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Abstract—We present a new hypergraph-based method, the
medium-grain method, for solving the sparse matrix partition-
ing problem. This problem arises when distributing data for
parallel sparse matrix-vector multiplication. In the medium-
grain method, each matrix nonzero is assigned to either a row
group or a column group, and these groups are represented by
vertices of the hypergraph. For an m × n sparse matrix, the
resulting hypergraph has m+n vertices and m+n hyperedges.

Furthermore, we present an iterative refinement procedure
for improvement of a given partitioning, based on the medium-
grain method, which can be applied as a cheap but effective
postprocessing step after any partitioning method.

The medium-grain method is able to produce fully two-
dimensional bipartitionings, but its computational complexity
equals that of one-dimensional methods. Experimental results
for a large set of sparse test matrices show that the medium-
grain method with iterative refinement produces bipartitionings
with lower communication volume compared to current state-
of-the-art methods, and is faster at producing them.

Keywords-parallel computing, sparse matrix-vector multipli-
cation, hypergraph

I. INTRODUCTION

The sparse matrix partitioning problem naturally arises
in the study of parallel sparse matrix-vector multiplication,
where an m × n matrix A with N nonzeros (N � mn)
is multiplied by a vector ~v of length n. The standard
method of parallelizing this multiplication (see e.g. [1])
starts by distributing the N nonzero elements over the p
available processors, creating a subset of nonzeros Ai for
each processor, such that A =

⋃
iAi and Ai ∩ Aj = ∅

if i 6= j. Then, the product ~u = A~v is calculated in
four steps: (1) the fanout; (2) the local multiplication; (3)
the fanin; and finally (4) the summation of partial sums.
During the fanout, communication is necessary if an input
vector element vj that needs to be multiplied with an
element aij of the local subset is owned by a different
processor. After the fanout, all elements of the local subset
are multiplied by the corresponding input vector element
and partial sums are created for each output vector element
ui. This operation is performed locally by all processors,
and no communication is therefore needed. Following this
local multiplication step, all nonzero partial sums need to be
communicated to the processor that owns the corresponding
output vector element. This step is called the fanin. Finally,

each processor sums up the partial sums for each output
vector element that it owns, to produce the output vector ~u.

The time it takes to compute ~u depends mainly on
two factors: the number of multiplications that need to be
performed in step (2) and the number of elements that need
to be communicated in steps (1) and (3). In step (2), every
element of the local subset has to be multiplied and each
processor can work in parallel, so the total time requirement
of this local multiplication step is O(maxi |Ai|). In order to
minimize this computation time, maxi |Ai| is usually bound
by a load imbalance constraint,

max
i
|Ai| ≤ (1 + ε)

N

p
, (1)

where ε is the allowed load imbalance fraction.
In steps (1) and (3), the communication has to be

minimized. Communication along a single column during
the fanout step is only needed when the matrix elements
of that column are assigned to different processors, and
similarly for rows during the fanin step. In fact, the necessary
communication cost of a single row or column i equals

C(i, A0, . . . , Ap−1) = λi − 1, (2)

where λi is the number of processors that have one or more
nonzeros of that row/column in their local subset. The total
amount of communication, measured in data words, that is
needed during the parallel sparse matrix-vector multiplica-
tion, is called the communication volume V and it is equal
to the sum of all row and column communication costs:

V (A0, . . . , Ap−1) =
∑
i

C(i, A0, . . . , Ap−1). (3)

Given an m×n matrix A with N nonzeros and a number
of processors p, the sparse matrix partitioning problem can
be defined as follows: out of all partitionings of matrix A
into p subsets Ai that obey the load imbalance constraint,
eqn (1), find the one with the smallest communication
volume V , eqn (3). Note that other communication metrics
such as maximum communication volume per processor or
the total number of messages sent may also be important, but
this falls outside the scope of the current work, as we will



be concerned exclusively with minimizing the total commu-
nication volume. A recent package that takes other metrics
into account during the matrix partitioning is UMPa [2].

II. PREVIOUS WORK

Most attempts to solve the sparse matrix partitioning
problem in practice first translate the problem to a hyper-
graph partitioning problem, and then partition the resulting
hypergraph. A hypergraph is a generalization of a graph,
in which edges can connect more than two vertices with
each other. Formally, a hypergraph H = (V,N ) consists
of a set of n vertices V = {0, . . . , n − 1} and a set of
m hyperedges N = {n0, . . . , nm−1}. Each hyperedge, also
called a net, is a subset of V . The advantage of using
hypergraphs is that we can employ existing hypergraph
partitioners to solve the sparse matrix partitioning problem.
Since hypergraph partitioning is NP-Complete [3], these
solvers all use heuristics to try to find a good solution: no
algorithm exists that can find the optimal solution for large
problems in reasonable time.

Three different hypergraph models are commonly used
for the translation of sparse matrices: the one-dimensional
(1D) row-net and column-net models [4] and the two-
dimensional (2D) fine-grain model [5], all by Çatalyürek
and Aykanat. In the row-net model, each column of the
matrix is converted to a vertex of the hypergraph, and each
row is converted to a hyperedge. All columns that have
a nonzero in a certain row are placed in the hyperedge
corresponding to that row. The column-net model is the
same, but with the roles of rows and columns reversed. The
advantage of using the row-net or column-net model is that
one source of communication during parallel sparse matrix-
vector multiplication is completely eliminated. For instance,
using the row-net model, no communication is necessary
during the fanout phase, step (1). Of course, matrix rows can
still be cut, so communication during fanin might still occur.
The disadvantage of the row-net and column-net models is
that they can be too restrictive: for certain matrix-vector
multiplications, allowing some communication during the
fanout in the row-net model can help reduce the overall
needed communication volume.

In the fine-grain model, the matrix nonzeros correspond
to the vertices of the hypergraph, and the rows and columns
of the matrix are converted to hyperedges. This model
is very general: every partitioning of a matrix A can be
expressed as a partitioning of the corresponding fine-grain
hypergraph, and vice versa. The fine-grain model does not
suffer from the restrictiveness of the row-net and column-
net models, but has the main disadvantage that it is larger:
it contains N vertices, whereas the row-net and column-net
models contain n and m vertices, respectively. Therefore,
computations on the fine-grain model of a matrix take longer
than computations on the row-net and column-net models of
the same matrix, and furthermore the larger size can make

it harder to find good solutions to the fine-grain hypergraph
partitioning problem.

The three hypergraph models for sparse matrices can
also be interpreted as three different ways of translating the
matrix A to another matrix B, followed by application of
the canonical row-net model for translating a sparse matrix
to a hypergraph. The row-net model then has B = A, the
column-net model B = AT , the transposed of A, and the
fine-grain model has B = F (A), the (m+n)×N fine-grain
matrix with two nonzeros fik and fm+j,k corresponding to
the kth nonzero aij in A, with 0 ≤ k < N . The incidence
matrix F (A) is illustrated in [6, Fig. 12.5].

Uçar and Aykanat [7] present enhanced hypergraph mod-
els for parallel sparse matrix–vector multiplication that in-
clude the matrix and both the input and output vectors,
enhancing the row-net, column-net, and fine-grain models by
adding extra vertices for the vector components. This allows
for minimizing the communication volume in case the input
and output vectors have to be distributed in the same way,
which may cause extra communication for matrices with
zeros on the main diagonal. In other work [8], the same
authors introduce a method for simultaneously partitioning
two matrices A and M aimed at preconditioned iterative
methods for linear system solving. Here, A is the matrix
from the original problem A~x = ~b to be solved and M is the
preconditioner, an approximation of A−1; the corresponding
preconditioned system is AM~z = ~b. Both matrices are used
in the solver in a multiplicative manner, by first computing
~x = M~z and then ~y = A~x, yielding ~y = AM~z. The
simultaneous method computes a 1D partitioning of both
matrices, where the work load (expressed as the number
of nonzeros) can be balanced either for both multiplications
together, or separately, and where the partitioning of the rows
of M is the same as that of the columns of A (and that of the
components of ~x). The simultaneous partitioning problem
is solved by formulating it in terms of a composite hyper-
graph, composed from simpler hypergraphs (an enhanced
column-net model for M and an enhanced row-net model
for A), which are connected by suitably merging vertices
corresponding to vector components.

Çatalyürek and Aykanat [9] introduce the coarse-grain
method, which in a first phase applies the column-net
hypergraph model to obtain a row partitioning of the matrix
into p parts and then performs a multi-constraint column
partitioning into q parts, yielding a 2D Cartesian partitioning
into p× q parts.

It is difficult to choose the best method to use, given
a matrix to partition. Çatalyürek, Aykanat, and Uçar [10]
propose a partitioning recipe that chooses a partitioning
method according to some matrix characteristics.

We call the new hypergraph method that we present in
this paper the medium-grain method, as it fits between the
fine-grain and the coarse-grain approach. The fine-grain,
medium-grain, and coarse-grain approaches are all 2D in



nature. The fine-grain approach treats nonzeros individually,
the coarse-grain approach treats whole rows or columns,
whereas the medium-grain approach treats groups of nonze-
ros from the same row or column as an atomic entity.

PaToH [4], hMetis [11], and Mondriaan [12] are some of
the most popular sequential hypergraph partitioners available
at this moment. A parallel hypergraph partitioner is Zoltan-
PHG [13]. MLpart [14] is a multilevel hypergraph parti-
tioner developed for circuit design applications. Of these,
Mondriaan is specifically designed to solve the matrix parti-
tioning problem, while the others are general hypergraph
partitioners that can also be used to partition matrices.
While these partitioners are different in solution quality
and execution time, all use a similar method to find good
initial solutions, namely the Kernighan–Lin method [15]
with the optimizations of Fiduccia–Mattheyses [16]. In order
to solve large instances, all these partitioners use a multi-
level method [17]: large instances are coarsened to smaller
ones, the resulting smaller instances are partitioned, and the
solution is refined to produce a solution for the original
large instance. Furthermore, these partitioners are all based
on recursive bisection: instead of being partitioned into k
parts directly, the hypergraph is recursively split into two
parts until k parts are obtained. The Mondriaan matrix
partitioner (version 1.0 until 3.11) employs as default the
localbest method, which splits the matrix using both the
row-net and column-net model, and returns the bipartitioning
with the lowest communication volume of the two. The
medium-grain method has become the default in version
4.0 of Mondriaan. An overview of hypergraph-based sparse
matrix partitioning methods and a comparison of 1D and 2D
approaches can be found in [6].

III. METHOD

A. Composite model

In this paper, we propose a new method, based on a
composite hypergraph model, for solving the matrix par-
titioning problem: the medium-grain method. This method
combines the advantages of the existing row-net, column-
net, and fine-grain hypergraph models, while avoiding their
disadvantages. The method is able to produce 2D partition-
ings directly, thereby avoiding the main disadvantage of the
row-net and column-net model, but it still imposes sets of
nonzeros from the same row or column to be assigned to a
single processor, avoiding the main disadvantage of the fine-
grain model, where each nonzero is assigned individually.

To translate an m × n matrix A to the new, composite
hypergraph model, we first split it into two parts: Ar and
Ac, each of size m × n. Each nonzero aij of A is placed
in either Ar or Ac, in row i and column j. In other words,
we ensure that A = Ar + Ac. Afterwards, Ar and Ac are

Figure 1: Translation of a 3 × 6 matrix A with N = 12
nonzeros to a new hypergraph. First, we split A into two
disjoint parts Ar and Ac. We combine Ar and Ac to form
the matrix B, with ones on the main diagonal. Finally, we
form the hypergraph by applying the row-net model to B.

combined to form a new (m+ n)× (m+ n) matrix B:

B =

[
In (Ar)

T

Ac Im

]
, (4)

where Im is the identity matrix of size m×m.
The diagonal of B is only used for calculating the com-

munication volume, not for calculating the load imbalance.
This is done by considering the diagonal nonzeros of B as
dummy nonzeros. If a subset of the nonzeros in a single row
of A is assigned to Ar, and the remaining subset of the row
to Ac, the block Im of B connects both subsets with each
other, such that the corresponding communication volume is
still correct if they are assigned to different processors. The
same holds for columns of A and block In of B.

The composite hypergraph HB = (VB ,NB) is obtained
by applying the row-net model to the matrix B. In the
row-net model, each column of B becomes a vertex of
the hypergraph: VB = {0, . . . ,m + n − 1}. The vertex
weight of the vertex corresponding to column j of B is
equal to nzc(j)−1, where nzc(j) is the number of nonzero
elements in column j, and one is subtracted to exclude the
dummy diagonal element. Each row i of B is converted
to a hyperedge ni, containing all vertices j for which
bij 6= 0. In other words, NB = {n0, . . . , nm+n−1} and
ni = {j : bij 6= 0}. The entire process of translating A to a
hypergraph in the new method is illustrated in Fig. 1.

A column partitioning of B can easily be converted
to a partitioning of A, as follows. After the hypergraph
partitioning, each column k of B is assigned to a single
processor pk. Because of the way B is constructed, we see
that each column j of Ac is assigned to pj and each row i of
Ar to pi+n. The corresponding partitioning of A is created
by setting the processor to which the nonzero aij is assigned
to pj if aij was put in Ac and to pi+n if it was put in Ar.
This process is illustrated in Fig. 2. The final partitioning
of A is two-dimensional, but it keeps sets of nonzeros from
the same row or column together, since all nonzeros in a
single column of Ac are assigned to the same processor,
and similarly for the nonzeros of a single row of Ar.



Figure 2: Translation of a partitioning of the row-net hyper-
graph to a partitioning of A. Each nonzero is given a shade
of gray corresponding to the part to which it is assigned.
The number of parts is p = 2. The row-net partitioning is
converted into a partitioning of B, where every column is
assigned to a single processor. This partitioning is copied to
Ac and Ar, resulting in a partitioning where every column
of Ac is assigned to a single processor, and every row of
Ar. By combining both, we obtain a 2D partitioning of A.

We will now show that the communication volume of the
resulting partitioning of A is equal to that of the original
partitioning of B, provided the columns of B containing
only the diagonal nonzero are assigned to a part owning one
of its neighboring columns (in order to avoid unnecessary
communication). Here, a column j′ is a neighbor of column
j if it contains a nonzero aij′ such that aij is also nonzero.

Let A = Ar+Ac be an m×n sparse matrix, where Ar and
Ac are m×n sparse matrices with disjoint sets of nonzeros,
and let B be the (m+ n)× (m+ n) sparse matrix defined
by eqn (4). Let the columns of B, except those containing
only a diagonal nonzero, be partitioned into p sets. Every
remaining column is assigned to a part owning one of its
neighboring columns, if such a column exists, and to an
arbitrary part otherwise. This defines a partitioning of the
nonzeros of B into p disjoint sets {B0, . . . , Bp−1}, with
B = ∪p−1k=0Bk.

Define p sets of nonzeros of A by

Ak ={aij ∈ Ar : bj,i+n ∈ Bk}∪
{aij ∈ Ac : bi+n,j ∈ Bk},

(5)

for all k ∈ {0, . . . , p − 1}. Then, the sets {A0, . . . , Ap−1}
form a partitioning of A, as follows. The sets Ak are disjoint,
because the sets Bk are disjoint and Ar and Ac are disjoint.
If a nonzero aij is in Ar, it has a corresponding nonzero
bj,i+n in B and hence in a Bk, so that aij is in Ak. If it is in
Ac, it has a corresponding nonzero bi+n,j in B and hence in
a Bk, so that aij is in Ak. Thus, every nonzero is contained
in a subset Ak, and therefore the set {A0, . . . , Ap−1} is a
partitioning of A.

Furthermore, the communication volume for a par-
allel sparse matrix-vector multiplication by A using
{A0, . . . , Ap−1} is equal to that of a multiplication by B
using {B0, . . . , Bp−1}:

V (A0, . . . , Ap−1) = V (B0, . . . , Bp−1). (6)

To prove eqn (6), we look at a single row i of A. Without
loss of generality, we assume that row i is non-empty; the
case of an empty row is trivial. Define λi(A) as the number
of parts owning nonzeros in row i in the partitioning of A.
Define δi(B) = 1 if bii is assigned to a different part than
all the other nonzeros in row i in the partitioning of B, and
δi(B) = 0 otherwise.

The volume caused by row i of A equals

C(i, A0, . . . , Ap−1) = λi(A)− 1

= λi(A
c)− 1 + δi+n(B),

(7)

because the nonzeros of row i in Ac are assigned to λi(Ac)
parts and those in Ar are all assigned to one part, namely
the owner of bi+n,i+n, yielding the term δi+n(B).

By inspecting row i+n of B, using eqn (4) and eqn (5),
we see that

λi+n(B) = λi(A
c) + δi+n(B). (8)

By combining eqn (7) and eqn (8), we see that the commu-
nication volume caused by row i of A equals

C(i, A0, . . ., Ap−1) = λi+n(B)− 1

= C(i+ n,B0, . . ., Bp−1),
(9)

the volume caused by row i+ n of matrix B.
In the special case that row i of Ar is empty, the only

nonzero in column i+ n of B is the diagonal nonzero. Our
column partitioning of B then ensures that δi+n(B) = 0, so
that eqn (7) still holds. In the special case that row i of Ac

is empty, δi+n(B) = 1 by convention, and both row i of A
and row i+ n of B do not cause communication.

We conclude that the communication volume caused by
row i of A is equal to that of row i+n of B. A similar proof
can be made for a column j of A and row j of B. Since the
total communication volume of the partitioned matrix A is
the sum of the communication volumes of each individual
row and column, this finishes the proof of eqn (6).

Note that the columns of B only containing the diagonal
nonzero do not influence the resulting partitioning of A. We
can therefore simply remove them from B and apply the
row-net model to the resulting matrix, thereby ensuring that
they do not cause any additional communication volume in
B. Similarly, we can remove rows of B containing only
the diagonal nonzero to reduce the problem size, without
changing the resulting partitioning of A. Using the above
proof, we also see that if all nonzeros of A are placed in
Ac, the medium-grain method reduces to the row-net model.
Similarly, if all nonzeros are placed in Ar, the medium-grain
method reduces to the column-net model.

Considering load balance, it is easy to see from eqn
(5) that the number of nonzeros in Ak equals the number
of nondummy nonzeros in Bk. Hence, the load imbalance
constraint for A (eqn (1)) is automatically satisfied when the
corresponding constraint for B is satisfied.



Figure 3: This figure shows the use of the medium-grain method to bipartition the gd97_b matrix (47× 47, 264 nonzeros)
from [18], with an allowed load imbalance ε = 0.03. The original matrix A is shown on the left, and the B matrix, partitioned
by column, is shown in the middle. Each nonzero is given a color corresponding to the part to which it is assigned. The
corresponding 2D partitioning of the original matrix is shown on the right. The communication volume is equal to 11, which
was shown to be optimal in [19]. The partitioning of B was found using the Mondriaan software, version 3.11, with its
internal hypergraph partitioner. The best communication volumes found for A in 100 runs using the row-net, column-net,
and fine-grain models were 31, 31, and 12, respectively. In 19 out of 100 runs using the medium-grain method, the optimal
volume of 11 was found.

The 2D medium-grain method presented in our paper
can be viewed as tearing a single matrix A apart by some
simple strategy into two matrices Ac and Ar, followed
by simultaneous 1D partitioning of Ac and Ar using a
composite hypergraph model, see Uçar and Aykanat [8]. In
this application of the composite model, the columns of Ac

and the rows of Ar are partitioned, with the load balanced
for both matrices together, and with connections to both an
input vector (of length n) and an output vector (of length
m). Both connections are needed because the matrices are
glued back together into A = Ar +Ac.

Alternatively, the medium-grain method can also be
viewed as performing one extra, initial level of coarsening
in the multi-level fine-grain method by merging all nonzeros
(vertices) from a column of Ac into a single vertex, and all
nonzeros from a row of Ar into a single vertex as well,
creating hyperedges in a suitable fashion, and then running
the partitioner on the resulting hypergraph with at most
m+ n vertices.

B. Initial split of A

The question remains how to split A into Ar and Ac.
This is an important problem, since the split determines what
partitionings of A are possible in the subsequent hypergraph
partitioning, and it will influence the final communication
volume. Note that we perform this split heuristically: it is
not a priori clear what the optimal method of splitting is.

To come up with a good heuristic, we first note that it
is easy to prevent communication within a single row of A
by putting all elements of that row in Ar. Similarly, we can
prevent communication within a single column by putting
it entirely in Ac. Of course, it is impossible to do both: if
there is a nonzero aij in row i and column j, we cannot put
row i entirely in Ar and put column j entirely in Ac.

An alternative is a compromise: we give each row and
column of A a certain score that indicates its probability
of being cut in a good partitioning, a low score meaning
that we expect all nonzeros of that row or column to be
assigned to the same processor in a good partitioning. In this
paper, we use the number of nonzeros in a row or column
as its score. Empirically, we found this to be a good choice,
and intuitively it makes sense: in a good partitioning, it is
more likely that small rows and columns are uncut, since
it is harder to keep all nonzeros of a large row or column
assigned to the same processor. We define sr(i) as the score
of row i, and sc(j) as the score of column j.

The use of scores leads to a simple heuristic for the initial
split: we place nonzero aij in Ar if sr(i) < sc(j), and in
Ac if sr(i) > sc(j). In other words, for every nonzero, the
row or column with the lowest score ‘wins’. In case of a
tie (sr(i) = sc(j)), we experimentally found that making a
globally preferred choice is best: all ties are placed in either
Ar or Ac. In the case of a rectangular matrix, the globally
preferred choice is based on the matrix dimensions: if A has



more rows than columns, we place ties in Ar, and otherwise
in Ac. For square matrices, we randomly pick Ar or Ac at
the start of the algorithm as the globally preferred choice.
Finally, a small improvement can be made by noting that if
a row of A consists of only a single nonzero, it is better to
place that nonzero in Ac, since the row will always be uncut.
Columns of A that consist of a single nonzero can be treated
similarly. The resulting algorithm is given as Algorithm 1.

After running Algorithm 1, we obtain another small
improvement by modifying rows and columns that are
completely placed in Ar and Ac, respectively, except for one
nonzero. If every nonzero of row i is placed in Ar except
for aij , we move aij from Ac to Ar, so we are ensured that
there is no communication volume caused by row i in the
final partitioning. Columns with only one nonzero in Ar,
and the rest in Ac, are handled in a similar way. The whole
procedure of partitioning a matrix with the medium-grain
method is shown in Fig. 3.

Algorithm 1 Initial split algorithm
1: function SPLIT(A,m, n)
2: if m > n then
3: w ← r
4: else if m < n then
5: w ← c
6: else
7: w ← random r or c
8: sr(·) ← nzr(·) . nzr(i): number of nonzeros in row i
9: sc(·) ← nzc(·) . nzc(j): number of nonzeros in col j

10: for every nonzero aij do
11: if nzc(j) = 1 then
12: place aij in Ar

13: else if nzr(i) = 1 then
14: place aij in Ac

15: else if sr(i) < sc(j) then
16: place aij in Ar

17: else if sr(i) > sc(j) then
18: place aij in Ac

19: else
20: place aij in Aw

21: return Ar, Ac

C. Iterative refinement

The medium-grain method allows different ways of trans-
lating a matrix A to a matrix B, by varying the split
of A into Ar and Ac. By exploiting this freedom, we
can improve the partitioning quality of the medium-grain
method. As an example, after partitioning a matrix, we can
use information of the outcome to improve the initial split in
a new run of partitioning using the medium-grain method.
Here, we use this idea to perform iterative refinement on
a partitioning of the medium-grain method. This iterative
refinement procedure can also be applied to bipartitionings
of other methods, as a cheap postprocessing step to improve
the communication volume.

Bipartitioning a matrix A results in two sets of nonzeros
A0 and A1, with the nonzeros assigned to processor 0 in A0,

and those assigned to processor 1 in A1. Afterwards, we can
create a new matrix B by placing all nonzeros of A0 in Ar,
and those of A1 in Ac. Note that the resulting matrix is
different from the one obtained by applying Algorithm 1 to
A. In the new matrix B, we assign the columns of Ac to
one processor, and the columns of (Ar)T to the other. By
doing this, we ensure that the resulting partitioned matrix
B has the same communication volume and load balance as
the original bipartitioning of A.

After construction of the new matrix B, we create the
corresponding bipartitioned hypergraph, and perform a sin-
gle run of the Kernighan–Lin method on it. Note that
we do not use a multi-level method, but only refine the
current bipartitioning to a better one. This also means
that our iterative refinement method does not increase the
partitioning time significantly. After the refinement, we can
repeat the process: translate the refined bipartitioning to a
new matrix B, and apply refinement on that matrix. After
this iteration, we can again repeat the process, and so on,
thereby improving the solution at every iteration. Since the
Kernighan–Lin method only decreases the communication
volume or keeps it the same, the entire iterative refinement
procedure is monotonically non-increasing.

Of course, it is also possible to create the new matrix B by
placing all nonzeros of A0 in Ac instead of Ar, and those of
A1 in Ar instead of Ac. Here we used both possibilities: we
start by using the first option, where the nonzeros of A0 are
placed in Ar. Once iterative refinement does not reduce the
communication volume any more, we switch to the second
option, where the nonzeros of A0 are placed in Ac. We keep
applying iterative refinement with this second option, until
this does not reduce the communication volume any more,
after which we switch back to the first option. We keep
switching between the options until no further reduction can
be obtained. The iterative refinement method is summarised
in Algorithm 2.

Iterative refinement based on the medium-grain method
somewhat resembles the so-called V-cycle refinement in-
cluded in hMetis [11], which is a multi-level postprocessing
procedure with a restricted coarsening (respecting the current
partitioning) followed by Kernighan–Lin refinement at all
levels. This can improve the quality of the solution at
the expense of increased computation time. Our refinement
procedure involves only one level, the finest, and is relatively
cheap as it does not involve coarsening. Furthermore, it
exploits the splitting freedom offered by the medium-grain
method as a way to encode information from the current
partitioning in several different ways (for instance, different
directions). Both refinement procedures are monotonically
non-increasing with respect to the communication volume.

IV. EXPERIMENTS

We implemented the new medium-grain method and the
iterative refinement procedure as subroutines of the Mon-



Algorithm 2 Iterative refinement
1: function ITERATIVE REFINE(A,m, n,A0, A1) . A = A0 ∪A1

2: dir ← 0
3: V0 ← V (A0, A1)
4: k ← 1
5: done ← False
6: while not done do
7: if dir = 0 then
8: Ar ← A0

9: Ac ← A1

10: else
11: Ac ← A0

12: Ar ← A1

13: create B using eqn (4)
14: B0 ← B(∗, 0 : n− 1)
15: B1 ← B(∗, n : m+ n− 1)
16: apply single run of Kernighan–Lin to B
17: determine A0 and A1 using eqn (5)
18: Vk ← V (A0, A1)
19: if Vk = Vk−1 then
20: dir ← 1− dir
21: if k > 1 and Vk = Vk−2 then
22: done ← True
23: k ← k + 1
24: return A0, A1

driaan software package, version 4.0. This package is also
able to partition matrices using the row-net, column-net,
and fine-grain models, making comparisons between the
different methods easy to perform. The Mondriaan software
also includes the localbest method, which splits the matrix
using both the row-net and column-net model, and returns
the bipartitioning with the lowest communication volume of
the two. All programs were compiled by GCC version 4.6.3
and executed on an Intel Core i7-2600K 3.4 GHz processor
with 16 Gbyte of RAM, under the Fedora 16 Linux operating
system (Linux kernel 3.6.6, x86 64).

To test the new medium-grain method and the iterative
refinement procedure, we bipartitioned all matrices from
the University of Florida sparse matrix collection [18] with
between 500 and 5,000,000 nonzeros. At the time of exper-
imentation, there were 2267 matrices that satisfy these con-
straints. Three matrices (LargeRegFile, ASIC_680k,
and rajat29) were excluded because partitioning them
took an extremely long time, resulting in a test set of 2264
matrices, of which 582 are rectangular matrices, 1007 are
structurally symmetric matrices, and 675 are square non-
symmetric matrices. Specifically, the symmetric matrices
have a nonzero pattern symmetry equal to one in the Uni-
versity of Florida sparse matrix collection, while the square
non-symmetric matrices have a nonzero pattern symmetry
smaller than one. For all matrices, we calculate the average
communication volume and partitioning time of 10 runs of
the Mondriaan software, comparing the localbest method,
fine-grain method, and the medium-grain method, both with
and without iterative refinement. We set the allowed load
imbalance for every experiment to ε = 0.03, the value used
in experiments in earlier studies [4], [6], [12]. The struc-

turally symmetric matrices are partitioned without imposing
a symmetric partitioning.

To compare the different bipartitioning methods, we use
performace profiles, which were introduced by Dolan and
Moré [20] as a tool to compare different methods for a
certain metric over a large test set. Performance profiles
were also used by Çatalyürek, Aykanat, and Uçar [10] to
compare different matrix partitioning methods. In our case,
a performance profile shows, for each partitioning method,
the fraction of test matrices for which the resulting commu-
nication volume is within some factor of the lowest volume
found by all methods. For example, if the performance
profile of a method shows a fraction of 0.9 at factor 2, it
shows that for 90% of the test matrices, the communication
volume of the method was less than or equal to two times
the lowest communication volume. For a given factor, the
method with the highest fraction is best. Matrices for which
the lowest communication volume found by all methods was
equal to zero were removed from the test set, since they
cannot be represented in the performance profile.

The performance profiles for the communication volume
of the localbest method, fine-grain method, and the medium-
grain method, both with and without iterative refinement,
are shown in Fig. 4. Using the profile of all matrices
(Fig. 4a), we can see that for around 90% of the matrices,
the medium-grain method with iterative refinement produces
a bipartitioning with a communication volume at most 1.2
times the best volume. The next best method, fine-grain with
iterative refinement, has at most 1.2 times the best volume
for around 80% of all matrices. The fine-grain method
without iterative refinement produces partitionings with at
most 1.2 times the best volume for around 50% of the
matrices. From Fig. 4a we can conclude that the medium-
grain method with iterative refinement produces, on average,
bipartitionings with the lowest communication volume, and
that applying iterative refinement improves communication
volume significantly for all methods.

If we look at the performance profile of only the square
unsymmetric matrices (Fig. 4b), only the symmetric matrices
(Fig. 4c), and only the rectangular matrices (Fig. 4d), we see
that the relative ranking of the methods is different for each
matrix type. For square unsymmetric matrices, the localbest
method performs relatively badly, while the medium-grain
method with iterative refinement performs relatively well.
For symmetric matrices, the iterative refinement procedure
has the largest impact on the communication volume, and
the difference between the medium-grain method and the
fine-grain method is small. Finally, for rectangular matrices,
the localbest method without iterative refinement produces
the best bipartitionings of all methods without iterative
refinement, and with iterative refinement it is tied with the
medium-grain method.

In Fig. 5, the performance profile is shown for the
partitioning time, for all matrices. As expected from the size
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(a) All matrices
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(c) Symmetric matrices
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(d) Rectangular matrices

Figure 4: Performance profile plots comparing the communication volume, using Mondriaan’s internal hypergraph partitioner,
of the localbest (LB), fine-grain (FG), and medium-grain (MG) methods, both with and without iterative refinement (IR).

of the corresponding hypergraphs, the medium-grain method
and localbest method are faster than the fine-grain method.
An interesting result is that the medium-grain method is
even faster than the localbest method. An explanation for
the relatively small partitioning time of the medium-grain
method is that for many matrices, the number of vertices
of the hypergraph in the medium-grain method is lower
than m+ n, since many columns of the matrix B (eqn (4))
will only consist of the diagonal dummy nonzero. Figure 5
also shows that the iterative refinement procedure does not
greatly increase the partitioning time.

The geometric means of the communication volume and
partitioning time of the different methods are shown in
Table I. For each matrix, the volumes and times were
normalized with respect to the volume and time of the

localbest method without iterative refinement (the default
method of Mondriaan version 3.11). We then take the
geometric mean of the resulting normalized communication
volumes and partitioning times to obtain a single aver-
age normalized value for each method. The results are in
agreement with the performance profiles of Fig. 4, with
the medium-grain method with iterative refinement having
the lowest average communication volume. Specifically, the
communication volume of the medium-grain method with
iterative refinement is, on average, 27% lower than the
volume of the localbest method, and the partitioning time is
28% less. The second-best method, fine-grain with iterative
refinement, produces bipartitionings with, on average, 23%
lower volume than the localbest method, but is almost two
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Figure 5: Performance profile plot comparing the parti-
tioning time for all matrices using Mondriaan’s internal
hypergraph partitioner. For explanation of the abbreviations,
see Fig. 4.

LB LB+IR MG MG+IR FG FG+IR

C
om

.V
ol

. Rec 1.00 0.94 1.02 0.96 1.28 1.11
Sym 1.00 0.75 0.80 0.67 0.88 0.69
Sqr 1.00 0.77 0.68 0.62 0.76 0.66
All 1.00 0.80 0.81 0.73 0.93 0.77

Ti
m

e Rec 1.00 1.05 0.53 0.60 1.08 1.18
Sym 1.00 1.14 0.64 0.79 1.55 1.70
Sqr 1.00 1.08 0.66 0.75 1.23 1.32
All 1.00 1.10 0.62 0.72 1.32 1.43

Table I: Geometric means of the communication volume and
partitioning time using Mondriaan’s internal hypergraph par-
titioner, calculated relative to the localbest method without
iterative refinement. Results are shown for the rectangular
(Rec), symmetric (Sym), and square unsymmetric (Sqr) ma-
trices, and all matrices (All) of the test set. The best (lowest)
value of each row is shown in boldface. For explanation of
the method abbreviations, see Fig. 4.

times slower than the medium-grain method with iterative
refinement. Table I also shows that partitioning with iterative
refinement is roughly 10% slower than partitioning without
iterative refinement, but produces results with roughly 20%
lower communication volume.

In Fig. 6a, the performance profile plot is shown of the
communication volume for bipartitioning of all matrices, ob-
tained using PaToH [4] as hypergraph partitioner instead of
the internal partitioner of Mondriaan. For the medium-grain
and localbest methods, the results are similar to those ob-
tained using Mondriaan’s internal partitioner (Fig. 4a). The
fine-grain method, however, performs better using PaToH,
both with and without iterative refinement. Using PaToH, the

p LB LB+IR MG MG+IR FG FG+IR

Vol 2 1.00 0.81 0.76 0.67 0.71 0.67
Cost 2 1.00 0.82 0.78 0.69 0.73 0.69
Vol 64 1.00 0.86 0.89 0.80 0.87 0.80
Cost 64 1.00 0.78 0.75 0.68 0.72 0.68

Table II: Geometric means of the communication volume
(Vol) and BSP cost (Cost) for p = 2 and p = 64,
using PaToH as hypergraph partitioner, calculated relative
to the localbest method without iterative refinement. The
best (lowest) value of each row is shown in boldface. For
explanation of the method abbreviations, see Fig. 4.

fine-grain method with iterative refinement performs as well
as the medium-grain method with iterative refinement. It is
important to note, however, that both produce bipartitionings
with significantly lower communication volume compared
to the fine-grain method without iterative refinement, the
current state-of-the-art method. Furthermore, the results for
the partitioning time using PaToH as partitioner are similar
to those using Mondriaan’s internal partitioner, with the
medium-grain method being significantly faster than the
other methods.

The medium-grain method can also be used in a recursive
bisection scheme to obtain partitionings into p parts. For
p = 64 and using PaToH as partitioner, the performance
profile plot of the resulting communication volume is shown
in Fig. 6b. Results are similar to partitioning with p = 2
using PaToH (Fig. 6a), although the iterative refinement
procedure has an even larger impact for p = 64. Geometric
means of the communication volume for p = 2 and p = 64
are given in Table II. We also show a different metric, the
BSP (Bulk Synchronous Parallel) cost, defined as the sum of
the maximum number of data words that are sent or received
by a single processor during the fan-in and fan-out phase
of a parallel matrix-vector multiplication [1]. The medium-
grain method and the fine-grain method, both with iterative
refinement, produce partitionings with the lowest BSP cost,
similar to the results for the communication volume.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a new method for bipartition-
ing sparse matrices, the medium-grain method. This method
has several advantages compared to existing methods. It is
able to produce 2D bipartitionings of matrices directly, while
the row-net and column-net models can only produce 1D
bipartitionings, and are therefore restrictive. Although the
fine-grain model is also 2D in nature, it is very large: for an
m × n matrix with N nonzeros, the number of vertices in
the hypergraph equals N . The size of the fine-grain model
makes computation on it relatively slow, and makes it harder
to find good solutions to the underlying hypergraph partition-
ing problem. The number of vertices in the hypergraph of the
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Figure 6: Performance profile plots comparing the communication volume for all matrices using PaToH as hypergraph
partitioner. For explanation of the abbreviations, see Fig. 4.

medium-grain method equals m+n, which is usually much
smaller than N . Therefore, computations on the hypergraph
of the medium-grain method are much faster than on the
fine-grain model, and it is easier to find good solutions to the
underlying hypergraph partitioning problem. Furthermore,
the smaller hypergraph size enables us to partition larger
matrices than is possible with the fine-grain model. We also
presented a cheap iterative refinement procedure, based on
the medium-grain method, which can be applied to improve
the quality of the solution after any partitioning method.

Results of experiments performed in this paper on a set
of 2264 matrices with up to 5,000,000 nonzeros seem to
confirm the advantages of the medium-grain method. For
bipartitioning using Mondriaan’s internal hypergraph parti-
tioner, the medium-grain method produced partitionings with
lower communication volume than the fine-grain method
and the localbest method, which is a combination of the
row-net and column-net models and represents the best 1D
method for p = 2. The medium-grain method with iterative
refinement produces partitionings with, on average, 27%
lower communication volume than the localbest method,
and 22% lower than the fine-grain method, both without
iterative refinement. Only in the case of rectangular matrices
that are far from square, i.e. with m � n or m � n, the
medium-grain method does not yield benefits for p = 2,
because a 1D partitioning in the proper direction (the row
direction for m > n) will often already be very good, and
the localbest method will choose this direction. Using PaToH
as hypergraph partitioner, the medium-grain method with
iterative refinement and the fine-grain method with iterative
refinement both produce partitionings with the lowest com-
munication volume on average.

In addition to obtaining partitionings with the lowest com-
munication volume, the medium-grain method is also faster
in producing these partitionings, taking, on average, 28%
less time than the localbest method, and 45% less time than
the fine-grain method. The results also show that the iterative
refinement procedure can be used to improve bipartitionings
of all methods, without increasing the computation time
significantly, especially for symmetric matrices. Specifically,
for all methods, bipartitioning with iterative refinement is
roughly 10% slower than bipartitioning without iterative
refinement, but produces bipartitionings with roughly 20%
lower communication volume.

The quality and speed of the medium-grain method is such
that we have made it the default option in Mondriaan 4.0.
The quality of the partitionings produced by the medium-
grain method might be further improved by using a different
initial split algorithm. The current splitter, although able
to outperform existing models and methods, may not be
the best possible choice. It is important to note that every
possible bipartitioning of a matrix A into sets of nonzeros
A0 and A1, including the optimal one, can be translated to
a column partitioning of an extended matrix B, by placing
all nonzeros of A0 in Ar and all nonzeros of A1 in Ac,
or vice versa. So in theory, an ideal initial split algorithm
will allow the medium-grain method to represent the optimal
bipartitioning of matrix A. Whether a practical algorithm can
be found that is able to produce optimal initial splits for all
matrices remains a subject for further research.

The medium-grain method is aimed at finding a good
partitioning for parallel computations. It can be implemented
sequentially, as has been done in this paper, by using a
sequential hypergraph partitioner such as PaToH [4] or



the internal hypergraph partitioner of Mondriaan [12]. To
avoid a potential sequential bottleneck, it may be desirable
to parallelize the partitioning itself as well; this can be
done by employing a parallel hypergraph partitioner such
as Zoltan [13] and parallelizing Algorithms 1 and 2.

The initial split by Algorithm 1 of the matrix A into Ar

and Ac can be parallelized by first broadcasting score values
so that the owner of nonzero aij knows both scores sr(i) and
sc(j), then deciding on inclusion of nonzeros in either Ar

or Ac, thus creating B, and after that moving each nonzero
of B to the responsible processor in the input distribution
required by the parallel hypergraph partitioner (typically a
row, column, or 2D Cartesian distribution). The output is a
partitioning of B, in distributed format, which can easily be
transformed to a partitioning of A in any desired distribution
by suitably moving nonzeros. The iterative refinement by
Algorithm 2 can be parallelized in similar fashion, using a
parallel Kernighan–Lin run.

As explained in Section III-C, it is also possible to
apply the medium-grain method in an iterative way: after
partitioning a matrix, we can use information of the outcome
to improve the initial split in a new run of partitioning
using the medium-grain method. Instead of using this idea
for iterative refinement only, as we did in this paper, one
can also design a full iterative method, where a full multi-
level partitioning is performed in each iteration. This would
present an entirely new method of solving the sparse matrix
partitioning problem, where one could trade computation
time for solution quality, by using more or less iterations.
Furthermore, other ways of using information of a previous
iteration might improve results for both iterative refinement
and full iterative methods.
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