
Computing with Daubechies' Wavelets 

Adri B. Olde Daalhuis 

Abstract. In the first two sections of this paper we describe a construction of 
the compactly supported Daubechies' wavelets. In the third section we show 
how a Discrete Wavelet Transform of a function can be obtained. We end this 
paper with some interesting numerical illustrations. 

§1 Wavelets with finitely many non-zero filter coefficients 

In the theory of discrete wavelets the equation 

00 

<f>(x) = V2 L hn<f>(2x - n) (1.1) 
n=-oo 

plays a fundamental role. With the farther wavelet </>, satisfying this equation, we 
have the accompanying mother wavelet 'ljJ defined by 

00 

'lj;(x) := ¥2- L (-l)nh1-n<f>(2x - n). (1.2) 
n.=-oo 

In Daubechies [1] for the first time a construction is given of wavelets resulting in 
compactly supported orthonormal wavelet bases. (See also Heijmans [this volume, 
§4].) 

It is not difficult to put conditions on hn of (1.1) in order to obtain compactly 
supported functions <f> and 'lj;. We only need to have just a finite number of {hn} 
that are different from zero. In this section we give a proof of this property. 
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We use the fact that the solution <P of equation (1.1) can be constructed by the 
following iteration scheme. Let 

7Jo(x) = { ~ as-~<x<~ elsewhere. 
(1.3) 

That is, 7JO(x) is the characteristic function of[-~,~]. Next we define a sequence 
of functions 7}1, l = 1, 2, ... , by writing 

00 

T/z(x) = v'2 L hn7Jl-l (2x - n). (1.4) 
n=-oo 

Then we have 
<f>(x) = lim r)l(x). 

!-+co 
(1.5) 

The reader is referred to [1] for a proof of this constructive procedure, which may 
also be used to draw pictures of solutions of (1.1). 

Now, let just a finite number of filter coefficients hn of ( 1.1) be non-zero. That 
is, assume that we have two integer numbers N_, N+ and that 

n<N_, 
n>N+· 

(1.6) 

It is easily verified that the functions 7JL defined by (1.3) and (1.4) have compact 
support. We have in fact 

with 

Thus we have 

and it follows that 

and with ( 1.2) 

supp(711) = [Nz,-, Nz,+L 

Nz,---+ N_ 

Nz,+--+ N+ 

M - t 
o,+ - ~' 

Nz,+ = 2(N1-1,+ + N+). 

as l ·-> oo, 

supp(<f>) c [N-,N+J, 

supp(,,P) c [~(1 - N+ + N_), 1(1 + N+ - N_)]. 

(1. 7) 

(1.8) 

In a recent paper ofLemarie-Rieusset & Malgouyres [3], it is proven that the support 
of <:/> is indeed a connected interval. 
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§2 Daubechies' construction of compactly supported wavelets 

Daubechies' construction of compactly supported wavelets starts with the function 

We prescribe that all hn E lR, and just a finite number are non-zero. The function 
H(€) is of fundamental importance in the theory. It generates the function ~(~): 

00 

~(€) = IT H(ri €), 
j=l 

where the function'(/;(€) denotes the Fourier transform of the function <P(x): 

So, when H(€) is known, '(/;(€) and, hence, rjJ(x) can be constructed, and with (1.2) 
the mother wavelet 1/J(x) can be constructed. 

The construction uses the following important theorem: 

Theorem 1. (Daubechies) Let hn be a sequence such that 
(i) :En lhnllnl" < oo for some e > 0, 
(ii) :En hn-2khn-2l = bk!, 
(iii) :En hn = .J2. 

i . e 
Suppose also that H(€) = 2-2 :En hne-m can be written as 

n 

where 
(iv) :E lfnllnl" < oo for some e > 0, 
( ) n I" .r -inel 2N-l v supeElR £....,n Jne < . 
Define 

00 

j=l 

n 

(2.1) 
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Then the </>ik(x) = 2-i/2<1>(2-ix - k) define a multiresolution analysis, and the 
{ ,,Pj k} are the associated orthonormal wavelet basis. 

This theorem and the following theorems are proven in [1]. The number Nin (2.1) 
is crucial: when N is large the wavelet has interesting properties with respect to 
approximations with the mother wavelets {iJ!jk}· 

Remark. Starting with finitely many hn, we obtain finitely many fn, and (i) and 
(iv) of Theorem 1 are obviously fulfilled. 

Examples 

(1) 

(2) 

1 
ho=h1 = -

v'2 
and 

h _I+./3 h _3+./3 h _3-./3 h =1-J3 
0 - 4\"'2 ' 1 - 4v'2 ' 2 - 4y'2 ' 3 4y'2 ' 

H(~) = [~(1 + e-ie)J24 [1 + v'3 + (1 - v'3)e-ie]. 

In the first example the function ef;(~) can be computed easily. We have 

00 1 -i~ 

~m =II Hi+ exp(-iri~)) = --~ . 
j=l i 

Thus the father wavelet </J(x) and the associated mother wavelet iji(x) are the Haar 
wavelets: 

</J(x) = { 1 as 0 < x < 1 
0 elsewhere 

{
1 asO<x<! 

iji(x) = -1 as ! < x < 1 
0 elsewhere. 

The first example is speciai with respect of symmetry because: 

Theorem 2. (Daubechies) The Haar basis (associated to the above example (1)) is 
the only orthonormal basis of compactly supported wavelets for which the associated 
function <P has a symmetry axis. 

The construction of the compactly supported wavelets from the function H ( ~) starts 
by writing 

(2.2) 

The function Q(x) is a polynomial with real coefficients. It is easy to see that (ii) 
of Theorem 1 can be rewritten as 

(2.3) 
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With (2.2) we have 

(2.4) 

Because of the coefficients of Q(x) being real, we have Q(e-•€) = Q(ei€), and it 
follows that IQ(e-•€)12 can be rewritten as a polynomial in cosE", or, equivalently, 
as a polynomial in sin2 t~- So, with y = sin2 H, there is a polynomial P(y) such 
that 

(2.5) 
and 

P(y) ~ 0 Vy E [O, 1]. (2.6) 

With this new polynomial, (2.3) becomes 

YN P(l - y) + (1 - y)N P(y) = 1. (2.7) 

Thus from a function H(~), fulfilling (2.2) and (2.3), we obtain a polynomial P(y), 
fulfilling (2.6) and (2.7). With the next Lemma it follows that from a polynomial 
P(y), fulfilling (2.6) and (2.7), we can obtain a function H(~), fulfilling (2.2) and 
(2.3), and this H(O has real fin. 

Lemma 1. (Riesz) Let A(~) = 'l:~=O a., cos~' with a., E lR, be a positive 
trigonometric polynomial. Then there exists a trigonometric polynomial B(~) 
'l:::=O b .. e-inf;, with bn E R, such that 

The proof of this Lemma is given in [1], and it is constructive. We omit the proof. 
A special solution of (2.6)-(2.7), which is given in [l], is 

PN(Y) = ~ (N - ~ + j)yi. 
j=O J 

(2.8) 

Because of all coefficients of PN(Y) being positive, it fulfills (2.6), and the following 
relations, which were found by Tom Koornwinder, show that PN(Y) fulfils (2.7). 

PN(Y) = N(2NN-1) (1 - y)-N il tN-1(1- t)N-ldt, 

PN(l - y) = N(2N; l)y-N foy tN-1(1- t)N-ldt. 

A general solution of (2.7) fulfils 

P(y) = (1 - y)-N -yN (1 - y)-N P(I - y), 
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thus PN(Y) fulfils this relation, and this gives 

P(y) - PN(Y) = yN (I - y)-N [PN(l - y) - P(l - y)]. 

So, a general solution of (2.7) is of the form 

P(y) = PN(Y) + YN R(y), (2.9) 

with R(y) a polynomial that fulfils 

R(l - y) + R(y) = 0. (2.10) 

Thus P,v (y) is the polynomial-solution of (2. 7) of minimal degree, and the polyno
mial R(y) has to be antisymmetric with respect to y = ~- Condition (2.6) gives 
some extra restrictions on R(y). 

To summarize, we have the following explicit characterization of all solutions 
H(f.) of (2.3), corresponding to only finitely many non-zero hn. In the following 
theorem we have replaced R by a polynomial which is antisymmetric with respect 
toy= 0. 

Theorem 3. Any trigonometric polynomial solution of (2.3) is of the form 

where NE JN, N? 1, and where Q is a polynomial such that 

where R is an odd polynomial, with some extra restrictions. 

For obtaining the Daubechies' wavelets, we choose R = 0. Thus for fixed N the 
Daubechies' wavelets correspond to the trigonometric polynomials H(f.) of minimal 
degree. With this fixed N we obtain from the polynomial PN (y) the polynomials 
Q, H, and the numbers hn. Now we shall show that these hn, H, and Q fulfill the 
conditions of Theorem 1. 

The conditions (i) and (iv) are obviously fulfilled, and (ii) is equivalent to (2.3), 
thus (ii) is fulfilled. The special form (2.2) of H(f.) gives that H(n-) = 0. Thus with 
(2.3) we have 1 = IH(O)l2 = Hl::>n)2 , and (iii) is fulfilled. 

n 
Condition (v) is IQ(e-i~)I < 2N- 1 , and it is fulfilled because of 
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In the construction (via the proof of Lemma 1) of Q from IQl2 , we obtain 
all zeros of Q inside the unit circle, and this determines Q unambiguously, up to a 
phase factor eiK{, K E 7l. We fix this phase factor so that Q contains only negative 
frequencies, starting from zero, i. e., 

Exrunples 

(3) 

( 4) 

N-1 

QN(e-i{) = L qne-ine with qo # O. 
n=O 

Q3(~) = H 1+v'1o+Js+2Ko + 2(1- v'i.O)e-ie 

+ ( 1 + vlo - Js + 2Ko)e-2ie]. 
With this Q N we have 

N-1 

HN(~) = [!(1 + e-ie)]N L qncin{ 
n=O 

1 2N-! . 

= 2-2 L hne-in( 
n=O 

(2.11) 

(2.12) 

Let us denote the corresponding</;, 'ljJ functions by </;N, 'I/JN· The theory of Section 
1 gives 

supp(r/;N) = [0, 2N - 1], supp('l/JN) = [-N + 1, N]. 
For N = 2 and N = 3 the associated hn can be calculated exactly, and for N ~ 10 
Daubechies gives the numerical values of the hn in [l). 

When N increases with 1, the number of non-zero hn increases with 2. And 
when N increases the smoothness of </;N and 'I/JN increases: 

Theorem 4. (Daubechies) There exists,\> 0 such that, for all NE JN, N :'.'.: 2, 

</;N,1/JN E c>..N. 

In Daubechies [2, p. 226] it is proven that for large N the optimal >. is 

ln3 ,\ = 1 - ln4 "'0.2075. 
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§3 Computing with the compactly supported Daubechies' wavelets 

In this section we show how a Discrete Wavelet Transform of a function can be 
obtained. We will use the Daubechies' wavelet <PN of the previous section, and, 
again, the associated functions are </>jk(x) = 2-312<f>N(rix - k). A function will be 
represented by a finite signal a= (ao, · · ·, aM-i)T. As an intermediate expression 
we introduce A= L,f:,(j1 aj</>Kj, with M = 2K. Then the Discrete Wavelet Trans
form of a appears to be constituted by 2K - 2 coefficients of the expansion of A in 
the orthonormal 1/Jnm basis. 

We choose N fixed, and with the filter-coefficients h.,. of <P N we define filters 
HN, GN: i2 - z2 

00 

(HNii)k = L h1-2ka1, (3.1) 
l=-oo 

00 

(GNii.)k = L 9L-2ka1, (3.2) 
l=-oo 

with again g,.. = (-l)"h1-n· 
Now we let these filters work on the finite signal a= (a0 , • • ·, aM-i)T, with M 

even. In matrix-form HN is 

(3.3) 

ho h1 

The matrix-form of GN is the same, with h,.. replaced by g,,.. Filtering with these 
!M x M-matrices will cause edge effects for.N > 1. For eliminating these edge 
effects, we make these matrices periodic in the following way 

(3.4) 

ho 

ho h1 
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with 9N the same as 1-lN with h.,. replaced by g.,.. This is the same as leaving the 
filters HN and GN unchanged and making the signal a periodic to a l00-vector. 
The total filtering is now 

(3.5) 

The matrix [ ~:] M is orthonormal, i. e., 

(3.6) 

This follows directly from the equations 

00 

L hn-2khn-2l = 8kz, (3.7) 
n=-oo 

00 

L hn-2k9n-2l = 0, (3.8) 
n=-oo 

where (3.7) is condition {ii) of Theorem 1, and {3.8) follows from 

00 00 

L hn-2k9n-2l = L < </>1k, </>On >< </>0n, '!/J11 >=< </>1k, '!/Ju >= 0. 
n=-oo n=-oo 

We define 

(3.9) 

and we choose M = 2K, K E lN*. Let A E Vx such that 

ak = ako =< A,</>Kk >. (3.10) 

Then we define 

akj =< A,</>K-j,k >, dkj =< A,'!/JK-j,k >. (3.11) 
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The Discrete Wavelet Transformation becomes (for K = 4) 

ao,o ao,1 ao,2 ao,3 

ai,o a1,1 a1,2 a1,3 

a2,0 a2,1 a2,2 do,3 

a3,o a3,1 ~ di,3 

a4,0 a4,1 do,2 do,2 
as,o 

[~:L 
as,1 

[~; J. 
dl,2 

[~; J. 
dl,2 

as,o as,1 d2,2 d2,2 
a1,o a11 ~ d3,2 (3.12) ----+ --+ ----> 
as,o do,1 do,1 do,1 
ag,o dl,l d1,1 d1,1 
a10,o d2,l d2,1 d2,l 
au,o d3,1 d3,1 d3,1 
a12,o d4,l d4,l d4,l 
a13,o ds,1 ds,1 ds,1 
a14,o d6,1 d6,l d6,l 
ais,o d1,1 d1,1 d1,1 

So, for general K, the Discrete Wavelet Transformation is built up by simple 
matrix-operations with orthonormal matrices. The special form of these matrices 
make these matrix-operations, and the Discrete Wavelet Transform for general K, 
easy to program. And the whole process is simple to invert. Notice that the 
transformation is a process that transforms a signal of length 2K into a vector of 
length 2K. 

The djk are some of the coefficients of the expansion of A in the orthonor
mal 1/Jjk basis. The remaining ao,K-1 and a 1,K-l are called the "mother-function 
coefficients". 

§4 What do Daubechies' wavelets look like, 
and how do they work on signals? 

The illustrations in this section are made on a Macintosh-II using a Pascal program, 
which is based on the program given in Press [4]. In the illustrations, the length 
of the signals M = 1024. First we show some figures of the rf> N and 1/J N for some 
different values of N. Notice that a signal of 1/JN can be obtained by starting at the 
right hand side of scheme (3.12) with a vector 8; = {8ikH';;t, where i E 2, · · ·, 1024 
is fixed. This follows directly from (3.11). The figures are shown in Figures 1, 2, 
and 3. 

Notice that, according to Theorems 2 and 4, the smoothness of the wavelets 
increases with N, and only for N = 1 the ef> N has a symmetry axis. The inverse 
discrete wavelet transform of 810 + 8ss is shown in Figure 4. 
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Figure 1. Father (left) and mother wavelet for N = 1, the Haar functions. 

Figure 2. Father (left) and mother wavelet for N = 2. 

Figure 3. Father (left) and mother wavelet for N = 6. 

Figure 4. The inverse discrete wavelet transform of 610 + 05g for N = 2. 
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Figure 5. The sinus-signal. 

Since 10 lies early in the hierarchical range 9-16, that wavelet lies on the left 
side of the picture. Since 58 lies in a later (smaller scale) hierarchy, it is a narrower 
wavelet. 

The discrete wavelet transforms of the sinus-signal (see Figure 5) are calculated 
for N = 1 and N = 10. They are shown in Figures 6 and 7. 

l. 
Figure 6. Discrete wavelet transform of the sinus-signal for N = 1. 

Figure 7. Discrete wavelet transform of the sinus-signal for N = 10. 

The amplitudes of the transform for N = 10 are more concentrated at the left 
part of the signal then the amplitudes of the transform for N = 1. This can be 
explained by the smoothness of the underlying wavelets. The wavelets for N = 10 
match better to the smooth signal. In other cases, when the original signal is more 
singular, the wavelets for N = 1 match better to that signal. 

Now we can truncate these wavelet transforms. For N = 1 there are 18 co
efficients that have amplitudes larger then 0.05 times the maximum amplitude of 
the transform. We set the remaining amplitudes to zero. With this kind of data
reduction we have to record both the values and the positions of the non-zero 



Computing with Wavelets 105 

coefficients. Thus in the case of N = 1 we reduce to a vector of length 36. And in 
the case of N = 10 we reduce to a vector of length 12. The following two pictures 
show the result of truncations of the original signal from the two inverse discrete 
wavelet transforms of the truncated vectors. 

Figure 8. Original signal minus approximation signal for N = 1. 

Figure 9. Original signal minus approximation signal for N = 10. 

&i, when we start with a smooth signal, the data-reduction with N = 10 is much 
better. 

Remark. It is very important that vectors in wavelet space be truncated according 
to the amplitude of the components, not their position in the vector. Keeping the 
first 16 components of the vector would give an extremely poor approximation to 
the original signal. 
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