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1. Introduction

The main motivation for this paper is the positive semidefinite (psd) matrix comple-
tion problem, defined as follows: Given a graph G = (V = [n], E) and a vector a ∈ R

E∪V

indexed by the nodes and the edges of G, decide whether there exists a real symmetric
n× n matrix X satisfying

Xij = aij for all {i, j} ∈ V ∪ E, and X is positive semidefinite. (1)

Throughout the paper we identify V with the set of diagonal pairs {i, i} for i ∈ V . Any
vector a ∈ R

V ∪E can be viewed as a partial symmetric matrix whose entries are deter-
mined only at the diagonal positions (corresponding to the nodes) and at the off-diagonal
positions corresponding to the edges of G. A vector a ∈ R

V ∪E is called a G-partial psd
matrix when (1) is feasible, i.e., when the partial matrix a admits at least one completion
to a full psd matrix.

The psd matrix completion problem is an instance of the semidefinite programming
feasibility problem, and as such its complexity is still unknown [31]. A successful line
of attack embraced in the literature has been to identify graph classes for which some
of the handful of known necessary conditions that guarantee that a G-partial matrix is
completable are also sufficient (see e.g. [5,17,22]).

In this paper we develop a systematic method for constructing partial psd matrices
with the property that they admit a unique completion to a fully specified psd matrix.
Such partial matrices are a crucial ingredient for the study of two new graph parameters
considered in [14,24,25], defined in terms of ranks of psd matrix completions of G-partial
matrices. The first one is the Gram dimension gd(·) which we will introduce in Section 5.2
and whose study is motivated by the low rank psd matrix completion problem [24,25].
The second one is the extreme Gram dimension egd(·) whose study is motivated by its
relevance to the bounded rank Grothendieck constant of a graph [14]. Several instances
of partial matrices with a unique psd completion were constructed in [14,24,25], but the
proofs were mainly by direct case checking. In this paper we give a sufficient condition
for constructing partial psd matrices with a unique psd completion (Theorem 3.2) and
using this condition we can recover most examples of [14,24,25] (see Section 3.3).

The condition for uniqueness of a psd completion suggests a connection to the theory
of universally rigid frameworks. A framework G(p) consists of a graph G = (V = [n], E)
together with an assignment of vectors p = {p1, . . . , pn} to the nodes of the graph. The
framework G(p) is said to be universally rigid if it is the only framework having the
same edge lengths in any space, up to congruence. A related concept is that of global
rigidity of frameworks. A framework G(p) in R

d is called globally rigid in R
d if up to

congruence it is the only framework in R
d having the same edge lengths. Both concepts

have been extensively studied and there exists an abundant literature about them (see
e.g. [9–12,16] and references therein).
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The analogue of the notion of global rigidity, in the case when Euclidean distances
are replaced by inner products, was recently investigated in [33]. There it is shown that
many of the results that are valid in the setting of Euclidean distances can be adapted to
the so-called ‘spherical setting’. The latter terminology refers to the fact that when the
vectors p1, . . . , pn ∈ R

d are restricted to lie on the unit sphere then their pairwise inner
products lead to the study of the spherical metric space, where the distance between two
points pi, pj is given by arccos(pT

i pj), i.e., the angle formed between the two vectors [32].
Taking this analogy further, our sufficient condition for constructing partial psd matrices
with a unique psd completion can be interpreted as the analogue in the spherical setting
of Connelly’s celebrated sufficient condition for universal rigidity of frameworks (see the
respective results from Theorems 3.2 and 4.4).

The unifying theme of this paper is semidefinite programming (SDP). In particular,
the notions of SDP nondegeneracy and strict complementarity play a crucial role in
this paper. This should come as no surprise as there are already well established links
between semidefinite programming and universal rigidity [3] and psd matrix completion
with SDP nondegeneracy [30]. To arrive at our results we develop a number of tools
that build upon fundamental results guaranteeing the uniqueness of optimal solutions to
SDP’s.

Using this machinery we can also give new proofs of some known results, most notably
a short and elementary proof of Connelly’s sufficient condition for universal rigidity (The-
orem 4.4). With the intention to make Section 4 a self contained treatment of universal
rigidity we also address the case of generic universally rigid frameworks (Section 4.2).
Lastly, we investigate the relation between our sufficient condition and Connelly’s suf-
ficient condition and show that in some special cases they turn out to be equivalent
(Section 4.3).

In this paper we also revisit a somewhat elusive matrix property called the Strong
Arnold Property (SAP) whose study is motivated by the celebrated Colin de Verdière
graph parameter μ(·) introduced in [8]. We present a geometric characterization of
matrices fulfilling the SAP by associating them with the extreme points of a certain
spectrahedron (Theorem 5.2). Furthermore, we show that psd matrices having the SAP
can be understood as nondegenerate solutions of certain SDP’s (Theorem 5.3).

Lastly, using our tools we can shed some more light and gain insight on the relation
between two graph parameters that have been recently studied in the literature. The
first one is the parameter ν=(·) of [18,19], whose study is motivated by its relation to the
Colin de Verdière graph parameter μ(·). The second one is the Gram dimension gd(·)
of a graph, introduced in [24,25], whose study is motivated by its relation to the low
rank psd matrix completion problem. In particular we reformulate ν=(·) in terms of the
maximum Gram dimension of certain G-partial psd matrices satisfying a nondegeneracy
property (Theorem 5.9), which enables us to recover that gd(G) � ν=(G) for any graph G

(Corollary 5.10).
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1.1. Contents

The paper is organized as follows. In Section 2 we group some basic facts about
semidefinite programming that we need in the paper. In Section 3 we present our suf-
ficient condition for the existence of unique psd completions (in the general setting of
tensegrities, i.e., allowing equalities and inequalities), and we illustrate its use by sev-
eral examples. In Section 4 we present a simple proof for Connelly’s sufficient condition
for universally rigid tensegrities (generic and non-generic) and we investigate the links
between these two sufficient conditions for the spherical and Euclidean distance set-
tings. Finally in Section 5 we revisit the Strong Arnold Property, we present a geometric
characterization of psd matrices having the SAP in terms of nondegeneracy of semidefi-
nite programming, which we use to establish a link between the graph parameters gd(·)
and ν=(·).

1.2. Notation

Let C be a closed convex set. A convex subset F ⊆ C is called a face of C if, for any
x, y ∈ C, λx + (1 − λ)y ∈ F for some scalar λ ∈ (0, 1) implies x, y ∈ F . A point x ∈ C

is called an extreme point of C if the set {x} is a face of C. A vector z is said to be a
perturbation of x ∈ C if x ± εz ∈ C for some ε > 0. The set of perturbations of x ∈ C

form a linear space which we denote as PertC(x). Clearly, x is an extreme point of C if
and only if PertC(x) = {0}.

We denote by e1, . . . , en ∈ R
n the standard unit vectors in R

n and for 1 � i � j � n,
we define the symmetric matrices Eij = (eieT

j + eje
T
i )/2 and Fij = (ei − ej)(ei − ej)T.

Given vectors p1, . . . , pn ∈ R
d, lin{p1, . . . , pn} denotes their linear span which is a vector

subspace of Rd. We also use the shorthand notation [n] = {1, . . . , n}.
Throughout Sn denotes the set of real symmetric n×n matrices and Sn

+ the subcone
of positive semidefinite matrices. For a matrix X ∈ Sn its kernel is denoted as KerX and
its range as RanX. The corank of a matrix X ∈ Sn is the dimension of its kernel. For a
matrix X ∈ Sn, the notation X � 0 means that X is positive semidefinite (abbreviated as
psd). The space Sn is equipped with the trace inner product given by 〈X,Y 〉 = Tr(XY ) =∑n

i,j=1 XijYij . We will use the following property: For two positive semidefinite matrices
X,Y ∈ Sn

+, 〈X,Y 〉 � 0, and 〈X,Y 〉 = 0 if and only if XY = 0.
Given vectors p1, . . . , pn ∈ R

d, their Gram matrix is the n × n symmetric matrix
Gram(p1, . . . , pn) = (pT

i pj)ni,j=1. Clearly, the rank of the Gram matrix Gram(p1, . . . , pn)
is equal to the dimension of the linear span of {p1, . . . , pn}. Moreover, two systems of
vectors {p1, . . . , pn} and {q1, . . . , qn} in R

d have the same Gram matrix, i.e., pT
i pj = qT

i qj
for all i, j ∈ [n], if and only if there exists a d×d orthogonal matrix O such that qi = Opi
for all i ∈ [n].
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2. Semidefinite programming

In this section we recall some basic facts about semidefinite programming. Our nota-
tion and exposition follow [4] (another excellent source is [29]).

A semidefinite program is a convex program defined as the minimization of a linear
function over an affine section of the cone of positive semidefinite matrices. In this paper
we will consider semidefinite programs of the form:

p∗ = sup
X

{
〈C,X〉: X � 0, 〈Ai, X〉 = bi (i ∈ I), 〈Ai, X〉 � bi (i ∈ J)

}
. (P )

While standard semidefinite programs are usually defined involving only linear equali-
ties, we also allow here linear inequalities since they will be used to model tensegrity
frameworks in Sections 3 and 4. For this reason we include some details of the proofs for
clarity. The dual program of (P ) reads:

d∗ = inf
y,Z

{ ∑
i∈I∪J

biyi:
∑

i∈I∪J

yiAi − C = Z � 0, yi � 0 (i ∈ J)
}
. (D)

Here, C ∈ Sn, Ai ∈ Sn (i ∈ I ∪ J) and b ∈ R
|I|+|J| are given and I ∩ J = ∅.

We denote the primal and dual feasible regions by P and D, respectively. The primal
feasible region

P =
{
X ∈ Sn: X � 0, 〈Ai, X〉 = bi (i ∈ I), 〈Ai, X〉 � bi (i ∈ J)

}
(2)

is a convex set defined as the intersection of the cone of positive semidefinite matrices
with an affine subspace and some affine half-spaces. For J = ∅, such sets are known as
spectrahedra and, for J 	= ∅, they are called semidefinite representable (i.e., they can be
obtained as projections of spectrahedra, by using slack variables). Recently, there has
been a surge of interest in the study of semidefinite representable sets since they consti-
tute a rich class of convex sets for which there exist efficient algorithms for optimizing
linear functions over them [6].

As is well known (and easy to see), weak duality holds: p∗ � d∗. Moreover, if the dual
(resp. primal) is strictly feasible and d∗ > −∞ (resp. p∗ < ∞), then strong duality holds:
p∗ = d∗ and the primal (resp. dual) optimum value is attained.

A pair X, (y, Z) of primal and dual optimal solutions are called complementary if
XZ = 0 and strict complementary if moreover rankX + rankZ = n. For a matrix
X ∈ P, let JX = {i ∈ J : 〈Ai, X〉 = bi} denote the set of inequality constraints that are
active at X. Similarly, for a matrix Z ∈ D set JZ = {i ∈ J : yi > 0}. Assuming strong
duality, a pair of primal and dual feasible solutions X, (y, Z) are both optimal if and
only if 〈X,Z〉 = 0 and JZ ⊆ JX , i.e., if yi > 0 for some i ∈ J then 〈Ai, X〉 = bi. We refer
to these two conditions as the complementary slackness conditions.

The following theorem provides an explicit characterization of the space of perturba-
tions of an element of the primal feasible region P.
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Theorem 2.1. (See [26,13].) Consider a matrix X ∈ P, written as X = PPT, where
P ∈ R

n×r and r = rankX. Then,

PertP(X) =
{
PRPT: R ∈ Sr,

〈
PRPT, Ai

〉
= 0 (i ∈ I ∪ JX)

}
. (3)

As a direct application, we obtain a characterization for extreme points of the primal
feasible region P.

Corollary 2.2. Consider a matrix X ∈ P, written as X = PPT, where P ∈ R
n×r and

r = rankX. The following assertions are equivalent:

(i) X is an extreme point of P.
(ii) If R ∈ Sr satisfies 〈PTAiP,R〉 = 0 for all i ∈ I ∪ JX , then R = 0.
(iii) lin{PTAiP : i ∈ I ∪ JX} = Sr.

We denote by Rr the manifold of symmetric n × n matrices with rank equal to r.
Given a matrix X ∈ Rr, let X = QΛQT be its spectral decomposition, where Q is
an orthogonal matrix whose columns are the eigenvectors of X and Λ is the diagonal
matrix with the corresponding eigenvalues as diagonal entries. Without loss of generality
we may assume that Λii 	= 0 for i ∈ [r].

The tangent space of Rr at X is given by

TX =
{
Q

(
U V

V T 0

)
QT: U ∈ Sr, V ∈ R

r×(n−r)
}
. (4)

Hence, its orthogonal complement is defined by

T ⊥
X =

{
Q

(
0 0
0 W

)
QT: W ∈ Sn−r

}
. (5)

We will also use the equivalent description:

T ⊥
X =

{
M ∈ Sn: XM = 0

}
. (6)

We now introduce the notions of nondegeneracy and strict complementarity for the
semidefinite programs (P ) and (D) in standard form.

Definition 2.3. (See [4].) Consider the pair of primal and dual semidefinite programs (P )
and (D). A matrix X ∈ P is called primal nondegenerate if

TX + lin{Ai: i ∈ I ∪ JX}⊥ = Sn. (7)

The pair (y, Z) ∈ D is called dual nondegenerate if

TZ + lin{Ai: i ∈ I ∪ JZ} = Sn. (8)
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Next we present some well known results that provide necessary and sufficient con-
ditions for the unicity of optimal solutions in terms of the notions of primal or dual
nondegeneracy and strict complementarity. With the intention to make the section self-
contained we have also included short proofs.

Theorem 2.4. (See [4].) Assume that the optimal values of (P ) and (D) are equal and that
both are attained. If (P ) has a nondegenerate optimal solution, then (D) has a unique
optimal solution. (Analogously, if (D) has a nondegenerate optimal solution, then (P )
has a unique optimal solution.)

Proof. Let X be a nondegenerate optimal solution of (P ) and let (y(1), Z1), (y(2), Z2) be
two dual optimal solutions. Complementary slackness implies that y

(1)
j = y

(2)
j = 0 holds

for every i ∈ J \ JX . Hence, Z1 − Z2 ∈ lin{Ai: i ∈ I ∪ JX}. As there is no duality gap
we have that XZ1 = XZ2 = 0 and then (6) implies that Z1 −Z2 ∈ T ⊥

X . These two facts
combined with the assumption that X is primal nondegenerate imply that Z1 = Z2. The
other case is similar. �

The next lemma provides a characterization of the space of perturbations in terms of
tangent spaces for a pair of strict complementary optimal solutions.

Lemma 2.5. Assume that the optimal values of (P ) and (D) are equal and that both
are attained. Let X, (y, Z) be a strict complementary pair of primal and dual optimal
solutions for (P ) and (D), respectively. Then,

PertP(X) = lin{Ai: i ∈ I ∪ JX}⊥ ∩ T ⊥
Z , (9)

PertD(Z) = lin{Ai: i ∈ I ∪ JZ}⊥ ∩ T ⊥
X . (10)

Proof. By assumption, ZX = XZ = 0, which implies that X and Z can be simul-
taneously diagonalized by the same orthogonal matrix Q. Let r = rankX and write
Q = (Q1 Q2), where the columns of Q1 ∈ R

n×r form a basis of the range of X. As X

and Z are strict complementary we obtain that

X = Q

(
Λ1 0
0 0

)
QT = Q1Λ1Q

T
1 , Z = Q

(
0 0
0 Λ2

)
QT = Q2Λ2Q

T
2 ,

where Λ1 and Λ2 are diagonal matrices of sizes r and n − r, respectively. The claim
follows easily using the form of TX (and TZ) given in (5). �

The next theorem establishes the converse of Theorem 2.4, assuming strict comple-
mentarity.

Theorem 2.6. (See [4].) Assume that the optimal values of (P ) and (D) are equal and
that both are attained. Let X, (y, Z) be a strict complementary pair of optimal solutions
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for (P ) and (D), respectively, and assume that JX = JZ . If X is the unique optimal
solution of (P ) then (y, Z) is dual nondegenerate. (Analogously, if (y, Z) is the unique
optimal solution of (D) then X is primal nondegenerate.)

Proof. By assumption, X is the unique optimal solution of (P ). Hence X is an extreme
point of the primal feasible region and thus, using (9), we obtain that TZ + lin{Ai: i ∈
I ∪ JX} = Sn. As JX = JZ , (8) holds and thus (y, Z) is dual nondegenerate. �

As an application we obtain the following characterization for the extreme points of P,
assuming strict complementarity.

Theorem 2.7. Assume that the optimal values of (P ) and (D) are equal and that both are
attained. Let X, (y, Z) be a pair of strict complementary optimal solutions of the primal
and dual programs (P ) and (D), respectively, and assume that JX = JZ . The following
assertions are equivalent:

(i) X is an extreme point of P.
(ii) X is the unique primal optimal solution of (P ).
(iii) Z is a dual nondegenerate.

Proof. The equivalence (ii) ⇐⇒ (iii) follows directly from Theorems 2.4 and 2.6 and the
equivalence (i) ⇐⇒ (iii) follows by Lemma 2.5 and the definition of dual nondegeneracy
from (8). �

Note that Theorems 2.6 and 2.7 still hold if we replace the condition JX = JZ by the
weaker condition:

∀i ∈ JX \ JZ Ai ∈ TZ + lin{Ai: i ∈ I ∪ JX}. (11)

Note also that this condition is automatically satisfied in the case when J = ∅, i.e., when
the semidefinite program (P ) involves only linear equalities.

3. Uniqueness of positive semidefinite matrix completions

3.1. Basic definitions

Let G = (V = [n], E) be a given graph. Recall that a vector a ∈ R
V ∪E is called a

G-partial psd matrix if it admits at least one completion to a full psd matrix, i.e., if the
semidefinite program (1) has at least one feasible solution. We denote by S+(G) the set of
all G-partial psd matrices. In other words, S+(G) is equal to the projection of the positive
semidefinite cone Sn

+ onto the subspace R
V ∪E indexed by the nodes (corresponding to

the diagonal entries) and the edges of G. We can reinterpret G-partial psd matrices
in terms of Gram representations. Namely, a ∈ S+(G) if and only if there exist vectors
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p1, . . . , pn ∈ R
d (for some d � 1) such that aij = pT

i pj for all {i, j} ∈ V ∪E. This leads to
the notion of frameworks which will make the link between the Gram (spherical) setting
of this section and the Euclidean distance setting considered in the next section.

A tensegrity graph is a graph G whose edge set is partitioned into three sets: E =
B ∪ C ∪ S, whose members are called bars, cables and struts, respectively. A tensegrity
framework G(p) consists of a tensegrity graph G together with an assignment of vectors
p = {p1, . . . , pn} to the nodes of G. A bar framework is a tensegrity framework where
C = S = ∅.

Given a tensegrity framework G(p) consider the following pair of primal and dual
semidefinite programs:

sup
X

{
0: X � 0, 〈Eij , X〉 = pT

i pj for {i, j} ∈ V ∪B,

〈Eij , X〉 � pT
i pj for {i, j} ∈ C,

〈Eij , X〉 � pT
i pj for {i, j} ∈ S

}
(PG)

and

inf
y,Z

{ ∑
ij∈V ∪E

yijp
T
i pj :

∑
ij∈V ∪E

yijEij = Z � 0,

yij � 0 for {i, j} ∈ C,

yij � 0 for {i, j} ∈ S

}
. (DG)

The next definition captures the analogue of the notion of universal rigidity for the
Gram setting.

Definition 3.1. A tensegrity framework G(p) is called universally completable if the matrix
Gram(p1, . . . , pn) is the unique solution of the semidefinite program (PG).

In other words, a universally completable framework G(p) corresponds to a G-partial
psd matrix a ∈ S+(G), where aij = pT

i pj for all {i, j} ∈ V ∪E, that admits a unique com-
pletion to a full psd matrix. Consequently, identifying sufficient conditions guaranteeing
that a framework G(p) is universally completable will allow us to construct G-partial
matrices with a unique psd completion.

3.2. A sufficient condition for universal completability

In this section we derive a sufficient condition for determining the universal com-
pletability of tensegrity frameworks.

We use the following notation: For a graph G = (V,E), E denotes the set of pairs
{i, j} with i 	= j and {i, j} /∈ E, corresponding to the non-edges of G.
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Theorem 3.2. Let G = ([n], E) be a tensegrity graph with E = B ∪ C ∪ S and consider
a tensegrity framework G(p) in R

d such that p1, . . . , pn span linearly R
d. Assume there

exists a matrix Z ∈ Sn satisfying the conditions (i)–(vi):

(i) Z is positive semidefinite.
(ii) Zij = 0 for all {i, j} ∈ E.
(iii) Zij � 0 for all (cables) {i, j} ∈ C and Zij � 0 for all (struts) {i, j} ∈ S.
(iv) Z has corank d.
(v)

∑
j∈V Zijpj = 0 for all i ∈ [n].

(vi) For any matrix R ∈ Sd the following holds:

pT
i Rpj = 0 ∀{i, j} ∈ V ∪B ∪

{
{i, j} ∈ C ∪ S: Zij 	= 0

}
=⇒ R = 0. (12)

Then the tensegrity framework G(p) is universally completable.

Proof. Set X = Gram(p1, . . . , pn). Assume that Y ∈ Sn
+ is another matrix which is

feasible for the program (PG), say Y = Gram(q1, . . . , qn) for some vectors q1, . . . , qn.
Our goal is to show that Y = X. By (v), ZX = 0 and thus RanX ⊆ KerZ. Moreover,
dim KerZ = d by (iv), and rankX = d since lin{p1, . . . , pn} = R

d. This implies that
KerX = RanZ.

By (ii) we can write Z =
∑

{i,j}∈V ∪E ZijEij . Next notice that

0 � 〈Z, Y 〉 =
〈 ∑

{i,j}∈V ∪E

ZijEij , Y

〉
�

∑
{i,j}∈V ∪E

Zij〈Eij , X〉 = 〈Z,X〉 = 0, (13)

where the first (left most) inequality follows from the fact that Y,Z � 0 and the second
one from the feasibility of Y for (PG) and the sign conditions (iii) on Z. This gives
〈Z, Y 〉 = 0, which implies that KerY ⊇ RanZ and thus KerY ⊇ KerX.

Write X = PPT, where P ∈ R
n×d has rows pT

1 , . . . , p
T
n. From the inclusion

Ker(Y −X) ⊇ KerX, we deduce that Y −X = PRPT for some matrix R ∈ Sd.
As equality holds throughout in (13), we obtain that 〈Eij , Y −X〉 = 0 for all {i, j} ∈

C ∪ S with Zij 	= 0. Additionally, as X,Y are both feasible for (PG), we have that
〈Eij , Y −X〉 = 0 for all {i, j} ∈ V ∪ B. Substituting PRPT for Y −X, we obtain that
pT
i Rpj = 0 for all {i, j} ∈ V ∪B and all {i, j} ∈ C ∪ S with Zij 	= 0. We can now apply

(vi) and conclude that R = 0. This gives Y = X, which concludes the proof. �
Note that the conditions (i)–(iii) express that Z is feasible for the dual semidefinite

program (DG). In analogy to the Euclidean setting (see Section 4), such matrix Z is
called a spherical stress matrix for the framework G(p). Moreover, (v) says that Z is
dual optimal and (iv) says that X = Gram(p1, . . . , pn) and Z are strictly complementary
solutions to the primal and dual semidefinite programs (PG) and (DG). Finally, in the
case of bar frameworks (when C = S = ∅), condition (vi) means that Z is dual nonde-
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Fig. 1. The graph K2,2,2.

generate. Hence, for bar frameworks, Theorem 3.2 also follows as a direct application of
Theorem 2.7.

As a last remark notice that the assumptions of Theorem 3.2 imply that n � d.
Moreover, for n = d, the matrix Z is the zero matrix and in this case (12) reads:
pT
i Rpj = 0 for all {i, j} ∈ V ∪B then R = 0. Observe that this condition can be satisfied

only when G = Kn and C = S = ∅, so that Theorem 3.2 is useful only in the case when
d � n− 1.

3.3. Applying the sufficient condition

Many constructions of partial psd matrices admitting a unique psd completion have
been given in [14,24,25]. While the proofs there for unicity of the psd completion consisted
of ad hoc arguments and case checking, Theorem 3.2 provides us with a unified and
systematic approach to deal with most of those constructions. The reader is referred
to [34, §11.1.2] for a detailed treatment of these results.

To illustrate the usefulness of Theorem 3.2 we now give a specific construction of a
partial psd matrix admitting a unique psd completion.

Example 1 (The octahedral graph). Consider a framework for the octahedral graph K2,2,2
defined as follows:

p1 = e1, p2 = e2, p3 = e1 + e2, p4 = e3, p5 = e4, p6 = e5,

where ei (i ∈ [5]) denote the standard unit vectors in R
5 and the numbering of the

nodes refers to Fig. 1. In [24] it is shown that the corresponding K2,2,2-partial matrix
a = (pT

i pj) ∈ S+(K2,2,2) admits a unique psd completion. This result follows easily, using
Theorem 3.2. Indeed it is easy to check that condition (12) holds. Moreover, the matrix
Z = (1, 1,−1, 0, 0, 0)(1, 1,−1, 0, 0, 0)T is psd with corank 5, it is supported by K2,2,2, and
satisfies 〈Z,Gram(p1, . . . , p5)〉 = 0. Hence Theorem 3.2 applies and the claim follows.

The next example shows that the conditions in Theorem 3.2 are sufficient but not
necessary for the construction of partial psd matrices with a unique psd completion.
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Example 2 (The odd cycle C5). Consider the framework for C5 in R
2 given by the vectors

q1 = (1, 0)T, q2 = (−1/
√

2, 1/
√

2)T, q3 = (0,−1)T,

q4 = (1/
√

2, 1/
√

2)T, q5 = (−1/
√

2,−1/
√

2)T.

We now show that the corresponding C5-partial matrix admits a unique psd completion.
This cannot be shown using Theorem 3.2 since there does not exist a nonzero matrix
Z ∈ S5 supported by C5 satisfying 〈Z,Gram(q1, . . . q5)〉 = 0. Nevertheless one can prove
that there exists a unique psd completion by using the following geometric argument.

Let X ∈ S5
+ be a psd completion of the partial matrix and set ϑij = arccosXij ∈ [0, π]

for 1 � i � j � 5. Then, ϑ12 = ϑ23 = ϑ34 = ϑ45 = 3π/4 and ϑ15 = π. Therefore, the
following linear equality holds:

5∑
i=1

ϑi,i+1 = 4π (14)

(where indices are taken modulo 5). As we will see this implies that the remaining angles
are uniquely determined by the relations:

ϑi,i+2 + ϑi,i+1 + ϑi+1,i+2 = 2π for 1 � i � 5 (15)

and thus that X is uniquely determined. To see why the identities (15) hold, we use the
well known fact that the angles ϑij satisfy the (triangle) inequalities:

ϑ12 + ϑ23 + ϑ13 � 2π, −ϑ13 − ϑ14 + ϑ34 � 0, ϑ14 + ϑ45 + ϑ15 � 2π. (16)

Summing up the three inequalities in (16) and combining with (14), we deduce that
equality holds throughout in (16). This permits to derive the values of ϑ13 = π/2
and ϑ14 = π/4 and proceed analogously for the remaining angles. (For details on the
parametrization of positive semidefinite matrices using the arccos map, see [5] or [23].)

We conclude with an example showing that the condition (12) cannot be omitted from
the assumptions of Theorem 3.2.

Example 3. Let G be the graph with V (G) = [5] and

E(G) =
{
(1, 2), (1, 4), (2, 3), (2, 4), (2, 5), (3, 5)

}
.

Let ei (i ∈ [3]) denote the standard unit vectors in R
3. Consider the 2-dimensional

framework for G defined as follows:

p1 = e1, p2 = e3, p3 = −e2, p4 = −e1, p5 = e2.
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Thinking of the pi’s as the vertices of a square pyramid (with apex node the vector e2) it
is easy to verify that the G-partial matrix defined by the pi’s does not admit a unique psd
completion. Moreover, it is straightforward to check that the framework defined by the
pi’s fails to satisfy (12). On the other hand, the matrix Z = (1, 0, 0, 1, 0)(1, 0, 0, 1, 0)T +
(0, 0, 1, 0, 1)(0, 0, 1, 0, 1)T satisfies conditions (i)–(vi) from Theorem 3.2. This shows that
condition (12) cannot be omitted from the assumptions of Theorem 3.2.

4. Universal rigidity of tensegrity frameworks

Our goal in this section is to give a concise and self-contained treatment of some
known results concerning the universal rigidity of tensegrity frameworks. In particular,
building on ideas from the two previous sections we give a very short and elementary
proof of Connelly’s sufficient condition for universal rigidity for both generic and non-
generic tensegrity frameworks. Lastly, we also investigate the relation of our sufficient
condition from Theorem 3.2 (for the Gram setting) to Connelly’s sufficient condition
from Theorem 4.4 (for the Euclidean distance setting).

4.1. Connelly’s characterization

The framework G(p) is called d-dimensional if p1, . . . , pn ∈ R
d and their affine span

is R
d. A d-dimensional framework is said to be in general position if every d+ 1 vectors

are affinely independent. Given a framework G(p) in R
d, its configuration matrix is the

n× d matrix P whose rows are the vectors pT
1 , . . . , p

T
n, so that PPT = Gram(p1, . . . , pn).

The framework G(p) is said to be generic if the coordinates of the vectors p1, . . . , pn are
algebraically independent over the rational numbers.

Definition 4.1. Let G = ([n], E) be a tensegrity graph with E = B ∪ C ∪ S. A tenseg-
rity framework G(p) is said to dominate a tensegrity framework G(q) if the following
conditions hold:

(i) ‖pi − pj‖ = ‖qi − qj‖ for all (bars) {i, j} ∈ B,
(ii) ‖pi − pj‖ � ‖qi − qj‖ for all (cables) {i, j} ∈ C,
(iii) ‖pi − pj‖ � ‖qi − qj‖ for all (struts) {i, j} ∈ S.

Two frameworks G(p) and G(q) are called congruent if

‖pi − pj‖ = ‖qi − qj‖, ∀i 	= j ∈ [n].

Equivalently, this means that G(q) can be obtained by G(p) by a rigid motion of the
Euclidean space. In this section we will be concerned with tensegrity frameworks which,
up to the group of rigid motions of the Euclidean space, admit a unique realization.
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Definition 4.2. A tensegrity framework G(p) is called universally rigid if it is congruent
to any tensegrity it dominates.

An essential ingredient for characterizing universally rigid tensegrities is the notion of
equilibrium stress matrix which we now introduce.

Definition 4.3. A matrix Ω ∈ Sn is called an equilibrium stress matrix for a tensegrity
framework G(p) if it satisfies:

(i) Ωij = 0 for all {i, j} ∈ E.
(ii) Ωe = 0 and ΩP = 0, i.e.,

∑
j∈V Ωijpj = 0 for all i ∈ V .

(iii) Ωij � 0 for all (cables) {i, j} ∈ C and Ωij � 0 for all (struts) {i, j} ∈ S.

Note that, by property (i) combined with the condition Ωe = 0, any equilibrium stress
matrix Ω can be written as Ω =

∑
{i,j}∈E ΩijFij , where we set Fij = (ei− ej)(ei− ej)T.

The following result (Theorem 4.4), due to R. Connelly, establishes a sufficient condi-
tion for determining the universal rigidity of tensegrities. All the ingredients for its proof
are already present in [9] although there is no explicit statement of the theorem there.
An exact formulation and a proof of Theorem 4.4 can be found in the (unpublished)
work [10]. We now give an elementary proof of Theorem 4.4 which relies only on basic
properties of positive semidefinite matrices. Our proof goes along the same lines as the
proof of Theorem 3.2 above and it is substantially shorter and simpler in comparison
with Connelly’s original proof.

Theorem 4.4. Let G = ([n], E) be a tensegrity graph with E = B ∪C ∪S and let G(p) be
a tensegrity framework in R

d such that p1, . . . , pn affinely span R
d. Assume there exists

an equilibrium stress matrix Ω for G(p) such that:

(i) Ω is positive semidefinite.
(ii) Ω has corank d + 1.
(iii) For any matrix R ∈ Sd the following holds:

(pi − pj)TR(pi − pj) = 0

∀{i, j} ∈ B ∪
{
{i, j} ∈ C ∪ S: Ωij 	= 0

}
=⇒ R = 0. (17)

Then, G(p) is universally rigid.

Proof. Assume that G(p) dominates another framework G(q), our goal is to show that
G(p) and G(q) are congruent. Recall that P is the n×d matrix with the vectors p1, . . . , pn
as rows and define the augmented n × (d + 1) matrix Pa = (P e) obtained by adding
the all-ones vector as last column to P . Set X = PPT and Xa = PaP

T
a , so that Xa =

X + eeT. As the tensegrity G(p) is d-dimensional, we have that rankXa = d + 1. We
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claim that KerXa = RanΩ. Indeed, as Ω is an equilibrium stress matrix for G(p), we
have that ΩPa = 0 and thus ΩXa = 0. This implies that RanXa ⊆ KerΩ and, as
corankΩ = d + 1 = rankXa, it follows that KerXa = RanΩ.

Let Y denote the Gram matrix of the vectors q1, . . . , qn. We claim that KerY ⊇
KerXa. Indeed, we have that

0 � 〈Ω, Y 〉 =
〈 ∑

{i,j}∈E

ΩijFij , Y

〉
�

∑
{i,j}∈E

Ωij〈Fij , Xa〉 = 〈Ω,Xa〉 = 0. (18)

The first inequality follows from the fact that Ω, Y � 0; the second inequality holds since
Ωij〈Fij , Y 〉 � Ωij〈Fij , X〉 = Ωij〈Fij , Xa〉 for all edges {i, j} ∈ E, using the fact that
G(p) dominates G(q) and the sign conditions on Ω. Therefore equality holds throughout
in (18). This gives 〈Ω, Y 〉 = 0, implying Y Ω = 0 (since Y,Ω � 0) and thus KerY ⊇
RanΩ = KerXa.

As KerY ⊇ KerXa, we deduce that Ker(Y −Xa) ⊇ KerX and thus Y −Xa can be
written as

Y −Xa = PaRPT
a for some matrix R =

(
A b

bT c

)
∈ Sd+1, (19)

where A ∈ Sd, b ∈ R
d and c ∈ R.

As equality holds throughout in (18) holds, we obtain Ωij〈Fij , Y − Xa〉 = 0 for all
{i, j} ∈ C ∪S. Therefore, 〈Fij , PaRPT

a 〉 = (pi − pj)TA(pi − pj) = 0 for all {i, j} ∈ B and
for all {i, j} ∈ C ∪ S with Ωij 	= 0. Using condition (iii), this implies that A = 0. Now,
using (19) and the fact that A = 0, we obtain that

(Y −Xa)ij = bTpi + bTpj + c for all i, j ∈ [n].

From this follows that

‖qi − qj‖2 = Yii + Yjj − 2Yij = (Xa)ii + (Xa)jj − 2(Xa)ij = ‖pi − pj‖2

for all i, j ∈ [n], thus showing that G(p) and G(q) are congruent. �
Notice that the assumptions of the theorem imply that n � d + 1. Moreover, for

n = d+1 we get that Ω is the zero matrix in which case (17) is satisfied only for G = Kn

and C = S = ∅. Hence Theorem 4.4 is useful only in the case when n � d + 2.
There is a natural pair of primal and dual semidefinite programs attached to a given

tensegrity framework G(p):

sup
X

{0: X � 0, 〈Fij , X〉 = ‖pi − pj‖2 for {i, j} ∈ B,

〈Fij , X〉 � ‖pi − pj‖2 for {i, j} ∈ C,
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〈Fij , X〉 � ‖pi − pj‖2 for {i, j} ∈ S}, (20)

inf
y,Z

{
∑
ij∈E

yij‖pi − pj‖2: Z =
∑
ij∈E

yijFij � 0,

yij � 0 for {i, j} ∈ C,

yij � 0 for {i, j} ∈ S}. (21)

The feasible (optimal) solutions of the primal program (20) correspond to the frameworks
G(q) that are dominated by G(p), while the optimal solutions to the dual program (21)
correspond to the positive semidefinite equilibrium stress matrices for the tensegrity
framework G(p).

Both matrices X = PPT and Xa = PaP
T
a (defined in the proof of Theorem 4.4) are

primal optimal, with rankX = d and rankXa = d + 1. Hence, a psd equilibrium stress
matrix Ω satisfies the conditions (i) and (ii) of Theorem 4.4 precisely when the pair
(Xa, Ω) is a strict complementary pair of primal and dual optimal solutions.

In the case of bar frameworks (i.e., C = S = ∅), the condition (iii) of Theorem 4.4
expresses the fact that the matrix X = Gram(p1, . . . , pn) is an extreme point of the
feasible region of (20). Moreover, Xa lies in its relative interior (since KerY ⊇ KerXa

for any primal feasible Y , as shown in the above proof of Theorem 4.4).

Remark 4.1. In the terminology of Connelly, the condition (17) says that the edge direc-
tions pi − pj of G(p) for all edges {i, j} ∈ B and all edges {i, j} ∈ C ∪ S with nonzero
stress Ωij 	= 0 do not lie on a conic at infinity.

Observe that this condition cannot be omitted in Theorem 4.4. This is illustrated
by the following example, taken from [3]. Consider the graph G on 4 nodes with edges
{1, 2}, {1, 3}, {2, 3} and {2, 4}, and the 2-dimensional bar framework G(p) given by

p1 = (−1, 0)T, p2 = (0, 0)T, p3 = (1, 0)T and p4 = (0, 1)T.

Clearly, the framework G(p) is not universally rigid (as one can rotate p4 and get a
new framework, which is equivalent but not congruent to G(p)). On the other hand, the
matrix Ω = (1,−2, 1, 0)(1,−2, 1, 0)T is the only equilibrium stress matrix for G(p), it is
positive semidefinite with corank 3. Observe however that the condition (17) does not
hold (since the nonzero matrix R = e1e

T
2 + e2e

T
1 satisfies (pi − pj)TR(pi − pj) = 0 for all

{i, j} ∈ E).

4.2. Generic universally rigid frameworks

It is natural to ask for a converse of Theorem 4.4. This question has been settled
recently in [16] in the affirmative for generic frameworks (cf. Theorem 4.8). First, we
show that, for generic frameworks, the ‘no conic at infinity’ condition (17) can be omitted
since it holds automatically. This result was obtained in [11] (Proposition 4.3), but for
the sake of completeness we have included a different and more explicit argument.
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We need some notation. Given a framework G(p) in R
k, we let Pp denote the

(
k+1
2
)
×

|E| matrix, whose ij-th column contains the entries of the upper triangular part of the
matrix (pi − pj)(pi − pj)T ∈ Sk. For a subset I ⊆ E, Pp(I) denotes the

(
k+1
2
)
× |I|

submatrix of Pp whose columns are indexed by edges in I.

Lemma 4.5. Let k ∈ N and let G = ([n], E) be a graph on n � k + 1 nodes and with
minimum degree at least k. Define the polynomial πk,G in kn variables by

πk,G(p) =
∑

I⊆E, |I|=
(k+1

2
)
(
detPp(I)

)2

for p = {p1, . . . , pn} ⊆ (Rk)n. Then, the polynomial πk,G has integer coefficients and it
is not identically zero.

Proof. Notice that for the specific choice of parameters we have that |E| � nk
2 � (k+1)k

2 .
It is clear that πk,G has integer coefficients. We show by induction on k � 2 that for
every graph G = ([n], E) with n � k + 1 nodes and minimum degree at least k the
polynomial πk,G is not identically zero.

For k = 2, we distinguish two cases: (i) n = 3 and (ii) n � 4. In case (i), G = K3

and, for the vectors p1 = (0, 0)T, p2 = (1, 0)T, p3 = (0, 1)T, we have that π2,G(p) 	= 0.
In case (ii), we can now assume without loss of generality that the edge set contains the
following subset I = {{1, 2}, {1, 3}, {2, 4}}. For the vectors p1 = (0, 0)T, p2 = (1, 0)T,
p3 = (0, 1)T, p4 = (2, 1)T, we have that detPp(I) 	= 0 and thus π2,G(p) 	= 0.

Let k � 3 and consider a graph G = ([n], E) with n � k + 1 and minimum degree
at least k. Let G \ n be the graph obtained from G by removing node n and all edges
adjacent to it. Then, G \ n has at least k nodes and minimum degree at least k − 1.
Hence, by the induction hypothesis, the polynomial πk−1,G\n is not identically zero. Let
p = {p1, . . . , pn−1} ⊆ R

k−1 be a generic set of vectors and define p̃ = {p̃1, . . . , p̃n} ⊆ R
k,

where p̃i = (pT
i , 0)T ∈ R

k for 1 � i � n − 1 and p̃n = (0, 1)T ∈ R
k. As p is generic,

πk−1,G\n(p) 	= 0 and thus detPp(I) 	= 0 for some subset I ⊆ E(G \ n) with |I| =
(
k
2
)
.

Say, node n is adjacent to the nodes 1, . . . , k in G and define the edge subset Ĩ =
I ∪ {{n, 1}, . . . , {n, k}} ⊆ E. Then, the matrix Pp̃(Ĩ) has the block-form

Pp̃(Ĩ) =

⎛
⎜⎝

(k
2
)︷ ︸︸ ︷ k︷ ︸︸ ︷

Pp(I) ∗ · · · ∗
0 · · · 0 −p1 · · · −pk
0 · · · 0 1 · · · 1

⎞
⎟⎠.

As the vectors p1, . . . , pn−1 ∈ R
k−1 were chosen to be generic, every k of them are

affinely independent. This implies that the vectors (−pT
1 , 1)T, . . . , (−pT

k , 1)T are linearly
independent. Hence, detPp̃(Ĩ) 	= 0 and thus πk,G(p̃) 	= 0. �
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Theorem 4.6. (See [11].) Let G(p) be a generic d-dimensional framework and assume
that G has minimum degree at least d. Then the edge directions of G(p) do not lie on a
conic at infinity; that is, the system {(pi − pj)(pi − pj)T: {i, j} ∈ E} ⊆ Sd has full rank(
d+1
2
)
.

Proof. As the framework G(p) is d-dimensional, G must have at least d + 1 nodes. By
Lemma 4.5, the polynomial πd,G is not identically zero and thus, since G(p) is generic,
we have that πd,G(p) 	= 0. By definition of πd,G there exists I ⊆ E with |I| =

(
d+1
2
)

such
that detPp(I) 	= 0. This implies that the system {(pi − pj)(pi − pj)T: {i, j} ∈ E} ⊆ Sd

has full rank
(
d+1
2
)
. �

Next we show that for generic frameworks Theorem 4.4 remains valid even when (17)
is omitted.

Corollary 4.7. (See [11].) Let G(p) be a generic d-dimensional tensegrity framework.
Assume that there exists a positive semidefinite equilibrium stress matrix Ω with corank
d + 1. Then G(p) is universally rigid.

Proof. Set E0 = {{i, j} ∈ E: Ωij 	= 0} and define the subgraph G0 = ([n], E0) of G.
First we show that G0 has minimum degree at least d. For this, we use the equilibrium
conditions: For all i ∈ [n],

∑
j: {i,j}∈E0

Ωijpj = 0, which give an affine dependency among
the vectors pi and pj for {i, j} ∈ E0. By assumption, p is generic and thus in general
position, which implies that any d + 1 of the vectors p1, . . . , pn are affinely dependent.
From this we deduce that each node i ∈ [n] has degree at least d in G0.

Hence we can apply Theorem 4.6 to the generic framework G0(p) and conclude that
the system {(pi − pj)(pi − pj)T: {i, j} ∈ E0} has full rank

(
d+1
2
)
. This shows that the

condition (17) holds. Now we can apply Theorem 4.4 to G(p) and conclude that G(p)
is universally rigid. �

We note that for bar frameworks this fact has been also obtained independently by
A. Alfakih using the related concepts of dimensional rigidity and Gale matrices. The
notion of dimensional rigidity was introduced in [1] where a sufficient condition was
obtained for showing that a framework is dimensionally rigid. In [2], using the concept of
a Gale matrix, this condition was shown to be equivalent to the sufficient condition from
Theorem 4.4 (for bar frameworks). Lastly, in [2] it is shown that for generic frameworks
the notions of dimensional rigidity and universal rigidity coincide.

In the special case of bar frameworks, the converse of Corollary 4.7 was proved recently
by S.J. Gortler and P. Thurston.

Theorem 4.8. (See [16].) Let G(p) be a generic d-dimensional bar framework and assume
that it is universally rigid. Then there exists a positive semidefinite equilibrium stress
matrix Ω for G(p) with corank d + 1.
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4.3. Connections with unique completability

In this section we investigate the links between the two notions of universally com-
pletable and universally rigid tensegrity frameworks. We start the discussion with defin-
ing the suspension of a tensegrity framework.

Definition 4.9. Let G = (V = [n], E) be a tensegrity graph with E = B ∪ C ∪ S. We
denote by ∇G = (V ∪ {0}, E′) its suspension tensegrity graph, with E′ = B′ ∪ C ′ ∪ S′

where B′ = B ∪ {{0, i}: i ∈ [n]}, C ′ = S and S′ = C. Given a tensegrity framework
G(p), we define the extended tensegrity framework ∇G(p̂) where p̂i = pi for all i ∈ [n]
and p̂0 = 0.

Our first observation is a correspondence between the universal completability of a
tensegrity framework G(p) and the universal rigidity of its extended tensegrity framework
∇G(p̂). The analogous observation in the setting of global rigidity has been also made
in [12] and [33].

Lemma 4.10. Let G(p) be a tensegrity framework and let ∇G(p̂) be its extended tensegrity
framework as defined in Definition 4.9. Then, the tensegrity framework G(p) is univer-
sally completable if and only if the extended tensegrity framework ∇G(p̂) is universally
rigid.

Proof. Notice that for any family of vectors q1, . . . , qn, their Gram matrix satisfies the
conditions:

〈Eij , X〉 = pT
i pj for all {i, j} ∈ V ∪B,

〈Eij , X〉 � pT
i pj for all {i, j} ∈ C,

〈Eij , X〉 � pT
i pj for all {i, j} ∈ S,

if and only if the Gram matrix of q0 = 0, q1, . . . , qn satisfies:

〈Fij , X〉 = ‖pi − pj‖2 for all {i, j} ∈ B′,

〈Fij , X〉 � ‖pi − pj‖2 for all {i, j} ∈ C ′,

〈Fij , X〉 � ‖pi − pj‖2 for all {i, j} ∈ S′,

which implies the claim. �
In view of Lemma 4.10 it is reasonable to ask whether Theorem 3.2 can be derived

from Theorem 4.4 applied to the tensegrity framework ∇G(p̂). We will show that this
is the case for bar frameworks, i.e., when C = S = ∅. Indeed, for a bar framework, the
condition (17) from Theorem 4.4 applied to the suspension tensegrity framework ∇G(p̂)
becomes
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R ∈ Sd, (pi − pj)TR(pi − pj) = 0

for all {i, j} ∈ E ∪
{
{0, i}: i ∈ [n]

}
=⇒ R = 0,

and, as p̂0 = 0, this coincides with the condition (12).
The following lemma shows that for bar frameworks there exists a one to one corre-

spondence between equilibrium stress matrices for ∇G(p̂) and spherical stress matrices
for G(p). The crucial fact that we use here is that for bar frameworks there are no sign
conditions for a spherical stress matrix for G(p) or for an equilibrium stress matrix for
∇G(p̂).

Lemma 4.11. Let G(p) be a bar framework in R
d such that p1, . . . , pn span linearly R

d.
The following assertions are equivalent:

(i) There exists an equilibrium stress matrix Ω ∈ Sn+1
+ for the framework ∇G(p̂) with

corankΩ = d + 1.
(ii) There exists a spherical stress matrix for G(p).

Proof. Let P ∈ R
n×d be the configuration matrix of the framework G(p) and let P̂a =

( 0 1
P e

). Write a matrix Ω ∈ Sn+1
+ in block-form as

Ω =
(
w0 wT

w Z

)
where Z ∈ Sn

+, w ∈ R
n, w0 ∈ R. (22)

Notice that Ω is supported by ∇G precisely when Z is supported by G. The matrix Ω

is a stress matrix for ∇G(p̂) if and only if ΩP̂a = 0 which is equivalent to

ZP = 0, w = −Ze, w0 = −wTe. (23)

Moreover, KerΩ = Ran P̂a if and only if KerZ = RanP , so that corankΩ = d+1 if and
only if corankZ = d. The lemma now follows easily: If Ω satisfies (i), then its principal
submatrix Z satisfies (ii). Conversely, if Z satisfies (ii), then the matrix Ω defined by (22)
and (23) satisfies (i). �

Summarizing, we have established that in the special case of a bar framework G(p)
(i.e., C = S = ∅), Theorem 3.2 is equivalent to Theorem 4.4 applied to the extended bar
framework ∇G(p̂). It is not clear whether this equivalence remains valid for arbitrary
tensegrity frameworks. To deal with such frameworks, Lemma 4.11 has to be general-
ized so as to accommodate the sign conditions for the spherical stress matrix and the
equilibrium stress matrix for G(p) and ∇G(p̂), respectively.
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5. The Strong Arnold Property and graph parameters

In this section we revisit the Strong Arnold Property (SAP) and we show that ma-
trices fulfilling the SAP posses some nice geometric properties. We also show that psd
matrices fulfilling the SAP can be characterized as nondegenerate solutions of some ap-
propriate semidefinite program. Additionally, we investigate the relation between the
graph parameters ν=(·) and gd(·), introduced in [18,19] and [24,25], respectively.

5.1. The Strong Arnold Property

For a graph G = (V = [n], E) consider the linear space

C(G) =
{
X ∈ Sn: 〈Eij , X〉 = 0 ∀{i, j} ∈ E

}
.

Definition 5.1. For a graph G = ([n], E), a matrix M ∈ C(G) is said to satisfy the Strong
Arnold Property (SAP) if

TM + lin
{
Eij : {i, j} ∈ V ∪ E

}
= Sn. (24)

The SAP has received a significant amount of attention due to its connection to the
Colin de Verdière graph parameter μ(·), introduced and studied in [7]. The Colin de
Verdière number μ(G) of a graph G is defined as the maximum corank of a matrix
M ∈ C(G) satisfying: 〈Eij ,M〉 < 0 for all {i, j} ∈ E, M has exactly one negative
eigenvalue, and M satisfies the SAP. The graph parameter μ(·) is minor monotone, and
it turns out that the SAP plays a crucial role for showing this. The importance of the
graph parameter μ(G) stems in particular from the fact that it permits to characterize
several topological properties of graphs. For instance, it is known that μ(G) � 3 if and
only if G is planar [7] and μ(G) � 4 if and only if G is linklessly embeddable [27] (more
details can be found e.g. in [21] and further references therein).

By taking orthogonal complements in (24) and using (6), we arrive at the following
equivalent expression for the SAP, that we will use in the sequel:

X ∈ Sn, MX = 0, Xij = 0 for all {i, j} ∈ V ∪ E =⇒ X = 0. (25)

Our next goal is to give a geometric characterization of matrices satisfying the SAP
using the notion of null space representations. Consider a matrix M ∈ Sn, fix an arbi-
trary basis for KerM and form the n× corankM matrix that has as columns the basis
elements. The vectors corresponding to the rows of the resulting matrix form a nullspace
representation of M . If we impose structure on M in terms of some graph G, nullspace
representations of M exhibit intriguing geometric properties and have been extensively
studied (see e.g. [28]).
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The next theorem shows that null space representations of matrices satisfying the SAP
enjoy some nice geometric properties. The equivalence between the first and the third
item has been rediscovered independently by [20] (Theorem 4.2) and [15] (Lemma 3.1).

Theorem 5.2. Consider a graph G = ([n], E) and a matrix M ∈ C(G) with corankM = d.
Let P ∈ R

n×d be a matrix whose columns form an orthonormal basis for KerM and let
{p1, . . . , pn} denote the row vectors of P . The following assertions are equivalent:

(i) M satisfies the Strong Arnold Property.
(ii) PPT is an extreme point of the spectrahedron

{
X � 0: 〈Eij , X〉 = pT

i pj for {i, j} ∈ V ∪ E
}
.

(iii) For any matrix R ∈ Sd the following holds:

pT
i Rpj = 0 for all {i, j} ∈ V ∪ E =⇒ R = 0.

Proof. The equivalence (ii) ⇐⇒ (iii) follows directly from Corollary 2.2.

(i) =⇒ (iii) Let R ∈ Sd such that pT
i Rpj = 0, i.e., 〈PRPT, Eij〉 = 0 for all {i, j} ∈ V ∪E.

Thus the matrix Y = PRPT belongs to lin{Eij : {i, j} ∈ V ∪E}⊥ and satisfies MY = 0.
By (6) we have that Y ∈ T ⊥

M and then (i) implies Y = 0 and thus R = 0 (since
PTP = Ir).

(iii) =⇒ (i) Write M = Q
(
Λ1 0
0 0

)
QT, where Q = (Q1 P ) is orthogonal and the columns

of Q1 form a basis of the range of M . Consider a matrix Y ∈ T ⊥
M ∩ lin{Eij : {i, j} ∈ E}.

Then, by (5), Y = PRPT for some matrix R ∈ Sd. Moreover, 〈Y,Eij〉 = 〈PRPT, Eij〉 = 0
for all {i, j} ∈ V ∪ E, which by (iii) implies that R = 0 and thus Y = 0. �

Our final observation in this section is that a psd matrix having the SAP can be also
understood as a nondegenerate solution of some semidefinite program.

Theorem 5.3. Consider a graph G = ([n], E) and let M ∈ C(G) ∩ S+
n . The following

assertions are equivalent:

(i) M satisfies the Strong Arnold Property.
(ii) M is a primal nondegenerate solution for the semidefinite program:

sup
X

{
〈C,X〉: 〈Eij , X〉 = 0 for {i, j} ∈ E, X � 0

}
,

for any C ∈ Sn.
(iii) M is a dual nondegenerate solution for the semidefinite program:

sup
{
0: 〈Eij , X〉 = aij for {i, j} ∈ V ∪ E, X � 0

}
, (26)
X
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for any a ∈ S+(G).

Proof. Taking orthogonal complements in (24) we see that M satisfies the SAP if and
only if TM⊥ ∩ lin{Eij : {i, j} ∈ E} = {0}. Moreover, observe that the feasible region
of the dual of the semidefinite program (26) is equal to Sn

+ ∩ C(G). Now, using (7), we
obtain the equivalence of (i), (ii) and (iii). �
5.2. Graph parameters

In this section we explore the relation between the two graph parameters gd(·) and
ν=(·) using the machinery developed in the previous sections. Recall that S+(G) denotes
the set of G-partial psd matrices.

Definition 5.4. Given a graph G = (V,E), a vector a ∈ S+(G) and an integer k � 1,
a Gram representation of a in R

k consists of a set of vectors p1, . . . , pn ∈ R
k such that

pT
i pj = aij for all {i, j} ∈ V ∪ E.

The Gram dimension of a ∈ S+(G), denoted as gd(G, a), is the smallest integer k � 1
for which a has a Gram representation in R

k.

Definition 5.5. The Gram dimension of a graph G is defined as

gd(G) = max
a∈S+(G)

gd(G, a). (27)

This graph parameter was introduced and studied in [24,25], motivated by its relevance
to the low rank positive semidefinite matrix completion problem. Indeed, if G is a graph
satisfying gd(G) � k, then every G-partial psd matrix also has a psd completion of rank
at most k. In [24,25] the graph parameter gd(·) is shown to be minor monotone and the
graphs with small Gram dimension are characterized: gd(G) � 2 ⇐⇒ G is a forest (no
K3 minor), gd(G) � 3 ⇐⇒ G is series-parallel (no K4 minor), gd(G) � 4 ⇐⇒ G has no
K5 and K2,2,2 minors.

Next we recall the definition of the graph parameter ν=(·).

Definition 5.6. (See [18,19].) Given a graph G = ([n], E) the parameter ν=(G) is defined
as the maximum corank of a matrix M ∈ C(G) ∩ Sn

+ satisfying the SAP.

The study of the parameter ν=(·) is motivated by its relation to the Colin de Verdière
graph parameter μ(·) mentioned above; for instance, μ(G) � ν=(G) for any graph. In [18,
19] it is shown that ν=(·) is minor monotone and the graphs with small value of ν=(·)
are characterized: ν=(G) � 2 ⇐⇒ G is a forest (no K3 minor), ν=(G) � 3 ⇐⇒ G is
series-parallel (no K4 minor), ν= � 4 ⇐⇒ G has no K5 and K2,2,2 minors.
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In view of the above two characterizations it is natural to try to identify the exact
relation between these two graph parameters. The following theorem is a first result in
this direction.

Theorem 5.7. (See [24].) For any graph G, gd(G) � ν=(G).

It is not known whether the two graph parameters coincide or not. We now derive a
new characterization of the parameter ν=(·) in terms of the maximum Gram dimension
of certain G-partial psd matrices satisfying some nondegeneracy property, which could
be helpful to clarify the links between the two parameters. Recall that with a vector
a ∈ S+(G) we can associate the following pair of primal and dual semidefinite programs:

sup
X

{
0: 〈Eij , X〉 = aij for {i, j} ∈ V ∪ E, and X � 0

}
, (Pa)

inf
y,Z

{ ∑
{i,j}∈V ∪E

yijaij :
∑

{i,j}∈V ∪E

yijEij = Z � 0
}
. (Da)

Notice that, for any a ∈ S+(G), the primal program (Pa) is feasible and the dual
program (Da) is strictly feasible. Thus there is no duality gap.

Definition 5.8. Given a graph G, let D(G) denote the set of partial matrices a ∈ S+(G)
for which the semidefinite program (Da) has a nondegenerate optimal solution.

We can now reformulate the parameter ν=(G) as the maximum Gram dimension of
a partial matrix in D(G).

Theorem 5.9. For any graph G we have that

ν=(G) = max
a∈D(G)

gd(G, a).

Proof. Suppose that maxa∈D(G) gd(G, a) = gd(G, a∗). As a∗ ∈ D(G) it follows that
(Da∗) has a nondegenerate optimal solution which we denote by M . Then, Theorem 2.4
implies that (Pa∗) has a unique solution which we denote by A. Notice that the ma-
trix A is the unique psd completion of the partial matrix a∗ ∈ S+(G) which implies
that gd(G, a∗) = rankA. Moreover, as A and M are a pair of primal dual optimal
solutions we have that AM = 0 which implies that corankM � rankA. As the ma-
trix M is feasible for ν=(G) (recall Definition 5.6 and Theorem 5.3) it follows that
ν=(G) � maxa∈D(G) gd(G, a).

For the other direction, assume ν=(G) = corankM = d where M ∈ C(G)∩Sn
+ and M

satisfies the SAP. Let P ∈ R
n×d be a matrix whose columns form a basis for KerM and

consider the partial matrix a ∈ S+(G) defined as aij = (PPT)ij for every {i, j} ∈ V ∪E.
As 〈M,PPT〉 = 0 it follows that M is a dual nondegenerate optimal solution for (Da)
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and thus a ∈ D(G). Additionally, as corankM = rankPPT we have that M and PPT

are a pair of strict complementary optimal solutions for (Pa) and (Da), respectively.
Then Theorem 2.6 implies that the matrix PPT is the unique optimal solution of (Pa)
and thus gd(G, a) = rankPPT = corankM = ν=(G). �
Corollary 5.10. For any graph G, we have that gd(G) � ν=(G). Moreover, equality
gd(G) = ν=(G) holds if and only if there exists some a ∈ D(G) for which gd(G) =
gd(G, a).
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