al. (2016) also arrives, via a different derivation,
at a similar prescription for finding η (we immediately add that the authors describe many
ways for determining η, of which this is just one). Unfortunately, just as for the empirical
Bayes learning of η with varying σ2, the figures below indicate that it does not perform well
at all.

5In the present setting, learning η by empirical Bayes has a second interpretation: if one fixes the variance
σ2 appearing in the prior on β, uses the linear model with a different variance σ′2, and then learns σ′2 by
empirical Bayes, the result is identical to fixing σ′2 = σ2 and learning η by empirical Bayes.
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Figure 14: Bayesian Model Selection, fixed σ2, for the model-wrong experiment of Figure 3
with pmax = 50. The second graph is a scaled version of the first. Since fixed σ2 implies fixed
overconfidence ratio, the overconfidence graph is not shown. For clarity in the η-graph we do
not show standard deviations of the η’s.
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Conclusion Standard Bayes again performs comparably badly in both experiments (note
the difference in scale in the first graphs of Figure 14 and 15). I-square-SafeBayes behaves
excellently in both experiments. But now in the ridge experiment R-square-SafeBayes be-
comes a highly problematic method for small samples, worse even than standard Bayes. The
reason is its dependence on the specified σ2 as can be clearly seen from (23). If σ2 was set to
be much larger than the actual average prediction error on the sample, then the third term
in (23) dominates. This term decreases with η and thus automatically pushes η̂ ‘upward’ by
an arbitrary amount. The term also decreases with n, so that the problem disappears at a
large enough sample size. The problem did not occur in the model averaging experiment;
we suspect that this is because in this experiment, there is substantial prior mass on a small
model p = 4) containing the pseudo-truth, and for this submodel, the final term in (23)
(which is approximately linear in p) is much smaller than for p = 50 and does have not such
a strong influence.

Figure 15: Bayesian Ridge Regression: same graphs as in Figure 7, for fixed σ and the
model-wrong experiment conditioned on p := pmax = 50. Note the difference in scale for the
risk in this figure and Figure 14.

A.2 Slightly Informative Prior

Again we only consider model-wrong experiments. Within each model, we now use the
following prior parameters: β̄0 = 0 and Σ0 = 103I for the multivariate normal distribution
on β; and a0 = 1 and b0 = σ∗2a0 (as before) for the inverse gamma distribution on σ2
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(where σ∗2 is the true variance of noise in our data, as defined in Section 5.1.2). We repeated
the model-wrong experiment of Section 5.3 with pmax = 50 with this slightly informative
prior and obtained similar results to those obtained using our original informative prior with
Σ0 = I: Bayes performs badly roughly between samples 90 and 130 and has some risk spikes
before that so that its overall performance is comparable to before, while R-SafeBayes and
I-SafeBayes both obtain good risks.

We also repeated the model-wrong experiment for ridge regression (Section 5.4). Here
the effect of the new prior on Bayes’ performance is similar: the square-risk peaks at a larger
value, but in a smaller range of sample sizes. However, the effect of changing the learning
rate is different in this experiment than what we have seen before: here one can take η very
small and still get good results. So in a sense, the problematic behavior of Bayes has a trivial
solution here: just pick a very small but fixed η. R-log-SafeBayes was too conservative in
this, I-log-SafeBayes did fine. R-log-SafeBayes became competitive again however, if we used
the discounting version described in Section B.1 below.

We omit the pictures corresponding to model selection/averaging (Section 5.3) as they
show no surprises; but in Figure 16 we do repeat the pictures for ridge regression (Section 5.4),
because they do give additional insight: Note that the phenomenon is now much more ‘tem-
porary’. In the beginning, it seems that there is a sort of cancellation between the influence of
the irrelevant variables and standard Bayes behaves fine. However, if we increase the number
of irrelevant variables, the problem (while starting at a later sample) takes longer to recover
from.

A.3 Prior as advised by Raftery et al.

In Raftery et al. (1997), some guidelines for choosing priors in regression models are given.
Letting β̄0 denote the prior mean, one of their recommendations is that the prior densities
for β = β̄0 and β = β̄0 + 1 should differ by a factor of at most

√
10. The prior density

on β marginalized over σ2 follows a multivariate t-distribution, and the factor in question
varies with the dimensionality of β, so that models of larger order are given less informative
priors. In our case, we find that the resulting prior is always less informative than our original
prior, and for model M10 and above (i.e. β of dimension 11 or larger), it becomes even less
informative than the prior introduced in the previous section.

For the prior on σ2, Raftery et al. advise that the density should vary by no more than a
factor 10 in a region of σ2 from some small value to the sample variance of y. For our choice
of hyperparameters a0 = 1, b0 = 1/40, the mode of π(σ2) is at b0/(a0 + 1) = 1/80, and the
density is within a factor 10 of this maximum in the approximate region (0.0037, 0.0941).
For the correct model experiments, the actual variance of Y is 0.065; for the wrong model
experiments, it is 0.045 (with a larger variance for ‘good’ points and zero variance for ‘easy’
points). For both experiments, the factor-10 condition holds between Var(Y )/12 and Var(Y ).
We conclude that this prior satisfies the guidelines in Raftery et al. quite well.

We will refer to the prior described above as Raftery’s prior (even though it is really a
different prior for each model order). Using this prior, we found the following experimental
results.

In the model-wrong experiment with model selection/averaging (Section 5.3) with our
original prior replaced by Raftery’s prior, Bayes performs somewhat better than R-log-
SafeBayes (except on very small sample sizes). However, I-log-SafeBayes performs as well as
Bayes, and so does the R-log-SafeBayes variant that discounts half of the initial sample when
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Figure 16: Top two graphs: square-risk for two different ridge experiments. In both experi-
ments the slightly informative prior of Section A.2 is used. In the first experiment p = 50; in
the second p = 100; otherwise the experiments are just as the ‘wrong model experiment’ of
Section 5.4, Figure 7, but we also included performance of I-square-SafeBayes. Final graph
shows self-confidence for the p = 100 case for Bayes and SafeBayes, on a logarithmic scale
because of the range of values involved.

59



choosing the learning rate (see Section B.1).
This might suggest that Raftery’s prior could be used to accomplish the same kind of

safety against wrong models as SafeBayes provides, at least in a model selection context. To
test this, another experiment was performed where the fraction of ‘easy’ points was increased
to 75%. In this experiment, the misbehavior of Bayes seen in Section 5.3 returned worse than
before, with risks a factor 20 larger than before, whereas the SafeBayes methods continued
to work fine. This suggests that Raftery’s prior can not be relied on if the severeness of
misspecification is unknown.

If Raftery’s prior is used for model selection with a correct model, Bayes and the SafeBayes
variants perform well, and very similarly to each other.

For ridge regression, the results with Raftery’s prior for both the correct and the incorrect
model experiment are very similar to those with the slightly informative prior, except that
the peak in the risks is higher for all methods.

A.4 The g-prior

Another prior we experimented with was the g-prior, a popular choice in model selection
contexts (Zellner, 1986, Liang et al., 2008). For all definitions we refer to the latter paper. In
contrast to all other priors we considered, the g-prior depends on the design matrix XT

nXn,
and hence can only be used in settings where this matrix, and hence the eventual sample size
of interest n, is given once and for all. For this reason, we decided to depict in Figure 17,
for each value of n, the risk obtained when predicting the n-th data point with the posterior
calculated from the g-prior corresponding to the first n covariates (x1, . . . , xn) and observed
data yn−1. This is subtly different from our previous graphs (e.g. Figure 3–6) that show how
the risk evolves as n increases in a single run of the experiment, averaged over 30 runs.

The graph is not shown starting at n = 0, because of another difference between the
g-prior and the priors we used in other experiments:

Because of the same design dependence, with the g-prior, the posterior on β remains a
degenerate distribution on an initial segment of outcomes. For example, withMp for p = 50,
the matrix XT

nXn is singular until at least 50 different design vectors have been observed.
For our model-wrong experiment, this means that on average, about a 100 observations are
required before the posterior becomes nondegenerate; this explains why Figure 17 starts at
n a little over a 100.

The experimental results clearly indicate that the g-prior does not deal with our data in a
satisfactory way, regardless of the value of g. Of the values of g we tried (up to 104), g ≈ 100
(shown in the graph) yielded the smallest squared risk around sample size n = 200; for larger
sample sizes, larger values of g were better, but only slightly. Furthermore, (as in fact we
expected by analogy to learning η with Empirical Bayes), the value of g found by Empirical
Bayes is not optimal for dealing with our data and only makes things worse: larger values of
g (which put more weight on the data) would yield smaller risks.

B Experiments on Variations on the Method

Below we look at a number of other more or less promising alternative approaches to modi-
fying standard Bayes.
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Figure 17: Risk as a function of sample size (starting at the first sample size at which the
g-prior is defined) for model averaging and selection based on the g-prior in the model-wrong
experiment of Figure 3 both with g = 100 and with g chosen by Empirical Bayes at each
sample size

B.1 An Idea to be Explored Further: Discounting Initial Observations

Just like standard Bayes, all our SafeBayesian methods are, at heart, prequential (Dawid,
1984). All prequential methods suffer to a greater or lesser extent from the start-up problem
(van Erven et al., 2007, Wong and Clarke, 2004): sequential predictions based on a model
Mp may perform very badly for the first few samples. While they quickly recover when the
sample size gets large, the behavior on the first few samples may dominate their cumulative
prediction error for a while, leading to suboptimal choices for moderate n. We can address
this issue in several ways. A very simple method to ‘discount’ initial observations, apparently
first used (implicitly) to modify standard Bayes factors by (Lempers, 1971, Chapter 6), is
to only look at the cumulative sequential prediction error on the second half of the sample,
so that the first half of the sample merely functions as a ‘warming-up’ sample (Catoni,
2012). Without claiming that this is the ‘right’ method to discount initial observations, we
experimented with it to see whether it can further improve the performance of SafeBayes; for
simplicity, we concentrated on R-log-SafeBayes.

We found that in most experiments, this new method for determining η performed very
similarly to the standard method based on the whole sample, sometimes slightly better and
sometimes slightly worse, making it hard to say whether the new method is an improvement
or not. Still, there are two experiments in which the new method performed substantially
better, namely the experiments with less informative priors of Section A.2 and A.3. Thus
we cannot just dismiss the idea of fitting η based on only part of the data or more generally,
discounting initial observations, and it would be interesting to explore this further in future
work: of course taking half of the data is rather arbitrary, and better choices may be possible.
In particular, we may try a variation of switching between η’s analogously to the switch
distribution (van Erven et al., 2007) to counter the startup problem.
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B.2 Other Methods for Model Selection: AIC, BIC, (generalized) Cross-
Validation

We tested the performance of several classic model selection methods on the same data
and models as in our main model selection/averaging experiment, Section 5.3. We asso-
ciated with each model Mp its standard (i.e. η = 1) Bayes predictive distribution under
the prior described in Section 5.1 (these generally perform better than the maximum likeli-
hood distributions based on Mp whose use is more standard here). We then ran leave-one-
out cross-validation, 10-fold cross-validation and GCV based on the predictions (posterior
means/MAPs β̄i,η) made by these predictive distributions. We also compared the models

Figure 18: Squared risk and selected model order for five different model selection methods.
The risks in this graph are risks of single models selected by each method (similar to the
MAP risks shown for Bayes and SafeBayes).

via AIC and BIC, where for AIC we used the small-sample correction of Hurvich and Tsai
(1989).

We see that AIC and generalized cross-validation have risks and selected model orders
similar to those of standard Bayes, though they do not recover as well as Bayes when the
sample size increases. Of the other three methods, BIC and 10-fold cross-validation find the
optimal model and have smaller risks towards the end than leave-one-out cross-validation,
which continues to select larger-than-optimal models with substantial probability. Note that
none of the methods can compete with SafeBayes on sample sizes below 150: SafeBayes’s
risk goes down immediately after the start of the experiment while for all the other methods
it goes up first. Also, SafeBayes finds the optimal model quickly without first trying much
larger models.
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B.3 Other Methods for Learning η: Cross-Validation on Log-Loss and on
Squared Loss

As indicated in the introduction and Section 4.2, finding η̂ by I-square-SafeBayes is somewhat
similar to finding η̂ by leave-one-out cross-validation with the squared-error loss, the difference
being that I-square-SafeBayes finds the optimal η for predicting each point based on past
data data points rather than the optimal η for predicting each point based on all other data
points. Since the leave-one-out method is often employed in ridge regression, it seemed of
interest to try out here as well. Figure 19 shows that LOO-cross validation indeed performs
very similarly to R-log and I-square SafeBayes in terms of square-risk, but is consistently a
bit worse in terms of self-confidence; we do not have a clear explanation for this phenomenon.

Perhaps more interestingly, in Figure 20 we show what happens if we use LOO-cross
validation based on the log-loss of the Bayes predictive distribution, which may seem a
reasonable procedure from a ‘likelihoodist’ perspective. Here we see dismal behavior, the
reason being the hypercompression phenomenon of Section 6.3: cross-validation will select
a model that, at the given sample size, has small log-risk, but because of hypercompression
this model can sometimes perform very badly in terms of all the associated prediction tasks
such as square-risk and reliability.

63



Figure 19: Analogue of Figure 3 for determining η by leave-one-out cross-validation with
square-loss with the wrong-model experiment, pmax = 50.
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Figure 20: Analogue of Figure 3 for determining η by leave-one-out cross-validation with
log-loss.
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C Experiments on Variations of the Truth

Other Distributions of Covariates In all experiments described in Section 5 and the
previous appendices, the covariates (Xi1, Xi2, . . .) where sampled independently from a 0-
mean multivariate Gaussian. We repeated most of our experiments with Xi1, Xi2, . . . that
were sampled independently uniformly from [−1, 1], and, as already indicated in the intro-
duction, with polynomials, Xij = Sji for Si ∈ [−1, 1] uniform. This did not change the results
in any substantial way, so we do not report on it further.

Fewer Easy and ‘Less-Easy’ Points If the fraction of ‘easy’ points is reduced, one would
expect the performance of standard Bayes to improve. This is confirmed by an experiment
where each data point had a probability of only 1/4 to be (0, 0). Here Bayes still has some
trouble finding the optimal model, but the square-risk, MAP model order, and time taken to
recover are all much reduced compared to the original experiment in Section 5.3 where half
the data points were ‘easy’. SafeBayes on the other hand showed the same good performance
as before.

Two points that might be raised against the use of ‘easy’ points in our simulations are
that they are unlikely to occur in practice, and that if they were to occur, they would be
easily detected and dealt with another way. To address this line of argument to some extent,
another experiment was performed with a smaller contrast between ‘easy’ and ‘hard’ points.
Rather than being identically (0, 0), the ‘easy’ points were random but with smaller variance
than the ‘hard’ points. To be precise, the covariates and noise were both a factor 5 smaller
(so that their variances were 25 times smaller). In this experiment, the same phenomena as
in Section 5.3 occurred, albeit again on a smaller scale (though larger than in the previous,
1/4-easy experiment).

Different Optimal Regression Functions We experimented with a number of variations
of the wrong-model experiment of Section 5.3, by changing the underlying ‘true’ distribution
P ∗. In each variation, we still tossed, at each i, an independent biased coin to determine
whether i would be ‘easy’ (still probability 1/2) or ‘regular’ (probability 1/2), but in each
case we changed the definition of either the ‘easy’ or the ‘regular’ instances or both. In
all experiments, for the ‘regular’ instances, only P ∗(Yi | Xi) was changed; the marginal
distribution of the Xi was still multivariate normal as before. Here is a list of things we tried:

1. For regular instances, set P ∗(Yi | Xi) so that Yi = 0 + εi instead of (27), with εi
i.i.d. normal as before; easy instances were still set to (0, 0).

2. For regular instances, (27) was replaced by Yi = Xi1 + Xi2 + Xi3 + Xi4 + εi, so the
optimal coefficients β̃1 . . . β̃4 are ten times as large as in the original experiment; easy
instances were still set to (0, 0).

3. For regular instances, (27) was replaced by Yi = .1 · (Xi1 + . . . + Xi4) − .04 + εi (so
the intercept is not 0), and the easy instances were set to (Xi, Yi) = (.2, .04), where .2
represents the K-dimensional vector (.2, . . . , .2). Note that the easy points are on the
optimal regression function.

4. For regular instances, (27) was replaced by Yi = .1 · (Xi1 + . . . + Xi4) + .5 + εi so the
intercept was again not 0; the easy instances were set to (0, .5).
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We explain each in turn. For the first experiment, all the results were comparable to the
results of Experiment 1 in Section 5, so we do not list them. For the second experiment,
the risks obtained by standard Bayes and SafeBayes were similar to each other. The model
order behaviors were similar to what they were before (with standard Bayes selecting large
model orders initially), but all methods recovered much more quickly, converging on the
optimal model shortly after n = 50; presumably this could happen because now the optimal
coefficients were substantially larger than the standard deviation in the data.

The third experiment was included to see whether there would be an effect if the ‘easy’
points would be placed at an arbitrary point rather than the special, fully symmetric (0, 0).
We added the intercept −0.04 so as to make sure that, for the data we actually observe,
EX,Y∼P ∗ [Yi] = (1/2).04 − (1//2).04 = 0; thus the Y -values will appear centered around 0,
which is standard both in frequentist and Bayesian approaches to regression (for example,
both Raftery et al. (1997) and Hastie et al. (2001) preprocess the data so that

∑n
i=1 Yi = 0).

Again, we discerned no difference in the results so did not include any further details.
Finally, the fourth experiment was included just to see what happens if, contrary to

standard methodology, we apply the method to Yi that are not (even approximately) centered.
In this experiment, standard Bayes did not converge to the optimal model until after n = 150
as in the experiment of Section 5.3, but its risk and selected model orders were both smaller.
The versions of SafeBayes worked well as before.

D More on Mix Loss

D.1 Implementing SafeBayes

To implement the Safe Bayesian algorithm (page 13), generalized posteriors must be com-
puted for different values of η, and the randomized loss (18) must be computed for each
sample size. For linear models with conjugate priors as considered in our experiments, all
required quantities can be computed analytically. We have already seen how to do this for
modelsMp with fixed dimension p. For unions of such models, it turns out that the mix-loss
is a helpful tool.

Role of mix loss in generalized posterior over models The generalized posterior
across a discrete set of models is given by (7), which, writing τ = (β, σ2), is, via (10) and
(9), equivalent to

π(p | zn, η) =

∫
Θp

π(p, τ | zn, η) dτ

∝
∫

(f(yn | xn, τ, p))ηπ(τ | p) dτ π(p). (46)

Here ∝ means ‘proportional to’ when p is varied and zn and η are fixed. In practice we prefer
to calculate this quantity incrementally: the posterior for zn+1 with prior Π is equal to the
posterior for a single data point zn+1 when the posterior for zn is used as prior (in this sense
the generalized posterior behaves like the standard posterior): using this to further rewrite
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the second line of (46) gives

π(p | zn, η) ∝
∫

(f(yn | xn, τ, p))ηπ(τ | p) dτ π(p)

=

∫
(f(yn | xn, τ, p))η · (f(yn−1 | xn−1, τ, p))ηπ(τ | p) dτ π(p)

=

∫
(f(yn | xn, τ, p))η ·

(
π(τ | zn−1, p, η) ·

∫
(f(yn−1 | xn−1, τ ′)ηπ(τ ′ | p)dτ ′

)
dτ π(p)

∝
∫

(f(yn | xn, τ, p))η · π(τ | zn−1, p, η) dτ · π(p | zn−1, η),

where in the third inequality we used the definition of the generalized posterior and in the
last we used (46).

The integral appearing in both the cumulative and the step-wise expression equals the
expectation in (40) from the η-flattened η-generalized Bayesian predictive density for n and
1 outcome respectively; − log[(·)1/η] of this quantity is the mix loss of model p. We will now
derive formulas for this quantity.

Model with fixed variance Use the notation of Section 3.1. Write σ2
mix = σ2(1/η +

xn+1Σnx
T
n+1). Then the mix loss for predicting one new data point yn+1 is

− log f̄(yn+1 | xn+1, z
n, 〈η〉; η)

=
1

η

[
1

2
(η − 1) log(2πσ2) +

1

2
log η +

1

2
log(2πσ2

mix) +
1

2σ2
mix

(yn+1 − xn+1βn)2

]
Model with conjugate prior on variance Using the notation of Section 3.1, the mix
loss is given by

− log f̄(yn+1 | xn+1, z
n, 〈η〉; η) =

1

η

[
1

2
η log π +

1

2
log(1 + ηxn+1Σnx

T
n+1)

+ an+1 log(2bn +
(yn+1 − xn+1βn)2

1/η + xn+1ΣnxTn+1

)− an log 2bn − log
Γ(an+1)

Γ(an)

]
,

D.2 Belief in Concentration (proof of Theorem 1)

For simplicity, we only give the proof for the unconditional case, in which the θ represent
distributions Pθ on z ∈ Z; extension to the conditional case is straightforward. For
0 < η < 1, let dη(θ

∗‖θ) denote the Rènyi divergence of order 1−η (van Erven and Harremoës,

2014), i.e. dη(θ
∗‖θ) = − 1

η log EZ∼θ∗
(
fθ(Z)
fθ∗ (Z)

)η
. We first state a lemma, proved further below.

In the lemma, as in the remainder of the proof, (θ∗, Zn) is the random variable distributed
according to the Bayesian distribution Π.

Lemma 1 Let Θ, Π and π be as in the statement of Theorem 1. For every 1/2 ≤ η < 1,
ε > 0, let Θ̄η,ε := {θ ∈ Θ : dη(θ

∗‖θ) > ε}. For every b > 0 and every sample size n and
setting ε := (b log n)/(nη) and cη = (1− η)/(1 + η(1− η)), we have:

Π
(

Π(Θ̄η,ε | Zn) ≥ n−bcη
)
≤ 2

(∑
θ∈Θ

π(θ)η

)
· n−bcη .
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In particular, if π is summable for some η < 1, then using b = 1/cη, we get that the Bayesian
probability that the posterior probability of the set of θ farther than b(log n)/n from θ∗ exceeds
1/n, is O(1/n).

We proceed to prove Theorem 1 using this lemma. By the information inequality, we have
for every probability density f 6= fθ∗ that

D(θ∗‖θ) = EZn∼Pθ∗ [− log fθ(Zn) + log fθ∗(Zn)] ≥ EZn∼Pθ∗ [− log fθ(Zn) + log f(Z)].

In particular this holds with f = f̄ | Zn, the Bayes predictive distribution based on the
sample seen so far. It then follows from (37) that

δ̄n ≤ Eθ∼Π|Zn [D(θ∗‖θ)] (47)

Since πη is decreasing in η, we may without loss of generality assume that the η mentioned in
the theorem statement is at least 1/2. Now note (van Erven and Harremoës, 2014, Theorem
16) that for every 1/2 < η < 1, d1/2(θ∗‖θ) ≤ (η/(1 − η)) · dη(θ∗‖θ). We also know from
(Yang and Barron, 1999, Lemma 4) that the KL divergence D(θ∗‖θ) satisfies D(θ∗‖θ) ≤
(2 + log v)d1/2(θ∗‖θ). Since trivially dη(θ

∗‖θ) ≤ log v, we have, with C = η
1−η · (2 + 2 log v),

for every ε > 0, using (47),

δ̄n ≤ C ·Eθ∼Π|Zn [dη(θ
∗‖θ)]

≤ CΠ (dη > ε | Zn) log v + C (1−Π (dη > ε | Zn)) ε ≤ C (Π (dη > ε | Zn) log v + ε) ,

so that Π (dη > ε | Zn) ≥ (C−1δ̄n− ε)/(log v) and by Lemma 1, we have for ε = b(log n)/(nη)
as in the lemma, that

Π

(
C−1δ̄n − ε

log v
≥ n−bcη

)
≤ 2

(∑
θ∈Θ

π(θ)η

)
· n−bcη .

Rewriting this expression, plugging in the value of ε and using η ≥ 1/2, gives

Π

(
δ̄n ≥ C

(
(log v)n−bcη +

2b(log n)

n

) )
≤ 2

(∑
θ∈Θ

π(θ)η

)
· n−bcη . (48)

The first part of the result follows by setting b = a/cη. For the second result, note that
the first result implies (take a = 2), by the union bound over sample sizes 1, . . . , n, that the
Bayesian probability that EZn∼θ∗ [∆n] exceeds C0

∑n
i=1(log i)/i � (log n)2 is O(1/n). Thus

there exists C ′, C ′0 such that the Bayesian probability that EZn∼θ∗ [∆n] exceeds C ′0(log n)2 is
bounded by C ′/n. Thus for the probability in (39) we have

Π
(

∆n ≥ C2 · na
′
)

=Π
(

∆n ≥ C2 · na
′
,EZn∼θ∗ [∆n] ≥ C ′0(log n)2

)
+

Π
(

∆n ≥ C2 · na
′
,EZn∼θ∗ [∆n] < C ′0(log n)2

)
≤Π

(
EZn∼θ∗ [∆n] ≥ C ′0(log n)2

)
+

Π
(

∆n ≥ C2 · na
′
,EZn∼θ∗ [∆n] < C ′0(log n)2

)
≤C

′

n
+
C ′0(log n)2

C2na
′ ,

where in the final step we used Markov’s inequality. The second result follows.
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Proof of Lemma 1 Fix A > 0 and γ > 0. We have

Π
(
Π(Θ̄η,ε | Zn) ≥ A

)
= Π

(∑
θ∈Θ̄η,ε

π(θ) · fθ(Zn)∑
θ∈Θ π(θ) · fθ(Zn)

≥ A

)
=

Π

(∑
θ∈Θ̄η,ε

π(θ) · fθ(Zn)

fθ∗(Zn)
· fθ∗(Z

n)∑
θ∈Θ π(θ) · fθ(Zn)

≥ A

)
≤

Π

(∑
θ∈Θ̄η,ε

π(θ) · fθ(Zn)

fθ∗(Zn)
≥ A1+γ

)
+ Π

(
fθ∗(Z

n)∑
θ∈Θ π(θ) · fθ(Zn)

≥ A−γ
)
, (49)

where we used the union bound. The first term is equal to, and can be further bounded as

=Π


(∑

θ∈Θ̄η,ε
π(θ) · fθ(Zn)

)η
(fθ∗(Zn))η

≥ Aη(1+γ)

 ≤ Π

(∑
θ∈Θ̄η,ε

π(θ)η · (fθ(Zn))η

(fθ∗(Zn))η
≥ Aη(1+γ)

)

=
∑
θ∗

π(θ∗)Pθ∗

(∑
θ∈Θ̄η,ε

π(θ)η · (fθ(Zn))η

(fθ∗(Zn))η
≥ Aη(1+γ)

)

≤
∑
θ∗∈Θ

π(θ∗)EZn∼Pθ∗

[∑
θ∈Θ̄η,ε

π(θ)η · (fθ(Zn))η

(fθ∗(Zn))η

]
·A−η(1+γ)

=
∑
θ∗∈Θ

π(θ∗)
∑
θ∈Θ̄η,ε

π(θ)η ·
(

EZ∼Pθ∗

[
(fθ(Z))η

(fθ∗(Z))η

])n
·A−η(1+γ)

≤

 ∑
θ∈Θ̄η,ε

π(θ)η

 e−nηε ·A−η(1+γ).

where the first inequality follows by differentiation to η (or equivalently, by monotonicity of
`p-norms), the second is Markov’s, and the third is the definition of Rènyi divergence.

The second term in (49) can be bounded as

≤Π

(
fθ∗(Z

n)

π(θ∗) · fθ∗(Zn)
≥ A−γ

)
= Π(π(θ∗)−1+η ≥ A−(1−η)γ) ≤ Eθ∗∼Π[π(θ∗)−1+η]Aγ(1−η)

=
∑
θ∗

π(θ∗)ηAγ(1−η).

Combining the upper bounds on the two terms on the right in (49), we get:

Π
(
Π(Θ̄η,ε | Zn) ≥ A

)
≤

 ∑
θ∈Θ̄η,ε

π(θ)η

(e−nηε ·A−η(1+γ) +Aγ(1−η)
)
.

Now we plug in the chosen value of ε = (b log n)/(nη) and we set A = n−b/(γ+η). With these
values the second factor on the right becomes

e−nηε ·A−η(1+γ) +Aγ(1−η) = n−bnb(η(1+γ))/(γ+η) + n−bγ(1−η)/(γ+η) = 2n
−b·γ· 1−η

γ+η .

Since this holds for al γ > 0, it also holds for γ = 1/(1− η), and the result follows.
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