6

Centrum voor Wiskunde en Informatica
Centre tor Mathematics and Computer Science

CWI Monographs
Program Correctness

over Abstract Data Types,
with Error-State Semantics

J.V Tucker
J.I. Zucker

3,

X //i; AN
AAUNANNARAY

4////?/2«

North-Holland

Program Correctness
over Abstract Data Types,
with Error-State Semantics

A

CWI Monographs

Managing Editors

J.W. de Bakker (CWI, Amsterdam)
M. Hazewinkel (CWI, Amsterdam)
J.K. Lenstra (CWI, Amsterdam)

Editorial Board

W. Albers (Maastricht)

P.C. Baayen (Amsterdam)
R.T. Boute (Nijmegen)

E.M. de Jager (Amsterdam)
M.A. Kaashoek (Amsterdam)
M.S. Keane (Delft)

J.P.C. Kleijnen (Tilburg)

H. Kwakernaak (Enschede)
J. van Leeuwen (Utrecht)
PW.H. Lemmens (Utrecht)
M. van der Put (Groningen)
M. Rem (Eindhoven)

A.H.G. Rinnooy Kan (Rotterdam)
M.N. Spijker (Leiden)

Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

The CWI is a research institute of the Stichting Mathematisch Centrum, which was founded on
February 11, 1946, as a nonprofit institution aiming at the promotion of mathernatics, computer
science, and their applications. It is sponsored by the Dutch Government through the Netherlands
Organization for the Advancement of Pure Research (ZW.0.)

CWI Monograph

Program Correctness
over Abstract Data Types,
with Error-State Semantics

<
-

ucker
ucker

[2
N

DL
Flgs]
z ,%

1988

North-Holland
Amsterdam - New York - Oxford - Tokyo

© Centre for Mathematics and Computer Science, 1988

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owner.

ISBN: 0 444 70340 3

Publishers:

Elsevier Science Publishers B.V.
P.O. Box 1991

1000 BZ Amsterdam

The Netherlands

Sole distributors for the U.S.A. and Canada:
Elsevier Science Publishing Company, inc.
52 Vanderbilt Avenue

New York, N.Y. 10017

US.A.

Cover: Tobias Baanders

Printed in the Netherlands

To our parents

Preface

This book is a research monograph in the theory of program specification
and verification. More specifically, it is about Hoare-style proof systems
for proving the correctness of programs implemented over abstract data
types. In addition, the proof systems are designed to operate on programs
with the semantical feature that using an uninitialized variable leads to
an error message.

Our objective is to analyse mathematically the proof systems in the
manner of the monograph Mathematical theory of program correctness
(1980) by J.W. de Bakker. We give a careful treatment of the many
semantical and logical issues involved to support rigorous proofs of the
soundness and completeness of the proof systems. Interestingly, much of
the semantical machinery used by De Bakker adapts well to the more gen-
eral setting, but several innovations are required in the logical foundations
of the proof systems. A full discussion of the many themes to be found in
the book is made in the Introduction (see, for example, the précis in Section
0.2). We hope other researchers in the field will find several useful techn-
ical ideas which can be employed in their own work.

The principal ideas for this monograph came in 1979 while the authors
were at the CWI (Centre for Mathematics and Computer Science, formerly
the Mathematical Centre), Amsterdam. Our cooperation was organized so
that the first author (JVT) was mainly responsible for the Introduction
and Chapter 4, and the second author (J1Z) for Chapters 1, 2 and 3. In
overcoming the considerable difficulties involved in bringing to completion
such a technically involved project we received assistance from several
sources, and our special thanks are due to

— Jaco de Bakker, Head of the Department of Software Technology of the
CWI and editor of the CWI Monograph Series, for encouraging the pro-
ject from its inception;

— the CWI, for generously providing funds and hospitality to both
authors, after they had left its employ, enabling them to meet together
on a number of occasions for consultation on the project;

— Bar Ilan University and the Weizmann Institute, Israel, for generously

providing funds and hospitality to the first author during the summer
of 1981, while the second author was working at Bar Ilan University;

vi

— Leeds University for providing hospitality to the second author during
the summer of 1986;

— and the National Science Foundation, whose grants to the second author
(MCS-8305426 and DCR-8504296) provided funds for equipment for
text preparation, and travel for both authors.

Many people read the text while it was in preparation, and provided use-
ful suggestions, in particular Jonathan Stavi (Bar Ilan University), Jan
Terlouw (University of Utrecht), Jan Bergstra (Universities of Amsterdam
and Utrecht), Clive Jervis and Benjamin Thompson (Leeds University),
and Pierre America (Philips Research Laboratories, Eindhoven).

The book was prepared in camera-ready form at the University of
Buffalo, using the Ditroff text processor on the UNIX operating system, and
a QMS Lasergrafix 1200 laser printer. The text was typed into the system
by the second author, except for Chapter 4, which was typed in by Lynda
Spahr. Invaluable hardware and software support were provided by
Robert Coggeshall, John LoVerso and Don Gworek. The improvement of
fonts, and design of special characters, were performed admirably by
George Sicherman, Scott Mesches and John Arrasjid.

John Tucker
July 1987 Jeffery Zucker

Table of Contents

Chapter O: Introduction

0.1
0.2
0.3
0.4
0.5
0.6

Background

Aims

Data type semantics

Error state semantics and correctness
Completeness

Remarks for the reader

Chapter 1: Straight-line Programs

1.1
1.2
1.3
1.4
1.5
1.6

1.7

Preliminaries: signatures and structures

The programming language

Assertions

Correctness formulae

A proof system; soundness

Predicates; state transformers; the weakest precondition
and strongest postcondition

Completeness of the proof system

Chapter 2: 'While' Programs

2.1
22
2.3
24
2.5
2.6

2.7
2.8

Notation for partial functions

The programming language

Assertions

Correctness formulae

A proof system; soundness

Partial state transformers; the weakest precondition
and strongest postcondition

Completeness of the proof system

Appendix: Total correctness for 'while’ programs

vii

50

53

53
54
61
64
64
67

82
83

viii

Chapter 3: Recursive Programs

31
3.2
3.3
3.4
3.5
3.6
3.7
3.8

The programming language

Assertions

Correctness formulae

A proof system; soundness

A look ahead

Inductive computability of the input-output relation
Completeness of the proof system

Appendix: Total correctness for recursive programs

Chapter 4: Computability in an Abstract Setting

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
49

Induction schemes

Some important properties

From induction schemes to ‘while’ programs

From 'while’ programs to induction schemes
Course-of -values induction

From cov induction schemes to ‘while-array programs
From 'while™-array programs to cov induction schemes
More on induction

The cov inductively definable functions

410 A survey of computability in an abstract setting
4.11 A Generalized Church-Turing Thesis

Bibliography

88

88

99
103
106
110
114
123
126

129

129
139
141
148
155
160
163
181
183
185
196

206

Chapter O

Introduction

Have nothing in your houses that you do not know to be useful,
or believe to be beautiful.

William Morris
Hopes and Fears for Art

Hostinato rigore.

Leonardo da Vinci
Windsor Notebooks

0.1 BACKGROUND

The mathematical theory of program correctness is founded upon two
ideas of independent and contemporary origins:

FLOYD-HOARE THESIS: Formally specified programs can be formally
verified in logical systems designed around the syntactic structure of the
programming language; indeed such logical systems may be used to
specify the semantics of the language (R.-W. Floyd and C.A.R. Hoare).

SCOTT-STRACHEY THESIS: Programs can be considered as mathematical
objects having a mathematically exact syntax and semantics (D.S. Scott
and C. Strachey).

The two ideas have been enormously influential in the field of program-
ming methodology and programming language design. The work of Floyd
and Hoare initiated a vigorous development of program proving techniques
with an emphasis on how syntactic logical tools can determine program
meanings: the language definition method of axiomatic semantics (see
Floyd [1967], Hoare [1969), and Hoare and Wirth [1973])). The work of
Scott and Strachey provided considerable conceptual understanding of pro-
gramming languages by means of the mathematical tools of denotational

2 Chapter O

semantics for the definition of programming languages (see Scott [1970]
and Scott and Strachey [1970]).

The conjunction of the two ideas came with the realization that the reli-
ability of a proof system for correctness in a programming language
depends upon a rigorous and independently defined semantics for the
language, to complement the axiomatic semantics. This reliability is
expressed by a soundness theorem wherein the logical system is shown to
generate valid statements about the programming language, equipped with
the independent semantics. A soundness theorem demonstrates that the
proof system is indeed consistent. In addition, the independent semantics
provides an opportunity to try to prove a completeness theorem wherein
the logical system is shown to generate all the valid statements of the
requisite kind about the programming language.

The first mathematical analysis of a logical system for program
verification occurred in Cook [1976), later published as Cook [1978]. Here
the mathematical structure of logics for program correctness was carefully
explored, and the soundness and completeness of such systems seriously
discussed and settled (almost: see De Bruin [1984] and the corrigendum to
Cook [1978], and Bergstra and Tucker [1982a,1982b]). In addition, a
number of technical concepts related to completeness were presented.

In many respects, the present-day mathematical theory of program
correctness is largely the result of developing the situation described in
Cook [1978] in three directions:

(1) the construction of proof systems for more elaborate programming
language features;

(2) the use of proof systems as an instrument to experiment with the
semantics of programming language constructs; and

(3) the study of the metamathematics of proof systems for program
verification.

Certainly, the pace of progress in recent years has quickened, and enough
has been achieved to establish the theory as an essential tool for program-
ming language design.

A concise introduction and survey of the theory of correctness for deter-
ministic sequential programs is Apt [1981}; and for information on non-
deterministic and concurrent constructs see Apt [1984]. For a detailed and
rigorous treatment of the basic programming language constructs there is,
however, no substitute for De Bakker [1980]. Here the true mathematical
complexity of the soundness and completeness proofs are confronted; in
addition the book contains a detailed description of the evolution of the
subject.

Introduction 3

0.2 AIMS

In this monograph we present a new mathematical treatment of the sound-
ness and completeness of proof systems for the partial correctness, and
total correctness, of programs made with some basic constructs, namely:
iteration and recursion in the presence of arithmetic, booleans and arrays.
Our starting point is the account of iteration, recursion and arrays given in
De Bakker [1980] (Chapters 1—5 and the Appendix) which we extend in
both of the directions numbered (1) and (2) in the previous section; as we
shall now explain.

0.2.1 Programming language constructs

We consider computations not just by programs allowing a single kind of
variable — specifically the integers in De Bakker [1980] — but computa-
tions by programs involving a finite number of syntactically distinct kinds
of variables of arbitrary type, only one of which may be numerical. In
particular, two basic features of contemporary programming languages, not
covered in De Bakker [1980], simultaneously receive attention here:

(i) Abstract data types. The precise nature of the data types appearing
in programs is not fixed in advance by the programming language
definition; the names of the types and their primitive operators are fixed
for each program, however. We do not allow programs to create data
types and we do not consider the mechanisms by which these types are
defined. Rather our work treats the correctness theory of programs at any
given level of data abstraction. We assume the data types for each pro-
gram are given semantically as a class K of many-sorted algebras on
which the program is inter preted.

The advantage is that it is immaterial to our theory whether a data type
class K represents a family of implementations of an axiomatic
specification (as one finds in Hoare [1969] or in the algebraic theory of
Liskov and Zilles [1975], ADJ [1977), Guttag and Horning [1979]) or
represents the semantics of a data type module (as one finds in program-
ming languages such as ALPHARD, CLU, MODULA-2 or ADA (Wulf,
London and Shaw [1976)], Liskov et al. [1981], Wirth [1983], Ada [1983]
and Ichbiah [1983]). In allowing for data abstraction we are allowing for
the effects of a new programming language feature on program correctness
without commitment on the form of the feature. A detailed discussion of
our treatment of abstract data types follows in Section 0.3; we presume
the reader is acquainted with the subject, and, in addition to the papers and
books already mentioned, recommend Wulf [1980].

4 Chapter O

(ii) Many-typed programs. The programs considered are multityped in
the simple sense that they may contain more than one type of variable.
This modest extension of the language features previously considered in
the theory of program correctness is noteworthy because it is not at all a
trivial matter as far as the completeness of proof systems is concerned. As
will be explained in Section 0.5, the standard treatment of completeness
for iteration in a single type language breaks down when generalized to
two or more types.

0.2.2 Semantics of language constructs

In our setting of abstract data types we redesign the semantics of our basic
constructs in order to model errors which may arise in a computation
from uninitialized variables and which cause the computation to halt in
an error state. This error semantics is very well known in practice, and
has been considered in connection with automatic program verification
(German [1978]). However, the semantics receives its first mathematical
analysis here. (Incidentally, the error semantics supports an exception
mechanism for the languages, but the implications of this observation are
not fully pursued.)

The states of a computation are only partial functions from variables to
values, and at any stage in a computation at most finitely many variables
have had values assigned to them. All other variables have a unique
unspeci fied value u associated with them, and calling such an uninitialized
variable in the course of a computation will cause the computation to halt
in an error state ¢. Any expression containing a variable of unspecified
value may itself, on evaluation, gain the unspecified value (see Section 1.2).
In particular, considering expressions of boolean type, we are led to a
three-valued logic for tests in control structures. The details of this exten-
sion to error semantics, its effect on specified programs, and its connection
with exception handling, are presented in Section 0.4.

0.2.3 Metamathematics

The two extensions of language features described in 0.2.1 require us to
extend the ideas used to frame and prove the completeness theorems for
the new proof systems; thus, this monograph also extends De Bakker
[1980] in the metamathematical direction numbered (3) in Section 0.1.

Briefly stated, the extensions to abstract types and many-typed programs
force us to abandon the usual first-order assertion language and its associ-
ated concept of the completeness of a proof system in the sense of Cook.
The assertion language is said to be expressive for a programming language

Introduction 5

on an interpretation if all weakest preconditions (or, equivalently, strong-
est postconditions) of the programs relative to the interpretation are
definable in the assertion language. Completeness in the sense of Cook is
the property that whenever the assertion language is expressive on an
interpretation then the valid specified programs are all provable.

In the single-type situation, the first-order assertion language is expres-
sive for many programming features interpreted on the integers (see
Zucker [1980]). But it is not expressive on many other structures even for
iteration (see Wand [1978), Bergstra and Tucker [1982a], Clark, German
and Halpern [1983]). Furthermore, the many-sorted first-order assertion
language is not expressive for iteration on most many-sorted structures
(see Bergstra and Tucker [1984]). The result of this fact is that the gen-
eralization of Cook's work to many-typed programs fails to find applica-
tions if a first-order assertion language is used.

In this monograph we use a stronger assertion language, essentially a
weak second-order language, which enables us to prove expressiveness for
our programming constructs relative to any given class of interpretations
in a natural uniform sense. Furthermore, the new assertion language
enables us to embrace total correctness, which is, in a certain sense, beyond
the scope of a first-order assertion language (see Apt [1981]).

0.2.4 Computability in an abstract setting

The construction of the formulae expressing computation by the programs
requires substantial theoretical work involving a theory of families of
functions that are computable by programs on an abstract data type. This
theory is based on notions of inductive definability that generalize, to a
data type class, inductive definitions of the partial recursive functions on
the natural numbers. It is shown that two classes of inductively definable
functions coincide with the two classes of functions computable by ‘while’
programs with arithmetic, and with and without arrays.

This new characterization is of interest in its own right. For example, it
is relevant to studies of the power of programming features and to studies
of the semantics of function procedures in programming languages. It also
supports a certain Generalized Church-Turing Thesis concerning effectively
calculable functions in an abstract setting.

In the next three sections we will discuss these ideas in greater depth
and, after this Introduction, we will develop the subject in the systematic
and austere fashion that becomes a mathematical theory. We conclude this
section on objectives with some statements about rigour.

6 Chapter O

0.2.5 Rigour

It is an aim that this monograph provide a self-contained, compact and
rigorous account of its constructs, with all but the truly routine and tedi-
ous details excluded. We hope that experts will have no difficulty in
extracting the many new devices it contains, and that less experienced
readers will find all points adequately explained.

The value of formal studies of programming language constructs to the
computer science community at large depends on their correctness. It is
essential that proper standards of mathematical rigour be established wher-
ever possible: standards that are adhered to by the theorist and appreci-
ated by the experimentalist. The emergence of the theory of program
correctness, sketched in Section 0.1, was plagued by unsound proof rules
and improper semantic definitions: formal errors that signal fundamental
problems of rigour. We believe that it is one of the significant achieve-
ments of De Bakker [1980] that many of the difficulties in making seman-
tics and proving soundness and completeness are overcome. By using De
Bakker [1980] as a blueprint, and documenting our extensions and devia-
tions, we hope to confirm in our turn that rigour — obstinate rigour, in
L.eonardo’s motto — is robust and indispensable.

0.3 DATA TYPE SEMANTICS

We suppose that each data type dt appears in a program as a many-sorted
signature £ whose sorts name types in variable declarations and whose
function symbols name the basic operations on data allowed in assignments
and tests. Thus, syntactically, dt is represented by £. In a programming
language with data type modules, a signature X is essentially a module
heading. Let Statemt(¥)be a set of programs invoking dt.

Semantically, the data type dt is represented by a class [K of algebraic
structures of signature X. Each structure K represents a collection of
admissible implementations of dt. Thus, for a program S €Statemt(X)
invoking dt we will define its semantics #(S) as a family of transforma-
tions of computation states

M,(S): STATE(A) > STATE(A)

indexed by A€lK. Our attention will always be concentrated on computa-
tional properties of the program S that are uniform over all implementa-
tions of dt in K. In particular, the correctness of specified programs over
dt will be defined by the correct specification of their behaviour on all
implementations in K. Let us illustrate the use of the class K, first in

Introduction 7

connection with the traditional specification of data types in program
language definitions, and secondly, and more importantly, with the pro-
gramming features of representation-independent and user-defined data
types in contemporary programming languages.

0.3.1 Standard types

The types integer, boolean, real and character appear in a host of
languages descended from Fortran and Algol 60. For each language there
is a set of familiar operations described in the syntactic specification of the
language. What forms do the semantics of these types have?

First, there is a class K containing a single four-sorted structure A
whose domains implement the four basic types. The structure A may be a
mathematical semantics involving the infinite ring of integers and the
infinite field of real numbers; or A may be one of several finite machine
approximations to a mathematical semantics. Such a K may be of general
interest if A is a mathematical semantics designed to idealize the types for
a wide audience (as in De Bakker [1980]); or K may be tailored to the par-
ticular users of a particular machine implementation A of the types.

However, it is unlikely that a programming language would have its
ground types so constrained: for instance, the numerical size of MAXINT
does not belong to a language definition. Thus, a more practical characteri-
zation requires a class K of distinct implementations satisfying certain pro-
perties. A formal and axiomatic approach to the definition of the standard
types was first taken in Van Wijngaarden [1966), and re-examined in the
context of program verification in Hoare [1969]

0.3.2 Data Abstraction
An idea central to the theory of data types is the following:

DATA ABSTRACTION PRINCIPLE. Let A and B be X-structures representing
two implementations of data type dt. Then A and B are considered to
represent identical implementations of dt if, and only if, A and B are
algebraically isomor phic.

The principle defines what is abstract about an abstract data type: the
method used to represent data in an implementation is suppressed by con-
sidering the implementation to be uniquely determined up to isomorphism
only. The abstract semantics K of a data type dt based on an implementa-
tion A is the isomorphism type 1ISO(A) of A, ie. the class of all Z-
structures isomorphic to A: see ADJ [1977] and Wulf [1980].

Now any program semantics that is designed to operate with abstract
data types must satisfy the following condition:

8 Chapter 0

PROGRAM SEMANTICS ABSTRACTION PRINCIPLE. Let A and B be X-structures
representing two implementations of data type dt. Suppose that A and B
are isomor phic by ¢: A > B. Then ¢ determines a state space isomor-
phism @: STATE(A) > STATE(B) such that for every S € Statemt(L) the
Jollowing diagram commutes:

STATE(A)MSTATE(A)

7 7
STATE(B)MSTATE(B)

Thus for each o € STATE(A)
@M, (S)(o)) = My(S Xp(a)).

In consequence, the semantics of a program S on a data type dt is
uniquely determined by the isomorphism type representing the abstract
data type semantics of dt.

The Program Semantics Abstraction Principle is an essential companion
of the Data Abstraction Principle; unfortunately, it is invariably neglected
in the literature. (For some of the implications of this principle see Tucker
[1980])

0.3.3 General types

The facility of modules for user-defined types in programming languages,
and the formal methods for their specification, introduce a great variety of
classes that arise as data type semantics.

The use of axioms to define the built-in types of a language, mentioned
earlier in 0.3.1, readily applies to data types in general. In its most general
form, axiomatic specification amounts to defining the semantics of a data
type as some class [K of acceptable implementations whose operations are
named by X and satisfy properties recorded as a set 7 of axioms. The pair
(2,T) is called a data type specification and the axioms of 7 are written
in some formal language such as a first-order logical language. Thus K is a
subclass of MOD(Z,T), the class of all £-modelssatisfying 7.

What more can be said about the qualification “acceptable implementa-
tions™?

Introduction 9

As we have explained in 0.3.2, the theory of data types employs the
Data Abstraction Principle, and so the classes of interest in that theory are
closed under isomorphism:

A€K implies ISO(A)cK.

Next, in the theory of data types, a data type implementation is
represented by a special kind of structure A satisfying the property that
A is generated by elements named in its signature: such structures are
called minimal algebras in ADJ [1977). This minimality condition ensures
that the entire type can be accessed from basic data by applying the basic
operations. In addition, the condition ensures that each element of A can
be named by a syntactic expression over X.

Let MIN(Z,T) be the class of all minimal models of T'; then the class K
is expected to be a subclass

K ¢ MIN(E,T) ¢ MOD(Z,T).

There are further theoretical constraints that can be imposed, the most
obvious of which is that a data type be implementable, in a sense con-
sistent with the Church-Turing Thesis. This means that each A€K ought
to be an e ffectively computable structure: in an obvious notation

K ¢ MIN(Z,7) nCOMP(E,T) ¢ MOD(Z,T).

Actually there are three kinds of effectively calculable structure of impor-
tance in the theory of data types: computable, semicomputable and cosem-
icomputable structures, corresponding to the concepts of recursive, r.e. and
co-re. in computability theory. For their rigorous definition and principal
properties, see Bergstra and Tucker [1982d,1983b] and Meseguer and
Goguen [1985].

Returning to the subject of formal specification, in the case of user-
defined types it is common to identify the semantics of a data type as the
isomorphism type of a specific structure, and for this task the algebraic
speci fication methods are well suited.

Suppose that the axioms in 7 are algebraic: equations or conditional
equations to be specific. Then it is possible to define the semantics of the
specification (,7) as the isomorphism type of the initial algebra 7(X,7T)
in MOD(Z,T); the structure 7(X,T) is a semicomputable minimal algebra
if T is an r.. axiomatization. Furthermore, it may also be possible to
choose the final algebra F(X,7) in MOD(X,T) for the same purpose; if T
is re. and F(Z,T) exists then F(X,T) is a cosemicomputable algebra; see
Bergstra and Tucker [1982d, 1983b] for further details.

10 Chapter O

Notice that many of these classes are not axiomatizable in first-order
logic.

0.3.4 Arithmetic

The special properties of the classes that arise as data type semantics are
not required in the mathematical theory of program correctness that fol-
lows. The classes of interest are not quite free of hypotheses, however.

In addition to user-defined types, our programs will involve arithmetic
and booleans. The presence of these special types entails that our programs
are interpreted on structures with distinguished domains for the natural
numbers N={0,1, ...} and boolean truth values B={t,#}. For want of a
better name we call such structures standard structures. Thus the
mathematical theory will proceed from the single assumption on a class K,
that it contain only standard structures.

If K is any class of structures it may be “standardized” as follows.

Let A and B be any structures with disjoint signatures X, and £, We
can define the join [A,B]of A and B to be the structure with signature
Y, uZ, whose domains and operations are those of A and B. Let N
denote the standard model of arithmetic and B the standard two-element
boolean algebra. Then an arbitrary structure A can be standardized by
making [A4,N,B], and for any class K we can set

S(K)={[A,N,B]| A€ K}.

0.4 ERROR STATE SEMANTICS AND CORRECTNESS

0.4.1 Program semantics

A proper state of a computation on a structure A is a function o that
assigns to each variable of the programming language either an element of
A or a distinguished unspecified value u, where, moreover, o takes the
unspecified value u for all but finitely many variables. There is also a spe-
cial error state t. Let PRSTATE(A) be the set of all proper states over A,
and let STATE(A) be the set of all states over A.

The meaning of a program S on a structure A is a partial function

M,(S): PRSTATE(A) > STATE(A)

called a state transformation. When this state transformation is applied
to a proper state o there are three possible outcomes:

Introduction 11

(1) The execution of § with initial state o terminates in a proper state
o’; in symbols M,(SXo) lco' or M,(SXo)=c". Here we say that the
computation converges normally or simply converges.

(2) The execution of S with initial state o terminates in the error state
& in symbols M, (S X o) Le or M,(S X o)== Here we say that the com-
putation converges exceptionally or simply aborts.

(3) The execution of S with initial state o does not terminate: M, (S X o)
is not defined; in symbols #,(S X o) 1. Here we say that the computa-
tion diverges.

A computation aborts only if the program required the evaluation of an

expression containing a variable in a state where that variable had the

unspeci fied value u.

The meaning of a program S on a class K is a family of partial func-
tions

M ()= (M,(5)] Ack).

0.4.2 Specified programs

We will study Hoare-like proof systems for programs operating with this
semantics. As usual, a specified or asserted program, or correctness for-
mula, has the syntactic form

{p}Siq}

where p and g are formalized statements or assertions about the values of
the variables in S; p is called the input condition or precondition and q is
called the output condition or postcondition. However the new program
semantics materially alters the meaning of the correctness formulae.

Consider first partial correctness semantics. The formula {p}S{q} is
true in a proper state o over a structure A if, and only if, the following
condition is met:

if p holds at o and the execution of S starting at o ter-
minates in some state o', then o' is not the error state ¢
and q holds at o'

Notice that a sharp distinction is made between computations that diverge
and those that abort.

Consider now total correctness semantics. According to this, the for-
mula {p}S{qg}is true in o over A if, and only if, the following holds:

if p holds at o, then the execution of S starting at o ter-
minates in some state o' that is not the error state and q
holds at o'

12 Chapter 0

The formula {p}S{gq} is (in both cases) said to be true on a structure A if,
and only if, it is true of every proper state over A. Finally, it is true in a
class K if, and only if, it is true on every structure A€K.

We are interested in the specification of program behaviour for such a
class K of data type implementations, and its formal verification.

0.4.3 Example

Informally, let us call a program S semantically closed (for want of a
better term) if every variable in S, called in any computation of S, is first
initialized by S. For example, the following program is semantically
closed:

S = x=0;
if true then y:=x
else x:=y

fi
But S is not what one would call syntactically closed (meaning: all vari-
ables appearing in the program are initialized).

With the partial correctness semantics of the correctness formulae, we
are able to give a formal definition of the idea. Let S be a program with
variables {v;|i€l}. Then S is semantically closed for data type class K if
the correctness formula

{A;¢; v;=unspec}S{true}

is valid for the class K; here unspec is a name for the unique unspecified
value u.
Interestingly, notice that the formula

{true} S {true}

is valid for precisely the semantically closed programs: with the conven-
tional, error-free partial correctness semantics in De Bakker [1980] it is
valid for all programs, of course.

0.4.4 Errors and exception handling

The calling of an uninitialized variable is a runtime property of a program
that may warrant an exception handling mechanism. The semantics used
here is relevant to a formal study of exception handling, possibly starting
from the methodological studies of Goodenough [1977] and Liskov and
Snyder [1979] (see also Cristian [1983] and Luckham and Polak [1980}).

Introduction 13

To see this, recall that the programs we study belong to a modularized
programming language, and suppose that S is a procedural module used by
another program module C, the caller of S. The program C invokes S on
a state o, and in the course of the execution or activation of S on o the
error state ¢ may be encountered and interpreted as a signal to C. The
caller C now raises the exception that an uninitialized variable is used,
and a program H , the exception handler, is called to deal with the excep-
tion.

The study of the error or exception semantics for the activations of §
can be separated from the study of the models for the exception mechan-
isms, which address the relationship between C, § and H. For example,
with reference to Goodenough [1977] and Liskov and Snyder [1979], their
resumption and termination models are both consistent with our error
semantics. We note (in connection with Liskov and Snyder [1979]) that a
resumption model would seem appropriate here, for on discovering an
uninitialized variable the user may be invited by the handler to initialize
it and continue.

0.4.5 Assertion languages

The precondition p and postcondition g in the specified program {p}S{q}
will be taken from a formally defined assertion language. The assertion
languages of interest will be discussed shortly: here we just wish to point
out one aspect of them. For each type in the programming language, the
assertion language will contain two kinds of variable:

(i) program variables or identifiers belonging to the programming
language; and

(ii) special assertion language variables.

Now quantification in the assertion language is allowed only over assertion

variables. This means that, typically, assertions have to be evaluated at a

pair (p,0) where

(a) o isa proper state over the interpretion A; and
(b) p is a valuation of the assertion variables, i.e. a function from asser-
tion variables to values from A u{u}.

Although boolean tests in the control structures of the programming
language have three-valued semantics, and are allowed as subexpressions
within assertion formulae, the assertion language will have a conventional
two-valued semantics.

14 Chapter O

0.5 COMPLETENESS

We will present proof systems for the partial correctness and total correct-
ness of programs, operating on an arbitrary data type class K, and prove
the soundness and completeness of these systems for the error-state seman-
tics. These soundness and completeness theorems are proved for program-
ming languages of increasing complexity:

(i) straight-line programs with arithmetic and arrays;
(ii) ‘while’ programs with arithmetic and arrays; and
(iii) programs with recursion, arithmetic and arrays.

Each language will be the subject of a chapter.

In proving a completeness theorem, a problem of central importance is t0
prove that weakest preconditions and strongest postconditions can be
expressed in the assertion language, uniformly for KK, a property commonly
termed expressiveness or expressibility of the assertion language. For each
of the programming languages (i)—(iii) this is done in a different way.

0.5.1 Straight-line programs

This is the subject of Chapter 1, with the Soundness Theorem in Section
1.5 and the Completeness Theorem in Section 1.7

For straight-line programs with arithmetic and arrays, the weakest
precondition and strongest postcondition of a program S with respect to an
assertion p can be expressed by assertions wp[S,p] and splp,S] defined
by straightforward induction on the complexity of S. It is possible to use
as assertion language the first-order language Lang,(Z “) over the signature
%" being the signature ¥ of the types of K augmented by a name for the
unspecified value u.

0.5.2 ‘while’ programs

This is the subject of Chapter 2, with the Soundness Theorem for partial
correctness in Section 2.5 and the Completeness Theorem in Section 2.7;
total correctness is considered in an appendix.

To define the weakest preconditions and strongest postconditions, we
must first formalize the notion of a computation sequence for a program S,
being a sequence of states starting from some initial state and, if ﬁmte,
ending at the final state of a computation by S. For this, Lang,():) no
longer suffices, and we consider a new language Lang,(X *) which allows
variables for finite sequences of data. More precisely, for each A€K and
each sort i we adjoin a domain Af consisting of all functions

Introduction 15

£: N > A; u{u}

such that the set
{neN|&n)#u}

is finite; and we adjoin the necessary application operation
Ap;(¢n) = E(n).

The resulting structure is called A, with signature £*,and the class of all
su}::h A’ for A€K is denoted K*. Langl(z*) is the first-order language over
.

With this assertion language, the notion of (a code for) a computation
sequence for a program § can be defined by induction on the complexity of
S; and from this the weakest preconditions and strongest postconditions
can easily be defined.

0.5.3 The failure of first-order many-sorted assertion languages

The replacement of Lang,(Z") by Lang,(X*), or some such stronger
language, is essential. For even in the case of a one-sorted abstract type A
and ‘while’ programs with arithmetic, the first-order language is not
expressive; indeed in Bergstra and Tucker [1984] an example is given
where A is the standard model of arithmetic! More precisely, the two-
sorted first-order assertion language is not expressive for while programs
on the join [N,N] (recall the join from 0.3.4). In addition, two-sorted
Hoare’s logic for while programs on [IN,IN] is incomplete.

0.5.4 Recursive programs

This is the subject of Chapter 3, with the Soundness Theorem for partial
correctness in Section 3.4 and the Completeness Theorem in Section 3.7;
total correctness is considered in an appendix.

For recursive programs, we again used Lang,(z*) to encode the notion of
a computation sequence for a program R = <D |S > (where D is a sequence
of procedure declarations and § is a statement). However this notion can-
not be defined simply by induction on the complexity of §, and a new,
more sophisticated, approach is needed. Roughly speaking, we proceed as
follows:

(a) For a given R we show that the function which assigns a computa-
tion sequence 7=(0g,0q,...) to an initial state o = o, can be faith-
fully represented by a function ¥, on A* which is a Junction induc-
tively de finable uniformly over K".

16 Chapter O

(b) From results belonging to the later Chapter 4 (see below) it follows
that tI}kat Y is a function computable by a ‘while’ program uni formly
over K.

(c) From the results proved in Chapter 2, mentioned above, it can be
deduced that the graph of v is definable in Lang(X") uniformly
over K*.

(d) It is now a simple matter to obtain formulae in Lang,(Z*) for the
weakest precondition and strongest postcondition from the formulae
in (c).

Let us comment further on the steps (a) and ().

0.5.5 Computability and inductive definability

The functions inductively definable over a class K are those functions on
the structures of K which are uniformly definable by certain induction
schemes, including simultaneous primitive recursion on N and the least
number or u-operator on N. Their definition arises naturally from the
features of the functions used to make the operational semantics for recur-
sive programs, but it is of interest in its own right, as a mathematical
definition of a computation on K. The induction schemes generalize, to a
class [K, the inductive definition of the partial recursive functions on IN due
to S.C. Kleene [1952]. For this reason we devote Chapter 4 to the subject
of inductive definability (and postpone from Chapter 3 the proof of the
results required in step (b) above).

From the point of view of the program correctness theory, the main out-
come of Chapter 4 is that the class of functions inductively definable over
K is precisely that computed by ‘while’ programs with arithmetic, but
without arrays. Interestingly, the technical fact required in Chapter 3,
that inductively definable functions are computable by ‘while’ programs
with arithmetic, is proved quite smoothly. The converse however,
included for completeness of our presentation, is more cumbersome to
prove because the semantics of our programs includes features (unspecified
arguments, the error state) which are out of place in a (pure) mathematical
theory of computation. We trust that this work will be semantically
interesting because it concerns function-theoretic aspects of programs.

Chapter 4 also includes the answer to the following question: What is
the inductive definability counterpart to ‘while’ programs with arithmetic
and with arrays? We prove the attractive result that on replacing primi-
tive recursion with course-of-values recursion in the original definition of
inductive definability over K, the resulting class of functions definable by
course-of-values induction over K is precisely that computed by ‘while’

Introduction 17

programs with arithmetic and arrays.

We conclude Chapter 4 with information on these classes of functions
and consider them in the context of research into computability on abstract
structures. We will survey a number of disparate approaches to the
definition of a computable function on an algebraic structure taken from
mathematics and computer science, and discuss their equivalence and the
implications for a Generalized Church-Turing Thesis. The formulation of
a Generalized Church-Turing Thesis and its role in the theory of program-
ming languages will be discussed in detail.

0.6 REMARKS FOR THE READER

0.6.1 Recommended prerequisites

Although the present work is mathematically self-contained, it is best
viewed as a development of certain investigations in De Bakker [1980], and
so some acquaintance with parts of that book (Chapters 1—5 and the
Appendix) will be useful to the reader. In fact the notation here has pur-
posely been kept as similar as is practicable to that of De Bakker [1980] to
facilitate comparisons. We also recommend Apt [1981] as an excellent sur-
vey of material directly relevant to the subject of our monograph.

0.6.2 Organization

The four chapters of the book are divided into sections and subsections
after the fashion of this Introduction. Thus, for example, the sixth section
of Chapter 2 is referred to as “Section 2.6”, and its tenth subsection as “sub-
section 2.6.10” or simply as “2.6.10”.

0.6.3 References

The references of the book follow the standard form used in this Introduc-
tion, with one exception: because of the frequency of reference to De
Bakker [1980], that book will be denoted [dB).

18

Chapter 1

Straight-line Programs

1.1 PRELIMINARIES: SIGNATURES AND STRUCTURES

1.1.1 Signatures
A signature may be defined as a pair Y. =(Sort, Func), where

(1) Sort=Sort(X) is the finite set of sorts of L: the r algebraic sorts
1,....r (for some r=0), the numerical sort N and the boolean sort B.

(2) Func=Func(X) is a finite set of pairs (F,7), where F is a function
symbol and T is the type of F, ie. a tuple of the form (m;iy, ... ,im,i)
with m=0, i;€ Sort for j=1,...,m and i€ Sort. F is called an m-ary
function symbol, with argument sorts (iy, ... i,) and value sort i. In
particular:

(a) if i=B then F is a boolean-valued function symbol or relation symbol
of type (m;iy,im,B), and we may emphasize this by writing ‘R’
instead of ‘F’;

(b) if m=0, so that 7=(0;i), then F is a O-ary function symbol or indivi-
dual constant symbol of sorti.

(3) We assume that Func includes symbols for certain standard func-

tions associated with sorts N and B:

(a) arithmetical function symbols for N, representing the following
operations on the natural numbers: zero, Successor, predecessor (where
the predecessor of O is taken to be 0), addition and multiplication, and
the order relation;

(b) logical function or relation symbols for B: the constant symbol true,
and symbols for a complete set of propositional connectives, say not
and and;

Straight line Programs 19

(c) equality symbols eqy and eqg for equality on sorts N and B respec-
tively.
All function and relation symbols other than those in (a }—(c) above will
be called algebraic.
As a loose terminology, we will write “F in Func” to mean
(F,7)€Func for some 7.

1.1.2 Remark on the inclusion of sorts N and B in the signature

Terms of sort N will be used as indices or “subscripts” for the array vari-
ables. However the main reason for including the sort N of the natural
numbers {0,1,2, ...} and the arithmetical functions is in connection with
the assertion language, to ensure expressibility of pre- and postconditions
for ‘while” programs (Chapter 2) and recursive programs (Chapter 3).

We could instead have wused the sort of the integers
{...,-2,-1,0,1,2,...} (as in [dB]), which, in practice, is more usual for
array subscripts. However the sort of natural numbers is theoretically
more satisfactory to handle, when considering definability and computabil-
ity over our structures (in Chapters 3 and 4).

From now on, by “number” we will mean natural number.

By contrast, the inclusion of the sort B and the logical functions in the
signature has no mathematical significance; it is for notational convenience,
to ensure uniformity of treatment between booleans and program terms
(expressions) of other sorts. It is also in accordance with programming
practice.

1.1.3 Structures A of signature X

Now given a signature £=(Sort, Func) where Sort={1, ...,r}u{N,B} and
Func={(F,,7), ... (F,,7,)}, a structure of signature %, or T-structure, has
the form

A= ((Ai)iESortr (F_,iA)]sts)

where A,,...,A, are non-empty sets called the algebraic domains;
An=N={0,1,2,...}, the domain of natural numbers; Ag=B={t,f}, the
domain of truth values; and for j=1,...,s, if 'rj=(m; i, ... ,im,i) then

Fp: A% xA —> A

Finally, the standard function symbols (see 1.1.1(3)) have their standard
interpretations on N and B. Thus, in particular, true”® =1, the connectives
not and and have their standard truth-functional interpretation, and eqy
and eqg are interpreted as identity on Ay and Ag respectively.

20 Chapter 1

Structures such as these, which contain the “standard domains” N and B
for the distinguished sorts N and B, with the standard operations on them,
will be called standard structures.

1.1.4 Classes of structures

We will consider computation by programs over a class [K of L-structures.
The class K is intended to model some class of implementations of a data
type specification, as explained in Section 0.4. Our concern with computa-
tions which are uniform over K leads to a useful generalization of the
mathematical theory of program correctness.

All classes K considered in this monograph satisfy one condition: each
structure in K is a standard structure in the sense of 1.1.3. Such classes
may be called standard classes. Henceforth, let K be any standard class
of signature X.

1.1.5 The unspecified value u; structures A" of signature %"

Given a structure
A= ((Ai)ie.s‘artv (F}‘A)lsjs.;)

let u be a new object or symbol, representing an “unspecified value”. For
each sort i, let

A:‘ = Ai U{Ul}.
In particular, taking i=B, we have
BY = 5 = {ﬁ,ﬁ,lﬂ},

the set of truth values, including the “unspecified truth value” w. This
adjunction of u will lead to a 3-valued logic for booleans, as we will see.

For each F in Func(Z) of type (m;iy,....im,i), We have a new
interpretation of the function symbol F, namely

FAu: ARx---x A —> A
which extends FA, by stipulating that the value is w whenever any argu-

ment is u.
Then AY is the structure

((AP)iesore» (F*n< s » (W iesore)

where for each sort i, u; is u, considered as an element of A{. The struc-
ture A“ has signature £Y, with function symbols F* for j=1,...,s, and
unspec; (denoting ;) for each sort i.

Straight-line Programs 21

Finally, K" is the class of structures A" for A€lK.

1.1.6 Three-valued logic in A"

The definition of FA* in the last section, applied to the cases of the logical
functions F =not and F =and, gives us 3-valued truth functions, which
extends the familiar 2-valued functions by stipulating a value of w when-
ever any argument is w. This gives the weak 3-valued logic discussed in
Kleene [1952], §64.

*1.1.7 Coding of A" within A

The structure A" can actually be represented or coded within A, so that
our addition of u, while of semantic interest, is mathematically inessential.
This coding is accomplished by the device of representing an element y of
A by a pair (b,x)e BxA;, where

— if y#u; then b=t and x =y, and

— if y =w; then b =1 and x is some element of A;.

We call the component b of the pair (b,x) a “flag” of the coding.

Under this representation, moreover, a function FA™ of m arguments
(with F in Func(Z)) can be correspondingly represented in A by the pair
of functions (and,,, F4), where and,,: B™ —>B is the m-fold conjunc-
tion operation:

1 ifb]=b2="'=bm=ﬁ

and,,(by,bp) = t otherwise

which is “inductively definable” over A.

The exact definition of “inductive definability” over a structure will be
given in Chapter 4, and the precise nature of the “corresponding represen-
tation” of functions in A" by functions in A is given in the Theorem in
4.1.12.

Another example of this kind of coding (involving flags) will be given
in 3.5.3.

1.2 THE PROGRAMMING LANGUAGE

1.2.1 Syntax

The programming language ProgLang,, = ProgLang (%) for the signature
¥ (‘sa’ for “straight-line with arrays”) has the following syntactic classes
for each sort i of X:

22 Chapter 1

(1) SimVar;, the class of simple program variables of sort i, denoted
vl awf, ...
(2) ArrVar;, the class of array variables of sort i, denoted at,...

(3) ProgVar;, the class of program variables, ie. the simple and array
variables, of sort i:

ProgVar; =4; SimVar; u ArrVar;.
(There is no special notation for variables of this class.)

(4) InterVar;, the class of intermediate variables of sort i, denoted
Vi, ..., and defined by

InterVar; =;; SimVar; U(ArrVar;xNN),
in other words (using a variant of BNF notation, see [dB], p.18):
Vie= v |<at,n>
where n€N.
This class will form the domain of the proper states (see 1.2.4).

(5) SubVar;, the class of subscripted variables of sort i, made by apply-
ing an array variable a' of sort i to a program term tM of sort N (see
below) to form a‘[¢N].

(6) ProgTerm;, the class of program terms (or expressions) of sort i,
denoted ¢, ..., and defined by:

o= i @[N] F Gy, .. ,t,i,;")lif tB then tf else ¢} fi
where F is a function symbol in £ of type (m;iy, ... iy,0).

In particular, for i=B, we get the class of boolean program terms or
program booleans,
ProgBool =,; ProgTermg,
denoted either ¢8, ... (as above) or b, ... This class is given by:

b= oBlaBNM| RGN, ... tim) | eqel)] true
|not(b)|and(b,,b,) | if b then b, else b, fi

where R is an algebraic relation symbol in ¥ of type (m;iy,...,in) and
i=NorB.

We use the prefix notation for the equality relation and the boolean con-
nectives, to distinguish these from the equality relation and connectives of
the assertion language, which have different (2-valued!) truth conditions.

Straight-line Programs 23

Further boolean expressions can be defined in a standard way:
false =, not(true)
or(b,,b,) =4, not(and(not(d,),not(d,))
imply (b,,b,) =4 not(and(b,,not(5,)))
if b, then b, fi =,, if b, then b, else true fi

Finally, we have:

(7) Statemt,,— Statemt (X)), the class of (straight-line, array) statements,
denoted S, ..., and defined by:

S == skip|vi=t!|a’[t"]:=t*|S,;S,|if b then S, else S, fi.

Thus a statement is either a ‘skip’, an assignment (for a simple or a sub-
scripted variable), a composition of two statements or a conditional state-
ment.

We need the ‘skip’ statement, since (as we will see later) this is not
equivalent to v:=v.

As usual, we let the statement ‘if b then S fi’ abbreviate ‘if b then
S else skip fi’.

We assume that each of the five classes of variables discussed above is
countable. This is necessary for the sake of Godel numberings that will be
needed in later chapters. This assumption applies also to all classes of
variables to be introduced later.

1.2.2 Further definitions and notational conventions

(1) We will try to adhere to the convention of [dB] and use only the
letters indicated (‘v’ for simple variables, ‘a’ for array variables, ‘S’ for
statements, etc.), possibly adorned with superscripts and subscripts, to
denote arbitrary objects of the relevant syntactic classes.

(2) We will often drop the sort superscript (or subscript) i.
(3) We use the notation

SimVar(£)=4; U SimVar;
ieSort
ArrVar(Z) =4, U ArrVar;
i€Sort
etc. (and often drop the ‘(¥£)).
(4) For a syntactic expression E of any of the classes considered above
(e.g- a program term or statement) we define:

24 Chapter 1

SimVar(E) = the set of simple variables occurring in E,

ArrVar(E) = the set of array variables occurring in E,

ProgVar(E) = the set of program variables occurring in E
= SimVar(E)u ArrVar(E).

(5) For an expression E, compl(E) is the structural complexity of E.

There are many suitable definitions of compl(E), depending on the syn-
tactic class of E. Thus, for example, for a program term ¢ =
F(ty,...,t,), compl(t) can be defined as max;(compl(s;))+1. This
definition, which gives compl(t) as the length of the maximum branch of
the parse tree of t, is particularly appropriate for inductive definitions
over ProgTerm. Another possible definition of compl(E), which would
in fact be satisfactory for our purposes, is simply the length of of E as a
string of symbols.

(6) We use ‘=’ to denote syntactic identity between two expressions.

(7) For Ve€lInterVar and M c ProgVar,*V in M’ means either V =v for
some simple variable v€E M, or V = <a,n > for some array variable a€ M
and n€N.

1.2.3 The programming language without arrays

We could also consider the simpler language ProgLang,(%), ie. the
language without arrays. All the concepts to be introduced in this chapter
could be modified in an obvious way to apply to this language.

1.2.4 Proper states
Let A be a structure in the class K.

DEFINITIONS. (1) A proper state over A is a function from the inter-
mediate variables of each sort i to AY (see 1.1.5), which assumes the
unspecified value w almost everywhere. In other words, it is a function of
the form

o= | o;
i€Sort
where o;: InterVar; —> A}

for each sort i, such that o(V)#u for only finitely many intermediate
variables V. (We say “proper state” to exclude the error state to be intro-
duced later.)

For notational convenience, we will write ‘c{a,n) for ‘oc{< a,n >).

(2) PR.STATE(A) is the set of proper states over A.

Straight-line Programs 25

(3) The domain of a proper state o is the set
dom(o‘) =df {V I O'(V)#u}}

(which is, by definition, finite).

1.2.5 Semantics of program terms

We will define, for each A€K, an evaluation function R, for program
terms, which is the union of a family (#});cs. of functions, where for
each sort i

R.: ProgTerm; —> (PRSTATE(A) — A}).

Thus for any program term ¢ of sort i and proper state o, K,(t)(o) will
be an element of Af=A;uf{u}. In particular, for a program boolean b,
K ,(b)(o) will be an element of BY={t,#,u}.

The definition of #£,(t)(o) is by induction on compl(t):

R,(v*)(o) = olv?)

) olai,R,(t)(o)) if (¢t)Xo)=u
Raa’le (o) = w otherwise
R(F(ty,..., tu o) = FAYNR,(£,)(0), ... R (¢,)o))

R,(t,)(o) if Ry(b)a)=1
R,(if b then ¢, else 1, fi)(o) = { Ro(t,)(0) if Ry(b)(o)=1
u if Ry(b)(o)=u.

Notice that we have avoided defining a “left value” £, (as in [dB],
Definition 4.2).

1.2.6 Error semantics: comparison with strong three-valued logic

Recall the definition of FA* in 1.1.5: this implies that at a given state,
F(ty,...,t,) has the “unspecified value” u whenever any of ¢,,...,t,, has
this value. This is in accordance with the idea of errors propagating due
to unspecified data. In particular, considering the case that F is a logical
function, this means that a boolean of the form and(b,,b,), or(b,,b,), or
imply (b,,b,) has the value u whenever either b, or b, has. This is the
weak 3-valued logic discussed in 1.1.6.

Thus the boolean imply(b,,b,) has different truth conditions from
if b, then b, fi, which has the value t when b, is 1, even if b, is u.

30 Chapter 1

The following theorem says that the intermediate variables not in
ths(S) do not change in value with the execution of S. It may be com-
pared to [dB], Lemma 2.37.

THEOREM. Suppose c#t and My(SNo)=0c'#e. IfV is not in ths(S)
(ie. V =v€lhs(S) or V = <a,n > with a¢lhs(S)), then c'(V)=o(V).

PROOF. Induction on compl(S). O

*1.2.15 States which are specified on all relevant variables

The following propositions (or rather, their generalizations to later
languages) will be used in Chapter 4 (4.4.2 via 2.2.10, and 4.4.4).

PROPOSITION 1. Let t and o#t be such that ol(v)#u for all ve
SimVar(t), and ArrVar(1)=@. Then R,(t)(c)=u.

PROOF. Induction on compi(t). O

PROPOSITION 2. Let S and o#t be such that o(v)=#u for all ve
SimVar(S), and ArrVar(S)=@. Then M,(S)(o)=¢, and, moreover,
M4(S) o)) #u for all vESimVar(S).

PROOF. Induction on compl(S). O

1.2.16 Isomorphism between structures;
semantics abstraction theorem

Given two XI-structures A and B, we define a X-isomorphism p: A—>B
between them to be a family <¢; |i€Sort(Z)> of bijections ¢;: 4;—>B;
between domains of A and B of each sort i of X, such that for each func-

tion symbol F of ¥, if F has type (m;iy,...,i,,i), then for all
X €A, ..., X.€A; ,
Gi(FAG, ... x,) = FRpy(x)),. .., 5 (2

In particular (taking m =0), for any constant ¢ of sort i, ¢;(c?)=c?.

It is easy to check that ¢y and g are the identity functions on N and B
respectively.

Clearly, any such X-isomorphism extends in a natural way to a X“-
isomorphism ¢4: A*—> BY, by stipulating p*(u;)=u;.

More interestingly, any such X-isomorphism ¢: A —>B induces a bijec-
tion between the corresponding proper state spaces

#: PRSTATE(A)—>PRSTATE(B)
defined by (V) = pP(a(Vi),

Straight line Programs 31

which can be extended to a mapping between the full state spaces
@.: STATE(A)—> STATE(B)
with §(e)=¢.

THEOREM. Given a X-isomorphism ¢: A—>B and any S¢€ Statemt(Z)
(and with the notation as above), the following diagram commutes:

PR.STATE(A) MSTATE(A)

~

P

)

PR.STATE(B) M STATE(B)

PROOF. Induction on compl(S). O

In other words, the semantics of our programming language
ProgLang (¥) satisfies the Program Semantics Abstraction Principle, as
discussed in the Introduction (0.3.2).

1.3 ASSERTIONS

1.3.1 Syntax of the assertion language

For any signature X, let Lang,(Z) be the first-order language over L. It
thus includes quantification over variables of all sorts in X.

Now the assertion language AssLang,,= AssLang.(Y) (‘sa’ for
‘straight-line with arrays’) is based on Lang,(X"), the first-order language
over X" (see 1.1.5). More specifically, it will contain assertion variables, as
well as program variables, to range over the domains of A%, for A€k, but
with quantification only over the assertion variables. The motivation for
this is discussed in the next subsection.

The exact definition of the assertion language is as follows. We will
define, in turn, the classes of assertion variables, assertion terms and
assertions. Thus, for each sort i of X:

(1) AssVar; is the class of assertion variables of sort i, denoted
xtylzi ..

32 Chapter 1

(2) AssTerm; is the class of assertion terms of sort i, denoted s%,... It
extends the class ProgTerm; (1.2.1(6)) by the inclusion of assertion vari-
ables, and the constant unspec; (denoting u;), thus:

sto= xi ot | [sN| F (s, ..., s;m) | if sB then si else si fi | unspec;

where F is in I, of type (m; iy, ... 0,0
In particular, for i=B, we get the class of assertion booleans

AssBool =5 AssTermg,

given by
sBu= xB|oB|a¥sN| R(s,i‘, ... ,s,i?)leqi(sf,sé) | true | not(s®)
land(sE,s8) | if sB then sP else sB fi| unspecg
Whl\clere Ié is an algebraic relation symbol in L of type (m;iy, ... ,i,), and
i=NorB.

(3) Assn= Assn(3)is the class of assertions, denoted p,q,r, ...
An atomic assertion has the form of an equality between two assertion
terms of the same sort:

st s

where this equality symbol ‘=’ is different from the relation symbol eq;
introduced already (when i=N or B), and has quite different semantics (as
we will see below, 1.3.10).

Assertions are built up from atomic assertions by means of proposi-
tional connectives and quantification over assertion variables, thus:

p = sf=s5|=p 1 p1ap,13x[p]
Further logical operators can be defined in the standard way:
P1Vpa=ag ~(5pyA-p)
P12p2=ar ~(p1A=p)
D1 <> P2 =4y (p1op) A(pyo py)
vxi[p] Sar -3xi[-pl

1.3.2 Discussion
(1) Program variables and assertion variables.

This distinction between the two classes of variables can be understood as
being due to the difference in the way the two classes arise.

Straight line Programs 33

The class of program variables, or rather the set of sorts which name
their types, is determined a priori by the programming language under
consideration. By contrast, the types of the (quantifiable) variables in the
assertion language is determined a posteriori by the requirement that it be
expressible for the programming language (see Section 1.6). In the context
of the present chapter, the types of these two classes of variables is, in
fact, the same (namely, one type corresponding to each sort of ¥), and so
these classes could have been conflated here (as is generally done). How-
ever with the programming languages of the later chapters, the assertion
language includes quantification over variables of other types (essentially,
types of finite sequences over the sorts of X), as we will see, and so a dis-
tinction between these two classes of variables would become unavoidable
at that point.

Another reason for making this syntactic distinction is that it reflects a
clear conceptual distinction. Program variables of type i are locations in
which values, namely elements of the domain A;, can be stored. Assertion
variables of type i “range over” (in the traditional logical terminology)
the domain AY, and, when bound by quantifiers within assertions, they
give information about this domain.

It therefore seems methodologically and pedagogically sound to distin-
guish systematically between these two classes of variables, even in the
present chapter.

(2) Distinction between assertion booleans and assertions

It is clear that ProgTerm; c AssTerm; for each sort i, and in particular
(taking i=B) ProgBool c AssBool. However assertion booleans are not a
particular type of assertion — in fact AssBool is disjint from Assn! —
and hence ProgBool is also disjoint from Assn. (This contrasts with the
situation in [dB}): see Definitions 2.1(») and 2.8 there.)

To recapitulate: program (or assertion) booleans are built up from pro-
gram (or assertion) terms by the algebraic relations in £, and the logical
functions of not, and and eq; (for i =N and B). Assertions are built up
from atomic assertions (which always have the form sf= s, for some sort
i) by the operations of —~, A and 3. Further, their semantics are quite
different, as we shall see: for program or assertion booleans, it is 3-valued
(1.3.7/8), while for assertions it is 2-valued (1.3.10).

Example. 1f R is a relation symbol in %, and s,,...,s,, are program or
assertion terms of suitable type, then ‘R(s,,...,s,) is a boolean, which,
at a given state, may have one of three values: t, f or u. However
‘R(sy,...,5p)=true’ is an atomic assertion, which must evaluate to
either t or t.

34 Chapter 1

1.3.3 Further definitions
For any syntactic expression E, we define see 1.2.2(4)):

(1) AssVar(E) is the set of free assertion variables (i.e not bound by 3)
occurring in E.

(2) Var(E) is the set of free assertion and program variables occurring in
E,ie.

Var(E) =4; AssVar(E)u ProgVar(E).

1.3.4 Notation convention for values of assertion variables

We use the following convention relating assertion variables to their pos-

sible values: the symbols x,yi,z¢, ... (or simply x,y,z,...) denote
assertion variables of sort i, while the corresponding boldface symbols
xi,yi,zt,, ... (or x,y,z,...) denote elements of the domain A} in some

structure A" of K.

1.3.5§ Valuations

In order to define the semantics of assertions, states alone are insufficient,
since we also need assignments of meanings to the assertion variables.

DEFINITIONS. (1) A wvaluation (over A) is a function of the form

p= U p
i€Sort
where
p;: AssVar; —> A}
for each sort i.
(2) VAL(A) is the set of valuations over A, with elements denoted by
py...

Note that we do not impose the condition with valuations (as for states,
see 1.2.4) that p(x)s#u for only finitely many x.

1.3.6 Variant of a valuation

Let peVAL(A), xi€e AssVar; and x€AP®. Then p{x/x'} is the valuation
over A such that for all x'

Straight-line Programs 35

) (x) if x'
plx/x* ¥ x") = zx ;f chzxx.

(Compare 1.2.9.)

1.3.7 Semantics of assertion terms

We will define, for each A€, an evaluation function S, for assertion
terms, which is the union of a family (S%)esqs+ Of functions, where for
each sort i

Si: AssTerm; —> ((VAL(A)xPR.STATE(A)) —> A})
(compare 1.2.5). Thus for any assertion term s of sort i, valuation p over
A and proper state o over A, S,(s)(p,0) will be an element of A}

The definition is by induction on compl(s), and is the obvious extension
of the definition of K, for program terms in 1.2.5, with the two new
cases:

Sa(x¥)p, o) = p(x?)
Sa(unspec;)(p, o) = u;.

1.3.8 Consistency of semantics for program and assertion terms

From the definitions it is clear that for each sort i, ProgTerm;c AssTerm;
and their semantics (1.2.5, 1.3.7) are consistent, i.e. for any program term ¢
and any p, o:

Sa(t)(p, o) = Ry(t (o).

In particular, considering terms of sort B, we have a three-valued seman-
tics for assertion booleans, which extends that for program booleans.

1.3.9 Monotonicity for assertion terms
(Compare 1.2.8.) Suppose o,0'#¢.

THEOREM. If o <o (rel ProgVar(s)) and S,(s)(p,c)#u then
SA(S)(P, 0') =SA(S)(p, 0").

PROOF. Induction on compl(s). O
COROLLARY. If o ~0' (rel ProgVar(s)) then S,(s)(p, c)=5S,(s)(p, o).

REMARK. In particular, if ProgVar(s)=@, then S,(s)(p,o) does not
depend on o, in which case we may write it as .S,(s)(p,).

36 Chapter 1

1.3.10 Semantics of assertions
We will define, for each A €K, an evaluation function for assertions:

Ja: Assn —> ((VAL(A)xPRSTATE(A)) —> B)

(compare [dB}, Definition 2.9). So for any assertion p, valuation p over A
and proper state o over A, J,(p)(p, o) will be either t or f.

Thus assertions have the standard two-valued semantics, in contrast to
(program or assertion) booleans (1.3.8).

The definition is, as usual, by induction on compl(p)
o t if S,(sH)(p, 0)=S,(s8)(p, o)
1 _ ot —_
Talsi=s)p, o) = f otherwise.

Ta(py A py)(p, o) and T,(~p)(p, o) are defined according to the standard
(two-valued) truth tables, and

t if Jo(p)p{x/x})=1 for some x€ A}

f otherwise.

TJ,@xpD(p, o) = [

Notice again the difference between the semantics of the boolean eq;(sy,s5)
(for i =N or B) and of the atomic assertion s;=s,. If, at some p and o, s,
has the value u, then so has eq;(s,,s,), regardless of the value of s,, but
s,;=5, will have the value either t or f, depending on whether s, also has
the value u or not.

1.3.11 Interpretations, satisfaction and validity

DEFINITIONS. (1) An interpretation in K is a triple 1=(A, p,) where
A€lK, peVAL(A) and o € PRSTATE(A).

(2) INTERP(K) is the class of interpretations in K, with elements denoted
byl1,...

(3) If 1=(A,p,0) and p is an assertion, then I satisfies p, written / Fp
or A,p,cEp,iff I4(p)p,0)=1.

(4) The assertion p is K-valid, written KEp, iff Ikp for all I€
INTERP(K).

1.3.12 Semantics of assertions with equivalent states and
valuations

(Compare 1.3.9.) Suppose o, o'#¢.
THEOREM 1. If o ~ o' (rel ProgVar(p)) then I,(p)p, o) =T,(p)p, o).
PROOF. Induction on compl(p). O

Straight-line Programs 37

REMARKS. (1) In particular, if ProgVar(p)=@, then J,(p)(p, o) does
not depend on o, in which case we may write it as ‘T4(p)(p, - ¥, and also
write *A,pF p’ to mean A, p, o Fp for any o#=¢.

(2) There is no “monotonicity theorem” here, as there is with program
terms (1.2.8), statements (1.2.13) and assertion terms (1.3.9).

DEFINITION (Equivalence of valuations). let Mc AssVar. Then
p~p' (rel M) iff for all xeM, p(x)=p'(x).

We now have the following analogue of Theorem 1 for equivalent valua-
tions.

THEOREM 2. If p=~p' (rel AssVar(p)) then I,(p)p,c)=T4(p)(p',c).
PROOF. Similar to Theorem 1. O

1.3.13 Some simple facts on the semantics of program terms

PROPOSITION. For any interpretation 1=(A, p,o) and program term t,
we have:

(1) 1Et #unspec <> R,(t)(o)=u.
Further, in the special case that t =b, a program boolean, we have:
(2) IEb=true < R,(b)(o)=t
(3) IFb=false <« R,(b)o)=t
(4) IFb=unspec < K,(b)(o)=u

= pA(b)(O')=1I or pA(b)(O')=1}.
PROOF. Obvious, using 1.3.8. O

1.3.14 Substitution of a program term for a simple or subscripted
variable

For use in defining the proof system (in particular the assignment rules:
see 1.5.1) and in defining an assertion expressing the weakest precondition
(see 1.6.5), we need to define the notions of the substitution of a program
term ¢t for a simple variable v or subscripted variable alto), of the same
sort, in an assertion term or an assertion, denoted E <t/v>or E<t/a [t0]>
(where E is either an assertion term s or an assertion p). There are two
cases:

(1) We first consider the case of substituting for a simple variable. The
definitions of s <t/v> and p <t/v> are by induction, first on compl(s) and
then on compl(p), and are completely straightforward, as in [dB],
Definition 2.14, except that the case p = 3x [p,] is simpler here:

38 Chapter 1

ax [p,J<t/v> = 3x [p,<t/v>],

since, by our separation of program and assertion variables, x cannot be
identical to », or contained in ¢.

(2) The case of substituting for a subscripted variable is similar, except
for the subcase s <t/alto]> with s = als,] (as in [dB], Definition 4.4):

als,l<t /altg)> = if eqs,<t/altel>, to) then t
else als, <t /altol>] fi

We now have (compare [dB], Lemma 2.16(c)):
THEOREM (Substitution for program variables). Suppose o #¢.
(1) If o= ol , (1 W o)/v}, then

(@ Su(s <t/v>)p,0) = Sx(s)p, o),

(b) A,p,cEp<t/v> < A,p,TFp.
(2) If Ry(tg)(0)#u and &=c{l,(t o)/ <a,R,(te)(c)>}, then

(@) S,(s<t/alte]>)p, o) = S4(s)(p, &),

() A,p,cEp<t/altg> < A,p,5EpP.
PROOF. In both parts, by induction, first on compl(s) and then on
compl(p). 0O

Notice that we need not assume, in part (2) of the theorem, that
R,(t)(o)=u.

*1.3.15 Another type of substitution

We mention in passing another notion of substitution, which we need for
the purpose of defining an assertion expressing the strongest postcondition.
This is the substitution of an assertion variable for a simple or subscripted
program variable of the same sort, where (in the latter case) the subscript
is also an assertion variable:

p<x/v> and p<x/alzV]>.

The definitions are similar to those in the preceding section (again, first
defining such substitutions in assertion terms), except that one now has to
rename bound variables in the case p =3y [p,], to ensure that y is distinct
from both x and zN.

These substitutions satisfy substitution theorems similar to those in the
preceding section, e.g., for o#¢:

Straight-line Programs 39

A,p,okEp<x/v> < A,p,olp(x)/v}Ep
A,p,oEp<x/dzl> < A,p o{p(x)/<a,p(2)>}Ep.

We do not emphasize this notion of substitution, because (i) the complete-
ness theorem, at least in this chapter, does not depend on the expressibility
of the strongest postcondition (see the Remark at the end of 1.6.7), and (i)
the expressibility of the strongest postcondition for the languages of
Chapters 2 and 3 does not use this substitution.

+*1.3.16 Substitution of one assertion variable for another

We must consider one more notion of substitution, for later use in Chapter
3 (3.3.4), namely, of one assertion variable for all free occurrences of
another (of the same sort) in an assertion (with bound variables systemati-
cally renamed): p<y/x>.

Again, such a substitution must first be defined in an assertion term,
5 <y/x>, and then in an assertion, p <y/x>, by induction on compl(s) and
compl(p) respectively. We refrain from a complete definition, merely
considering the case p =3z [p,}:

3z [P]] ifz=x
3z,(p,<z,/z ><y/x>] if z=y#x
where 2z, is some assertion variable, of the same sort as z, not in

Var(p,)u{x,y} (say the first such one in some enumeration of AssVar).
We will also need (in 3.3.4) the following

THEOREM (Substitution for assertion variables). For o e,
(@) S,(s<y/x>)p, o) = S4(s) plp(y)/x},0),

(B) Tu(p<y/x>)p,0) = Tu(p X plo(y)/x},0).

PROOF. Induction on compl(s) and compl(p). O

*1.3.17 Congruent assertions

Finally, for use in the next chapter, (2.6.7) we mention here the syntactic
notion of congruence of assertions. Two assertions, p and p’, are called
congruent, p = p’, if they differ only in the naming of bound variables.
(We leave as an exercise an exact definition, by induction on compl(p).)
Then we have:

PROPOSITION. If p=p'then I,(p)=T,(p").

40 Chapter 1

1.4 CORRECTNESS FORMULAE

1.4.1 Syntax
The class Form,,=Form,(X) of correctness formulae (relative to L),
denoted f, ..., is defined by:

f == {piSiq}lp.

There are thus two types of correctness formulae:
(1) the “Floyd-Hoare formulae” or “specified programs” {p}S{g}, and
(2) assertions p, which can be thought of as assertions about the data.

1.4.2 Semantics
(Compare 1.3.11.)

DEFINITIONS. (1) (Satis faction.) We will define, for an interpretation
1=(A, p, o) and correctness formula f, the notion I satifies f, written
I1Ef or A,p,oFf.

Case 1. f={p}S{q}. Then A,p,c k[iff
A,p,oEp = (M(S)(c)#eand A,p,My(S)No)EQ).

Case 2. f=p. Then IEf asin 1.3.11.

(2) (K-validity.) A correctness formula f is K-valid, written KF [, iff
1Ef for all 1€ INTERP(K).

1.5 A PROOF SYSTEM; SOUNDNESS

1.5.1 The proof system

We will define a proof system ProofSys,,=ProofSys () for deriving
[K-valid correctness formulae. We will prove soundness of the system
below (1.5.2), and completeness later (1.7.1, after having proved expressi-
bility of the weakest precondition).

The proof rules can be divided into three groups: (A) rules for the pro-
gramming language constructs, (B) the K-oracle axiom, and (C) “logical”
rules. They are listed below.

(A) Rules for the programming language constructs.
(A1) The 'skip’ rule:

P29
{p}skipiq]

Straight-line Programs 41

(A.2) Assignment:

(simple variable:) p o (t #unspecAg <t/v>)
{plo=tiq]

(subscripted variable:)
p o (tp#unspec At zunspec Ag <t /alty]>)

{plaltol=tiq}

(A.3) Composition:
{pisir}, {r}S.iq}
{p}S:;S,qt

(A.4) Conditional:
{pa(b =true)}s,iq}, {pa(b="false)}S.{q}, p>(b=unspec)
o {p}if b then S, else S, filq)

(B) The K-oracle rule:
Every [K-valid assertion is taken as an axiom.
(C) Logical rules.
(C.1) Consequence:
pop. {pdSlad, g,2¢
{pisiq}

More rules will be added to groups (A) and (C) in Chapters 2 and 3, as the
programming language is extended.

Note that the rules of group (A) are independent of K. K enters the
proof system via the K-oracle rule, and affects the correctness formulae
{p}S{q} via the consequence rule.

DEFINITIONS. (1) The axioms of ProofSys ,,(IK) are the K-valid assertions,
given by the oracle rule. The inference rules are the remaining proof
rules.

(2) A derivation in ProofSys ,(IK) may be defined as a finite sequence of
correctness formulae D =(f}, ..., f,), where, for i=1,...,n, f; is either
an axiom, or the conclusion of (an instance of) one of the inference rules,
the premisses of which occur among f, ..., fi . D is said to be a deriva-
tion of f,. Itslengthisn.

(3) f is derivable in ProofSys ,(IK), written K f, if there is a deriva-
tion in Proof Sys (K) of f.

42 Chapter 1

1.5.2 Soundness
DEFINITION. An inference
NV
f

is K-valid iff K-validity of the premisses implies [K-validity of the conclu-
sion, i.e.

(KEf; fori=1,..., n) = KEf.
THEOREM. The system Proof Sys ,(IK) is sound relative to K, ie. for any
f€Formy (%),
KFf = KEf.
PROOF. We will show that each of the inference rules of ProofSys . (K)

is K-valid. The theorem then follows, by induction on the length of a
derivation of f.

(A.1) The ‘skip’ rule: this is clear.

(A.2) The assignment rules.
(a) For simple variables: assume

KE p o (t #unspecAq <t/v>). (1)

We must show: KE{p}v:=t{g}. So take an interpretation /=(A,p, o) in
K, such that

A,p,o Fp (2)
and put o' =My(o:=t)(0o). (3)
We must show: o'#¢ and A, p, o' Fq. By (1) and (2),

A, p, o Et #unspec 4)
and A,p, 0 F qg<t/v>. (s5)
By (4) and 1.3.13, R,(t)o) #u. (6)
By (3), (6) and the definition of M, (1.2.11),

o' = o{R,(t) o)/ v} (2. @)

Finally, by (5), (7) and Theorem 1(b) in 1.3.14, A,p,c' F q.
(b) For subscripted variables: Exercise.

Straight-line Programs 43

(A.3) The composition rule. Suppose
KF {p}s{r} (8)
and Kk {r}S,{g}. 9)

We must show: KFE{p}S;;S,{g}. So take an interpretation 7=(A, p, o) in
K such that

A,p,oc Fp (10)

and put o' =Ma(8;8,)(0). (11
We must show: o'#c and A,p,0’'Fgq. Let

o = My(S (o). (12)

By (8) and (10), o' #¢ (13)

and A,p,c" Er. (14)
By (11), (12), (13) and the definition of M,,

o' =My(S,)(a"). (15)

Finally, by (9), (14) and (15), o'#¢ and A, p, o' Fq.
(A.4) The conditional rule. Suppose

KE {pAa(b=true)}s,iq}, (16)
KFE {pA(b=false)}S,lg} an
and KE p o (b #unspec). (18)

We must show: KFEifb then S, else S, fi. So take an interpretation
1=(A, p, o) such that

A,p,ocEp (19)
and put o' = M,(if b then S, else S, fi)(o). (20)
We must show: o#¢ and A,p,o' Fqg. By (18) and (19),
A, p,o F b=unspec,
hence (by 1.3.13) R,(b)o)=torf.

So there are two cases:

a4 Chapter 1

Case 1. P, (b)(o)=1. (21)
By (20) and the definition of %,

o' = Mu(S,)(o). (22)
By (19) and (21), A,p,0 E pAa(b =true),

so by (16) and (22), o'#¢ and A,p, 0’ Eq.
Case 2. R,(b)(c)=1. Similar, using (17).
(B.2) The consequence rule: Exercise. O

1.6 PREDICATES; STATE TRANSFORMERS; THE WEAKEST
PRECONDITION AND STRONGEST POSTCONDITION

1.6.1 Predicates
DEFINITIONS. (1) A state predicate on a structure A€ is a function
nm: PRSTATE(A) —> B.

(2) A state predicate w on A is finitely based if there exists a finite set
M c ProgVar such that for all o, o'€ PRSTATE(A),

og~o (rel M) = n(c)=n(c")
(see Definition 2 in 1.2.12).
EXAMPLE. For any p€Assn and p€ VAL(A), let us use the notation
TIa(pXp) =4y Ao € PRSTATE(A).J,(p)p, o).
Then J,(p)(p) is a finitely based predicate, by 1.3.12.

(3) A state predicate m on A is expressible over A in the assertion
language AssLang,, (relative to a valuation p) if there is an assertion p
such that J,(p)(p)=n. In that case we say that p expresses m over
A (rel p).

1.6.2 State transformers

DEFINITIONS. (1) A state transformer on A is a function
®: PRSTATE(A) —> STATE(A)

which is monotone, in the sense that for 0,0’ € PR.STATE(A),

Straight-line Programs 45

ogco = o)) (1

(see Definition 1 in 1.2.12).

(2) A state transformer ¢ on A is finitely based if there exists a finite set
M cProgVar such that (a) for all 0,0’ € PRSTATE(A),

oged (rel M) = (o) =d(o') (el M), (2a)
and (b) for all V not in M and all o € PRSTATE(A),
Po)V)= (V) (2b)

REMARK. Conditions (2a) and (2b) above are called aloofness and stabil-
ity respectively in Schwarz [1977]). Together they imply the following,
which is weaker than these conditions together but stronger than (2a)
alone (for o,0' € PRSTATE(A) and M the finite set given in (2)):

forall M'oM,oc~0c" (rel M) = o) ~dc") (rel M"). (2d)

Also, under the finite base assumption (2), the monotonicity condition
(1) is equivalent to each of the following (again, for 0,0’ EPR.STATE(A)
and M the finite set given in (2)):

ocgco (rel M) = (o) o) (rel M); (19
forall M'aoM, oo (rel M) = (o) cd(c) (rel M). am
PROPOSITION. For any statement S, Ms(S) is a finitely based state
trans former.

PROOF. By the theorems in 1.2.13 and 1.2.14. O

1.6.3 Weakest precondition and strongest postcondition

DEFINITIONS. (1) (Weakest precondition.) Given a state transformer ¢
and predicate m, both on A, the weakest precondition of ¢ and n, written
WP, (®,m), is the predicate on A which holds at o € PR.STATE(A) (ie. its
value at o is t) iff

d(o)#z and w(P(o))=1.

(2) (Strongest postcondition.) Given a state transformer ¢ and predicate
7, both on A, the strongest postcondition of ® and m, written SP A(m®), is
the predicate on A which holds at o € PRSTATE(A) iff

there exists o'#¢ such that (o) =1 and ¥ o) =0.

PROPOSITION. I f ® and m are finitely based, then so are WP 4(®,m) and
SP A(TI',‘I’).

46 Chapter 1

1.6.4 Expressibility of the weakest precondition and

strongest postcondition: Definitions
Given a statement S and assertion p, we say that the weakest precondi-
tion (or strongest postcondition, respectively) of S and p is K-expressible
in the assertion language AssLang,, if there is an assertion g of that
language, such that for all A €K and p€ VAL(A),

(or I,(g)(p) = SP (T, (p)Xp), M4(S)), respectively).

In this case we say that q expresses the weakest precondition (or strong-
est postcondition, respectively) of S and p, uniformly over K.

We will prove the expressibility of the weakest precondition and
strongest postcondition in the next two subsections.

We should note that Olderog [1983] has shown that for any finitely
based state transformer, expressibility of that transformer, of its weakest
precondition, and of its strongest postcondition, are all three equivalent to
one another (for a given first-order language, over a fixed structure).

1.6.5 Expressibility of the weakest precondition

We will give an effective method for constructing, from a statement §
and assertion p, an assertion denoted wp,[S,p] which we will show
expresses the weakest precondition of S and p, uniformly over K.

DEFINITION. The assertion wp,,[S, p] is defined by induction on compl(S).
(Below and elsewhere, we omit the subscript ‘sa’.)

wp(skip, p] = p
wplo:=t, p]l = (t zunspec)Ap <t/v>
wplaltel:=1, p] = (ty=unspec) A (t #unspec) A p <t /alto]>

wp[S;:8,5 pl = wpl[S,,wpl[S,, pl]

wplif b then S, else S, fi,p]l = (b =true) Awp[S;,pD Vv
((b =false) Awp|S,, p]).

Straight-iine Programs 47

THEOREM. wplS, p] expresses the weakest precondition of S and p,
uniformly over K. In other words, for all (A,p,c)€INTERP(K), if
0"=mA(S)(G'), then

A,p,c Ewpl[S,pl < o'#cand A,p,0'Fp.

PROOF. By induction on compi(S).
Case 1. S =skip. Clear.
Case 2. S =v:=t. Then
wpl[S,pl = (t zunspec) A p <t/v>. (1)
Also (by the definition of #,)
ol) a)/ v} (#e) if Ry(t) (o) =u

o' = 3 if Ry(t)o)=u. (2)

Now A,p,cFwplS,pl

< A,p,oF(t=unspec)Aap<t/v> (by (1))

< R,(t)o)#uand A,p,cFEp<t/v> (by 1.3.13)

< R,(¢)o)#uand Ap,c{R,4(t)c)/v}Ep (by 1.3.14, Theorem 1(b))
< o'#eand A,p,0'Fp (by (2)).

Case 3. S =altp):=t. Similar. (Use 1.3.14, Theorem 2(b).)

Case 4. §=845,. Then

wpl[S,pl = wp[S,,wp[S,, pl] (3)
Put o"=M,(S,)(c). Then (by definition)
, Ma(S2H(0") if o"e

g =

(4)

£ if o"=¢.

A,p,cFwplS,p]
A,p, o Ewpl[S;,wp[S, pl] (by (3))
o"#z and A,p,c" Fwpl[S,, p] (induction hypothesis)

R

o'#cand A,p,0'Fp (induction hypothesis again and (4)).

48 Chapter 1

Case 5. S =ifb then S, else S, fi. Then
wpl[S, pl = (b =true) Awp[S,,pD v (b =false) Awp[S,, p]. (5)
Also (by definition)

'mA(S])(O') if RA(b)(O')zﬂ'
3 if R4(b)o)=u.

Now A,p,cFEwpl[S,pl
[either (R4(b))=t and A, p,c EWp[S;,p])
<>

or (B(b))=t and A,p,cEwpls,pl) (bY(5)and 1.3.13)

(ind. hyp. and (6))

either (R4(b)(o)=1 and o'#¢ and A,p,c'Fp)
< [or (R,(b)(o)=1 and o’'#¢ and A,p,0'Fp)

< PL,(b)o)#uand o'#cand A,p,0'Fp
< o'#cand A,p,0'Fp (by (6)). 0O

1.6.6 Properties of the weakest precondition
As simple consequences of the theorem in the last subsection, we have
CoroLLARIES. (1) KF{g}S{p} < KEgowpls,pl
In particular, taking g = wpl[S,pk
KE{wpl[S,pl}Sip}
(2) (Intermediate assertion.)
KF{g}S:;:S:{p} < KE{g1S{wplS, plh

PROOF. Clear. The right-to-left implication in (2) follows from (1) and
the validity of the composition rule. O

+1.6.7 Expressibility of the strongest postcondition

We will give an effective method for constructing, from a statement §
and an assertion p, an assertion denoted Sp,[p,S] which, we will show,
expresses the strongest postcondition of S and p.

DEFINITION. The assertion Sp,,[p,S] is defined by induction on compl(S).
(Again we drop the subscript ‘sa’.)

Straight-line Programs 49

splp,skip] = p

splp,v:=t] = 3x [p<x/v>Av =t <x/v>=unspec]
(where x¢Var(p,t))

splp.altol:=t] = 3x,2M p<x/alz"]> A
Ay =to<x /alzN]>=unspec A
A a[zVM=t <x/a[zN]>#unspec]
(where x,zMVar(p,to,t))

splp.Sy;S,] = splsplp,s,].S,]

sp(p,if b then S, else S, fi] = sp[pA(b =true),S,]v
splp A (b =false),S,].

Note that the substitutions ‘<x/v>’ and ‘<x/a[z"]>’ used in the above
definition were discussed in 1.3.15.

THEOREM. sp[p,S] expresses the strongest postcondition of S and p,
uni formly over K. In other words, for all (A, p, o)€ INTERP(K),

A,p,oFsplp,S] < forsome o'#¢, A,p,0'Fp and M,(S)(c)=o0.

PROOF. By induction on compl(S). For the case that S is an assignment,
use the theorems on substitution stated in 1.3.15. We omit details. O

We remark that this theorem (and the corollaries in the next subsection)
are not actually needed in the sequel, since for the proof of completeness
of the proof system (1.7.1) we can use the expressibility of the weakest
precondition instead of the strongest postcondition.

*1.6.8 Properties of the strongest postcondition

Now the analogues of the corollaries in 1.6.6 do not all hold. In particular,
the correctness formula

{pisisplp,s]}

is not valid in general. For a counterexample, take S=v#p and
p =true. Then sp[p,S] is (equivalent to) v:=unspec. But the formula
{true} v:=v{o #unspec} is not valid, since it is not satisfied by any state
o for which o(v)=u.

50 Chapter 1

Nor, a fortiori, does the bi-implication
KE{p}S{qg} < KEsplp.S]oq

hold, at least not in the “<=" direction, as we see by taking ¢ =sp[p,S]
However we have the following partial analogues to the results in 1.6.6.
COROLLARIES.

(1) KE{p}Sig} = (KF{p}S{splp,S]} and KEsplp,S]=q).
(2) (Intermediate assertion).
KE{p}S;;Salq} = (KE{p}Si{splp,S;]} and KF{splp,S1}S,{g}).

PROOF. Exercise. The point is that if A,p, o Fp and M,(S)(c)=0’, then
A,p, o' Esplp,S,], provided that o'=¢! O

1.7 COMPLETENESS OF THE PROOF SYSTEM

1.7.1 Proof of completeness

We are now in a position to prove the converse of the soundness theorem
(1.5.2).

THEOREM. The system ProofSys . (IK) is complete relative to K, ie. for
any f € Form,(X),

KEf = KkHf. (1)

PROOF. If f is simply an assertion, then (1) is immediate, by the K-oracle
rule. So assume f ={p}S{g}. We will prove (1) by induction on
compl(S).

Case 1. S =skip. Suppose KFE{p}skip{g}. Then KFp>q. So by the
oracle rule, K+ pog. Hence by the ‘skip’ rule, {p}skipig}.

Case 2. S=v:=t. Suppose {plv:=t{g}. Then by 1.6.6, Corollary 1,
KE po(wp[o:=t,q]), ie.

KEp o(¢t zunspecAq <t/v>).
Hence by the oracle rule,
K} p o(t #unspec A g <t/v>),
Hence by the assignment rule (for simple variables), K+{p}v:=tiq}.

Case 3. S =altgl:=t. The argument is similar.
Case 4. S =8;;5,. Suppose KFE{p}S;;S.{g}. By 1.6.6, Corollaries 1

Straight-line Programs 51

and 2,
KE{p}S{wp[S;.q]} and KE{wp[S,ql}S,{g}.
Hence by the induction hypothesis,
KH{p}Si{iwplS,,q]} and KH{wpls,ql}S,{g}.
Hence by the composition rule, K+{p}S;;S,{q}.
Case 5. S =if b then S, else S, fi. Suppose
KE{p}Siql. (2)
We must show:
(@) KE{pAa (b =true)}s,lq},
() KE{pa(b=Ffalse)}S,q)},
and (c) KEpo(b=#unspec),

since then Kt {p}S{g} follows by the induction hypothesis (applied to
(a) and (b)), the oracle rule (applied to (c)) and the conditional rule.

For (a): take (A,p,)€ INTERP(K), and (dropping all reference to A
and p from now on) suppose

o Epa(b =true). (3
Then okp (4)
and Ry(b)o) =1t (5)
Let o' =My(S)o) (6)
By (5), o' =My(S o) @)
and by (2), (4) and (6) o'#¢ and o'Fgq. (8)

Then (a) follows from (3), (6) and (8).

Similarly for (5). As for (c), take any o #¢, and suppose o F p. Then
Ra(b)c)=u would imply M4(S)o)=¢ contradicting (2). Hence
R,y(b) o) #u, and so (by 1.3.13) o Eb=unspec, thus proving (c¢), and
Case 5, and the Theorem. O

Notice that the consequence rule was not needed in the completeness proof.
Its redundancy here can be attributed to our special form of the assign-
ment rule. For, with the form of this rule used in Apt [1981] or [dB],
namely (considering assignments for simple variables) {p<t/v>}v:=t{p},
the consequence rule would indeed be needed.

52 Chapter 1

1.7.2 Discussion: Use of the weakest precondition in the
completeness proof

The expressibility of the weakest precondition was used in two places in
the above proof: with the assignment rule (cases 2 and 3) and with the
composition rule (case 4).

Now this use of the weakest precondition was not essential in the case
of the assignment rules; it just simplified the proof. Actually the general
notion of weakest precondition for an arbitrary statement was not used
here, only the special case of an assignment statement. (In fact it could
also have been used in the same way in the proof of the soundness
theorem (1.5.2), to simplify the proof of the validity of the assignment
rules. We avoided this, and introduced the notion of weakest precondition
only after the proof of soundness, in order to emphasize that this notion is
not necessary for that proof.

In the case of the composition rule, however, the expressibility of the
weakest precondition (for an arbitrary statement) was used, in an essential
way, in order to obtain an intermediate assertion (Wpl[S,q], in the above
proof). In fact, we could also have obtained an intermediate assertion by
use of the strongest postcondition (sp[p,S;], in the notation of the proof).

Note that the numerical sort N was not needed in defining the assertions
expressing the weakest precondition wp[S,p] or strongest postcondition
sp(p,S], and was (therefore) not really needed for the theory of this
Chapter. (Its use as the type of the subscripts of subscripted variables was
just a matter of convenience; other types could have been chosen.) Thus
the results of this chapter hold for any class K, with arbitrary signature,
and not only for the standard classes.

In Chapters 2 and 3, by contrast, the definition of the assertions express-
ing the weakest precondition and strongest postcondition will use the sort
N, and the standard operations associated with it (see 1.1.1, part 3(a)), in an
essential way.

53

Chapter 2

‘While' Programs

2.1 NOTATION FOR PARTIAL FUNCTIONS

Since partial functions will play an important role in the rest of this
monograph, we collect some terminology and notation here.

(1) The notation ‘f: A > B’ means that f is a partial function from A
to B, whereas ‘f: A — B’ means (usually) that f is a total function.

(2) For f: A=>Band xeA we write f(x)! (“f(x) converges”) if x is
in the domain of f, and f(x)1 (“f(x) diverges”) otherwise. We also
write f(x)ly (“f(x)convergestoy”)if f(x)! and f(x)=y.

(3) For f:A->B, g: A->B and x€A, we write f(x)~g(x) if either
f(x) and g(x) both converge, and to the same element of B, or they both
diverge.

(4) We observe the usual convention for composing partial functions.
Thus, for example, if f: A => B and g: B->C, and we define h: A =>C
by h(x)~g(f(x)), then h(x)1if, and only if, either f(x)tor f(x)ly for
some y € B such that g(y) 1.

(5) By “function from A to B” we will generally mean: total function.
(6) We will also (in Chapter 3) consider “vector-valued partial functions”
p: A->Bx---xB,
with components @it A—>B; G=1,....k),

where pla) =~ (pya), ..., 1)

for a€ A. We will always assume that ¢(a)! if, and only if, ¢;(a)! for
all components i. In fact we will only work with vector-valued

54 Chapter 2

functions ¢ which satisfy the (strong) assumption that
pla)! iff ¢;(a)l foralli,
and pla)? iff ¢;(a)? for alli.

2.2 THE PROGRAMMING LANGUAGE

2.2.1 Syntax

The programming language ProgLang,,,= ProgLang, () (‘wa’ for “while
with arrays”) is like the language ProgLang,(X) of Chapter 1, except
that the class Statemt,, of statements now also includes the ‘while’ state-
ment, thus:

S = Skip|vi:=ti Iai[tN] :=ti |S1;S2|ifb then S] else S2 fi
| while b do S od

For the rest, the definitions and notation of 1.2.1 and 1.2.2 concerning syn-
tax carry over.

2.2.2 The programming language without arrays

We also consider the simpler language ProgLang,, (X) without arrays. All
the concepts to be introduced in this chapter can be modified in an obvious
way to apply to this language, and we refer to such concepts by using the
subscript ‘w’ instead of ‘wa’.

Although we only discuss the language with arrays in this chapter, we
will use the simpler version in Chapters 3 and 4, when considering
‘while’ program computability.

2.2.3 Semantics

The semantics of program terms is exactly as in Chapter 1 (1.2.4—1.2.8).
As for the semantics of statements (1.2.9—1.2.11), there is now an impor-
tant difference, namely that execution of programs need not terminate. In
fact we will define, for any A€IK, a meaning function for statements

M,: Statemt,,—>(PR.STATE(A)->STATE(A)),

so that M,(S) is now a partial function from proper states to states (com-
pare 1.2.11).

The idea is that the domain of M,4(S) consists of exactly those proper
states o for which execution of S, starting in o, will eventually

‘While' Programs 55

terminate, either in a proper state or in the error state &.

Again, for statements S and proper states o, #,(S)(c) is defined by
induction on compl(S), as follows.

If S is skip or an assignment, then the definition is as before (1.2.11).

Further
Ma(S,)(0") if My(S,)(o) Lo'=e,
mA(S];Sz)(O') o &€ if mA(Sl)(O')lE,

My(S,)(o) if R (b)o)=1
M, (if b then S, else S, fi)(o) =~ { My(S,)(c) if Ry(b)o)=1
£ if £,(b)(o)=u

Finally let S = while b do S, od. Then there are three possibilities:

(i) Normal termination: My(S)(o)lo'#e iff there exists n=0 and
Ogr-vns o,(#¢) such that og=0 and o,=0¢' and for all i<n,
R,(b)(o;)=1 and M,(Se)o;)oy,q, and Ry (B)(o,)=1.

(ii) Exceptional termination or abortion: M,(S)o)le iff there exists
n=0and o, ...,o,(#) such that oy=0 and for all i <n, Ry(b)(o;)=1
and M,(Sp)(o;)lo;,,, and either Ro(b)(o,)=u or Ry(b)c,)=1 and
mA(So)(O’n)lE.

(iii) Divergence: M,(S)(c) 1t otherwise, ie. iff either (a) there exist n =0
and o, ...,o,(#¢) such that og=oc and for all i <n, B4(b)(o;)=1 and
Ma(Se)o;)=0;,q, and M, (Se)o,)1 (local divergence), or (b) there is an
infinite sequence og, 0y, ...(#&) such that og=o and for all i,
R,(b)(o;)=1 and M,(Sp)(0;) Loy,, (global divergence).

(Note that, above and elsewhere, we write ‘cy, ...,0,(#¢) to mean:
‘oo(#e), ..., 0, (#).)

2.2.4 Discussion

To repeat the difference between M,4(S)(c)=¢ and M,4(S)No)T: The
former means that execution of §, starting in state o, terminates in the
error state &, or aborts, and this is always because some variable which
was accessed in the course of this execution had the unspecified value u (as
discussed in 1.2.11).

56 Chapter 2

The latter means that execution of S, starting in o, does not halt at all,
but diverges; and it is easy to see that (in the case of the present language
ProgLang,,,) this is always ultimately due to giobal divergence of some
‘while’ statement contained in S (case (iii Xb) in the definition of M,).

There is a sharp difference between the treatment of these two notions
in the theory of partial correctness (see Section 2.4).

The definition in 2.2.3 gives an operational semantics for Statemt,,, (as
in [dB], Definition 3.20). We could also give a denotational semantics, and
prove their equivalence (as in [dB], Definition 3.22 and Theorem 3.25), but
we refrain from this.

We will give both types of semantics for recursive programs in the next
chapter, and prove their equivalence (3.1.10).

2.2.5 Computation sequences

To make our operational semantics clearer, we introduce the notion of
computation sequence (as in [dB], p.148).

DEFINITION 1. A computation sequence over A is a finite or infinite (non-
empty) sequence of states over A such that every state, except possibly the
last (in the case of a finite sequence), is a proper state.

We let COMPSEQ(A) denote the set of computation sequences over A,
with typical elements 7,....

Thus a computation sequence has one of the forms:
7=(0p,...,001) (n>0),
or T=(00, 01, .-’ Tpye--).

In general o; #¢, except possibly in the first case, when i =n—1.

A computation sequence is intended to represent the “trace” of a compu-
tation, i.e. the sequence of all states, initial, intermediate and final, encoun-
tered during the execution of a statement.

DEFINITION 2. A finite computation sequence (o, ..., 0,) is proper if
o, 1 is a proper state (i.e. #¢), and improper otherwise.

Thus there are three types of computation sequence: proper, improper and
infinite (the first two being finite). An improper computation sequence
represents an aborted computation, and an infinite computation sequence
represents a divergent computation.

We also define some (partial) operations on computation sequences:

"While’ Programs 57

DEFINITION 3. (a) The length Zh(7) of a sequence 7 is defined by

n if r=(og, ..., 0,)
th(r) = [oo otherwise.
(b) The i-th component (i) of T is defined by
o; if T=(oq, ..., o;,...) withi <lh(7)
i) = [undefined otherwise.

(c) The last component end(7) of 7 is defined, for 7 finite only, by:
end(T) = 7(Ih(7T)-1).

Thus 7 is infinite if th(T)=co, proper if h(7) <co and end(7)=¢, and
improper if Ih(7) < co and end(7)=¢.

DEFINITION 4. 777, the concatenation of two computation sequences, is

defined as follows. If 7 is infinite or improper, then 7°7'=7. Otherwise,

suppose 7=(0yg, ..., 0,¢), With o, y#& Then 7°(og,0¢,...)=(0oy, ...
s T 1500507 - ..)

DEFINITION 5. Let Th(7)=1 < co.

(a) For m<n<l,[7]2 is the segment (7(m),7(m+1), ..., 7(n)), which is a
computation sequence of length n—m+1.

(b) For n<l,[7], is the tail-segment [7]} of .

2.2.6 The computation sequence generated by a statement
from a state

We define a function

Comp,: Statemt,, —> (PRSTATE(A) — COMPSEQ(A))

where Comp,(S)(o) is the computation sequence generated by S, starting
in state o(#¢) (compare [dB], Definition 5.16). We will see below that for
all S and o#¢,

end(Comp,(S)(c)) =~ My(S)o).
The definition is by induction on compl(S):
(1) If S is skip or an assignment, then

Comp,(S)(o) = (o, M,(S) (o)

(ie., a sequence of length 2; see 1.2.11 for the definition of ‘M,’).

58 Chapter 2

(2) If § =8,;S;: suppose Comp,(S;)Xo)=7. Then
7°Comp,(S,)(end(7)) if T is proper

Comp,(S)(o) = T otherwise.

(3)if S=if b then S, else S, fi, then

(o) Comp,(S,)(c) if £, (B)(o)=1
Comp,(S)(0) = { (6)" Comp,(S,)(o) if Ry(b)(o)=1
(o,¢) if R,(b)(o)=u.

(4) If S =whileb do S, od: there are four cases.

Case 1 (Normal termination). There exist n=0 and proper computation
sequences T,...,T, such that (putting og=0 and o;=end(7;) for
1<i<n) for i<n, R4(b)Xo;)=t and Comp,(Sp)(o;)=7;,,, and
R,(b)o,)=t. Then

Comp,(S)(o) = ()" 1,1 -+ "7, (o,)
(Note that when n=0 this reduces to (o, &)).

Case 2 (Exceptional termination, type 1). There exist n=0 and proper
computation sequences Tq,...,7T, such that (putting oo=0 and o;=
end(7;) for 1<i<n)fori<n, R,a(b)(c;)=1 and Comp,(Sp)o;)=1,;, and
R,(b)(o,)=u. Then

Comp,(S) o) =(c) 1,771 -+ "1, (¢)
(Note that when n=0 this reduces to (o, £)).

Case 3 (Exceptional termination, type 2, and local divergence). There
exist n>0 and 74,...,T, With 7,,...,7,_; proper and v, improper or
in finite, such that (putting op=o and o; =end(7;) for 1<i<n)fori<n,
R,(b)(o;)=1 and Comp,(Sy)(o;)=7;,,. Then

Comp,(S) o) =(o) 71" - "7,

Case 4 (Global divergence). There is an infinite sequence 74, 75,, ... (all
proper) such that (putting oyp=0 and o; =end(7;) for all i >0) for all
i=0, Ry(b)(o;)=t and Comp,(So)(0;)=7;,;. Then

COMPA(S)(Q-) = (O')ATIATZ" .

PROPOSITION. M,(S)(o) ~ end(Comp,(S)o)).
PROOF. Induction on compl(S). 0

‘While' Programs 59

The above proposition is clear, and not at all deep, since our definitions of
M, and Comp, were both operational. In the next chapter, by contrast, a
denotational or fixed-point semantics for programs is given, and the proof
of equivalence between the two semantics is then less trivial (3.1.8).

2.2.7 Extensions of computation sequences
Let 7, 7€ COMPSEQ(A) and M c ProgVar. We have (compare 1.2.12):

DEFINITION. TS 7 (rel M) iff either
(i) th()=th(+) and for all i <Ih(7), (i) < 7(i) (rel M), or
(ii) th(7)<lh(+) and for all i <Zh(7), 1(i) < 7(i) (rel M), and end(7)=c.

2.2.8 Monotonicity for statements
(Compare 1.2.13.)

THEOREM. Suppose M 2 ProgVar($), o,0'#¢, and o S o' (rel M). Then

(1) Comp,(S)(o) cComp,(S)(o'). Hence:

(2) If My(S) o) L& then also My(S) o' L#e and Mu(S) (o) S My(S)H o)
(rel M).

(3) If My(S) o)1 then also My(S) o) 1.

PROOF of (1): Induction on compl(S). O

COROLLARY. Suppose M 2 ProgVar(S), o,0'#¢ and o =~ o' (rel M).
T'hen either

() Mu(S)(a) Lze, My(S)(0") Le and My(S) (o) =M, (S) o) (rel M), or
(ii) My(S)o) Le and M, (S)(o') le, or

(iii) M4 (S) (o) Tand M,4(S)(o) 1.

2.2.9 Variables in the “left hand side” of a statement;
constancy of other variables

(Compare 1.2.14.) The definition of Zhs(S) extends that in 1.2.14, with the
clause

Ihs(while b do S od) = ths(S).

Again we have: lhs(S)c ProgVar(S), and

THEOREM. Suppose o#t and M,y(S)o)lo'#e. If V is not in Ihs(S)
then o'(V)=0o(V).

PROOF. Induction on compl(S). O

60 Chapter 2

#2.2.10 States which are specified on all relevant simple variables

The following proposition will be used in Chapter 4 (in 4.4.2; compare
1.2.15).

PROPOSITION 1. Let S and o#¢ be such that o{v)#u for all vESimVar(S),
and ArrVar(S)=0. Then either My(S)X o)t or Mu(S) o) e, and, in
the latter case, My(S) o) (v)=u for all ve SimVar(S).

PROOF. Induction on compl(S). Use 1.2.15, Proposition 1. O

The following is another version of this proposition, for the case that
array variables may be present. The problem here is that it is then
always possible for the program to abort, since (the evaluation of) an
array variable may be unspecified at (the evaluation of) an index.

PROPOSITION 2. Let S and o#¢ be such that o(v)#u for all vESimVar(S).
If My(8)(c) ¢, then My(S) o) (0)#u for all veSimVar(S).

PROOF. Induction on compl(S). O

2.2.11 Isomorphism between structures;
semantics abstraction theorem

(Compare 1.2.16.)

THEOREM. Given a X-isomorphism ¢: A—>B and any Se€Statemt(L)
(and with the notation of 1.2.16), the following diagram commutes:

PR.STATE(A) w) STATE(A)

/| |
Mp(S)

PR.STATE(B) —2-5 STATE(B)

PROOF. Induction on compi(S). O

So the semantics of our programming language ProgLang, () again
satisfies the Program Semantics Abstraction Principle, or at least an obvi-
ous adaptation of the versions given earlier (0.3.2, 1.2.16) to partial mean-
ing functions.

‘While' Programs 61

2.3 ASSERTIONS

2.3.1 Structures A* of signature I*

In order to be able to express the weakest precondition for ‘while’ pro-
grams (2.6.11), it is necessary to strengthen the assertion language, by
making it the first order language over an enriched signature £*.

Consider a structure A€ of signature X:

A= ((Ai)igsm, (EjA)l sts)'

We have already defined (1.1.5) the structure A" of signature LY on
which our programming language semantics is based:

AY = ((A?)iesm, (F}A'u)1 <jss» (u;)iESart)'

Now we will describe the construction of an augmented structure A* of
signature X*
Define, for each sort i, the domain A} to be the set of functions

£: N—> AP
such that the set
dom(§) =4; {n€N| ¢(n)#u}

is finite.
We also have the new operations of application

Apf: AFxINY — AY
where for n€N Apf(g,n) = ¢n)
and Apf (£,up) = u;.

(We are continuing here with the convention of Chapter 1 of adding a
superscript ‘A’ to a function symbol, to denote its interpretation relative
to the structure A, or A*. We are also continuing with the “boldface” con-
vention 1.3.4.)

Then A¥* is the structure obtained by adjoining the above to AY, namely

A* = (AP);esore » (APiesorns» (FjA'u)1 <j<s» (w; Diesore » (AP Diesors)

with signature X*,
And K* is the class of structures A* for A€K.

62 Chapter 2

2.3.2 Remarks

(1) The first-order language over L* will be used as the assertion language
for ‘while’ programs. Its value lies in the fact that it is possible, within
this language, to formalize the semantics of the programming and asser-
tion languages, and hence express the weakest precondition (2.6.11).

(2) The restriction that dom(£) be finite for £€ A¥ shows that we only
need a form of weak second order logic over A.

(3) Since Ay=N and Ag=B, it is not really necessary to have separate
domains A and AJ, since these could easily be coded in IN (as in Zucker
[1980]). However we keep these domains for the sake of uniformity of
treatment with the algebraic domains.

2.3.3 The assertion language: syntax

The assertion language AssLang,,= AssLang,(X)is Lang,(X*), the first-
order language over X*. The details are as follows.

For each sort i, we have two types: i and i¥* representing the domains
AY and A} respectively. (So the type i corresponds exactly to the sort i of
Chapter 1.)

The language then extends the language AssLang,, of Chapter 1 (1.3.1)
correspondingly, with the following syntactic classes:

(1) In addition to the class AssVar; of assertion variables of type i, there
is also a class AssVar} of assertion variables of type i*, denoted
£,n',¢,.... We then define

AssVar =45 \J AssVar; u | AssVar.

ieSort i€Sort
(2) AssTerm;, the class of assertion terms of type i, again denoted s, . . .,
is defined as in Chapter 1 (1.3.1(2)), but with one more formation rule,
using the application operation:
sto= oo | Ap;(¢,sN).
We will usually write ‘€(s) for ‘Ap(¢,s).

(3) Assn*= Assn*(L), the class of assertions, again denoted p,q,r,..., is
defined like Assn (1.3.1(3)), but with one more formation rule, for
quantification over A¥

px= - |3¢[pl

We do not need equalities between assertion variables of type i * since we
can take the formula ‘¢i = ¢2 to be an abbreviation for VzN¢,(zNM=£(zM].

‘While' Programs 63

2.3.4 Notation
Regarding the assertion language:

(1) We will use zN ... or z,... exclusively for variables of type N.
Correspondingly, we will use &N ... or ¢ ... for assertion variables of
type N* only.

(2) We will use i, j,k,l,m,n,... to range over natural numbers, thus:

Val---n---] means Vz[zzunspecyo:-:-z -]
and In[---n---] means 3z[z#unspecyr---z---].

(Remember, the assertion variables of type i range over A, not A;.)

2.3.5 The assertion language: semantics
We are now interested in valuations over A* where (¢f. 1.3.5) a valuation
over A* is defined to be a function of the form

p= U (p;up})

i€Sort
‘where for each sort i
p;: AssVar; —> AY
and p¥: AssVar}—> AF.

The set of such valuations is called VAL(A*), with elements denoted by
Pyen--

The semantics of the assertion terms and assertions is then given by
modifying the definitions of the functions S, (1.3.7) and J, (1.3.10)
respectively in an obvious way.

An interpretation in K* (¢f. 1.3.11) is now defined as a triple
1=(A* p, o) where A€ (and hence A*eK*), pe VAL(A*) and (as before)
o€ PRSTATE(A). The class of all such interpretations is called
INTERP*(KK).

The notions of satis faction, I Fp, and K-validity, K Ep, are defined as in
1.3.11, where now K Ep iff T Ep for every I € INTERP*(KK).

All the results of Section 1.3 then carry over in an obvious way.

64 Chapter 2

2.4 CORRECTNESS FORMULAE

2.4.1 Syntax
The class Form,,=Form,(X) of correctness formulae (relative to X),
denoted 1, ..., is defined as in Chapter 1 (1.4.1):

f = {p}siq}lp.

2.4.2 Semantics

Their semantics, however, differs significantly from that in Chapter 1,
since M, (S) is now a partial function on states. (Compare 1.4.2.)

DEFINITIONS. (1) (Satisfaction) We define, for an interpretation
I1=(A*, p, o) and correctness formula f, the notion 7 F f as follows.

Case 1. f ={p}S{q}. Then A* p,c Ff iff for all o"
(A% p,o Ep and My(S) (o) ic') = (o'#& and A* p, o' Eq).

Case 2. f=p. ThenIEf asin2.35.
(2) (K-validity) KEF iff TEf for all 1€ INTERP*(K).

2.4.3 Discussion

In the definition of ‘7 F{p}S{q}, notice that the condition that #,(S)(c)!
is included in the assumption, but the condition that #,(S)(o)#¢ is in the
conclusion. Thus, for example, for 7 =(A* p, o),

IE{truels{q} if M,(S)(o)T,
but I Htrue}S{q} if M,(S) (o)l

So this notion of partial correctness distinguishes sharply between a pro-
gram execution which never terminates (diverges), and one which ter-
minates in an error state (aborts). (The semantics of total correctness is
considered in Section 2.8.)

2.5 A PROOF SYSTEM; SOUNDNESS

2.5.1 The proof system

We define a proof system ProofSys,,=ProofSys () for deriving K-
valid correctness formulae. This is just like the system ProofSys, of
Chapter 1 (1.5.1), except for the addition of a rule for ‘while’ statements:

‘While’ Programs 65

(A.S5) The ‘while’ rule:

por, {ralb=true)}s{r}, ra(b=false)oq, r>(b=unspec)
{plwhile b do S odig}

The assertion r is called an invariant for the ‘while’ statement, or a loop
invariant (with respect to p and ¢q).

Now we wuse the notation ‘KFjf’ for derivability of f in
Proof Sys ,.(IK).

We prove soundness of this system below, and completeness later (Sec-
tion 2.7).

2.5.2 Soundness

THEOREM. The system Proof Sys(KK) is sound relative to K, i.e. for any
f€Form, (%),

KFf = KEf.

PROOF. This amounts to showing (as in 1.5.2) that each inference rule is
K-valid, i.e. K-validity of the premisses implies K-validity of the conclu-
sion. However it is now not sufficient just to check the new ‘while’ rule,
as there are complications even for other rules (since #,(S) is no longer a
total function).

The arguments for the ‘skip’ and assignment rules do carry over exactly
from 1.5.2, since for § = skip or an assignment, #,(S)(o) is a total func-
tion. Consider now the composition rule:

{p1sir}, {r}s,iq}

{p1Si:S,lq}
Suppose

KE{p}Siir} (1
and KE{r}s;ig} (2)

We must show: F{p}S,;S,{q}. So take an interpretation I=(A* p, o) in
[K* such that (suppressing the ‘A* and ‘p’)

o Fp, (3)
and suppose Ma(S,:S,)(0) Lo (4)
We must show: o'#e and o'Fgq.

Now M, (S;)(c) T would imply M,4(S;;S,)(o) 1, contradicting (4). So sup-
pose

66

My(S (o) la"
By (1) and (3), o' #E
and o' Fr.
By (4), (5), (6) and the definition of M,
Ma(S,)(oM) Lo

Finally, by (2), (7) and (8), o'#¢ and o'Fgq.
The conditional and consequence rules are left as exercises.
sider the ‘while’ rule. Suppose

KE por,
KE {ra(b=true)}s{r},
KE ra(b=false)og
and K F r (b # unspec).
We must show F{p}S,{q}, where
S, = whileb do S od.

So take an interpretation I =(A*, p, o) in K* such that

o Ep,
and suppose My (S)o) o
We must show: o'#¢ and o' Fgq.

Chapter 2

(5)
(6)
(7

(8)

Now con-

(9)
(10)
(11)
(12)

(13)
(14)

Now consider the definition of M,4(S;) (in 2.2.3). By (14), either case (i) or
case (ii) (loc. cit) holds. In other words: there exist n=0 and

og, - .., 0, (#) such that op=0, and foralli<n
Ry(b)o;) =1

and My(S)o;) Loy,

and either

(a) R,(b)c,)=1and M,(S)c,)lc'=e and Ry (b)) =1, or
() R,(b)o,)=tand My(S)c,)leand o'=¢, or
(c) R,(b)o,)=uand o'=¢.

Now by (9) and (13), o Fr.
Then by repeated application of (10), (15) and (16), for alli<n,

(15)
(16)

‘While' Programs 67

o; Era(b=true).
By one more application of (10), (15) and (16),
o, Fr. 17

By (17), (12) and Proposition 1.3.13, #,(b)(o,)#u. This excludes case (c)
above. By the remaining cases (a) and (b),

R,(b)o,) =1t (18)

By (17), (18) and (10), case (b) is excluded, and further, by (a), o’#¢ and
o kr (19)
and A CIER (20)

So by (11),(19) and (20), o’'Eq. O

2.6 PARTIAL STATE TRANSFORMERS; THE WEAKEST
PRECONDITION AND STRONGEST POSTCONDITION

2.6.1 Partial state transformers

The notion of a state predicate on a structure A€ is exactly as defined in
Chapter 1 (1.6.1). However we are now interested in partial state
transformers (compare 1.6.2).

DEFINITIONS. (1) A partial state transformer on A is a partial function
&: PRSTATE(A)-->STATE(A)

which is monotone, in the following sense. Suppose o,0' € PRSTATE(A)
and o< o’ (see 1.2.12, Definition 1). Then

(i) if ®(o) e then ®(o’) l#¢e and ¥(o) cP(o'), and

(i) if ®(o) T then ¥(o’) 1.

(Note that it is permitted that ®(o) L& and &(o") 1.)

(2) A partial state transformer & is finitely based if there exists a finite
set M c ProgVar such that
(a) for all 0,0’ € PRSTATE(A), if o ~ o' (rel M) then either
(i) (o) l#eand &(o") l#e and ¥(o) =2P(a’) (rel M), or
(i) ®(o)ieand (o) le, or
(iii) (o) Tand &(o") 1; and
(b) forall V not in M and all o € PRSTATE(A),

o) l#xe = Ho)(V)=0o(V)

68 Chapter 2

The remark in 1.6.2, on equivalent formulations of the monotonicity and
finite determinateness conditions, also applies here (when modified in the
obvious way to allow for divergence).

PROPOSITION. For any statement S, M,(S) is a finitely based partial state
trans former.

PrROOF. By 2.2.8 and 2.2.9.]

2.6.2 Weakest precondition and strongest postcondition
(Compare 1.6.3.)

DErFINITIONS. (1) (Weakest precondition.) Given a partial state
transformer ¢ and a predicate m, both on A, the weakest precondition of &
and n, written WP,(®,n), is the predicate on A which holds at
o € PRSTATE(A) iff

o)l = (Mo)#e and m(P(o))=1).

In other words, WP (&, m)(c) =1 iff
either ®(o) l#e and n(d(o))=1,

or (o) 1.

(2) (Strongest postcondition.) Given a state transformer ¢ and predicate
m, both on A, the strongest postcondition of ® and m, written SP4(m,®), is
the predicate on A which holds at o € PRSTATE(A) iff

there exists o'#¢ such that n(o’)=t and (') = o.

Again, we have:

PROPOSITION. 1 f & and = are finitely based, then so are WP 4(®,n) and
SP 4 (mr,®).

Note that WP,(®,n) is the weakest precondition for partial correctness
(called “weakest liberal precondition” in Dijkstra [1976]), which is what
we emphasize in this monograph. The weakest precondition for total
correctness (called simply “weakest precondition” in Dijkstra [1976]) is
discussed briefly in the last sections of this, and the next, chapter.

"While' Programs 69

2.6.3 Expressibility of the weakest precondition and
strongest postcondition: Introduction

The notion of K-expressibility of the weakest precondition and strongest
postcondition is defined as in 1.6.4.

The rest of this section (2.6) is devoted to a proof of this expressibility
(Theorems 4 and 5 in 2.6.11). Some preparation is needed for this, as we
now briefly explain.

The main step in this proof is the proof of the expressibility of the com-
putation predicate in the assertion language AssLang,, (Definition 2 and
Theorem 2 in 2.6.11).

In building up to this, we will see how to formalize, within this
language, the notions of state (2.6.5/6) and computation sequence
(2.6.9/10). It is here that we will see why the assertion language was
defined as it was, i.e. as a weak second order language!

The central issue, briefly, is the representability of finite sequences (e.g.
computation sequences) over the domains. Now for the domain of natural
numbers (or integers) this can be done in a well-known way, within a
first-order language over the structure, by a primitive recursive coding of
finite sequences of numbers as single numbers. However, over abstract
structures this is, in general, impossible, and we need a separate type of
finite sequences (or finite functions) over each domain.

2.6.4 Important convention

Assume, from now on, that all program terms, statements, assertion terms
and assertions, with which we deal, contain simple and array variables
only among ¥,d, where

is the tuple (vy, ..., vy,) of sorts (k;, ... ky,) respectively,

?
d is the tuple (ay, . ..,ap,) of sorts (Z;, ...y,) respectively.

and
2.6.5 Representation of states by vectors in A*

With the above convention, we can represent a state o over A by a finite
sequence or vector of elements of A%

X =(xg,x,,...,xn|, fi'---vfuz) *)
where M; and M, are as in 2.6.4,
x§eBY,
X; GAkl: for i=1, e ,M],
and tj EA[T for j=1, oo ,.Mz.

70 Chapter 2

The idea is that x& is a “flag”, indicating whether o is a proper state or
not. In the former case, x; = o(v;) (=u possibly) and £;(n)=ola;j,n) (=u
possibly) for 1 <i<M,, 1< j<M, and n€IN. More precisely:

DEFINITIONS. (1) Let X be the sequence of types kj, ... ky,, and [* the
sequence of types I{,...,l3,. Then A¥[B, k,1*] is the product domain

u TR u * ... *
BY x A} x xAlexAllx xA[M2

with typical elements X, ..., ie. vectors, as in (¥) above.
(2) The error vector error® in A* is defined as

(ug, ug,, - - - By s Acug, .. ,)\n-uuMZ)

in A*[B,Iz f *], which represents the error state &.

(3) For a vector X as in (*), and a state o over A, X represents o iff
either (a) o=¢and X =error4, or (b) o#e, x§=1 and x; = o(y;) and
¢;(n)=ola;,n) for 1<i<M;, 1< j<M, and n€N.

(4) "ois the unique vector which represents o.

Note that by 1.3.9 (Corollary), 1.3.12, 2.2.8 (Corollary) and 2.2.9, we could
assume that all our proper states o are completely unspecified on all pro-
gram variables other than 3 and d. In that case, the vector "o gives an
exact representation of o, and we could even identify o and "o\

2.6.6 Representation of states formally in the assertion language
Consider now a tuple of assertion variables
X =G xy...xmp k1o bm) (%)
where x; has type k; for i=1,...,M,,
and ¢; has type [;* for j=1,...,M,.
We will use X, ... for tuples of assertion variables as in (**).
Now take p€ VAL(A*) and a tuple X as in (**).
DEFINITIONS. (1) p(X) denotes the vector

(p(x®), p(xy), ... oCxp), pL&), - .., p(Ep,)).

(2) X represents a state o relative to p iff p(X) represents o, ie.,
P
p(X)="o

(3) (Variant of a valuation.) p{X /X} is the valuation p' which agrees
with p off X, and such that p'(X)=X.

‘While’ Programs 71

2.6.7 Representation of the semantics of assertion terms
and assertions within the assertion language

Let X =(x§ xy,...,Xp, &1, -+ -, £m,) be a tuple of assertion variables as
in (**) above.

We will define, for each assertion term s and assertion p (where Var(s)
and Var(p) are disjoint from X) another term s [X], and assertion p[X],
which “represent” the semantics S, of s, and I, of p, respectively, rela-
tive to the state “represented by” X, in the sense of the theorem stated
below.

The idea is that the simple and array program variables »; and a; in
these expressions are replaced, respectively, by the assertion variables Xx;
and £ in X.

More precisely:

DEFINITION 1. Let s be an assertion term such that
AssVar(s)nX = 4. (1)

We define an assertion term s[X], of the same type as s, by induction on
compl(s). (The first two cases are the interesting ones; the rest are trivial.)

%[X] = x; (1<isM,)
a;[sl[x] = ¢(s[XD (1<j=M,)

x[X]=x (Remember, by (1), that
t[X] = eGsIxD x and ¢ are not in X.)

F(sq, ..., 5,)[X] = F(s,[x1,...,s,,[XD
if sB then s, else s, fi[X] = if sB[X] then 5,[X] else s,[X] fi

unspec[X] = unspec.

REMARK. It is clear that
ProgVar(s[X]) =0
and AssVar(s) c AssVar(s[X]) c AssVar(s)uX.
DEFINITION 2. Let p be an assertion such that
AssVar(p)nX =§. (2)

(where, as in Chapter 1, AssVar(p) refers to the free assertion variables
in p). We will define an assertion p[X].

72 Chapter 2

First let us assume that p satisfies the stronger condition:
no free or bound assertion variables in p are in X. (29

The definition of p[X] is by induction on compl(p). (Now all the cases
are trivial. Note that any sub-assertion of an assertion satisfying (2) also
satisfies (2').)

(s;=5)[X] = (5,[X]=s,[XD

p)x1=-(plXD
(pr ApIIXT = pi[XTAp,[X]
Ix[pllXT=3x[p[X]] (Remember, by (27, that
3¢[pllxT = 3¢[p[XT] x and ¢ are not in X.)
Now let p be any assertion which satisfies (2). Then we define
plX1 =4 pIX1
where p' is an assertion congruent to p (see 1.3.17) which satisfies (2).

REMARKS. (1) p[[X] is well defined up to congruence, ie. if p' and p”
are both congruent to p and satisfy (2'), then p'[X]=p"[X] (We omit
the proof.)

(2) It is clear that
ProgVar(p[X]) =0
and AssVar(p) c AssVar(p[X]) ¢ AssVar(p)uX.

Hence we may use the notation of the Remarks in 1.3.9 and 1.3.12 in the
following Theorem.

THEOREM. Suppose X represents o(=¢) relative to p. If Var(s) and
Var(p) are disjoint from X, then

(@) Sa(sIXDp,-) = Sals)(p, o),
®) Fu(p[XDp,-) = TalpXp, o).

To restate (b): For any interpretation (A* p,o) and tuple X such that
X represents o relative to p, and any p with Var(p)nX =0,

A* pFplX] <« A%p,0FEp.
PROOE. Induction on compl(s) and compl(p). O

‘While' Programs 73

2.6.8 Functions of two variables in A*

In order to represent finite computation sequences within the language of
A*, we must also consider, for each sort i, binary functions, i.e. functions
of two number variables

7n: N2 —> AP,

again with the restriction that dom(n)=4;{(m,n)|n(m,n)=u} is finite.

This involves extending the language to include (for each sort i) asser-
tion variables 7' for binary functions, and the corresponding application
operator Ap}?), with the new formation rule

PL |Api(2)('r’i,S]N,S§')-

We let %,... or 7,... denote assertion variables for binary functions.
Also we write ‘n(s;,s,) instead of ‘Ap?(n,s,,s,).

Corresponding to this extension of the assertion language AssLang,,,
there is an extension of the structure A* to include, for each sort i, a
domain A;¥? of binary functions 7.

However this provides an inessential extension of AssLang,,, or (to put
the matter another way) the domain A;*?’ can be modelled within A, by
coding a binary function #n in the well-known way as a unary function
£: IN—> A, where for all m,ne€N

(<m,n >) = nlm,n).

Here ‘<, >’ is a primitive recursive surjective pairing function on N,
which is expressible in the language of first-order arithmetic, and hence in
Asslang,, (ie. the assertion language without arrays; see Zucker [1980],
section A.1). More precisely:

THEOREM (Elimination of binary function variables). For any assertion
p containing bound (but not free) occurrences of binary function vari-
ables, we can effectively find an assertion p not containing such vari-
ables, such that

KEp < p.

PROOF. As indicated above, there is an assertion qo=qq(zy,2523) in
AssLang, (with free and bound variables of type N only) which
expresses the pairing function <, > over N, ie., for all k,k,,k;€ N and
all A, p with p(z;)=k; (i=1,2,3):

A’p*:qo(Z]qu,Z:;) L <k],k2>=k3

and KFqoz;,2523) 2 (z;2unspec) <> (z;#unspec A z,#unspec)).

74 Chapter 2

Now p is transformed into p as follows. Consider any sub-assertion of p
of the form 3n{p,}. Suppose n occurs in p, in the context of assertion
terms 7)(511,512) , - - -» 7(Sp1,5x2). Then 3nlp,] is replaced by

33z, ... ,Zn[Q(}QO(Si'1,Si'2,Zi)AP1']

where £ has the same sort as 2 and £z, ...,2, do not occur, free or
bound, in p, or qq and p;,s;; and s/, are formed from pq,5;; and s5;;
respectively (for i =1, ...,n) by replacing all occurrences of 7(s;jq,5;,) by
£(z;) (for j=1,. n)

Th1s process is repeated until there are no binary function variables left
in p. It should be clear that the resulting assertion p satisfies the state-
ment of the theorem.]

Because of the above theorem, we may assume, when convenient, that the
structures A* include domains A¥? of binary functions, denoted by

M-
For such a function n, and me€N, n(m) denotes the unary function

a .n(m,n).

2.6.9 Representation of computation sequences by vectors in A*

(Compare 2.6.5.) Consider now a vector of elements of A*:

Y = (MR b ey - ay) (4+%)
where zZNeN,
£ e B,
LEAL for i=1,...,M,,

and ﬂjEAlfQ) for J—l, - ,Mz.
DEFINITIONS. (1) AX[N, B¥, & * [*2)] is the product domain
N“ x B* XAk"; X oo XA"*MI XAITQ) X - A*(Z)

2
with typical elements ¥, ... as in (***),

(2) For i€lN, Y (i) is the “crosssection of ¥ at i”, ie. the following vec-
tor in A*[B, k I

(Eg(i), f](l), e esy EMI(’:)’ ﬂ](i), e ,7]"2(1:))
(3) For a vector Y as in (**), and a finite computation sequence 7 over A

(see 2.2.5), Y represents v iff zN=Ih(7), and for all i < zM, ¥ (i) represents
7(7) (as in 2.6.5).

‘While' Programs 75

(4) "7 is the unique vector in A*[N,B*k*[*?] which represents T
(assuming 7 is finite).

2.6.10 Representation of computation sequences formally in the
assertion language

(Compare 2.6.6.) Consider now a tuple of assertion variables
Y =CGNE &by) (orx)
where § has type k;* fori=1,...,M,,
and 7; has type [;¥? for j=1,...,M,.
We will use Y, ... for tuples of assertion variables as in (¥***),
Now take p€ VAL(A*) and a tuple Y as in (***),
DEFINITIONS. (1) p(Y) denotes the vector in A*[N, B* k *,[*2)]:

(o(zN), p(E8), p(&y). . .. oCEar), P11, - .. P(7p D).

(2) Y represents a finite computation sequence 7 relative to p iff p(Y)
represents T (ie. p(Y)="7").

2.6.11 The computation predicate; expressibility of the
weakest precondition and strongest postcondition

In this subsection we will define a number of assertions in the language
AssLang,,,, including, notably, the computation predicate Compug, and
concluding with the assertions Wp,,,[S, p] and sp,,[p,S], representing the
weakest precondition and strongest postcondition of S and p.

We first show how various operations on computation sequences (defined
in 2.2.5) can be expressed in AssLang,, by corresponding operations on
tuples Y. Thus let

Y =z, 60t - mppee.)
as in (****), Then we can define
h(Y) =, z,
end(Y) =45 Y (z-1)

(note the different typeface from that in 2.2.5). Furthermore, ‘Y(k), the
k-th component of Y, can be defined contextually, thus: an assertion
p(Y(k)) containing this symbol can be defined as

X '[p(XIAX'=Y (X)),

76 Chapter 2

where, with X'=(x4,x;,...,¢,...), the expression ‘X'=Y(k) is an
abbreviation for

M, M,

M\xi=£00) A MV2 (852 =,k 2.

[= j=
Similarly, the “segmenting operation” ‘[Y]2’ can be defined contextually:
an assertion p([Y]2) containing this symbol can be defined as

ay '[p(Y)AY =[Y]2],
where the expression Y '=[Y]2’ is an abbreviation for
h(Y V=n—-m+1 A Vk <h(¥ NY (&)=Y (m+k)].

Similarly for the tail-segment ‘[Y],".
Now we define some assertions containing the tuples X =(x§x,, ...,
£&,...)and Y.

DEFINITION 0. (a) Proper(X) =,, x§=true.
(This says: “X represents a proper state”.)

M, M,
(b) Error(X) =, (x§=false) A (X]\(x,- =unspec;) A /X}VZ [¢;(2) =unspec,j]
15 J

(“X represents the error state”).
(c) State(X)=,, Proper(X) v Error(X).
(d) CompSeq(Y) =, Vi <Ih(Y)Proper(Y(@)] A State(end(Y))

(“Y represents a finite computation sequence”).

Next, the notion of variant of a tuple representing a state is defined contex-
tually:

DEFINITION 1 (Variants of tuples representing states).
Suppose X =(xo.x1, ... Xy k1 Emy)
and X' =(xg, X1, Xpg €100 Eby)
are disjoint tuples. Then
(@) ‘X'=X{s/io) (for 1<ip<M, and s an assertion term of sort k;) is
the assertion:

M, My

(x=5) A /X(}(x,-’=x,-) A /_X\]Vz[gj'(z)=£j(2)].
i= J-

izig

‘While' Programs 77

(b) ‘X'=X{s/<jos0>} (for 1=jo<M,, s of sort ; and so of sort N) is
the assertion:

M,
/i((\)(x,-’=x,-) A Ejlsg)=s AVz #sol£;(2)=¢; (2] A

M,
A (X}Vz [¢;(2)=¢;(2)].
J'J¢J'0
We now confirm the correctness of this definition.

THEOREM 1. Suppose X represents ol#e) relative to p, and
ProgVar(s,sg)=@. Then

(a) A pEX'=X{s/i} <
X' represents o{S,(s)(p,-)/v;} relative to p.
() A pEX'=X{s/<j, s>} < -
X' represents o{S,(s)(p,)/ <a;, Sa(s0)(p,")>} relative to p.

PrROOF. Directly from the definitions.]

DEFINITION 2 (The computation predicate).
We will define an assertion Compug(X,Y,X’) with the meaning: “Y
represents a computation sequence generated by S, starting in the state
represented by X and terminating in the state represented by X'” (see
Theorem 2 below).

The definition is by induction on compl(S). (Compare the definition of
Comp, in 2.2.6. An explanation follows step (6) below.)

(1) S =skip. Then Compug(X,Y,X") =
h(¥)=2 A Y(0)=Y(1)=X =X"' A Proper(X).
(2) S=v;:=t (1<i<M,). Then Compug(X,Y,X") =
Ih(Y)=2 AY(0)=X AY(1)=X" A Proper(X) A
A(t[XJ#unspec > X'=X{t [XT/iDA
At [X]=unspec > Error(X).

78 Chapter 2

(3) S =ajlt=t (1<j<M,). Then Compug(X,Y,X") =
Ih(¥)=2 AY(0)=X AY(1)=X" A Proper(X) A
A((to] X J#unspec A t [X]#unspec) >
5 X'=X{t[XV <jtolX]>DA
A((to[X]=unspec v t[X]=unspec) > Error(X)).

(4) $ =85S, Then Compug(X,Y,X") =
Im < Ih(Y)3X "[Proper(X ") A Compug,(X,[Y), X" A
A Compugy(X ", [Y],,1, XN v
v(Compug,(X,Y,X") A Error(X")).

(5) S=ifb then S, else S, fi. Then Compug(X,Y,X") =
Y(0)=X A
A(b[X]=true o Compug,(X,[¥Y];, X')DA
A(b[X]=false > Compug,(Y(1),[Y];, XA
A(B[X]=unspec o (Ih(Y)=2AY(1)=X"'AError(X")).

(6) S =while b do Sy od. Then Compug(X,Y,X') =
Y(0)=X A
Adm, n, 0)=0 A Hn)=m A Vi<n[¢() < i+1] A
AVi<n[b[Y (¢(D))]=true A
A Compug(Y(¢(), [YIHHY, Y(¢G+ 1] A
A (casel1 v case2 v case3)].
where case1, case2 and case3 are, respectively, the three assertions
b[Y(m)=false AY(m+1)=Y(m)=X"' A Ih(Y)=m+2,
b[Y(m)l=unspec A Y (m+1)=X"' A Error(X') A In(Y)=m+2,
b[Y(m)]=true A Compugy(Y(m), [Y],,1, X") A Error(X").

Explanation. Here m and n range over type N, and ¢ over N* (see 2.3.4).
The sequence of numbers &(0), &(1),...,&(n) marks off the n segments of
the computation sequence Y determined by n repeated executions of the
‘while’ loop. The three assertions case1, case2 and case3 give the three

‘While' Programs 79

ways that a ‘while’ statement can terminate (corresponding to the first
three cases listed under (4) in 2.2.6).

REMARKS. (1) It is easily seen (by induction on compi(s)) that
K FCompug(X,Y,X') o (CompSeq(Y) A Y(0)=X Aend(Y)=X")
(2) It is also easily seen that
ProgVar(Compug(X,Y,X")) =0,
AssVar(Compug(X,Y, X)) c X,Y,X".
(Hence we may use the notation of 1.3.12, Remark (1).)
Again, we confirm the correctness of the definition.
THEOREM 2. The assertion Compug expresses the computation predicate
uniformly over K. In other words: if X,Y and X' represent o, T and
o' respectively (all relative to p), then
A* pFCompus(X,Y,X") <
o#z and 7= Comp,(S)o) and o = end(7) =M, (S)o).

PROOF. Induction on compi(S). 0

As we have observed before (2.6.3), this theorem provides the justification
for the weak second order assertion language, since it shows that the
semantics of all ‘while’ program computations can be expressed uniformly
(for a given §) in this language.

The assertion Compug may be compared to (the assertion representing)
Kleene’s T-predicate (Kleene [1952], Chapter XI), which is first-order
definable over the structure of Peano arithmetic. Since Compug is not
first-order definable over the signature ¥ of A, the extension to L* is
needed.

DEFINITION 3. Val(X,3,d) =4
M, My
Proper(X) A [x]\xi =v; A /)(}‘v’z[fj(z)=a ;210
i= J=
(This says: “X is a proper state, with values given by % and a.”)

THEOREM 3. For any p and o#=e:

A% p, 0 FVal(X,3,d) <
X represents o relative to p (ie. p(X)="o7).

PROOF. Clear. O

80 Chapter 2

The following corollary of Theorem 3 will only be used in Chapter 3.
COROLLARY. Suppose Var(p)nX =@. Then
K F p «>3X [Val(X,3,d)Ap[X]].
PROOE. We will show that for any interpretation / =(A* p, o),
TEp <« IEk3X[ValX,3,a)AplXx]].
(“=") Suppose (dropping the ‘A*)
p,oFEp. (1)

Let p=p{"o/X}. (See 2.6.5, Definition 4, and 2.6.6, Definition 3.) Then X
represents o relative to p, so by Theorem 3

7,0 E Val(X,3,d). (2)
Also, by (1) and since Var(p)nX =8,
poFp

(by Theorem 2 of 1.3.12, which applies to the present assertion language).
Hence by the Theorem in 2.6.7

7o EplX]. (3)
By (2) and (3), 7,0 E Val(X,3,a)ap[X].
Hence p,o E3X [Val(X,3,a)Ap[X]. (4)

(“«=”) Conversely, suppose (4). Then for some vector X, putting
p=piX/X}

7,0 E Val(X,?,d (5)
and 7,0 F plX]. (6)

By (5) and Theorem 3, X represents o relative to 7, hence by (6) and the
Theorem in 2.6.7,

poEp.
Hence, since Var(p)nX =@, we have (again by 1.3.12, Theorem 2):
p,oFp. |

Now we can give the assertion expressing the weakest precondition of any
statement S and assertion p (satisfying the convention in 2.6.4):

‘While' Programs 81

DEFINITION 4. Wp,,,[S,p] =4
VX,Y,X'[Val(X,3,d) ACompug(X,Y,X") o
> Proper(X)aplx1].
(Here X' is chosen so that Var(p)nX'=@.)

We note that ProgVar(wp,,[S,pD) = b,a,
and AssVar(wp,,[S, p]) = AssVar(p).

(Below we will drop the subscript ‘wa.’)

THEOREM 4. wplS, p] expresses the weakest precondition of S and p,
uniformly over K. In other words, for all inter pretations (A*, p, o) in KK,

A% p, 0 FwplS,p] <
Jor all o', if My(S) o) Lo’ then o'#¢ and A* p,c’ Fp.
PROOF. Clear, from Theorems 2 and 3 and the Theorem in 2.6.7.]
COROLLARIES. (Compare 1.6.6.)
(1) KE{g}S{p} = KEgowpls,pl
In particular, taking q = wplS,pl
K E {wpls,pl}Sip}.
(2) (Intermediate assertion.)
KE{g}S:;S,{p} < KE{g}S,{wplS, pl}.

Finally, we have the assertion expressing the strongest postcondition.
DEFINITION 5. $p,,.[p,S] =4

1x .Y ,X[pl[X'] A Compug(X"Y,X) A Val(X,5,a)].
(Again, X' is chosen so that Var(p)nX'=@.)

We note again that ProgVar(sp,, [p.S) =b,d,
and AssVar(sp,[p,S] = AssVar(p).
(As before, we will drop the subscript ‘wa’.)

82 Chapter 2

THEOREM 5. splp,S] expresses the strongest postcondition of S and p,
uni formly over K. In other words, for all inter pretations (A*, p, o) in K,

A* p,0cEsp[p.S] &
for some o'#¢, A% p,0'Fp and M, ($)(o)lo.
COROLLARIES. (Compare 1.6.8.)
(1) KE{p}Sig) = (KE{p}Sisplp,S1} and KEsplp,Sl>q).
(2) (Intermediate assertion).
KE{p}S;:Solgt = (KHE{p}Si{splp,S,]} and KHisplp,S:]}S:iq}).

2.7 COMPLETENESS OF THE PROOF SYSTEM

2.7.1 Proof of completeness

THEOREM. The system ProofSys . IK) is complete relative to K, ie. for
any f€Form,(X),

KEf = Kkf. (1)

PROOF. We prove (1) for f ={p}S{q}, by induction on compl(S). Most
of the cases are as in the proof of the Completeness Theorem in Chapter 1
(1.7.1). For example, in the case S =S;;5;, an intermediate assertion can
be defined as either wpl[S,,q] or sp[p,S;). Consider now the case

S = while b do S, od. (2)
So suppose KE{p}Siq} (3)
with § asin (2). Let r = wplS,ql.
By (3) and Corollary (1) of Theorem 4 (in 2.6.11)
KEpor. (4)
Also, by the same Corollary, KF{r}S{g}. (5)

Now M,(S)=M,(if b then S, fi;S) (check!); so from (5)
K E{r}if b then S, fi;S{q}.
Hence from Corollary (2) of Theorem 4 (in 2.6.11),
K E{r}if b then S, fi{r}. (6)

"While' Programs 83

Hence KE{r A(b =true)}Sy{r}
and so, by induction hypothesis,

KH{ra(b=true)}Syir}. (7)
Also R,(b)o)=1 = M,(S)=skip,
so from (5) KEra(b=Ffalse)>q (8)
Also from (6), K Fr» > (b #unspec). 9)

Thus the premisses of the ‘while’ rule have been proved, by (4), (7), (8),
(9) and the oracle rule. Hence we can infer the conclusion, i.e.
KE{p}Siq}. O

2.7.2 Remark on the loop invariant

In the above proof, the assertion expressing the weakest precondition was
used to obtain a loop invariant for the ‘while’ statement. Such a loop
invariant could also have been obtained by an assertion expressing an
appropriate strongest postcondition (as was first done in Cook [1976]: see
Apt [1981], §2.8).

2.8 APPENDIX: TOTAL CORRECTNESS FOR
‘WHILE’ PROGRAMS

2.8.1 Semantics of total correctness

As indicated in 2.4.3, the satisfaction relation ‘7 F{p}S{g} defined in 2.4.2
does not require termination of the program S, only that if S terminates,
then it does so in a proper (non-error) state which satisfies g.

This notion of partial correctness is the one that is emphasized in this
monograph.

If, however, we want to incorporate the assumption of termination in
the definition of satisfaction, then we arrive at the notion of total correct-
ness. In this concluding section to Chapter 2 we will briefly re-work
some of the results of this chapter in terms of this notion. (See also Apt
[1981] §2.11)

First we define, for a correctness formula f and interpretation,
1=(A*p,0), the notion IFT f, I satisfies f totally, or [is totally
correct under 1, as follows. If f is an assertion, then /KT f iff IFf as
before. If f ={p}S{q} then IF" f iff (¢f. 2.4.2, Definition 1)

84 Chapter 2

A% p,ocFp =
for some o'#¢, M,(S) (o) Lo’ and A%, p,0'Fq .
Total [K-validity is then defined, as before, by:
KET £ iff TET f forall 1€ INTERPXK).

REMARKS. (1) The notion of satisfaction ‘I F f° defined previously (2.4.2,
Definition 1) can then be stated as: I satisfies f partially or f is partially
correct under 1.

(2) Now there is not the sharp distinction between non-termination of a
program and abortion (as was the case with partial correctness; see 2.4.3).
Thus (to teturn to the trivial example in 2.4.3) for I =(A* p, o),
TF {truelS{q) if either M4(S) (o) Tor My(S) (o) Le.

2.8.2 A proof system

A proof system ProofSysh,=ProofSys},(K) for total correctness of

‘while’ programs can be obtained from ProofSys ., (2.5.1) by replacing

the ‘while’ rule (A.5) by the following:

(AS)T The ‘while’ rule for total correctness:

podnlr(n), rn+1)o(b=true), {rn+1}s{rn)}, 1{0)>(b="false)Arq
{ptwhile b do S odig}

where r(2) is an assertion with the free assertion variable z of type N, not

free in p or ¢, and n ranges over natural numbers, thus (recall the nota-

tion of 2.3.4):

In [r(n)] means 3z[z=unspecyAr(z)],
An+1)o(b=true) means (z=unspecyAr(z)>(b=true),
{r(n+1)}S{r(n)} means {z=unspecyAr(z+1}S{r(2)}.

This rule was formulated by Harel (in the context of “arithmetical
universes™ see Harel [1979], §3.3). The assertion r{(2) is called a convergent
for the ‘while’ statement S (with respect to p and ¢), or a “loop conver-
gent”. Intuitively, r(n) says that after n more executions of the ‘while’
loop, the value of b will change to f, thus terminating the loop (in the
state q).

The system ProofSysT, is sound and complete for total correctness.
The proof of soundness is fairly routine. For completeness, we will again
consider the notions of weakest precondition and strongest postcondition,
in the next subsection.

'While' Programs 85

2.8.3 Weakest precondition and strongest postcondition for
total correctness

We define (¢f. 2.6.2, Definition 1), for a state transformer ¢ on A and a
predicate mon A, the weakest precondition for total correctness of ® and
m, written WPZX(®,n), as the predicate on A which holds at a proper
state o if, and only if,

&(c)l#e and m(P(o))=1.
Next, the weakest precondition for total correctness is [K-expressible by the
assertion (cf. Wp,,[S, pl in 2.6.11, Definition 4): wp[.[S, pl =,/
3X,Y,X'[Val(X,3,a) ACompug(X,Y,X")AProper(X) A p[XT.
This satisfies (¢f. 2.6.11, Theorem 4)
A% p, o ET wpT[S,p] <

for some o', My(S) o) Lo'#e and A% p,0'F p.
As corollaries we have (¢f. 2.6.11, Theorem 4, Corollaries)
(1) KE"{q}S{p} = KET gowp’[s,p].
In particular, taking q = wp'[S, pl:

KET {wp”[S, pl}S{p}.

(2) (Intermediate assertion.)

KET {g}S;S:{p} <= KE {g}S,{wp”[S,, pl}.

The strongest postcondition for total correctness is defined exactly as in
2.6.2, Definition (2), and is expressible by the assertion sp,,[p,S] (2.6.11,
Definition 5), since this assertion also satisfies the versions of Theorem 5
and its Corollaries (2.6.11) formed when ¥’ is replaced throughout by ‘7.

2.8.4 Proof of completeness

The completeness theorem for ProofSysT,, for correctness formulas
{p}S{q}, is proved, as before, by induction on compl(S) (cf. 2.7.1).

In the case S =35,;S,, an intermediate assertion may be defined as
wp'[S5,9], or as wpl[S,,q], or as sp[p,S;]!

Consider now the case S =while b do S, od, and suppose FT{p}S{q}.
We can define a loop convergent r(z) which asserts that execution of S
consists of exactly z iterations of the ‘while’ loop, following which b is
false and g holds. To be precise, r(z) is the assertion

86 Chapter 2

3X, Y, X '[Val(X,3,d) A Y(0)=X Aend(Y)=X"A
A 3m, H0)=0 A H2)=m A Vi<z[¢d) < Li+1)] A
AVi<z[p[Y ({D)]=true A
A Compugg(Y (&), [Y1E5Y, Y(&i+ 1] A
A casel A
A g[Y(mll.

(Cf. 2.6.11, Definition 2, part (6). We assume that z is not in X or ¥ or
X') Now, using this assertion r(z) as a loop convergent, we can deduce
the validity of the assumptions of the ‘while’ rule (A.5)7, etc.

2.8.5 Historical remark

The first proof rule for total correctness of ‘while’ programs, within the
framework of Hoare logic, was given by Manna and Pnueli (1974).

Proof systems for partial and total correctness of ‘while’ programs for
abstract structures, together with completeness proofs, were given by
Harel (1979) (in the context of dynamic logic). The ‘while’ rule for total
correctness in 2.8.2 is a version of Harel’s rule.

Note that in order to prove expressibility of the computation predicate,
and hence of the loop invariant (in the case of partial correctness), or loop
convergent (in the case of total correctness), we need to be able to speak, in
the assertion language, about (1) the natural numbers with their standard
operations, and (2) arbitrary finite sequences of elements of the abstract
structure.

Of course, the natural numbers are needed even to state the ‘while’ rule
for total correctness.

Harel deals with this by considering (single-sorted) arithmetical struc-
tures, which are (following Parikh) structures which (1) contain the
natural numbers, with their standard operations, as a definable substruc-
ture, and (2) admit an encoding of finite sequences of elements of the
domain into single elements.

As Harel points out, any (single-sorted) structure can be extended to a
(single-sorted) arithmetical structure by augmenting it, if necessary, with
the natural numbers, and additional apparatus for encoding finite
sequences. However the imposition of an encoding of finite sequences on
an abstract structure is, in general, algebraically unsatisfactory.

87

‘While’ Programs

Our approach (as we have shown) is (1) to work with many-sorted
structures A, with N as one of the sorts, and (2) to express finite sequences
over A by means of the structure A* This seems more satisfactory from

a computational point of view.

88

Chapter 3

Recursive Programs

3.1 THE PROGRAMMING LANGUAGE

3.1.1 Syntax

The programming language ProgLang,,= ProgLang,(X) (‘ra’ for “recur-
sive with arrays”) is like the language ProgLang(X)of Chapter 1, except
that there are also (parameterless) procedure variables, and declarations of
these.

Thus we have the classes:
(1) ProgVar and ProgTerm as before;

(2) ProcVar, the class of procedure variables, denoted P, ...;

(3) Statemt,,, the class of statements, denoted S, ..., and defined by
S == skip|vi=ti |ai[t"] =t} |S;S,|if b then S, else S, fi | P ;
(4) Decl, the class of declarations, denoted D, ..., and defined by
D == P,<S, ... P, <S, (m=0),
also written < P; <=S; >/, where P;#PF; fori#j;
(%) Prog, the class of recursive programs, denoted R, ..., and defined by
Rx»=<D:8>

which we will writeas <D|S> or <<P;<S;>"|S>.

(Of course, these classes are all defined relative to the signature ¥; thus,
e.g., Statemt (%), Prog(%).)

Recursive Programs 89

3.1.2 The programming language without arrays

Again, there is a version of the language without arrays, ProgLang, (X).

3.1.3 Further definitions
DEFINITION 1. (a) ProgVar(S) is, as before, the set of program variables
in S.

(b) For D = < P;<=S; >/, we define

ProgVar(D) =4, \ JProgVar(S;).
-1

(c) For R=<D|S >, we define
ProgVar(R) =,; ProgVar(D)u ProgVar(S).

DEFINITION 2. (a) A declaration < P;<=S;>™ is closed if all the pro-
cedure variables occurring in any of the S; are among P, ... ,P,.

(b) A program << P;<=S; >/ | S > is closed if all the procedure variables
occurring in S or any of the S; are among Py, ... ,P,.

(¢) ClProg is the class of closed programs.

3.1.4 Closed declarations and programs: Convention

From now on, we will only consider closed declarations and programs.
So in fact D,... will range over closed declarations, and R,... over
closed programs.

3.1.5 Operational semantics

The set COMPSEQ(A) of computation sequences over A is defined as in
Chapter 2 (see 2.2.5).
We will again want to define a function

Comp, : ClProg —> (PR.STATE(A) — COMPSEQ(A))

so that Comp,(R)(o) is the computation sequence generated by R, starting
in state o(=¢).

Suppose we try to define Comp,(R), with R=<D|S >, by induction on
compl(S) (as in 2.2.6). Now the cases that S is a skip, assignment, compo-
sition or conditional statement can be treated as before; but there is a new
case, namely that S is a procedure variable, say S=P; for some i,
1<i<m, where D=< Pj<=S;>T,. Then

a0 Chapter 3

Comp,(<D | P;>)(c) = (5)"Comp,(<D | S;>)a).

However, such a “definition” is problematical as it stands. It is not simply
an induction on compl(S), since (taking the above case) S; is more complex
than P;.

So instead, following De Bruin [1984], we proceed as follows. We define
a function

CompStep,: N — (ClProg —> (PRSTATE(A) — STATE(A)u {x})

where ‘%’ is a new symbol or object, the idea being that CompStep,(n)(R)
is the nth step of the computation sequence. That is, if T=Comp, (R)(o)
with th(7)=I, then
(n) forn<l
CompStep,(n)(R)(c) = * for n>1.

The definition of CompStep,(n)(D|S)(c) is by induction on the pair
(n, compl(S)), i.e. a main induction on n, and a secondary induction on

compl(S).

(Notice that we write ‘D|S’ instead of ‘<D|S>’ in the context
‘CompStep,(n)(7, and likewise in other such contexts below.)

First, for n=0, and any S:

CompStep,(0)(D|S) o) =0o.
Next, for n >0, consider the various cases for S.
Case 1. S is skip or an assignment.
Case I(a). n=1.

CompStep,(1)(D | S) o) = M4(S)(o)

where #, is as defined in 1.2.11.
Case 1(b). n>1.

CompStep,(n)(D|S)(c) = %.
Case 2. §=8;85,

Recursive Programs o1

CompStep,(n)(D|S,)c)

if CompStep,(n)(D|S,)#x
CompStep,(n)(D|S)c) = { CompStep,(n—I)(D|S,)(&)

otherwise, if &#¢ (see below)
* otherwise

where [= least I s.t. CompStep,()(D|§,)(c)=x

and & = CompStep,(I-1)(D | §,)(0o).

(Think of { as Lh(Comp,(D|S$,)(o)), and & as end(Comp,(D | S,)()).)
Case 3. S =if b then S, else S, fi.

CompStep,(n—-1)X(D|S,)o)
if Ry(b)(o)=t,
CompStep,(n—1)(D | S,)(o)

CompStepa(n)(D [$)(e) - if £,()(o) =1,
£ if R4(b)(c)=u and n=1,
* if R,(b)(c)=uand n>1.

Case 4. S =P; (1<i <m, where D= <P;<S§;>7")).
This is the most interesting case:
CompStep,(n)(D | P;)(c) = CompStep,(n—1)XD |S;)(c).

This completes the definition of CompStep,.
Now we can define the length of a computation sequence directly from
CompStep,, as the function

LengthComp , : ClProg —> (PRSTATE(A) —> Nu{co})
where

least n s.t. CompStep,(n)(R)(o)=x

LengthComp ,(R)(c) = if such an n exists,
00 otherwise.

92 Chapter 3

Now we can give the operational semantics for programs (compare [dB],
Definition 5.17), with the function

O4: ClProg —> (PRSTATE(A) —> STATE(A)),
so that O,(R) is a partial function from proper states to states, defined by

CompStep ,(LengthComp ,(R)(c) — 1)(R)(o)
OA(RX o) ~ if LengthComp 4(R)(o)wc0,
1) otherwise.

Finally, we are in a position to define the function Comp, which we con-
sidered at the start of this subsection; namely, Comp, (R)(o) is the unique
computation sequence 7 of length

Ih(1) = LengthComp 4,(R)(o)
such that for all n <Zh(7),
1(n) = CompStep,(n)(R)(c).

Actually we have no use for Comp,! In the sequel (notably Section 3.6)
the function CompStep, will be used instead.

REMARK. This approach is an improvement over that in Zucker [1980)],
where the Recursion Theorem was needed to prove expressibility of the
weakest precondition and strongest postcondition. In the present treat-
ment the Recursion Theorem is not needed, because of the use of the func-
tion CompStep, instead of Comp,.

3.1.6 Alternative definition of CompStep,

Notice that the definition of CompStep, in the last subsection uses
“course-of-value recursion” on the first argument; specifically, in the case
of composition (Case 2), CompStep,(n) depends on CompStep,(n') for
some n'<n. This is adequate for a first encounter with the semantics of
recursion, but for our later work in this chapter (Section 3.6) it will prove
unsatisfactory.

We therefore present an alternative definition of CompStep, by primi-
tive recursion, i.e., in which CompStep,(n) (for n >0) depends only on
CompStep,(n—1).

First we define two functions, first, and rest, of type

ClProg —> (PR.STATE(A) —> Statemt).

The idea is that for a program <D|S> and proper state o,

Recursive Programs 93

first,(D|S) o) and rest,(D | S (o) are statements S and §" respectively
such that <D|S'> gives the first step in the execution of <D|{S> in
state o, and <D |S§"> gives the rest of the execution.

For the definition of first,, it is convenient to adjoin a statement ‘abort’
to our programming language, with the meaning function #, of Chapter
1 extended by:

M, (abort)(o) = .

(The ‘abort’ construct, although convenient, is not essential, since it could
be modelled by a statement of the form ‘v:=w’, where w is a new, and
hence uninitialized, variable.)
Define a statement to be atomic if it is an assignment, skip or abort.
The definitions of firsta(D|S)(o) and rest,(D{S) (o) proceed by
induction on compi(S).

Case 1. § is atomic.
firsta(D|S)No) =S,
rest,(D|S)(co) = skip.
Case 2. S =8;;5, (the interesting case!).
firsta(D|8)(o) = firsta(D|S)(0),
S, if §, is atomic
resty(D|§)(o) = [reslA(D |S;)(c);S, otherwise
Case 3. S =if b then S, else S, fi.
skip if R4(b)(o)=tort
firsta(D|8)(o) = [abort if Ry(b)(o)=u,
S, if R,(b)(o)=1
rest,(D|S)c) =18, if B,(W)(o)=1
skip if £,(B)(o)=u.
Case 4. S=P; (1<i<m, where D = <P;<S;>™,).
firsta(D |8)(o) = skip,
rest,(D|S)o) = §;.

This completes the definition of first, and rest,.
Note that (for o#&) first4(D]S)(o) is always atomic, and so
My (firsta(D)S)No))(o) is well-defined, where (as before) #, is the

94 Chapter 3

meaning function of 1.2.11, extended by #,(abort)(c) = ¢.
The promised definition of CompStep,(n)(D|S)(c) now follows sim-
ply, by induction on n. For n=0, we have as before

CompStep,(0)(D|S)o) = o.
Otherwise, put
o' =47 Ma(firsta(D|S)(o))(o).

Then for n=1,
CompStep,(1)X(D|S)o) = ¢
and forn>1,
CompStep,(n—1)(D | rest,(D | S Xo)(c")
CompStep,(n)(D | S)o) = if S is not atomic and o'=¢,

3 otherwise.

The above definition of CompStep, is equivalent to that in 3.1.5, in the
following sense. Let us denote (temporarily) by CompStep,, the function
as defined in 3.1.5.

PROPOSITION. CompStep,(n)(D|S) = CompStep,(n)(D|S).
PROOF. Exercise. Use induction on (n, compl(S)). O

3.1.7 Properties of O,
The function O, satisfies various desired properties (¢f. 1.2.11 and 2.2.3).

THEOREM. (1) For S a skip or assignment, O,(D | S)=M4(S), where M,
is the function of Chapter 1.

0.(D|8,)(0") if 0,(D|S)No)lo"e,
(2) 0,(D|S;;8)N0) ~{¢ if 0,(D|8,)o)le,
T if 0,(D|S)(o)

(3) 0,(D|if b then S, else S, fi)(o) ~ { 0,(D|S,)c) if Ry(b)o)=1
£ if R,(b)o)=u

(4) Oo(D|P;) ~04(DI|S;) fori=1,...,m, where D= <P;<S;>7,.
PROOF. Directly from the definitions of CompStep, and O,. O

Recursive Programs 95

3.1.8 Denotational semantics

We will define, for each A€K, a function
M, : ClProg —> (PRSTATE(A) —> STATE(A)),

giving the denotational semantics for programs. Our approach is similar
to that of Apt [1981] (in that we do not use environments, as in [dB]).

First we define a partial order on the set of partial state transformers on
A.

DEFINITION 1. (a) ST.TRANS(A) is the set of partial state transformers
on A (see 2.6.1).

(b) The partial order ‘C,’ on ST TRANS(A) is defined by: &, £, &, iff for
all o € PRSTATE(A),

&,(c)l = (d,(c)land d(c)=,(c)),

ie., ®,c®, as sets of ordered pairs. (Don’t confuse this with the ordering
‘S’ between states defined in 1.2.7 and 1.2.12.)

PROPOSITION 1. The structure (ST.TRANS(A), C,) is a complete partially

ordered set.

In other words ([dB], p.73),

(a) there is a Cj-least element, namely the “totally undefined
transformer” & |, where ® (o)1 for all o#¢, and

(b) any E,-increasing sequence ®9E, P E, --- has a C,-supremum

b= LI0<1>,,, defined by: for all o#¢ and o,
P

M o)lc’ < for some n, ,(c)lc’

(ie., @ is the set-theoretic union of the ®,’s, considered as sets of
ordered pairs).

REMARK. For a sequence ¢34 d, 5,4 -+, it does not follow, from the
fact that each &, is finitely based (see 2.6.1, Definition (2)), that LI, ®, is
finitely based.

Now, given a (closed) program R = <D |S >, where D = < P; <S;>T;, we
will define #,(R) as the limit, or least upper bound (in the sense of Propo-
sition 1) of a sequence of partial state transformers ’mﬁ(R), where, for each
n=0, M2(R) is the approximate meaning of R given by interpreting pro-
cedures calls of depth n or more simply as diverging.

96 Chapter 3

DEFINITION 2. M3(R), for n=0,1,... and R=(D|S), is defined by
induction on (n, compl(S)).

Basis (n=0). For S a skip, assignment, composition or conditional state-
ment, M(D|S) is defined just like M,(S) in Chapter 2 (see 2.2.3). And
for S a procedure variable P; (i=1,...,m) and o#¢, we have

M(D | P)o)1.

Induction step. Again, for S a skip, assignment, composition or condi-
tional statement, M2*(D|S) is defined just like M,(S) in Chapter 2; and
further, fori=1,...,n and o#g,

Mz (D | P;) =Mz(D|S;)
(where D = < P;<=8;>74).
PROPOSITION 2. The sequence (M%(R)), is E4-increasing.

PROOF. Show that MA(D|S)C, M3 (D|S), by induction on
(n,compl(S)). O

This proposition justifies the following definition.
DEFINITION 3. M4(R) =4 Llom}&(R).
n=

In other words, #4(R)(o)l o' iff for some n, M3(R)(o)lo’, or equivalently,
iff for some m and all n >m, ME(R)(c)io"

3.1.9 Properties of ¥,

The function M, satisfies various desired propeties.

THEOREM. The statements in the Theorem in 3.1.7 hold, with ‘W,’ replac-
ing ‘O, throughout.

PROOF. For (1), (2) and (3): these hold for %% (n =0,1,...) by definition.

Hence they hold for #,, by taking suprema.
As for (4), namely the fixed-point property of M,:

My(D | P;) Qomg(p | P,)

@]mg(D |P,) (since (M3(D | P,)), is increasing)

- LM (D | P,)
k=0

Recursive Programs 97

= kﬁomﬁ(D |S;) (by definition)

=M(D|S). O

3.1.10 Equivalence of operational and denotational semantics
THEOREM. O,(R) = M, (R).
PROOF. As in the proof of [dB), Theorem 5.22, one shows:

(1) OA(R) EA mA(R), and
(2) MA(R) £, 0,(R).

Now (1) is proved by induction on LengthComp,(R)(c), using the
Theorems in 3.1.7 and 3.1.9, and (2) is proved by showing that for all n,
Mi(D|S) E, 04(D|S), by induction on (n, compl(S)).

3.1.11 Monotonicity for statements
(Compare 1.2.13 and 2.2.8.)

THEOREM. Suppose M 2 ProgVar(R), o,0'#¢ and o S o' (rel M). Then:

(1) If My(R()¢ then also My(RN o WN=e and Mu(R) o) € M4 (R) (o)
(rel M).

(2) If My(R)(o)1then also My(R)(c") 1.

PrROOF. Either use the operational semantics, proving a suitable monotoni-
city result for CompStep,(n)(D|S), by induction on (n, compl(S)), and
then inferring the theorem for O, (R);

Or use the denotational semantics, proving the result for M%(D|S), by
induction on (n, compl(S)), and then taking suprema. O

COROLLARY. Suppose M 2 ProgVar(R), o,0'#¢ and o~ o' (rel M). Then
either

G) M(R)(o) tze, Mu(R)) L#e and Mu(R) (o) =M, (R) (") (rel M), or
Gi) M,A(R) o) le and My(R)(c') e, or

(iii) M, (R)(o) 1 and M,(R)(c) 1.

98 Chapter 3

3.1.12 Variables in the “left hand side” of a program;

constancy of other variables
(Compare 1.2.14, 2.2.9.) The definition of Zhs(R) augments that of Ihs(S)
in 1.2.14 with the new clauses:

Ihs(P) =0

ths(D) = (Jlhs(S;), where D=< P; <S; >

i=1
ths(D | 8) = ths(D)ulhs(S).

Again we have Ihs(R)c ProgVar(R), and

THEOREM. Suppose o=t and My(R)No)ic'#e. If V is not in lhs(R)
then o'(V)=0o(V).

PROOF. Either use the operational semantics, proving the appropriate

result for CompStep,(n)(D | §), by induction on (n, compl(S));
Or use the denotational semantics, proving the result for M5(D |8), by

induction on (n, compl(S)). O

3.1.13 Isomorphism between structures;
semantics abstraction theorem

(Compare 1.2.16 and 2.2.11.) Once again, the semantics of our program-
ming language ProgLang,(T)satisfies the Program Semantics Abstraction
Principle.

THEOREM. Given a X-isomorphism ¢: A—>B and any Re ClProg(X)
(and with the notation as in 1.2.16), the following diagram commutes:

PR.STATE(A) —MSTATE(A)

aj J
PR.STATE(B) M STATE(B)

PROOF. Use either the operational or the denotational semantics, as in the
proofs of the theorems in 3.1.11 and 3.1.12. O

Recursive Programs 99

3.2 ASSERTIONS

3.2.1 Structures A* of signature I*

The assertions for recursive programs are again given in Lang,(¥*), the
first order language over ¥, as defined in Chapter 2.

However there is a new factor which was not present in Chapter 2: we
will need to use the structures A* of signature X* as data structures, and
consider ‘while’ program computations over them, for reasons to be
explained below (Section 3.5).

Now, in order to ensure that certain basic operations over A* are com-
putable, we must enrich the signature £* of Chapter 2 with some new
operations. However the resulting signature, which we still call ¥* for
convenience, is an inessential extension of the old one, in a sense to be
made precise below (3.2.3).

We now describe the new operations in X* Recall that, for A€K, A*
was defined (in 2.3.1) as

A* = ((A?)ie&m ’ (Augk)ie&mv (F_'iA'u)l <j<s» (lﬂi)iESarn (ApiA)iESort)

with signature X*.
We need the following three new constant and operation symbols, for
each sort i:

(1) the null constant Null;, with interpretation
Nullg = an-u; € A¥,
(2) the adjunction operator Adjoin;, with interpretation
Adjoinf : A¥xINY xA¥ — A¥,

which adjoins a new argument and value to a function in A}, as follows:
for £€A¥, n€N and x€AY, Adjoin/(¢,n,x) is the function in A¥ such
that for all k€N,

Adjoing (6, 2300 = | &0 1% =n

and Adjoin# (£ uy, x) is the trivial function Null?, and finally

(3) the unary relation Unspec;, with interpretation
Unspecft: A} — BY

where for all x€ A}

100 Chapter 3

t ifx =;

A _
Unspec (x) = { otherwise.

(This is in addition to the individual constant unspec;.)
Then A* is the structure
A* = (A)iesare » (APiesore» (F}A'u)l <j<s» (uw;)iesore » (AP# iesorer
(Nu“{‘)iesw-p (Adjoin{q)iésoft’ (UnSpeC,A)ieSar‘)

with signature L*.

REMARKS. (1) As stated above, we will later use the structures A* as
data structures, and consider ‘while’ computations over them (Section 3.5).
Then we will need these three new operations Null;, Adjoin; and
Unspec;.

We did not need these operations for the signature X* in Chapter 2, since
there we did not have to consider computations over A% and I* was kept
as simple as possible.

We will, however, keep the same notation (£* and A*) for the enriched
signature and structures as for those of Chapter 2, since this enrichment of
T* is inessential, as we will see (3.2.3).

(2) We could have introduced, for each sort i, instead of Unspec;, the
identity relation

Ident?: AY xAY — BY
where, for all x,y €AY,

t ifx=y

Ident? (x,y) = f otherwise.

(Note that this differs from the extended equality relation eqA* for
i =N or B, since eq/*“(x,y)=u; whenever x =u; or y =u;, whether x =y
or not; see 1.1.5.)

Then we could define

Unspec;(x) =, Ident;(x,unspec;).

But the assumption of a computable identity relation for any (arbitrary)
domain seems unwarranted. (Why should we assume that we could
effectively test for identity between, for example, two elements of A}?)
However, the assumption that one can distinguish any object in a given
domain at least from the specially defined “unspecified object” seems rea-
sonable.

Recursive Programs 101

(3) Because we will use the structures A* as data types for programs, we
want T* to be a signature in the same way that X is (in the sense of 1.1.1).
This implies that X* must include types for N and B. Now this condition
is not precisely satisfied, since the structures A* contain domains N" and
BY instead of N and B. However this does not really matter; N* and BY
can function quite well in place of N and B, since we have the predicate
Unspec; to distinguish effectively between u; and “genuine” elements of
A; (for i =N or B).

3.2.2 The assertion language

The assertion language AssLang,,= AssLang (%) is Lang,(X*), the first
order language over £*(as defined in the last subsection). This is an exten-
sion of the assertion language of Chapter 2. There the only assertion
terms of type i* were variables ¢ (see 2.3.3). Now, because of the new
constants, there are, for every sort i, more general terms of type i*

si* 2= £ | Null; | Adjoin;(si* s, st).
There are also new formation rules for assertion terms of type i:
stu= - |Ap(st*,sV)
and, further, for assertion booleans (i.e. assertion terms of type B):
sBu= .- |Unspec;(s?).

The class Assn*= Assn*(2) of assertions p,q,r,... is then defined as in
2.3.3, relative to these assertion terms.
As before, we will use the notation

Var(E) = AssVar(E)u ProgVar(E)

for any syntactic expression E, where AssVar(E) is the set of free asser-
tion variables in E.

The semantics of the assertion language, specifically the definition of
evaluation functions S, and J,, extends that of Chapter 2 (see 2.3.5) in
the obvious way, according to the stated interpretations of the new sym-
bols Null,-, AdJOini and UnSpeC,-.

The notions of interpretation, satis faction (I F p) and K-validity (KF p)
are again defined as in 1.3.11.

102 Chapter 3

3.2.3 An inessential extension

The extension to the assertion language of Chapter 2 formed by adding the
new symbols Null;, Adjoin; and Unspec; is inessential, in the sense of the
following theorem.

THEOREM. For any assertion p, in the extended language described
above, we can effectively find an assertion p not containing any of the
symbols Null;, Adjoin; and Unspec;, such that

KEp<>p.

PROOF. We describe the construction of p from p. First, define a big
term to be an assertion term of type i* (for some sort i) which is not a
variable. Note that all big terms are of the form either Null; or
Adjoin;(s#* 5N, s?). We proceed in two stages.

Stage I: the elimination from p of all occurrences of the symbols Null;
and Adjoin;. This amounts to the elimination of all big terms from p.
This is done as follows. Let s** be a maximal occurrence of a big term in
p (ie. not occurring within another big term). Then s** occurs in the
context Ap;(si*,sN). There are two cases.

Case 1. s*=Null;. Then replace Ap;(si* sV) by unspec;.

Case 2. s**= Adjoin;(s§*, s}, sf). Then replace Ap;(si*,sN) by the term
if eqn(s, s§) then s§ else Ap;(sé*, sN) fi.

This process is repeated until there are no occurrences of Null; or Adjoin;

left in p.

Stage 2: the elimination of all occurrences of Unspec;. Consider a maxi-
mal assertion boolean in p of the form sB = Unspec;(s§). Let po be an
atomic assertion in p containing sB. Now replace p, by the assertion

3x B[((si=unspec; A xB=true) v (s{=unspec; A xB=false))
A po< xB/5B>],

where xB¢ Var(py), and py< xB/sB> is the result of substituting x® for
58 in py (which is well defined, since py is atomic).

This process is repeated until there are no occurrences of Unspec; left
in p, resulting in the assertion p. a

Recursive Programs 103

3.2.4 Invariance for assertions

THEOREM. If Var(s,p)nlhs(R)=@, o#¢ and My(R)c)lc'=¢, then
(@) Sa(s)p,0)=S,(s)p,0), and
(B) Tu(pXp, 0)=T,(p)p, o).

PrROOF. (a) Induction on compl(s). For the basis, use the theorem in
3.1.12. (b) Induction on compl(p). For the basis, use part (a). O

This theorem will be used in the proof of the validity of the invariance
rule (3.4.2).

3.3 CORRECTNESS FORMULAE

3.3.1 Syntax
We define three syntactic classes.

(1) The class Form,,= Form,(X) of correctness formulae for recursive
programs (relative to £), denoted f,..., is defined as before (1.4.1, 2.4.1)

by
f = {p}Siq}lp.

(2) The class of declared correctness formulae consists of expressions of
the form

<D|f>
which are closed, in the sense that if D = < P; <S§; >/, then all the pro-
cedure variables occurring in f or in any of the S; are among P, ... P,
(¢f. Convention 3.1.4).
(3) The class of sequents of correctness formulae, denoted g, ..., is
defined by

g = <D|f—f>

where f =fi---.fr (k=0) is a vector of correctness formulae. Again g
is assumed to be closed, in the sense that if D = < P; <=S§; >, then all the
procedure variables occurring in f, f or any of the S; are among
P], ... ,Pm.

104 Chapter 3

3.3.2 Semantics

The notion of interpretation in K*, I=(A* p,)€ INTERPXK), is defined
as in Chapter 2 (2.3.5).

DEFINITION 1 (n-satis faction of declared correctness formulae).
We define, for n =0,1,2, ..., the notion JF"<D|f >.

Case 1. f={p}S{g). Then A*p,cF"<D|f > iff forall o"
(A* p,oc Ep and ME(D|S)o)o’) = (o'#eand A% p, o Fq).
(Recall Definition 2 in 3.1.8.)

Case 2. f=p. Then IF'<D|f> iff IFf according to the
definition in 3.2.2.

Note that the only difference from the definition of I Ff in Chapter 2
(2.4.2, Definition (1)) lies in the presence of the superscript ‘n’ in #4 (and,
of course, the presence of the declaration D).

DEFINITION 2 (K, n -validity of declared correctness formulae).
For n=0,1,2,...,KE*<D|f > iff
IE*<D|f> forall 1€ INTERPX(K).

DEFINITION 3 (K, n -validity of sequents). For n=0,1,2,...,
KE<D\|fy, ..., fir—=f > iff

(KEr<D|f;>fori=1,..., k) = KE*<D|f>.
DEFINITION 4 (K-validity of sequents). KFg iff

KE"g foralln.

NOTATION. KF*<D |f> denotes KE*<D|f;>fori=1,...,k, where
f=fi...,fr (and similarly with K F’ in place of K Em).
3.3.3 Remarks on the validity of sequents without antecedents

Consider a sequent g = <D f —> f > where f is empty. We will write
g as <D |f > ie., like a declared correctness formula. Now, by
definition of K-validity, we have that g is K-valid if and only if

foralln, KE*<D|f>,
and, assuming f={p}S{q}, this is equivalent to:
for all n, I =(A¥* p, o) and o'#¢,
(IEp and M(D|S)o)Na) = A*p,o'kFq,

Recursive Programs 105

which (by the remark in 3.1.8 after Definition 3) is equivalent to:
for all 1 =(A* p, o) and o'#¢,
(IEp and M,(D|S)o)c’) = A% p,o'Fq,

which resembles the definition of K-validity of correctness formulae in
Chapter 2 (2.4.2).

Note however that in the general «case, with g=
<D|fi,....fr ==f> (k>0), K-validity of g is not equivalent to:

(KE<D|fi>fori=1,...,k) = KF<D|f>. (1)

In fact, the recursion rule (Section 3.4) is not valid for the notion of vali-
dity given by (1).

3.3.4 A lemma on n-Satisfaction
LEMMA. IE"<D|f> = IF*<D|f> (n=0,1,,...).

PROOE. Use the fact that M3(D|S)(o)lc’ implies M3*(D|S)N oo
(by 3.1.8, Proposition 2). O

This will be used to prove the soundness of the recursion rule (3.4.2).

3.3.5 Substitution in correctness formulae; Substitution theorems

We develop the notion of substitution of one assertion variable for
another, considered in 1.3.16.
We first extend this notion to correctness formulae by defining:
{p}Sigt<y/x> =4, {p<y/x>}S{g<y/x>}

where x and y are assertion variables of the same type (i or i* for any
sort i).

Let us use the following notation, for given (fixed) x and y. For any
syntactic expression E, let E =45 E <y/ x>, and for any valuation p and
interpretation 7 =(A* p, o), let p=4f plo(y)/x} and I=,; (A% p,0).

THEOREM (Substitution for assertion variables in correctness formulae).
(@) Ikp iff TFp.
(b) IE"<D|f> iff TF*<D|f>.

PROOF. Part (a) follows easily from the corresponding theorem in 1.3.16.
Part (b) then follow from part (a). O

This will be used to prove the soundness of the substitution rule (3.4.2).

106 Chapter 3

3.4 A PROOF SYSTEM; SOUNDNESS

3.4.1 The proof system

We define a proof system ProofSys,,=ProofSys,(K) for deriving K-
valid sequents. The nodes of the proof trees consist now of sequents.

The proof rules can again be divided into three groups (see Proof Sys s,
1.5.1).

(A) Rules for the programming language constructs.
First, there are rules corresponding to the (A)-rules of ProofSys, (‘skip’,
assignment, composition and conditional) which are formed as follows. If

f‘":f"f" (0<n<3)

is one of the rules of ProofSys,, then the corresponding rule for the
present system is:

<D|f'—«>f,>,...,<D|f——i>f,,>
<D|f—>f>

for any vector f of correctness formulae.
Thus, for example, the composition rule now has the form

<D|f—{plSiir}>, <DIf —>{r}sy{g}>
<D|f — {p}S;S,ig}> '

Further, we have:
(A.5) Recursion:
Suppose D =< P;<=S;>/. Then we have the following m rules, all
with the same m premisses:

<D lf,{P1}P|{Q1}, ‘e ,{p,,.}P,,,{q,,.} — {pj}Sj{qu for j=1, e, m

<D |f_‘> {pi}P:ilg:}>

for i=1,...,n. This is a version of Scott’s induction rule (see Chapter 5
in [dB] and the references R.3.4 in [dB], p.472).

This can be considered as a rule for the programming language construct
procedure variable, and is hence put in group (A).

Recursive Programs 107

(B) The K-oracle rule:
This now has the form
<D|f—p>
for any [K-valid assertion p and any vector f of correctness formulae.

(C) Logical rules.

In addition to the consequence rule, modified exactly like the rules in
group (A), we have:

(C.2) Invariance:
<D|f—>{p}Sig}>
<D|f—>{par}Sigar}>
where Var(r)nths(D,S)=9 (or, equivalently, ProgVar(r)nlhs(D,S)=9).
Notice that the following form of the rule
<D|f—{p}sip}>

(where Var(p)nlhs(D,S)=) is not, in general, valid! (Hint: consider
the case that execution of S produces the error state.)

(C.3) Substitution:

<D] f —f>
<DI|f—>f<y/x>>
-where x and y are assertion variables of the same type (i or i* for any
sort i), and f<y/x> denotes the result of substituting y for all free
occurrences of x in f (as in 3.3.5).

Note that we do not need to state any restrictions on the variables, as in
the corresponding rule in Apt [1981], § 3.4 (“Substitution Rule I”) or [dB],
§5.5 (“Substitution, II”); such restrictions are automatically satisfied,
because of our distinction between program and assertion variables.

(C4) Existential quanti fication:

<D|f—{p}sig}>
<D|f —> ax[pl}sig}>

where x is an assertion variable of any type (i or i*) such that
x€Var(q).

This rule is used in place of the other substitution rule in Apt [1981],
§3.4 (“Substitution Rule II”) or [dB], §5.5 (“Substitution, I”) in the com-
pleteness proof (Section 3.7).

108 Chapter 3

There is an obvious “companion rule” for universal quantification:
<D|f—{p}sig}>
<D|f—>{p}Sivxigl}>

where x ¢Var(p); but we do not need this rule in the completeness proof.

In fact, as far as the completeness proof is concerned, we only need, in
the last three rules (C.2)—(C.4), the special case that S is a procedure vari-
able.

Finally, there are two “structural rules” for sequents:
(C.5) Selection:

<Dl|fi,....fr > fi> (1<i<k)
(C6) Cut:
<D|f—>fo>, <Dlfoe.f' —fi>
<DIf.f'—>fi> '

3.4.2 Soundness

THEOREM. The system ProofSys,, is sound relative to K, ie. for any
sequent g,

Krg = KFg.

PROOF. This is proved, as before, by showing that each inference rule is
[K-valid.

For rules (A.1)—(A.4), (B) and (C.1), one shows that for all n,
K,n -validity of the premisses implies K,n-validity of the conclusion (as
with the corresponding rules in Chapter 1, taking possible non-termination
into account: see 1.5.2 and 2.5.2).

We consider the remaining rules. First, the recursion rule (A.5). Let
D =< P;<§; >, and assume

KE<D|f Ap}Pdqi). - .. APm) Pulgnt —> {p;1Sig;1> (1)
for j=1,...,m. We must prove that for all n,
KE*<D|f—> {p}Pdg;}> fori=1,...,m. (2)

This is proved by induction on n. For n=0, note that (2) holds by
definition (3.3.2, 3.1.8). Assume (as an induction hypothesis) that (2) holds
for n, and assume that

KE<D|f>. (3)

Recursive Programs 109

We must show that KE**'<D|{p;} P;{q;}> fori=1,...,m. (4)
By (3) and Lemma 3.3.4,

KEr<D|f>, (5
and so, by the induction hypothesis,
KE" <D |{p;} P;{q;}> fori=1,...,m. (6)

By (1),
KE"<D|f Ap}Pdai}. . - APm}Puidn} —> {Pi}Silai}>
fori=1,...,m. So by (5) and (6),
KE" <D [{p;}S;{g;}> fori=1,...,m.

Hence (4) follows (since M3*(D | P;)=mM3(D|S;) for all A€K).

The validity of the invariance rule (C.2) follows from the theorem in
3.24.

As for the substitution rule (C.3), its validity follows easily from the
theorem in 3.3.5.

Next, the existential quantification rule (C.4). Assume

KE<D|f—>{p}Sig}>. 7
We must show that for all n
KEr<D|f—> 3x[pl}sigl>

where x¢Var(g). So assume

KE"<D|f > (8)
and take any interpretation (A*, p,) such that (dropping the ‘A*)
p, o F*3x [p] (9)
and mz(D|S)o)lc (10)
for some o’. We must show that o’'#£ and
p, o' Fq. (1)
By (9), there exists x (in the domain of the same type as x) such that
olx/x}, o’ Frp. (12)

By (7), (8), (12) and (10), o'z and
plx/x}, o'Erq.

110 Chapter 3

Hence (11) follows from Theorem 2 of 1.3.12 (which also holds in the
present language), since x ¢Var(q).
Finally, the validity of the two structural rules, selection (C.5) and cut

(C.6), is easily proved. O

3.5 A LOOK AHEAD

3.5.1 The main problem, and an indication of its solution

Let us pause a moment and see what lies ahead. When we try to adapt
the work of Chapter 2 (for ‘while-array programs) to the present setting,
we encounter the following problem.

The main step in proving the expressibility of the weakest precondition
and strongest postcondition in Chapter 2 was the construction (2.6.11,
Definition 2) of the “computation predicate” Compug(X,Y,X") in the
assertion language Lang,(Z*), which expresses: “Y represents a finite com-
putation sequence generated by S, starting in the state represented by X,
and terminating in the state represented by X"”

This assertion was constructed by a straightforward induction on
compl(S).

However, if we try something similar now, we run into the same type
of problem we had in defining the function Comp, earlier in this chapter
(3.1.5), specifically in the case that S is a procedure variable, where the
predicate would be defined in terms of its meaning for a “more compli-
cated” instance of S, thus (apparently) violating the inductive procedure.
We therefore proceed as follows.

We will want to show that the partial functions M,(R) are first-order
expressible over K¥ (or: over A*, uniformly for A€K); in other words, for
every program R there is an assertion i0x(X,X') in Lang,(¥*), which
expresses the input-output relation for R, in the following sense: for all
A,p,o and o, if X and X' represent o and o' respectively relative to p
(see 2.6.6), then

A* pFiog(X,X") <« o#eand My(R) (oo,
For then we can define (¢f. 2.6.11, Definitions 4 and s5)
Wp,[R pl =,; VX, X'[Val(X,?,d) Aiog(X,X") o
> Proper(X)AplXT]
and SP,Jp. Rl =45 3X "X[plXTaiog(X',X)AVal(X,d,a)].

Recursive Programs 111

These satisfy (analogues of) 2.6.11, Theorems 4 and 5, and their Corol-
laries.

In order to prove the expressibility of M4(R) over [K*, we proceed with
the following plan. (Notice that M,4(R) can be viewed as a partial func-
tion over A* by the representation of states as vectors, as in 2.6.5.)

Step 1. Show that all partial functions which are com putable over [K* are
first-order expressible over [K*.

Step 2. Show that the partial function representing M,(R) is computable
over [K*.

The main thing to explain now is the notion: computability over K* (or:
over A*, uniformly for A€K). This necessitates an investigation of com-
putability over abstract structures, or rather, over an arbitrary class K of
such structures. Chapter 4 is devoted to this topic, and there two charac-
terizations of “K-computability” are given:

(1) Inductive computability. A system of induction schemes over the
signature X is given, such that each scheme « defines, for each A€, a par-
tial function {a}? over A. These schemes generalize the schemes for gen-
eral recursive functions over N (Kleene [1952], §55).

(2) ‘while’ program computability. Assuming certain conventions about
input and output variables, a ‘while’ program (in the language of X,
without arrays) defines a partial function over each A€KK.

In Chapter 4 the equivalence of these two notions of computability is
proved (Sections 4.3 and 4.4).

Now (applying this equivalence result to the class of interest, K*) let us
return to steps 1 and 2 above.

Step 1, the K*-expressibility of K*-computable functions, is simple, using
the second characterization of computability above (‘while’ program com-
putability) and the computation predicate of Chapter 2, and we carry it
out below (3.5.2/3).

Step 2 will then be proved in the next section (3.6) using the first char-
acterization; that is, we will show that for each program R there is an
induction scheme which computes the function representing #,(R) over
K*.

All that remains then, to complete the argument, is to show that

“inductive computability = ‘while’ program computability”

taking both sides over K*. This implication (in fact the bi-implication)
will be proved for arbitrary classes K in Chapter 4.

112 Chapter 3

REMARK. For a ‘while’ program S over K, the input-output predicate
iog(X,X") can be defined very simply, as 3Y [Compug(X,Y,X)] (see
2.6.11, Definition 2). In the present context, for a recursive program R
over KK, the situation is more intricate. The predicate iog(X,X") will be
defined, as we will see, from the predicate Compug for some suitable
‘while’ program S (without arrays) over K* In effect, R will be
translated as S, with arrays over A€K interpreted as elements of A*,

3.5.2 Expressibility of ‘while’ computable functions over K

We turn to Step 1 above, namely showing that all ‘while’ computable
functions over IK* are expressible over K*
In this section we actually prove:

THEOREM. All ‘while’ computable functions over K are expressible over
K*.
From this, it immediately follows that all ‘while’ computable functions
over [K* are expressible over [K** (the result of applying the ‘*’ operation
again to K*). The argument for Step 1 is completed by showing how to
code [K** in [K*, and this is done in the next subsection (3.5.3).

We have not yet given precise definitions of ‘while’ computability, or of
expressibility over K or K* (as will be done in Chapter 4), but these
notions will become clear from the discussion in the proof below.

PROOF OF THEOREM. Let S be a statement in the (arrayless) ‘while’ pro-
gramming language ProgLyng,,,(E), let D =v,,...,0, be an n-tuple of
program variables of sorts k =k, ..., k, respectively, and let w be a pro-
gram variable of sort [. The triple [S,3,w] is called an i/o program, and
is said to compute a family of partial functions
yA: Alk] > A

for A€K (where Alkl=y; Ay x -+ xAg), iff for all A€K, all x=
Xy ..., X, €A[k] and all o€ PR.STATE(A) satisfying o(p;)=x; for
i=1,...,n,

yAE) Ly iff M,(8)o)lo'#e, where o'(w)=y #u,
and yAX)T iff Mu(S)(o) 1.

(See 4.3.1.) Thus if [S,d,w] is an i/o program, then for all A€K and all o
such that o{v;)#u fori=1,...,n, M,u(S)(o) never aborts.

Note also that the functions ¢4 are uniquely determined from [s,3,w]
by monotonicity (2.2.8).

Recursive Programs 113

Now (cf. Convention 2.64) choose M=M,>n and let v,,,=w,
Dpya - - -, Oy be further program variables of types k,,1=1, kp,2 -...kpy
such that

ProgVar(S)c{v,,...,0p}.

(Here M ,=0, since S has no array variables).
Now let p=p(x;,...,x,,y) be the following assertion in Lang,(Z*):

n
M (x; #unspec;) A
=1

A3Y,X'[Compug(X,Y,X") AProper(X)a
Ay =X, #unspec;]

(using the notation of Chapter 2, in particular 2.6.11, Definitions 0 and 2),
where X is the (M+1)-tuple

X = (true, x;,...,x,, Unspec; ... unspec,,)

and Y and X' are tuples of variables

Y = (ZN, g(?, gl,..-,EM)a
X' =(xg,x1,...,%p).

Note that Var(p)={x,,...,x,,y}

Then p expresses the famlly of partial functions <yA | A€EK> over
[K*, in the sense that for all A€, x € A[k] and y € A,, if p is any valua-
tion over A such that p(x;)=x; for i=1,...,n and p(y)=y, then (from
Theorem 2 of 2.6.11)

A*pkEp < yAx)ly. 0o

3.5.3 Representation of K** in [K*

As an immediate consequence of the theorem in the last subsection, we
have that all ‘while’ computable functions over [K* are expressible over
[K**

The argument for Step 1 is completed by showing how to code a struc-
ture A** within A* Now for each sort i, A** has, as domains,
AMY, AFY, A%* and A** (where U’ is a second unspecified object?).

Consider, for example, the domain A#** If mne€A** (so that
7n:N—>(Afu{u’}), then 7 can be represented by a pair

114 Chapter 3

(B, £)€ B* x A¥ (8 a “flag”)
where (recall the codings in 1.1.7 and 2.6.8)

— if n(m)€ A} then B(m)=1t and for all n &<m,n >) = p(m)(n), and
— if 7m)=u" then B(m)=1 and for all n &<m,n>)=u.

Correspondingly, in the assertion language, quantification over domains
A/* can be replaced by quantification over Af (and B*). Thus, given an
assertion p with quantification over A**, but free variables ranging over
A* only, we can find an assertion p in Lang,($*) such that

KEp<>p.

This completes the argument.

3.6 INDUCTIVE COMPUTABILITY OF THE INPUT-OUTPUT
RELATION

3.6.1 Introduction

Recall Convention 2.6.4, namely that all expressions with which we deal
contain simple and array variables only among d,a, where

% is the tuple (vy, ... vy,) of sorts (ky,k,) tespectively,
and 4 is the tuple (ay, ... ap,) of sorts (;, ... Im,) Tespectively.
We again represent, as in Chapter 2, a state over A by a vector of ele-
ments of A%
X =(xB.xy . Xmpkr- - Emy)
(see 2.6.5), with domain
[B“xAk‘: x~--xAlexAl’:‘ x---xAl’;’z,

represented for short as A¥[B,k,1¥].

We turn to Step 2 of the plan outlined in 3.5.1. We must show that for
all closed programs R, the partial function #, (R) is inductively comput-
able over K*, or, more precisely, there is a tuple of schemes ¥z, wWith vec-

tors as arguments and values, such that for all A€K, if the vectors X and
X' represent states o and o' over A, then

SAX)LX' < My(R)o) Lo

where J2 is the “realization” of U in A* (see below).

Recursive Programs 115

3.6.2 Outline of the notion of inductive computability
A precise definition of the notion of induction scheme for K-computability
will be given in Section 4.1. Here we merely note that induction schemes
are notations for all functions obtained from

(1) the functions named in the signature I,
by using the principles of

(2) definition by cases,

(3) composition,

(4) simultaneous primitive recursion on N, and

(5) the least number operator u over IN.
We will systematically point out where these defining principles are used.

With each scheme « can be associated its type wa)=(n;k,l), where

n=0, k is the n-tuple k,,...,k,, k;€Sort(X) for i=1,...,n and
I € Sort(X). Such a scheme a is intended to denote a partial function of
type Ta). Its semantics is therefore the family of partial functions

{a}4: Alk] > A,
(where, as before, A[I?]=Akl x -+ x A) for all A€K. We will call {a}*
the realization of a on A.

3.6.3 Coding of syntactic expressions and of states

We assume that we are given a numerical coding, or Godel numbering, of

the set of all syntactic expressions of £* (as in Zucker [1980]), ie. an

effective mapping from expressions £ to numbers "E", which satisfies cer-

tain basic properties:

— TE7increases strictly with compl(E), and in particular, the code of an
expression is larger than those of its subexpressions;

— sets such as {"t7|t € ProgTerm}, {"S7|S € Statemt }, {"S™
assignment }, etc., are primitive recursive;

S is an

— We can go primitive recursively from codes of expressions to codes of
their immediate subexpressions, and vice versa; thus, for example, 7S,’
and 'S," are primitive recursive in "S;;S,", and conversely, 'S;;S,” is
primitive recursive in 'S, and 'S,

In short, we can primitive recursively simulate all operations involved in

processing the syntax of our programming and assertion languages. This

primitive recursiveness will be used in proving inductive computability,
by virtue of the theorem in 4.2.1. (Actually a general recursive Godel

116 Chapter 3

numbering of syntax would be sufficient, for the same reason.)
Furthermore, states o over A are coded by vectors Fo'in A* as in 2.6.5.
In particular, the error state ¢ is coded by the “error vector”

error? = (UlB9 S TR) NU.“[?, T 'Nu”l/:h).
1

3.6.4 Representation of the operational semantics by inductively
computable functions

We now give a sequence of four theorems, each of which proves the
inductive computability over K* of a partial function, or tuple of func-
tions, which simulates some aspect of the operational semantics of the pro-
gramming language.

We deal in this subsection with induction schemes over K* (not K), so
by “scheme” we will mean: induction scheme over iK*. (For the effect this
has on the schemes of recursion, definition by cases and the u operator, see

4.19—12)
For any scheme a and A€K, we will write a?, instead of the more

cumbersome {a}?, for the realization of « in A*.
We also consider “scheme tuples”, i.e. n-tuples of induction schemes
a=(ay,...,a,) (for n=1), with realizations
ah: le...me %C,X"'ch
(each B and C, being some A} or A¥). Such a realization is an n-tuple
of partial functions, whose components are the individual realizations
o(jA: Byx -+ xB, =>C; (j=1,...,n).

For ease of exposition, we will not give the precise derivations of the
induction schemes. We trust that our semi-formal approach will be con-
vincing to the reader.

THEOREM 1 (Program term evaluation). For each sort k of X there is a
scheme ¢, , where

et N x AXBK,[¥] > A,
which represents the evaluation function R for program terms of 1.2.5,in
the sense that, for every t € ProgTerm;, A€K and o € PR.STATE(A),
Tt = Ry(e)(o). (1)

PROOF. The family < ¢, |k€Sort> is defined by simultaneous recur-
sion; that is, ¢ (n,X) is defined by simultaneous (over k) course-of-values

Recursive Programs 117

recursion on n. The definition is straightforward (¢f. Definition A.10 in
Zucker [1980]).
Let X =(x x,...,xp, &, ... Em), With x; of type k; and §¢; of
type [;. Then (recalling Convention 2.6.4)
vi(2,X)=u, if Unspecy(z) or z is not the code

of a program term of sort k, with
program variables among 9,a only.

Otherwise, paralleling the definition of #,, we define, for i=1,...,M, and
j= 1, . e ,Mz:
‘pki(r‘Dij, X) = X;
lplj("aj[t]" , X)) Ap[‘;(gj, ol Tt X))
pi(TF(ty, ..) X) = FUpp ("8, XD, (T8 X))
where F has type (m; k,,...,k,,l), and finally:
("t X)) i (™7 X))t
o (Tifb thent elset, fi7, X) =1 ¢, ("t,, X)) if (™7, X)Lt
g if pe(™7 X)lu.

It follows from Corollary 2 in 4.5.5 that the tuple @= <, | k€ Sort> is
defined by simultaneous course-of-values recursion, of the form

e, X) =~ x4 (n, X, $(6,(n), X), ..., 9(5,(n), X))

Here, if n is the code of a program term (other than a simple variable or
constant), then &,(n),...,5,,(n) are codes of its immediate subterms
(which are less than n, by 3.6.3), with &,,...,d,, primitive recursive, and
hence inductively computable (4.1.1); and y; is a definition by cases, with
the different cases primitive recursively decidable, and hence again induc-
tively computable.

This course-of-values recursion is of the kind reducible to primitive
recursion, using the type k* to code finite sequences of the range type k,
by a standard technique (see 4.5.7).

Now equation (1) can be proved by induction on compl(¢). 3

Notice that ¢, is a total function, ie. for all A€, all n and all vectors
X in A%, ¢f(n,X)! (proved by induction on n).

118 Chapter 3

THEOREM 2 (Computation step). There is a scheme tuple ¥, with
§A: N xNY x A¥[B, &, 1% — B x A¥[B,k,I%]

which represents the function CompStep of 3.1.5, in the sense that for
every n€N, R € ClProg, A€K and o € PRSTATE(A),

(1,70 if CompStep,(n)(R)(a)=0"
¥A(n,"R\"07) ~ (where o' may be) (2)
(t, error?) if CompSteps(n)(R)Xo)=x.

PROOF. We will actually follow the definition of CompStep, in 3.1.6,
which avoids course-of-values recursion. To begin with, we must define
schemes a and 8 with

o,B: NUx A[B,k,I[¥] — N¢
which represent the functions first and rest of 3.1.6, in the sense that for
every R € ClProg, A€K and o € PRSTATE(A),
aA(TRITGT) = rﬁrstA(R)(O').'
BA(TR,To™) = Trest,(R)(o).

The definition of «a is given by

(3)

oz, X) = uy if Unspecy(z) or z is not the
code of a closed program with
program variables among 9,d only.

Otherwise (paralleling the definition of first,)
a("<D|S>" X)=F87 if § is atomic
a(r<D IS];S2>-', X) o~ a(‘-(D | S|>-‘, X)

etc., etc. (as in 3.1.6). Similarly for the definition of 8.

Again, a and g are defined by course-of -values recursion, of a kind redu-
cible to primitive recursion (see 4.5.7).

Equation (3) is then proved by induction on compl(R).

Notice that a and g are total functions.

Next we define a scheme tuple 7, with

341 Nux A¥B,k,[*] > A¥[B, k1],
to represent the meaning function # of Chapter 1, in the sense that for
every atomic S, A€K and o € PRSTATE(A),
F(TS1 ") = "ML (S) (o). (4)

Recursive Programs 119

The definition of ¥ is a simple definition by cases:

3(z,X) = error if Unspecy(z) or z is not the
code of an atomic statement with
program variables among p,a only.

Otherwise (paralleling the definition of M, in 1.2.11):
(Tskiph, X)=X
y(Tabort™, X) = error

error if ¢, ("7, X)luy,
A -
')‘(=t X) =1x if ‘pk,-(rt1’ X)l?“ﬂk,.

where X' is the vector with the same components as X , except that x; is
replaced by ¢, ("7 X).

Note that this case involves a definition by cases, where the boolean test
has the form: Unspec; (¢, ("t", X)).

Finally:

error if o "t X)luy or ‘Plj(1 x)l U
S(F g -
7(aj[tol =t X) 1 X' if (pN(rtoj, X) l#mN and (p[j(rt-l, X)l#w,j

where X' is the vector with the same components as X , except that §; is
replaced by

AdjOin[j(fj, (pN(rto-l, X), (p[j(rtj, X))

Note that this case also involves a definition by cases, where the boolean
test is the disjunction of Unspecy(ep " X) and Unspec[j(cp[j(7, X))
(disjunction being derived from the logical functions included in the sig-
nature).

Equation (4) now follows directly from (1).

Notice again that the functions ¥ are total.

We turn finally to the definition of ¥, as required by the theorem. We
will use the notation

star =, (1, error)

and let « be a scheme for concatenating (codes of) declarations with state-
ments, L.e. such that

120 Chapter 3

A("DVSY) ="<D|S>"
(which is possible, since this operation is primitive recursive, cf. 4.2.1).

The tuple 1/7 is then defined as follows.

Wz,,2,, X) = star if Unspecy(z ;) or Unspecy(z ,) or z, is
not the code of a of a closed program with
program variables among v,d only.

Otherwise (paralleling the definition of CompStep, in 3.1.6): for n=0,
define

%0, "<D|S>", X)=(1, X).
Next (for n > 0) put
X' = (x4,...) =g HT<D|$>T X), X).

Then ¥(1,7<D|§>T, X) ~ (2, X"
and forn>1,

¥n-1, ("D ("< D|S>N, X)), X)

¥n,"<D|S>, X) ~ if S is not atomic and xy = true,
star otherwise.

The scheme 1/7 is again definable by (simultaneous) primitive recursion

(4.5.7).
Now (2) can be proved by induction on (n, compl(R)), using (3). O

Notice, again, that % is a tuple of total functions.
THEOREM 3 (Length of computation). There is a scheme 7, with
A N x A[B,K,[¥] —> N,
which represents the function LengthComp of 3.1.5, in the sense that for
every R € CLProg, A€K and o € PRSTATE(A),
LengthComp ,(R)(o) if LengthComp ,(R)(o) < oo

Fpir1) o
("R o) ~ 1 otherwise .

PrOOF. Consider the scheme tuple of Theorem 2,
Y=Y 1 Yo Vi, - - ¥Myemy)s

where the first component is the boolean-valued function
1t NYxINY x A¥[B, &, %] —> BY

Recursive Programs 121

such that ¥A(n,"R%"c7)=1t if the computation of R starting at o has
not been completed at step n, and ={ otherwise.
Now simply define

7n(m, X) ~ un[not(y_,(n,m,X))]. O

Notice the use of the g operator in the above proof.
Finally we have:

THEOREM 4 (Universal program evaluation). There is a scheme tuple ¥,
with

34: N x A¥[B,k,[*¥] > AMB,k,I*,
which represents the meaning function MW (=0) for programs, in the

sense that for every RE€ClProg, A€K, o€PRSTATE(A) and o'€
STATE(A),

Fo if My(R)0) o’
T if MR,
PROOF. Consider again the scheme tuple of Theorem 2,
Y=Yy, Yo Y1 - Yy emy)-
Let ¥’ be the tuple without ¥_,, i..
X C :"/’M,+M2)'

1§A("R_',ro”) ~

Now simply define
B(m, X) ~ ¥(n(m,X), m, X). O

Notice that 3 is not total; in fact (by the totality of ;J and the convention
for composing partial functions, ¢f. Section 2.1(4)) ¥(m,X) is defined pre-
cisely when 7(m, X) is.

3.6.5 Conclusion: Expressibility of weakest precondition and
strongest postcondition

Let us see what we have achieved. Consider again the three steps of the

plan outlined in 3.5.1.

(Step 2.) It follows from the work in this section that for any closed

program R, M,(R) is inductively computable over [K* by the scheme
tuple ¥z, defined by

9p(X) ~ 8("R7, X).

122 Chapter 3

(Step 3.) It will be shown in Section 4.3 that every inductively comput-
able function is ‘while’ computable. Hence M,(R) is ‘While’ computable
over K*

(Step 1) It was shown (3.5.2/3) that every ‘while’ computable function
over [K* is expressible over [K*. Hence, in particular, there is an assertion
i0g(X,X") of the assertion language Lang,(X*) which expresses the func-
tion representing M,4(R), uniformly for A€K, in the sense that for all
A,p,o and o if o and o' represent X and X' respectively relative to p,
then

A* pEiog(X,X") <> o=eand My(R)o)lo'. (1)

Finally we can define assertions expressing the weakest precondition and
strongest postcondition as in 3.5.1, namely

WP, [R, pl =45 VX ,X'[Val(X ,3,d) Ai0g(X,X") 2
> Proper(X)Ap[XT]
and sP,lp. Rl =4, 3X ', X [p[XTAiog(X', X) A Val(X ,3,d)]

(with p[X7] as given in 2.6.7, Definition 2, and Proper and Val as in
2.6.11, Definitions 0 and 3).

These satisfy the same properties as the corresponding assertions in
Chapter 2, viz. 2.6.11, Theorems 4 and S and their Corollaries. (The proofs
are the same, except that we now use the assertion i0g with property (1)
above, instead of the assertion Compug of Chapter 2.)

3.6.6 Functions computable by ‘while’-array programs
and functions computable by recursive programs:
Two conjectures

In the last two sections an important part was played by functions com-
putable by ‘while’ programs over K*. Although this was largely for
technical reasons (in order to prove expressibility of the weakest precondi-
tion for ProgLang,, over Lang,(X*), the class of ‘while’ programs over
IK* is nevertheless an interesting model of computation in its own right.
The elements of the domains A¥ are, essentially, arrays. Hence an assign-
ment to a variable of type i* can be viewed as an (unsubscripted) array
assignment. It is then a simple exercise to interpret the class of ‘while’
programs with arrays over K within the class of (arrayless) ‘while’ pro-
grams over K*: for example, the assignment a[to] =t would be translated
as a:=Adjoin;(a,tq,t).

Recursive Programs 123

We conjecture that the converse is also true, in the sense that the class
of ‘while’ computable functions over K* (with arguments and values in
the “unstarred” types only) is equivalent to the class of ‘while’-array com-
putable functions over K (see 4.3.1—4.3.3, 4.6.1 for exact definitions).

This conjecture can be reformulated in the language of inductive
definability over K and K* (by the results of Chapter 4).

We further conjecture that either of these classes is equal to the class of
functions computable by recursive programs (without arrays) over K.

3.7 COMPLETENESS OF THE PROOF SYSTEM

We adapt the completeness proof of Gorelick [1975] We begin with a key
lemma (¢f. [dB], Lemma 5.8, or Apt [1981], §3.6).

LEMMA 1. Let D=<P;<S;>" be a closed declaration (with

ProgVar(D)cd,d, as in Convention 2.64), and fori=1,....m let
r; = sp,Val(X,3,d),<D|P;>],
and fi = {Val(X,B,&)}P,-{ri},

and let [=fi,...,fn. Then for any S, p,q such that <D|S> is a
closed program (and ProgVar(S,p,q)c?,d),

if KE<DI|{p}Sig}>

then Kk<D|f—1{p}Sig}>.

(Note. The assertions sp,,l ,] and Val() were defined in 3.6.5 and 2.6.11,
Definition 3, respectively.)

PROOF. By induction on compl(S). For S not a procedure variable, the
argument is similar to that in 1.7.1. Consider now the case § =P; for
some i (1<i<m). Assume that

KE<D|{p}Piq}>. (1)

Let p,=p<X"/X> and q,=q<X"/X>, where X" is a tuple of fresh
variables (disjoint from X, and not occurring free or bound in p or q),
and ‘< X"/X >’ denotes simultaneous substitution (which is the same here
as repeated substitution, since X" is disjoint from X).

Now (arguing in ProofSys,, (3.4.1) but omitting ‘K and ‘D’), by the
selection rule

f— {val(X,3,a)} P;{r;},

124 Chapter 3

so by the invariance rule
f'—D{VaJ(X"B’a)ApI[[X]]}Pi{riApl[[X]]}, (2)

since p,[X] contains no program variables (¢f. 2.6.7, Definition 2 and
Remark (2) following).
Next we show

KEr; Ap[X]>q,. (3)
Assume, for given I=(4* p, o),
Ikr; ap,[X].
So IEr; (4)
and IEp,[X]. (5)

By (4) and (the analogue of) 2.6.11, Theorem 5, there is a state o'#¢ such
that

p, o' EVal(X,3,d) (6)
and Mu(D| P)(o)=0. (7
By (6) and 2.6.11, Theorem 3,
X represents o' relative to p. (8)
By (5), (8) and the theorem in 2.6.7,
p, o Ep, (9)

(since Var(p;)nX =@). By (1) and the soundness of the substitution rule
(repeatedly applied),

KE<D | {P1}Pi{(I1}>-
Hence by (9) and (7), I1Egq,.

This proves (3). Hence by (2), the oracle rule applied to (3) and the conse-
quence rule,

f—> {val(x,3,d) A p [X} Pifgy}.
By repeated application of the existential quantification rule,
f—> {3x [Val(X,3,d) A p,IX 11} P:iqy) (10)
(since Var(q;)nX =@). Now by the Corollary of Theorem 3 in 2.6.11,
KEp, o 3X [Val(X,3,d) A p,[X]]

Recursive Programs 125

(since Var(p;)nX =@), so by the oracle rule, (10) and the consequence
rule,

;= p}Pidg}.
Then by repeated applications of the substitution rule,
= {p <X/ X">}P{q,<X/X">}. (11)

Now (since the variables in X" do not occur free or bound in p or q)
pi1<X/X">=p and q;<X/X">=q, so (11) is identical to

f—>1iptP:dq}. O

LEMMA 2. With the notation of Lemma 1:

KF <D |[{Val(X,5,a)} P{r;}> fori=1,...,m.
PROOF. Since

Kk <D|{Val(X,3,d } Pi{r;}>
and M,(S;)=M,(P;) for all A€lK, therefore

KE<D|{Val(X,s,a)}S;{r;}> fori=1,...,m.
So by Lemma 1,

Kk <D|f —>{Val(X,3,a)}S;{r;}> fori=1,...,m,

where f=f,, ..., f. With f;={Val(X,5,d)}P;{r;}. The result follows
by the recursion rule. O

REMARK (Freezing of variables). Note that (by the definitions of Val in
2.6.11, Definition 3, and p[X] in 2.6.7, Definition 2) the assertion
Val(X,9,d)[X]is equivalent to X =X, ie.

KEVal(X,3,d)[X] < X=X".
Hence (by the definition of sp,, in 3.6.5) r; is equivalent to
3X 'lio. p|p, (X, X)) A Val(X",5,d)].
Thus, rewriting f; as
{Val(x,3,d }P{3X 'lio. p p, (X ,X) A Val(X',3,d)]},

we see that in the above proofs the tuple of assertion variables X was
used to “freeze” the values of the program variables 3,d before the pro-
cedure calls.

126 Chapter 3

We come now to the completeness theorem. Note that it only applies to
sequents of the form < D [{p}S{q}>, ie. without antecedents.

THEOREM (Completeness of Proof Sys ,,(K)).
If KE<D|{p}siq}>
then Kk<D|{p}Siq}>.

PROOF. Suppose F<D|{p}S{g}>. Now choose % and d so that
ProgVar(D,S,p,q)c?,d. By Lemma 1,

KF<D|f—{p}siq}> (1)
where f=fi, ..., fn with f;={Val(X,3,d)}P{r;}. By Lemma 2,
Kk<DI|fi> fori=1,...,m. (2)
From (1) and (2) we obtain, by repeated applications of the cut rule:
K+ <D |[{p}Sig}>. 0

3.8 APPENDIX: TOTAL CORRECTNESS FOR
RECURSIVE PROGRAMS

We restrict ourselves to some remarks.

The simplest semantics for total correctness does not involve n-
satisfaction or n-validity (as in 3.3.2). Satisfaction of declared correctness
formulae can be defined as in 2.8.1: for I=(4%p,0), I <D |{p}Siq}>
iff

A¥ p,cEp =

for some o'#¢, M,(D|S)(o)lc’ and A%, p, o' Fq.
Then satisfaction of sequents can be defined by:
IET<D|f—f> iff (UE"<D|f> = IET<DI|f>),
and total K-validity by:
KETg iff IFE"g for all I€INTERPXK).
(Compare the concluding remark in 3.3.3.)
A proof system for total correctness of recursive programs can be

obtained from ProofSys,, (3.4.1) by removing the rules for substitution
and existential quantification, and replacing the recursion rule (A.5) by:

Recursive Programs 127

(A.S)T Recursion for total correctness:
Suppose D =< P;<=S;>. Then we have the following m rules, all
with the same 2m premisses:

<D |f;)’ {32< n[ri(Z)]}Pi{Qi}izl] — {rj(n)}Sj{qu for j=1, c..,m,

<Dl fo — p; 2 3In[r;(W]> for j=1,....m
<D |.f:)—° {pi} P Ag;}>
fori=1,...,m, where fo is some vector of correctness formulae, and for
j=1, Jm, T; (z) is_an assertion with the free assertion variable z of

type N (not free in fo, pjorq J) and n and k range over natural numbers
(as in 2.8.2). Thus, for example, ‘r;(n) stands for ‘z=unspecyAr;(z)
(and, of course, 43z<nlr;(2)]}P;{q;}"; stands for the vector
{3z< n[r(D PAqy), . .. A32< nlr, (D]} Ppign D)

Versions of this rule were given in Apt [1981] and Sokolowski [1977].
(See also the references in Apt [1981], §3.9).

It is not hard to show that this rule is sound, according to the above
semantics.

The notion of weakest precondition for total correctness is defined
exactly as in 2.8.3, and is [K-expressible by the assertion

wpllR, pl =4, 3X ,X'[Val(X ,3,d) Aiog(X,X") A
A Proper(X)Aap[Xx1]

(compare the definition of Wp,,[R, p] in 3.5.1). This satisfies (analogues of)
the properties listed for wp/, in 2.8.3.

Again, the strongest postcondition for total correctness may be defined
exactly as for partial correctness (3.5.1).

We come now to the issue of a completeness proof for total correctness,
and encounter the following problem: the substitution and existential
quantification rules (3.4.1, C.3 and C.4) are not valid under the above
semantics* — that is, unless we make the additional restriction that
x€Var(f) (in the notation of 3.4.1). However if we try to adapt the
proof in Apt [1981], §3.9, to our formalism, we seem to need the existen-
tial quantification rule without this restriction.

If, on the other hand, we use the following semantics for validity of
sequents (similar to that in 3.3.2):

KET<D|f> iff I1E'<D]|f > forall 1€ INTERPHK),

and KET<D|f—>f> if (KET<D|f> = KET<D|f>),
then, although the substitution and existential quantification rules become

128 Chapter 3

valid, the recursion rule (A.5)7 above is no longer valid. (The problem is
that the value of the number variable n is no longer preserved across the
‘—>’, since such values are quantified separately on each side.)

A solution to this problem is given by America and De Boer [1987]. The
idea, briefly, is to define a subsort Count of the sort N. Variables of sort
Count are (roughly) subject to the first semantics, and all other variables
to the second. The variable n in the recursion rule must be of sort Count,
and the variable x in the substitution and existential quantification rules
must not be of sort Count.

That this modification yields a complete system is not obvious: in the
completeness proof as presented in Apt [1981], the existential
quantification rule is applied to a variable which is used in the recursion
rule. In America and De Boer [1987], it is shown how to eliminate this
particular application of the elimination rule in the proof of the complete-

ness theorem.

129

Chapter 4

Computability in an Abstract Setting

4.1 INDUCTION SCHEMES

We begin our study of the computability of functions over the class K by
looking at mechanisms for defining functions on a single structure A.

4.1.1 Functions computable by induction on A

Imagine the set of partial functions on A built up from its basic opera-
tions, and some simple functions like projections, by means of composition;
(simultaneous) primitive recursion on the standard numerical domain N of
A, with algebraic parameters; and the least number search operator over
IN, with algebraic parameters. These functions we will call the induc-
tively de finable or inductively computable partial functions on A; clearly,
they are a modest abstraction of the partial recursive functions on IN, based
on the latter’s definition by function schemes. We will describe the set
IND(A) of all inductively definable functions on A, following the style of
Kleene [1952] §43. First we establish some important notations.

Let k= (ky. ... ,k,) and =\,1,) be arbitrary lists of sorts of A.

Let Alk] denote Ak XAy and A[l] denote Apxcx AL

Let x=(xj,...,x,) denote an arbitrary vector of A[k] and y=(y,...
....y) denote an arbitrary vector of A[[].

Let k and [also denote sorts of A. Let x,y €A,, z€N and beB.

In this chapter, we sometimes use ‘—>’ for partial functions (cf. 2.1).

DEFINITION. ~ The set IND(A) consists of partial functions on A of the
form f: Alk]—> A,. The set is defined inductively by six clauses in
which each equation, or system of equations, defines such a partial func-
tion f on A of the indicated type.

130 Chapter 4

BASIC FUNCTIONS

1. Primitive operations of A. For each primitive operation F4 of A,
and each constant c? of A, the functions defined by

f@)=FA®R) f@)=ch
are in IND(A) and are of type (n; k,0).
Il. Projections. The function f defined by
Ff@)=x
is in IND(A) and is of type (n; k,k;).
III. Definition by cases. The function f defined by
x if b=t
FOxy) =1y ifpt
is in IND(A) and is of type (3; B,k, k, k).

OPERATIONS

IV. Composition. Let gy, ...,gn€ IND(A) be functions with g; of type
(n; k,1;) fori=1,..., m and let he IND(A) be a function of type (m; ! ,l)
Then f defined by

F@) = h(g(Z)...,gn(X)
is a function in IND(A) of type (n; k,0).

V. Simultaneous primitive recursion on IN. Let g, ..., g,,IEIND(A) be
functions with g of type (mk,;) for i=1,...,m, and let
hy, ..., h, €IND(A) be functions with h; of type (1+n +m; N, &,1,1;) for
i=1,...,m. Then fj,..., fm defined by

£1(0,%) ~ g(x)

fn(0,%) ~ g (X)
filz41,2) ~ hy(z,%,fi(z,%), ..., fu(z,2))

fu(z41,2) >~ b, (2,%,fi(2,2),. .., fu(z,%))
are functions in IND(A) with f; of type (n+1,N,k,[;).

Computability in an Abstract Setting 131

VL. Least number operator on N. Let g€ IND(A) be a function of type
(n+1; k,N,B). Then f defined by

FQ3) ~ pzlg®, z)=1]

is a function in IND(A) of type (n; k,N). Here f(#)lz if, and only if,
g(%,y)lt for each y<z and g(¥,z)it.

4.1.2 Informal definition of computability on A

The set IND(A) of all partial functions of the form f: A[k]l— A,
obtained from the basic functions I—III by means of the operations IV—
V1, is the set of partial functions inductively de finable or inductively com-
putable on A.

We have chosen the name inductively definable to emphasize the impor-
tant role of the induction principle on the natural numbers N in the
abstract computational formalism; and to maintain a simple terminology,
suited to the tasks required of the formalism in this book.

The clauses for primitive recursion and the least number operator on N
are mathematically the most significant. The set PIND(A) of functions
obtained from clauses I—V we will term the set of primitive inductively
definable functions, since those functions generalize the (simultaneous)
primitive recursive functions on N. Notice that the members of PIND(A)
are all total functions and, therefore, it is clause VI that introduces the
partial functions in IND(A).

Our adoption of a simultaneous primitive recursion clause in place of
the (expected) single function scheme,

£0,%) ~g(@)
f(z+1,%) =~ h(z,%, f(z,%)),

is also noteworthy.

In the single-sorted case of the natural numbers N, primitive recursion
and simultaneous recursion are equivalent methods of definition — thanks
to the primitive recursive pairing functions on IN: see Kleene [1952] §46,
or Peter [1967] p.62.

In the many-sorted algebraic situation, however, simultaneous primitive
recursion allows an important kind of interdependency of the different
domains in the definition of functions. This interdependency is well
exemplified in the construction of various syntactic term evaluation map-
pings (already seen in 3.6.4, and to be seen again on several occasions in
this chapter). Thus, primitive recursion and simultaneous primitive recur-
sion are not equivalent in the many-sorted situation; the appropriateness

132 Chapter 4

and mathematical attractions of using simultaneous primitive recursion
will be self-evident in due course, we hope.

4.1.3 Vector mappings

Consider a partial (vector-valued) mapping f: A[k]—> All] of type
(n,m; k,[) with coordinate partial functions f;: A[k]—éA, for i=

1,...,m. Thus, for ¥ € Alk]
FE) = (fGED) ..., fn(ED
and (recall Section 2.1)
FQ@NAff fori=1,...,m, f;(x)!
and FGT I fori=1,....m, f;(0T.

Then the map f is said to be inductively definable or inductively comput-
able on A if each of its coordinate functions f; is in IND(A).

Notice that the simultaneous primitive recursion clause can be used to
specify the coordinate mappings of a vector map.

4.1.4 Criticism

Mathematically, this definition 4.1.2 is not quite complete because a
justification is needed for operation V; such an argument is easy to supply
(see 4.1.6). Then, with conventional rigour, we have a conventional
semantical definition of the inductively computable functions on A.
Strictly speaking, this definition is not rigorous without a syntactic
description of the generating process. For example, without such a syntac-
tic component to the definition, the nature of arguments based on induc-
tion on the complexity of function definitions is not clear. The distinction
between syntax and semantics is usually ignored in definitions of the par-
tial recursive functions on N and could be safely ignored in this modest
generalization to A, because of the familiar role of IN in the algebra A.
(To ignore the distinction is not consistent with the objectives of our field
of study, of course!)

However, we are not interested in computation on a single structure A,
but in processes which are uni formly computable over a class of structures
K. Indeed, for our purposes, computation on a single structure A is com-
putation over the isomorphism type of A. Thus, we have need of a syn-
tactic description of the inductively definable functions with a semantics
of the form

Computability in an Abstract Setting 133

IND(K) = {IND(A) | A€K}.

This syntax we call induction schemes.

4.1.5 Induction Schemes

An induction scheme is a notation for a family of inductively definable
functions which specifies a common structure for the functions. We will
choose a particularly compact and abstract notation as our induction
schemes suited to the mathematical work at hand. Let ¥ be a signature
with distinguished numerical and boolean sorts N and B (as in 1.1.1). The
induction schemes are defined inductively, using items from X, natural
numbers and the letters Q,P,D,C,R,L to distinguish the six cases
corresponding with the six clauses of 4.1.1.

I. For each function symbol F of ¥ of type (n; k,1) with n >0, the nota-
tion
<0, F,n,k,l>

is an induction scheme of type (r; I-c’,l).* And for each constant symbol ¢
in & of type (0; 1) and any list of sorts k, the notation

<0, ¢ Lk>
is an induction scheme of type (n; I—c',l).
II. For any list of sorts k and any 1<i<n, the notation
<P, n, k >
is an induction scheme of type (n; k,k;).
IIl. For any sort k, the notation
<D, k>
is an induction scheme of type (3; B, k, k, k).

IV. For any induction schemes ay, . ..,a, With a; of type (n; i,li) and
any induction scheme g of type (m; I, l) ‘the notation

<C,nm,aq,...,0,,8>
is an induction scheme of type (n; k,0).
V. For any induction schemes ay, ... ,a, With o; of type (nl I_c'_., l;) and
any induction schemes 8,,...,8,, Wwith g; of type (1+n+m; N,k,L,};), the

notation

134 Chapter 4

<R, n,m,i,ay, ..., 0,81 Bm>
is an induction scheme of type (n+1; N, k,L).
VI. For any induction scheme «a of type (n+1; I-c', N,B), the notation
<L, n,a>

is an induction scheme of type (n; k,N).
The set of induction schemes defined by clauses [—VI we denote
IndSch=IndSch(X). We use the notation o,f, ... to denote schemes.

EXERCISE. Devise an alternate concrete syntax to complement the abstract
syntax of induction schemes; that is, by means of syntactic ‘sugar’, devise a
pleasant functional programming notation whose semantics is intended to
be the inductively definable mappings.

4.1.6 Semantics of Schemes
The meaning of a scheme a of type (m; I:,l) on the class K is a family of
mappings
My(0): Alk]l — A,
indexed by the structures A €lK; that is, the semantics of a is of the form

m[K(a) ={M,(a) | A€K}.

The semantics of schemes on A is informally described in 4.1.1, of course;
but formally, #,4(«) must be defined by induction on the construction of
a. Let us outline this definition.

The basic cases I—III are quite simple. For instance, in case II, if
a=<P, m,k,i> then M, (a) is the projection function Alk]— Ay,

’m,, (G)(i) ~ X;

as defined in case II of 4.1.1. Consider the induction steps. Composition is
Toutine: suppose

a=<Cnma,,...,cn, B>
and fori=1,...,m
Ma(a): AlK]—> A, and Mu(®): Alll— 4.
Then we define M,(c): Alk]— A, by
My (2)(2) &~ My(BY M, ())(F), . .. , My e, NE))

for all X€A[k] (Remember the standard convention for the composition

Computability in an Abstract Setting 135

of partial functions in Section 2.1.)
In the case of primitive recursion, to define #4(a) for

a= <R,nmiaq,...,an,B1---Bm>

we need the following fact about the solutions to equations of the form V
in 4.1.1:

LEMMA. Let A€K. Let g, ...,gn be partial functions on A with g; of
type (n; k,1I;) and let hy, ... h, be partial functions on A with h; of
type (1+n+m; N, kL, l;). Then there exists a unique m-tuple of partial
functions f=(f,, .. fm) on A with f; of type (1+n; N,k,1;) such that
f:(0,%) =~ g;(%)
fi(z+41,%) ~ (2, %, fi(z,%), ..., fi.(2,%)).

Furthermore, if [fi(z,%)1 for any i and any z€N then f;(y,x)? for all i
and all y > z.

Given the lemma, we can define #,(a)=f; when for j=1,...,m,

mA((Xj) =g and mA(BJ) = h’i'

PROOF OF LEMMA. The uniqueness of the solution to the equation is
straight-forward: given solutions f (fi---. f) and f =(fi,...
.+ /) one proves that for each i

f,-(z,i) o f,—'(z,fc)

by simultaneous induction on z. .

To prove the existence of a solution, a map f=(f;,... ,f,,,) is con-
structed from a (unique) sequence {(f7, ..., ;)| z€N} of approximating
partial functions which satisfy the equations on any argument (y,x)
with y <z, and are undefined for all (y,X¥) with y>z. These f7 are
defined inductively as follows:

Basis z=0. Let f2(y,%)1, ie. f2isthe everywhere undefined function.
Basis z=1. Let

o f2&5,%) if y#0
£y, %) = a(®) if y=0

136 Chapter 4

Induction step. Let

fily,3) if ysz
fizﬂ(y,j';) ~ - 2. 2 2. =2 .
i,z f{z,%), ..., f{z,%)) if y=z

One can now prove that the functions satisfy the requirements, by induc-
tion on z; and then prove that f=(fj, ..., f,) With

filz. %) ~ f7(z,%)
is the solution. a
Finally, in the case of the least number search operator on N, if
a=<L,ng>
then to define #,(a) we can simply write
z if MR, z) 1t
Mpla)(X) = and, for each y <z, M,(B)(X, y) it
T if there is no such z.

This concludes the definition of the semantics of schemes on a structure

A.
We will usually write {a}? for the map M, ().
The semantics of « on the class K can now be formally defined:

mIK(cx) ={M,(0) | AekK}
={{a}4 | AcK}

And we can frame one of the basic definitions of the chapter.

4.1.7 Formal definition of computability over K

A family f={fy | A€} of partial functions of type (n; k,D) is said to be
inductively definable uniformly over K if there exists an induction scheme
« of type (n; k,I) such that for every A€K and every x€ Alk],

fa(2) =~ {a}A().

4.1.8 Vector mappings

A family f={f4|A€K} of (vector-valued) partial mappings of type
(n,m; k,l) is said to be inductively de finable uniformly over K if there

Computability in an Abstract Setting 137

exists a list of induction schemes d=(ay,...,a,), With «; of type
(n; k,1;), which uniformly define the families f;={fi|A€K} of coordi-
nate functions of f (recall 4.1.3).

We will usually write {a}” as an abbreviation for the list of maps
{a}4, ... Aa, }4; in particular,

{a}4(®) =~ (a4 (@), . .. o, }A(E)).

4.1.9 Functions on K" and K*

The sole purpose of the structures AY, and A¥* is the semantical interpreta-
tion of programs, and assertions about the behaviour of programs, that
compute on the structure A€K. However, we have technical need of a
special theory of inductively definable functions on both K" and K, in
order to conclude the logical definability work in Chapter 3 (see 3.6.4),
and in connection with a theorem in Section 4.7 (Basic Lemma 4.7.3).
Moreover, it is interesting to note that inductive definability on K" can be
simulated by inductive definability on K.

First we observe that the structures A" and A* for A€ are not, strictly
speaking, standard structures because their numerical and boolean domains
are N* and BY. From the point of view of our definitions, the addition of
w can be controlled by the unary predicate

) t if x=u
Unspec;(x) = { ¢ if y wy

for i =N,B. Thus, we now assume that A" contains these predicates. The
structure A*, as defined in 3.2.1, already contains these predicates.

4.1.10 Case of K"
To define the class of inductively definable functions on A“ we must adapt
the clauses in 4.1.1 involving the domains N and B of A. The first such
clause is that of definition by cases IIl, which is replaced by
x if Unspecg(b)=1 and b=t
f(b,x,y)=1{y if Unspecg(b)=1 and b=t
u if Unspecg(b)=t.

Next, we must add to clause V, about primitive recursion, the new basis
case

138 Chapter 4

filay, %) = u,,
wherei=1,...,m. And, finally, we must add to clause VI the case

f(@)lu iff for some z€N, g(¥, y)!f for each y<z and g(%,z)lu.

4.1.11 Reduction of K" to K

We construct a representation of A“[k] in terms of AlK] as follows: for
each sort k, let o,:Bx A, — A be defined by
x if b=t
abx)=1 bt

Now we set
Aglkl=(B x A)% -+ x(Bx Ay)
and define a representation by means of the surjection
alk]: Aglk] — Alk],
alk]C...,(Bx), ...)=C... ,aki(b,-,x,-), D X

With this machinery we can effect the following reduction of inductive
definability over K" to inductive definability over K.

THEOREM. Let f={f,. | A%€ KY} be a family of partial mappings that is
inductively de finable uniformly over KY. Then there exists a family
F={fa| A€K} of partial mappings that is inductively definable uni-
formly over K such that for each A€K the following diagram commutes:

> fA“ -
ARl ——= av[i]
alk] afl]
Akl —A s Al

PROOF. Induction on the complexity of the induction scheme for f. 0

Computability in an Abstract Setting 139

4.1.12 Case of K*

We leave it to the reader to verify that the solution adopted in 4.1.10 for
inductive definability in K" applies directly to K*. Let us note, however,
that inductive definability on [K* cannot be reduced to inductive
definability on K (Section 4.8).

4.2 SOME IMPORTANT PROPERTIES

We will gather a number of simple, but valuable, results about the induc-
tively definable functions on K.

4.2.1 The functions computable on N

Consider the functions on the standard numerical domain IN of a structure
A€ that are definable by the induction schemes; not surprisingly:

THEOREM. Let A be a structure and f a partial function on A of type
(m;N,...,N,N), ie a function f:IN* —>N. If fis partial recursive on
IN then fis definable by an induction scheme over A. If fis primitive
recursive then fis definable by a primitive induction scheme over A.

PROOF. Obvious, on consulting Kleene [1952], §43 and §63. O

A similar result can be framed and proved for r.e., recursive and primitive
recursive relations on N, involving the boolean domain [B. But the con-
verse of the theorem is false, since a structure may be chosen to have non-
recursive basic operations.

4.2.2 The manipulation of arguments

The elementary and essential operations of permuting the arguments of a
function, identifying the arguments of a function, and introducing
dummy arguments etc,, to make new functions from old ones, are all
applicable to IND(K). These operations can be stated more precisely and
uniformly as follows:

PROPOSITION ~ Let (n; k,1) be a type. Consider a total mapping

mi{l,...,m}—>{1,. n} and set 7w7)=(k 1), - - - K m)- Given an
Lnducuon scheme a o f type (m; n(k),0), there exists an induction scheme
B of type (n; k1) such that for all A€K, %€ Alk]

{ﬁ}A(X) ~ {a}4 (x,,m, N ,x,,(m)).

In the special case of permuting arguments, m=n and = is bijctive. In
one of the special cases of identifying arguments, m>n and w is

140 Chapter 4

surjective. In the special case of adding dummy arguments, m <n and mis
the identity function on {1,...,m}. Such function building techniques
are based on the projection and composition of schemes and are discussed in
Kleene [1952], §44.

4.2.3 General definition by cases
The following result is a very general form of definition by cases.

PROPOSITION. Let «, ... ,a, by induction schemes of type (n; k,D and
let B,,...,B. be mductton schemes of type (n; k,B). Then there is an
induction scheme v of type (n; k1) such that for every A€k, 1€ Alk]

{a,}4R) if {82 (X))t

{a}A(Z) if {12 ()it and {814 (F) Lt

{714 (%) ~

{a, 1A(X) if {B;}A(Z) it for 1<i<m
and {8, (X) 1.

.

Notice that {y}4(¥)1 if, and only if, for some 1<i<m,
{o;}4(2) it for j<i and {o;}A(X)1.

4.2.4 Iteration lemma

One of the important properties of the primitive recursive functions on N
is this: for any primitive recursion function f:IN—>[N, the iteration
function 7(f): N xIN —> N defined by

ICf)n,x)=(feo---of)x) (n times)
= f"(x)
is again primitive recursive. Here is a generalization of this property

which is useful in unfolding looping constructs such as the ‘while’ state-
ment.

ITERATION LEMMA. Let f={f, | A€K} be a family of partial mappings
of type (n,n; k,k) that is uniformly definable over K by induction
schemes &. Then the family I1={1, | A€} of iteration maps

1,: NxA[k] — Alk]

Computability in an Abstract Setting 141

defined by

I,(2,2) = (fue---ofu)Z) (z times)

= fi(&@)

is uni formly de finable over K by induction schemes g.
PROOF. Suppose f={fs | A€K} isdefined by d=(ay,...,a,), Where o
defines the family f;={fi|A€K} of i-th coordinate maps of f. We
consider the construction of the iteration map I, for f, on some arbitrary
structure A€K.

Now each coordinate map I} of I, can be defined, informally, by the
following primitive recursion:

IAl(O,i) o~ X;
Li(z+1,%) ~ fHI)(z,%), ..., 13(z,%)).

This observation suggests that an obvious n-tuple of schemes ,§=
(By,By) to define the family 7={1, | A€}, uniformly over K, is

Bi = <R, n,ni, 7y, e e Vs Qpy e, 0 >

wherein 7; is a scheme that computes the i-th projection function of type
(n; k,k;) over K.

We leave to the interested reader the task of proving that for each i,
A€lK and X€ Alk],

{B:34(2,%) ~ Ij(2,%)

by induction on z. O

4.3 FROM INDUCTION SCHEMES TO ‘WHILE’ PROGRAMS

A program S specifies or “computes” a family of state transformations,
M4 (S): PRSTATE(A) —> STATE(A)

indexed by A€, which records the results of executing S on all possible
values of its program variables. Among the effects included is the
unspeci fied value u of a variable which may, or may not, lead to an error
state ¢ in a computation. Notice, however, that these program-theoretic
items have nothing to do with the inductively definable functions over K
and the mathematical mechanisms that calculate them. We begin the
comparison of induction schemes and programs by specif ying some simple
conditions under which a program computes a function on a structure A.

142 Chapter 4

4.3.1 Functions computable by programs

Let S be any program of one of the kinds considered in the previous
chapters. Let 5=(vy,...,v,) and w=(wy, ..., w,) be lists of distinct sim-
ple variables of sorts k=(k;, ... ,k,) and I=(l,, ... L,) respectively. The
triple [S,9,w] will be called a program with input variables v and out put
variables w or simply an i/o-program.

DEFINITION. A family f={fs | A€K} of partial mappings of type
(n,m:; k,1) is said to be computable by an i/o-program [S,5,w]if for every
A€K and #€A[k] and for every o€PRSTATE(A) with o(v;)=x;
(1<i<n),

fa@) Ly iff Mu(S)o)io'=e
where o'(w;)=y;#u foralli=1,...,m; and

fa(@)1iff My(S) o) 1.

Notice that we require a program S to compute the family f in such a
way that divergence of f corresponds only with non-termination of S
and not with the occurrence of errors or unspecified values for output
variables.

4.3.2 Functional programs

The last definition leads to the interesting semantical concept of a [K-
functional program as that of an i/o-program [S,5,w] in which the
values of the output variables # are uniquely determined by the values of
the input variables 3.

DEFINITION An i/0 program [S,d,®] is called a K- functional program if
given any A€K and any o4, o, € PRSTATE(A) such that o,(v;)=o5(v;)
#u for 1=i<n,

either M4(S) (o)) Loy#e and My(S)(o,) Loy #e

and o,'(w;)=0, (w;)#u for 1<i<m

or mA(S)(O']) T and mA(S)(O'z) 1.
Notice that a [K-functional program never returns an error state provided
its input variables are specified.

The property of functionality is akin to the properties seen in 1.2.13,
2.2.8 and 3.1.11: provided o, o, are specified on 3 we have

o ~ 0, (rel 3) = M(S) o)) ~My(SHo,) (rel).

In a natural way, such a K-functional program [S,5,] computes a

Computabiiity in an Abstract Setting 143

function f, of type (n,m; k,[) on any A€K by definining for each
% € A[k] the special state [X]Je PRSTATE(A) by

x; ifo=v fori=1,...,n

[x]() =

w otherwise

and then setting
@)=y if MuS)([£])o=e such that
o(w)=y; fori=1,...,m
LHGT i M S([ED T

Since [S,3,%] is a functional program the choice of [%] is not necessary, of
course: for any o

o =[2] (rel 3) = Mu(S)(o) ~ Mu(SH[X]) (rel);

and hence choosing equivalent o (rel 9) would define the same function
fa: AlR]—> Al

Thus, to any [K-functional program [S,d,%] we may associate a func-
tional meaning or semantics

m(S,5,0)={fn,(S,3,0)| AckK}

by taking fn,(S,3,%) to be the function f,: A[k]—> All] described
above.

The functional behaviour of ‘while’ and ‘while™array programs, and
von Neumann programs in general, is an interesting and useful subject,
both theoretically and practically. Starting from the fact that the set of
i/0 programs [S,%,w] that are functional on the natural numbers N is not
a recursively enumerable set, Clive Jervis has devised syntactic conditions
on programs to ensure functional behaviour. These sets of programs are
polynomial-time decidable and implement all computable functions: see
Jervis [1987]. Jervis’ conditions have also been implemented in a compiler
for a language CARESS (Martin and Tucker [1987]).

4.3.3 ‘while’ computable functions

A family f=1{f, | A€K} of partial functions of type (n,m; k,I) is said to
be computable by a ‘while’ program uniformly over K if there is an
appropriate functional ‘while’ program [S,?,] such that for all A€K
and all ¥€A[k),

144 Chapter 4

4.3.4 Scheme definability implies ‘while’ program computability
THEOREM Let f={fy | A€K)} be a family of partial mappings of type
(n,m; k,l) that is definable by induction schemes a uniformly over K.
Then f is computable by a functional ‘while’ program [S,?,%] uni-
formly over K. Moreover, one can e flectively calculate [S,9,%] from .

PROOF. We consider the coordinate maps of f and how to construct a
functional ‘while’ program [S;,3,w;] for each scheme o; of type (n; k,L;).
Then we show how these functional programs can be combined to make
the required functional program [S,9,9]to0 compute f .

Let o be any induction scheme of type (n; k,1). We will construct a
functional ‘while’ program [S, 9,w] for « by induction on the definition of
[88

The basis cases are straight-forward. For example, consider definition by
cases where a=<D, k>. Take

S = if vB then w:=v, else w:=0, fi

where 9B is a Boolean variable and w,v,,v, are variables of type k. To
show that the functional program [S, (v8,,,,), w] computes {a}* on each
A€K is trivial.

Consider the induction step. In the case of composition,

a=<C,nmay,..., 08>
Suppose that there are functional programs
[S]’ 15]’10]] (] [Sma Ism’u)m]a [S,5’9Z]

to uniformly compute {a;}4, ... {a, }4,{B}* over all A€K. Without loss
of generality we can assume these programs have no variables in common.
This means that for all A€K and o €PRSTATE(A):

if M,(S;) (o)L then My(S;) (o) ~ o (rel Var(S,, ..., Si1Sict - - SmaS)),
if My(S) o)L then My(S) o) ~ o (rel Var(Sy,...,S,)).

Let 9 and w be new variables and consider the following program:

Computability in an Abstract Setting 145

Y
[
5&
'
s
g

Here notation of the form y:=® or y:=(w,,...,w,) does not indicate
multiple assignments, but the sequence of assignments
N=W5 0 Ym F Wy
The functional program [S,3,w] computes a over [K. For, clearly,
(3, :=5; S;, 5,w;] and [y =(w,, ..., w,);S,®,2]

compute «; and g over K. And § is made to initialise the distinct input
variables of the S; by the common values of 3, and collect their output
values by y in order to initialize the input variables of S. Thus, S
matches the distinct input and output variables.

EXERCISE. Verify the fact that [S,3,w] computes « over K.
In the case of primitive recursion, let
a=<R,nmja...,00,81---.8m>
where o; is of type (n; k,L) and B; is of type (n+1+m; k,N,7,1;). By the
induction hypothesis, there are functional programs
(S;, 3;,w;] and [S;, 5;.d;,2,),s;]

which compute o; and 8; over K. Again we assume these programs have
no variables in common. Consider the following program S with new
variables ¢,d of type N, and 3, 7 of types k, :

146 Chapter 4

Dy =0 5 Sons Top =W 5

c:=0;

while c <d do y,:=5; dy==c; z:=(ry,....70);
5,
Vm =03 dpi=C; Zpm=(ry,....1)
5.
=5,
T =53
c=c+l

od.
EXERCISE. Verify that the functional program [S, (3,d),r;] computes the
induction scheme « over K.
In the case of the least number operator,
a=<L,n,pg>

where g is of type (n+1 k,N,B). By the induction hypothesis, there is a
functional program (S, (&, d) b], where b is a boolean varlable, that com-
putes g over K. Consider the program § with new variables D of type k
and ¢ of type N:

S = ¢=0;
b:=false;
while not(b) do y:=%;d:=c;
S;
c=c+1
od;
c=c-1.

EXERCISE. Verify that the functional program [S,? ,c] computes a over K.

We have shown how to make a functional program [$,3,w] for any induc-
tion scheme « of type (n; k,0). It remains for us to show how this method
can be applied to the induction schemes ay,...,a, for the coordinate

Computability in an Abstract Setting 147

mappings of f and the resulting functional programs [S,,d,,w,],.
[Sp:0m,w,] combined to make the single functional program
[S,3,%] that computes f.
Using this method, it is easy to construct functional programs

[S],is,w]] I L) [Sm,i.),u)m]
for the induction schemes «;,...,a, where the input variables ¥ are the
only variables common to the Sy, - . .,S,, and, furthermore,

Var(S;) nVar(S;) = {3}

fori=j. Put w=(w,,...,w,)
In order to preserve the values of the input variables 9, choose new
variables X=(x,,...,x,) (disjoint from 3,% and all variables in S, ...
.Sy), and define S; = 9:=%;S; and S = %:=3;8;;---;Sy,. We claim:

PROPOSITION. The functional program [S,,w] computes f .
This will follow from the
LEMMA. For anyi=1,...,m and any o € PRSTATE(A)

Ma(S) o) ~ My(S; o) (rel w;).

PROOF. For these programs, our convention on coordinate mappings for
vector mappings ensures that

either M,4(S{)(o)! foralli=1,...,m
or MA(S) o)t foralli=1,...,m.
Thus, we know that
Ma(S) o)1 iff Ma(S) o)1 fori=1,...,m

and we can restrict our attention to the case where #,(S)(o) l.
By virtue of the construction of the S; we know the following impor-
tant fact: fori=1,...,m

Mu(Si o) =~ o (rel X,wy,...,w;)

i.e. S; preserves inputs and all earlier computed outputs (thanks to the dis-
joint variables condition); whence it is easy to see that for i=1,...,m

Mu(Sys...;8 1 o) ~c (rel), (1)
Ma(Sisys - 38 (0) ~ o (rel w;). (2)

148 Chapter 4

Thus, applying M,(S;) to (1) we obtain
My(S1; ... ;8)0) = Mu(SH(a) (rel w;)

because [S;,?,w;] is a functional program. Now using (2) we deduce that
My(Sis. .. ;8 0) = M(SH (o) (rel w;),

from which the lemma follows by applying M,4(¥:=3) to each side. O

4.4 FROM ‘WHILE’ PROGRAMS TO INDUCTION SCHEMES

We will simulate functional ‘while’ program computation on STATE(A)
with inductively definable functions on A and prove the converse of
Theorem 4.3.4. To accomplish these tasks we first pay more attention to
the semantics of function programs and the roles of u and .

4.4.1 Semantics of functional programs
Recall from 4.3.2 that a K-functional program [S,3,%] has functional
semantics
fn(S,8,0) ={frn,(S,9,0)| AcK}
that is most simply described as follows: for each A€K,
fra(8,5,%): Alk] — All]

is computed by giving 7 the values X EA[k] executing S, and taking
fra(S,9,0)(%) to be the values y €All] of ¥ if and when S terminates.
The values of the other variables of S prior and subsequent to the execu-
tion of S are immaterial; and, indeed, our semantics allows a direct formu-
lation of this by saying: define special state

X; ifo= v;
[21(0) = u otherwise,

and if M,(SX[X]) ! o then take y; = o (w;).

But it is important to note that the definition of a functional program
requires that the values of the remaining variables be immaterial in the
stronger sense that S computes the same values y for @ on the entire
neighbourhood of states

NBHD(%) =4; {0 € PRSTATE(A) | o(;)=x; fori=1,... nlt.
Thus, while the value y = fn,(S,,%)(%) is uniquely determined by X,

Computability in an Abstract Setting 149

each computation of y by program S depends on the choice of its initial
state 0 ENBHD(Z). Because of the common values y of #, we know that
not one of these computations by S produces the error state &:

OBSERVATION. If [S,9,%] is a K-functional program then for every
A€K and X € Alk), we may restrict the state trans formation to

M,(S): NBHD(%) —> PR.STATE(A).

In this section, for ‘while’ programs, and in Section 4.7, for ‘while’-array
programs, we will make representations of certain special computations by
functional programs, in order to prove that their functional semantics is
inductively definable. These sets of computations will be selected by
choosing sets of initial states, on which to execute programs, and will
depend on the type of programming language involved; the process will be
referred to as localizing computation on the space of proper states. In both
cases of ‘while’ and ‘while’-array programs, we will consider computation
by a program S localized to the set of all initial states which are specified
on some super-set of the variables of S.

4.4.2 A standard representation of the state space and
state transformation

We will represent the official state transformation
M,(S): PRSTATE(A) —> STATE(A)

of a ‘while’ program S as a partial mapping 74(S) on A. The method of
construction conforms with the representation of states described and used
earlier (in 2.6.5 and 3.6.4), and is in some respects simpler.

First, let S be an arbitrary ‘while’ program whose variables are among
the simple variables 9 =(v,,...,0y) of sorts k =(k,,...,kp) respectively
(compare 2.6.4 for this notation); in symbols Var(S)c?. Consider the
effect of executing S on the states in

SP.STATE(, A) =;; {0 € PRSTATE(A) | for 1<i<M, o (v;)#u}

i.e. on proper states with all variables of S specified.
By Proposition 1 in 2.2.10, for o € SPSTATE (3, A),

either M,(S)o) o' where o'€ SP.STATE(3,A)
or Ma(S) o)1,
Thus, we may restrict the state transformation by writing

M,(S): SP.STATE(d,A) —> SP.STATE(,A)

150 Chapter 4

and build a representation of this mapping on A. Again let us emphasize
that this fundamental simplification of the set of ‘while’ program compu-
tations to be analysed is achieved by Proposition 1 in 2.2.10, which elim-
inates our need to consider u and &. (The Observation in 4.4.1 also elim-
inates the error state when considering functional programs in general, of
course; at the moment we are examining the case of an arbitrary ‘while’
program S .)
For SP.STATE (%, A) we define the representation space R[3,A] by

R[?,A] = A x - XAy,

Alk]

and code the states by means of the projection
m=mn(3,A): SPSTATE(,A) — R[?,A]

defined by (o) =(a(v)),..., oloy)).

By the Corollary in 2.2.8, the state transformation #,(S) may now be
represented by the unique mapping T,(S) which commutes the following
diagram:

SPSTATE(3,A) M SP.STATE(H,A)

7,(S)
— s

R[3,A] R[3,A]

ie, Ty(S)m(c))~n(My(S) o)) for all o €SP.STATE(,A). In particu-
lar,

y if for all o € PRSTATE(A) with o(3)=%,
T,(S)(X) ~ My(S) (o) Lo and o' (3)=y;
T otherwise.
Consider now the coordinate functions
TXS), ..., TM(S)

of T,(S). The map TZ(S): R[?,A]—> A,, calculates the value of »; upon
the termination of S. These functions faithfully represent on A the state

Computability in an Abstract Setting 151

transformation M,(S) of an arbitrary ‘while’ program S applied to
specified states.

Clearly, on proving that this representation of an arbitrary ‘while’ pro-
gram is inductively definable on A, uniformly over K, we can deduce that
the functional semantics of an arbitrary functional ‘while’ program is
inductively definable on A, uniformly over K.

The inductive definability of the general representation is the subject of
the Basic Lemma in the next section. We are obliged to consider the arbi-
trary ‘while’ programs of the Basic Lemma, rather than the functional
programs of our desired Theorem, because subprograms of functional pro-
grams need not themselves be functional programs, at least with respect to
their given input-output variables: this ruins the the possibility of a proof
by induction on the complexity of functional programs.

EXAMPLE. Consider the functional program [S,(x,y),(x,y)], with

S = t=x
xX=y;
y=t

which swaps the values of x and y on any set. However for the subpro-
gram
So = x=y;
y:i=t
the i/o program [S,(x,y),(x,y)] is not functional.

4.4.3 ‘while’ program computability implies

induction scheme definability
THEOREM. Let f={fs | A€K} be a family of partial mappings of type
(n,m; k,I) that is computable by a functional ‘while’ program [S,3,%]
uniformly over K. Then f is definable by induction schemes & uniformly
over K. Moreover, one can effectively calculate & from [S,9,10]

In the light of 4.4.2 this theorem will follow from the

BASIC LEMMA. Let 3 =(v,,...,vy) be a list of simple program variables.
For each ‘while’ program S with Var(S)c? there is an M-tuple d of
induction schemes such that for all A€K and X€R([?,A]

{a}A(Z) ~ TR(S)(E).

Moreover, one can e ffectively calculate & from S.

152 Chapter 4

In particular, given any functional ‘while’ program [S',3',Z] in the Basic
Lemma, we have only to set S =S' and 9 to be a list of variables contain-
ing Var(S"), ' and ' to deduce the theorem.

The proof of the Basic Lemma requires a representation of program term
evaluation on R[3,A]

4.4.4 Program term evaluation
The evaluation of a program term at a state is a union of functions
Ri: ProgTerm; —> (PRSTATE(A) — A})

over all sorts i (see 1.2.5). This fundamental process of term evaluation
can be restricted to our localization SP.STATE (%, A) as follows.

Let ProgTerm;(3) denote the set of all program terms ¢ of sort i with
ProgVar(t)c . Then, by Proposition 1 in 1.2.15, we can write

Ri: ProgTerm;(3) — (SPSTATE(3,A) —> A;)
and make the obvious representation under = n(3,A)
ri: ProgTerm;(3) —> (R[3,A] — A;).

The function r,, which is the union of the 7§ over all sorts i, is uniquely
determined by the condition that for all ¢ € ProgTerm;(3) the following
diagram commutes:

SPSTATE(%,A)
. R,(2)

4.4.5 Inductive definability of program term evaluation
The following fact is easy to prove:

LEMMA. For each sort i and for any program term t‘€ ProgTerm;(3)
there is an induction scheme a, of type (M;k,i) such that for each
A€K and each X € R[3,A],

{a,JAG) ~ r ()(R).

Computability in an Abstract Setting 153

PROOF. The proof is by induction on the complexity of program terms,
simultaneously over the r +2 sorts 1,...,r,N,Bof ¥.

Basis. If t! is the variable v; of sort i, then we take as o,: the projection
function scheme

<P,n,i€,j >.

Induction step. There are two cases.

First suppose that ti=F(t,...,t,), Wwhere F is of type
(m;iy,...,im,i). By the mductlon hvpothe51s there are induction schemes
&, cx, , " with a,, of type (m; k, i;), to define the subterms of ¢’ of vari-

ous sorts. Thus we can take as a,; the scheme
<C, nmog,,0 <O, F,myiy, ... ig,i>>

being the composition of the subterm schemes with the basic operation
scheme defined by F. It is easy to check that this a,; works.

The second case, namely that ti=if b then ¢, else ¢, fi, is left as an
exercise.]

Later, in 4.7.6, we will need a generalization of this fact to express, in
terms of inductive definability, that the construction of a, is uniform in¢.
This will make essential use of the scheme for simultaneous recursion,
applied to all sorts.

4.4.6 Proof of Basic Lemma
We prove the Basic Lemma in 4.4.3 by induction on compi(S).
Basis. S = v;:=t. Observe that for A€K and ¥ € R[5, A]l,
TiIS)Z) =~ ry()X)
T{(S)N%) =~ x; for j=1,...,i-1,i+1,... M.

Now, using the Lemma in 4.4.5 and the projection schemes, the induction
schemes a=(ay,...,ay) for {T,(S)| A€K} are easy to construct.
Induction step. There are three cases:

Composition case, S = Sy;S,. By the induction hypothesis, there are M -
tuples of schemes d; and &, to define the families of mappings

{T,(S) | A€eK} and {T,(S,)| A€k}
uniformly over K. Clearly, for A€K and ¥ €R[3,A],

154 Chapter 4

TA(S)FE) ~ (T4(S)) » T, (S ()
and induction schemes a can be made from &; and &,, by composition, to
define {T,(S) | A€K} uniformly over K.

Conditional case, S = if b then S, else S, fi. By the induction hypo-
thesis, there are M -tuples of schemes &, and &, to define

{T,(S)| AeK} and {T,(S,)| A€k}
uniformly over K. Clearly, for A€K and ¥ €R[5,A],

T, ($)(X) if r,(B)(E)=1

T, X) e 2y - -
A =11 (5)(2) if 7 (b)E)-1
and induction schemes & can be made from &; and 4,, by the Lemma in
4.4.5 and definition by cases, to define {T,(S) | A€KK} uniformly over K.

Iteration case, § = whileb do Sqo0d. By the induction hypothesis,
there is an M -tuple of schemes do to define {T;(So)| A€K} uniformly
over K. By the Iteration Lemma 4.2.4 there is an M -tuple of schemes &,
which defines, uniformly over K, the iteration mappings

LI, (So)(z,%) 2 (T4 (Sp) o~ - - ° TR (S(X) (z times)

for XeRI[?,A]
Consider now the “length of loop” function L,(S): R[3,A] >N
defined by

Ly(8)(3) ~ (uz € N)[ry (BYI4(So)z, %)) ~ £].

The family {L,(S)| A€} is definable by an induction scheme «,, using
Lemma 4.4.5, the tools of 4.2.2 and the least number scheme.
Finally, it remains to observe that for A€KK and X € R[?,A],

TA(SXE) = I, (Se)(L, (8)(X), %)

and clearly the family {7,(S) | A€K} is uniformly definable over K by an
M -tuple of induction schemes. a

Computability in an Abstract Setting 155

4.5 COURSE-OF-VALUES INDUCTION

The equivalence of the computational power of ‘while’ programs (and
recursive programs) and induction schemes over [K suggests the question,
“What is a function-theoretic equivalent of ‘while’-array programs?” We
answer that question with the concept of a course-of-values induction
scheme which strengthens the power of primitive recursion on the stan-
dard numerical domain N on A to a course-of-values recursion on IN.
Combinatorially, in primitive recursion on N the value f(z,%) of a func-
tion f : NxA[k]—> A, depends on the single previous value f(z=1,%); in
course-of -values recursion on N the value f (z,%) depends on several ear-
lier values

f6,(z,2),%), ..., f(6,(z,%),%)

where 8;(z,X) <z for 1=i<d. In the form of course-of-values induction
we use, d is fixed for each function definition and is called the degree of
the induction. (Unbounded degrees are possible, and other features to do
with the algebraic parameters X: see Section 4.8.) In the conventional
situation of recursion on IN, course-of-values recursion of all degrees can be
reduced to primitive recursion on IN (see Kleene [1952], §46). In this sec-
tion we consider this new mechanism, after the pattern of Section 4.1.

4.5.1 Functions computable by course-of-values induction on A

Consider the set CIND(A) of all partial functions on A obtained from the
six devices of 4.1.1, but with the operation of simultaneous primitive
recursion V replaced with the following:

V. Simultaneous course-of-values recursion on N. Let g, ...,gn€
CIND(A) be functions with g; of type (n; k,;) for i=1,...,m and let
hy, ..., h, €CIND(A) be functions with h; of type

(1+n+dm;N,I§,f,...,Z,l,-) (d times I)

for i=1,...,m. Let §&,... ,6d€(EIND(A) be functions of type
(1+n; N,k,N), and now define 6, ...,5, to be functions of the same type
defined by

6;(z,%) ~ min(6;(z,%), z-1)

for zeN,%€ A[k]andi=1,...,d. Thus for - any §; the mapping 8; is con-
tractive in the sense that for all z> 0, %€ Alk]

6,'(Z,x) <Z.

156 Chapter 4

Then the functions fj, ..., f,, defined by
fl(O’i) o 81(;5)

£a(0,7) = g (3)

and for z>0,

F(2.3) = hyz,%, fiG (233 (B2 205D, ..
W FiBa(2,2),%), ..., fin(B4(2,%),%))
£27) = (22, [205D . faBy(z), 5), ...

S AG(z,8),3), ..., fu(84(2,2),2))
are functions in CIND(A) with f; of type (1+n; N,k ,L;).

The set CIND(A) is the set of all partial functions of the form
f: Alk]—> A, which are courseofvalues inductively definable or
course-cf-values inductively computable on A; we abbreviate this termi-
nology by cov inductive de finability or cov inductive computability.

Clearly, IND(A) is a subset of CIND(A), since the primitive recursion
scheme is a special case of the course-of-values recursion scheme (with
degree 1 and 6(z,%)=2z ~1).

Following 4.1.3, we say that a partial (vector-valued) mapping
f: Alk]1— All]is cov inductively de finable or cov inductively computable
if its coordinate functions f; are in CIND(A).

4.5.2 Cov induction schemes and their semantics

To properly define computability by cov induction we must define
appropriate syntactic cov induction schemes and their semantics over the
class [K. Since cov induction generalizes only the primitive recursion on IN
clausc of induction, the necessary set CIndSch=CIndSch(X) of cov
induction schemes over signature ¥ is defined by replacing clause V in the
definition of induction schemes in 4.1.5 with the following clause:

V. For any cov induction schemes «y...,q, Wwith «a; of type
(n; k, 1), and cov induction schemes gy,...,8, with g; of type
(1+n+dm N,k,Z, A, I;), and cov induction schemes Ay, ... Ay with A
of type (1+n; N, k N) the notation

< CR, n,m,d,l, [STRREPIPINY o gis 61, e ,Bm, A1, N 'Ad >

is a cov induction scheme of type (1+n; N,k,7;).

Computability in an Abstract Setting 157

The meaning of a cov induction scheme o of type (m; k,1) on the class
K is a family of mappings

mA(a): A[i(:] —> Al
indexed by A€K; that is the semantics of a is of the form
m[K(a) ={M,(a) | A€K}.
The semantics of schemes on A is informally described by the defining
clauses for CIND(A); the formal definition of the meaning of a cov induc-
tion scheme « on the structure A is made by induction on the structure

of a after the fashion of 4.1.6. Of course, a change is made at the cov
recursion clause V, and to define M, (a) for

a= < CR, n,m,d,i, [¢ STRSRIRIPY ¢ PEYY ﬁ], “e. ,Bm, A], PN YAd >
we need the following fact to replace the Lemma in 4.1.6:

LEMMA. Let A€K. Let g,,...,gm be partial functions on A with g; of
type (n; k,1;) and let hy,... h, be partial functions on A with h; of
type (1+n+dm;N, k0. l l) Let §,,...,0; be partial functions of
type (14n ; N,k ,N), and deﬁne 8y, ...,04 by

5:(z, x)~m1n(6-(z x),z-1)

for zeN, i€ A[k] and i = .,d. Then there exists a unique m-tuple
of partial functions f= (f,, f,,,) on A with f; of type (1+n; N,k L)
such that

fi(0,2) =~ g; (%)
filz, %) ~ h(z,%, f16(z2,2)3),..., fu(8,(2,%),2),..
A fiB (2 303, L fu(Ba(2,2),2))
for all z>0, €Alk] and i=1,...,m.

R

4.5.3 Formal definition of computability over K

A family f={fi | A€K} of functions of type (n; k,D) is said to be cov
inductively definable uniformly over K if there exists a cov induction
scheme « of type (n; k,1) such that for every A€K and every % teAlk],

fa(E) = {a}A(3).

The class of all such functions we denote CIND(K). And a family
f={fa | A€K} of (vector-valued) partial mappings of type (n,m; E,D) s
said to be cov inductively definable uniformly over KK if there exists a list

158 Chapter 4

of cov induction schemes &=(ay,...,a,), With o; of type (n; k,1), uni-
formly defining the families f;={f{ | A€K} of the coordinate functions

of f.

4.5.4 Some important properties

The basic properties of inductive definability, proved in Section 4.2, are
also true of cov inductive definability and we will have need of them in
the following sections. Recall that these results concerned

the partial recursive and primitive recursive functions on IN;

the manipulation of arguments;

general definition-by-cases;

iteration of functions.
The statements of the theorems corresponding with the cov inductively
definable functions follow mutatis mutandis. For reference, we write out
the last two, but leave the proofs as exercises.

4.5.5 General definition by cases for cov inductive definability

PROPOSITION. Let oy, ... ,a, be cov induction schemes of type (n; k,1)
and let B8y, ...,Bn be cov induction schemes o /. type (n; k,B). Then there
is a cov mductwn scheme y of type (n; k,) such that for every
A€k, 2€A[k]

{34 (2) if {14 ()1t

{a}A(®) if {8}A(X) Lt and {B,}4(X) It

{7}A(i) ~ :
{a, A () if B} (X)Lt for 1<i<m
and {8, }4(Z) it.

\

Notice that {}4(%) 1 if, and only if, for some 1<i<m,

{o}A(2) 11 for j<i and {a;}A(Z)1.
We will have particular need of the following kinds of results, not
included in 4.2.3:

COROLLARY 1 (Definition by primitive recursive cases). Let ay,...,0,
be cov induction schemes of type (n; k,l). Let Ry,...,R, be primitive
recursive subsets of N which are pairwise disjoint and mutually exhaus-
tive, i.e.

Computability in an Abstract Setting 159

m
R, NR; =@ and |JR; =N.

i-1
Then there is a cov induction scheme y of type (1+n; N,%.l) such that for
every A€lK, zeIN, x€A[k]
P4(z,3) ~ ;
{an}2(X) if z€R,.
PrOOF. By the Proposition and Theorem 4.2.1. 0O

Now the next corollary extends the form of the course-of-values recursion
scheme by definition by cases; it has important work to do in Section 4.7
(and was needed in 3.6.4).

COROLLARY 2 (Course-of-values recursion with definition by cases). Let
g1 - --.8mECIND(A) be partial functions with g; of type (n; k,l;) for
i=1,...,m,and let

hi,....hf ,..., h} ... hE € CIND(A)
where for eachi=1,...,m the functions h;', ... h? are of type
(1+n +dm; N,IE,Z, . ,[,l,-).
Let &,,...,6,€CIND(A). Let R,,...,R, be primitive recursive subsets of
N which are pairwise disjoint and mutually exhaustive, i.e.
R, nR; =@ and (IR, =IN.
i-1
Then the functions fi, ..., f. defined by
fi(0,%) ~ g;(%)
and for z>0
h1(z,%,8,(2,%),...,8,(z,%)) if z€eR
fi(z,%) ~
hP(z,3%,8((z,%),...,6,(z,%)) if z€R,

are functions in CIND(A) with f; of type (14n; N, k,L;).
PROOF. Combine A;,...,h# into a single h; by means of Corollary 1. O

160 Chapter 4

4.5.6 Iteration lemma for cov inductive definability

ITERATION LEMMA, Let f={f, | A€K} be a family of partial mappings
of type (n,n; k,k) that is uniformly definable over K by cov induction
schemes & Then the family I={I,|A€K} of iteration maps

Ii: NxA[k] — Alk]
defined by
I,(z,%) =~ (fro- o fy)X) (z times)
~ f7#(%)

is uniformly de finable over K by cov induction schemes é

4.5.7 Reduction of cov recursion to primitive recursion

Under certain circumstances, definition of partial functions by cov recur-
sion can be replaced by definition by primitive recursion. This is, in fact,
the case when (1) we are working in A* and (2) the ranges of the recur-
sively defined functions (denoted I, ..., in 4.5.1) are all of unstarred
types. When these two conditions are satisfied, the cov recursion can be
coded by primitive recursion, with range types L¥, ...,k The idea is
that at any argument z, the sequence of values f;(0,%), ..., fi(z—1,%),
all in A, can be coded by a single element of Ajf (fori=1,...,m).

The technique is just as in Kleene [1952], §46, for the case of recursion
over the natural numbers, and details are omitted.

4.6 FROM COV INDUCTION SCHEMES TO
‘WHILE-ARRAY PROGRAMS

We will prove that a family of functions definable by cov induction
schemes over [K is computable by a functional while-array program over
K — a basic companion theorem for Theorem 4.3.4. The preparatory dis-
cussions of how functions may be computed by programs, in 4.3.1 and
4.3.2, apply to ‘while’-array programs, and hence we need only register the
following definition before proving the theorem.

Computability in an Abstract Setting 161

4.6.1 ‘while’-array computable functions

A family f ={f, | A€K} of partial functions of type (n,m; k,I) is said to
be computable by a ‘while™-array program uni for. mly over K if there is an
appropriate functional ‘while’-array program [S,3,w] such that for all
A€K and all ¥€Alk],

faE) = fn,(S,5,0)(%).

4.6.2 Cov induction scheme definability implies
‘while’-array program computability

THEOREM, Let f={f, | A€K} be a family of parnal mappings of type
(n,m; k,I) that is de finable by cov induction schemes & uni formly over K.
Then f is computable by a functional ‘while"-array program [S,3,w] uni-
formly over K. Moreover, one can effectively calculate [S,9,w] from a.

PROOF. Recall to mind the proof of Theorem 4.3.4. Again we first con-
sider coordinate functions and construct a functional Whl|e -array pro-
gram [S,%,w] for each cov induction scheme o of type (n; k,l). The con-
struction is by induction on the definition of a.

The basis cases are exactly as in 4.3.4; and the induction step cases of
composition schemes and least number search schemes are as in 4.3.4, too.
We have only to consider the case of cov induction,

GE<Candial,... m!ﬂl"' ﬂm’A]" , d>

where «; is of type (n; E,L), g; is of type (1+n+dm; NE,I, ... ,I,1;), and
A; is of type (1+n; N, k, N)
By the induction hypothesis, there exist functional ‘while’-array pro-
grams
[Si,ﬁi,wi]
[gi, (ii,b.-ﬁzn, .o 'Eid)’ Si]
[S;j, (ﬁj,qj), ej]
which compute «;, 8; and A; over K. We assume these programs have no
variables in common. Consider the program S depicted in Figure 1, with
new simple variables ¢,b,3,7,é;,...,6, and new array variables ay, ...
.,@y. In S it is the task of q;[€;] to store the value f;(6;(c,x),%) as
J (¢, %) is computed “bottom-up”.
We leave as an exercise for the reader the task of verifying that

[S, (3,b),r;] is a functional program that computes the cov induction
scheme a over K.

162 Chapter 4

A
1]
S
]

"
v; Sy ry=wy;

Il
S

Dy =03 S 3 T = Wnms
c:=0;
while c <b
do ailcl=ry;...;aulcl=ry;
c=c+l;

P1:=9; q:=c;S,; é,=if e,;=c thenc-1 else ¢, fi;

Pa=0;q4:=C;Sy;8,=if e4>c thenc-1else e, fi; j

1= (a,[é,] pe ey am[é,]);

‘—éld = (al[éd]v .. ey am[éd]);

Sis

Vm =03 by =C;

Zn1=(ailé1], ..., a,lé0];

Emd = (a[[éd], . eey am[éd]);
Sms

r1:=51;...;rm :=sm
od
FIGURE 1

Computability in an Abstract Setting 163

The argument to show that this method can be applied to the cov induc-
tion schemes ay,...,a, for the coordinate mappings of f, and that the
resulting functional programs [S;,3;,w;l,...,[Sp,Dm»w,] can be com-
bined to make a single functional program [S,%,%] to compute f, follows
precisely the argument in 4.3.4, and we take the liberty of omitting it. O

4.7 FROM ‘WHILE-ARRAY PROGRAMS TO
COV INDUCTION SCHEMES

We will prove the converse of Theorem 4.6.2 by simulating functional
‘while’-array program computation on STATE(A) with cov inductively
definable functions on A, after the fashion of the simulation seen in Sec-
tion 4.4. The presence of arrays complicates the construction of the
representation space and transformation, and we must again consider the
elimination of £ and w with care. More importantly, the argument that
the new representation maps are cov inductively definable requires
ingenuity and a good deal more coding machinery.

4.7.1 A standard representation of the state space and
state transformations

Recalling the plan of 4.4.2, we will first represent the state transformation
M.(S): PRSTATE(A) —> STATE(A)

of a ‘while’-array program S as a partial mapping T3(S) on A* For this
T;}(S) we will later make a representation on A, by means of a partial
mapping G, (S).

Let S be an arbitrary ‘while’-array program whose variables are among
the simple variables % =(v;,...,0p,) of sorts k=(ky,...,ky,) and the
array variables @ = (ay, . ..,ay,) of sorts I=a@,... .Lm,) Tespectively; in
symbols, Var(S)cdua. On considering the effect of executing S on the
specified states

SP.STATE(3,A) =, {0 € PRSTATE(A) | for 1<i< M, o(o;)#u}

we observe that, by Proposition 2 in 2.2.10 and in partial analogy to 4.4.2,
the state transformation may be restricted thus:

M4(S): SPSTATE(3,A) —> SP.STATE(S, A)u{e}.

164 Chapter 4

The reason for the possibility of S converging to an error state is that §
may invoke an unspecified intermediate variable <g;, j> : contrast Propo-
sitions 1 and 2 in 2.2.10. If § is a functional program with respect to cer-
tain of its simple variables, then this error termination will not occur, of
course (recall 4.4.1 and see 4.7.2). However, we must follow the pattern
of 4.4.2 and continue to examine a general ‘while’-array program.

We next represent SP.STATE(d,A) over A* by means of the new
representation space

R[?,d,A]

Aklx xAlexA[] X XAIM2

AlE,1%]

using the projection
= 7(3,d,A): SPSTATE(,A) — R[3,a,Al
defined by n*(cr)=(x,,...,le,El,...,£M2)=(i,E)

where for i=1,...,M,;, x;=0c(v;) and for i=1,...,M,, & (=o0(a, j)
(compare 2.6.5).
In addition, we adjoin to R[?,d,A] a special error vector

€ =4y (skl,...,ale, ei‘;,...,s,"l‘"z)

where £, and 8, are new objects associated with A, and A, respectively.
Let n} be o* e)\tended by mapping the error state ¢ to the error vector £.

By the Corollary in 2.2.8, the state transformation m,,(s) may now be
represented by the unique mapping T;#(S) which commutes the following
diagram (compare 4.4.2):

SPSTATEG.A) —"alS) _ SpSTATEG, A)uie)
* L
K
Rl5.4.A] TX(S) R[3.8.Aluld)

ie. THS)(o))~ mXM,(S) (o)) for all o €SP.STATE(S, A).

Computability in an Abstract Setting 165

In particular, consider the coordinate functions
TS o TE Sy TS 1. -+ TE Sy o,
of T}(S). We rewrite the first M; mappings as the family
TXS): R[3,d,Al— A, uig}

which calculates the value of v; upon the termination of S. And we
change the next M, mappings to the family

TX(S): R[5,d,Alx N —> AY u{z}

where
THS)E,E,§) ~ (THS)p, (&, N .

The map T,X(S) calculates the value of <a;, j > upon the termination of S.
(We trust that the dropping of the reference to A will not lead to confu-
sion.) These coordinate functions faithfully represent on A*, with the
error vector ¢ adjoined, the state transformation M,4(S) of an arbitrary
‘while’-array program §.

4.7.2 A refinement for functional programs

If S is a functional program with respect to certain of its simple variables,
we can further restrict the class of S computations to be considered to
those computations with initial states all of whose array variables are
unspeci fied, since the input-output behaviour is determined by the simple
variables: recall the discussion in 4.4.1. Let us write

SPSTATE(%,d,A) = {c € SPSTATE(®,A)| o(q;, j)=u for
1<i<M, and jEN}.
Furthermore, if S is functional then the error state will not arise in a

computation on this set of states, and hence we may restrict the state
transformation thus:

M,(S): SP.STATE(S,d,A) —> SP.STATE(3,A).

Let us consider the effect of these properties in the representation
machinery just introduced.

166 Chapter 4

The set of initial states can be represented by the restriction of 7 to
n: SP.STATE(3,d,A) —> R[?,A]
defined by n(o) =(a(oy),...,oloy N =%
and the state transformation by the restriction of T3(S) to

T,(S): R[3,A]l > R[?,a,A]

defined by

TA(S)(E) = TF(SNX, Null,’:, cen Null,‘;)

2
wherein NullA(j)=u, € A for i=1,..., M, Thus we have the follow-
ing commutative diagram:
SP.STATE(%,d,A) Ma(S) SP.STATE(%,A)
™ *
R[3,A] Ta(S) R[3,d,A]

With these observations, eliminating A* from the domain of T#(S) and ¢
from its range, and on applying the method of 4.7.1 to the coordinate
functions of T,(S) to eliminate all mention of finite functions in the
range, we obtain a representation of the behaviour of S on A and A" by
means of the mappings

T,(S): R[3,A]l-> A,
T,(S): R[3,AIxN > A

1

Thus, to prove that the functional semantics of a functional program is
cov inductively definable, it is sufficient to prove that these functions are
uniformly cov inductively definable on A and A“. (Of course, it is
sufficient to prove that the simple variable functions T,’,‘,(S) are uniformly

cov inductively definable on A).

However the proof presented in this section is not simply contained
within the pleasant and now familiar world of definability on A, or even
on A" Unfortunately, the technical machinery required must be made to
deal with errors in the simulation of T}(S) for an arbitrary ‘while™-array

Computability in an Abstract Setting 167

program §; thus, the special error vector £ will haunt the proof as we
must construct cov inductive functions on the structures A and A“ with
errors represented.

A reason for this state of affairs can be indicated here. The various
representation maps for a functional program S are constructed by induc-
tion on the complexity of S. The subprograms of S need not be func-
tional, however (recall 4.4.2). Thus, although S may be assumed to pos-
sess the desirable properties just discussed, its component ‘while-array pro-
grams may, on independent execution, give rise to error states. This prob-
lem did not occur in the case of ‘while’ programs because both the
undefined element and errors could be eliminated from arbitrary ‘while’
program computations with our special set of initial states: see 4.4.2.

ExaMpLE. Consider the functional program [S,c,d] with
S = a[0]:=0; alll=1;

i=2;
while i<c do ali]l:==ali-2]+ali-1];
i=i+1
od;
d:=alc]

which computes the Fibonacci sequence on IN. However, for the subpro-
gram

So = d:=a[c]
the i/0 program [Sg,c,d] is not functional, and its execution will in gen-
eral yield the error state.

4.7.3 ‘while’-array program computability implies
cov induction scheme definability

THEOREM. Let f={fs | A€K} be a family of partial mappings of type
(n,m; k,l) that is computable by a functional ‘while-array program
[S,9,w] uniformly over K. Then fis definable by cov induction schemes
a uniformly over K. Moreover, one can effectively calculate & from
[S.5,9]

In view of 4.7.2, the theorem will follow from:

168 Chapter 4

BASIC LEMMA. Let 3=(vy,...,04) and d=(ay,... ,ay,) be lsts of

simple and array variables, respectively. For each functional ‘while™

array program S with Var(S)cduad there is an M,+M, tuple of cov

induction schemes & over ¥ and B over L such that for all A€eK and
xeAlk],

{oG}A(x)

{8:34(z.j)

Moreover, one can e ffectively calculate a,8 from S.
We will distribute the proof over the remaining eight subsections.

4

7, (S)(3)
T,($)E,j).

13

i

4.7.4 Strategy of the proof

The representation T#(S) on A* of M4(S) defined, for an arbitrary program
S, in 4.7.1, will be partially represented by a mapping G4(S) on A, that
successfully employs coding on the domain N of A to simulate the effect
of unbounded (algebraic) array memory in a ‘while’-array program com-
putation on A; and to simulate the effects of u and ¢ in the construction
of T}(S). The key to this new representation is the following elementary,
yet important, fact, adapted from Tucker [1980]

LOCALIZATION LEMMA. Let S be a ‘while-array program and let
o € PRSTATE(A). Then the specified values of the variables of S at
each state, occurring in the computation of M4(S)X o), lie in the substruc-
ture sub, s(o) of A generated by the values of the variables of S at the
initial state o. In particular, if M4(S)(c)lc’ then the values of the
variables of S at the final state o' lie in sub 4 s(o).

PROOF. By induction on compi(S). O

For any o € SP.STATE(3, A), the computation of M,4(S)(o) is represented
by the computation of T;(S)(7m*(o)) using

R['B,zl,A]=Ale . XAI‘M] XA[T X ¢ XA[:’2.

By the Localization Lemma, the computation for a given o can be local-
ized as a computation taking place over sub, s(0) which is the substruc-
ture of A generated by the finitely many specified values X of % evaluated
in A, and £ of d evaluated in A“. In particular, sub, s(o) is, in a more
conventional algebraic notation,

M
<> = <lry a0 ULE(D] jEN and £(u) >,
i=1

Computability in an Abstract Setting 169

This means that, at a given state o, the computation of T}(S)(m*(o)) with
(o) = (%, £) uses the localized structure

»

R[3,d,A)&,8) = <x,§>klx~-- x<x,§>kM X <X E>Ex - x<i,§>;'l‘" ,
1 2

wherein <i,§ >, is the domain of sort s in the many-sorted structure
<X,E>.

With the use of initial states o € SP.STATE(d,a,A) in mind, we make
a simplification by working with the representation of TF(S) on
(o) =(%,£) with £; = NullA (recall 4.7.2). Thus, the local subspace of
interest is

R[3,d,ANE)=<E>p x o+ x <L >y, X<E>Fx - x <X
1 2

On constructing this space from the input m™(o)=X, the computation can
be unfolded on R[%,a,A](%).

Now the fact that <xX> is a ﬁnitely generated structure prompts us to
build an enumeration or coding of <X > in N that is uniform over all
Z€A[k] This is done using a Godel numbering of terms and term evalua-
tion and results in a map

te,: NxAlk] > A
such that for all ¥ € Ak]
te,(_,xX): N — <xX>

is a surjection.
This Godelization of <X > leads to a coding of R[3,a,A)(%) in N which
is uniform over all € A[k]: we build a map

r: Alk]xNY' xNY? — R[3,d,A]
such that
Iz, .): N xN"2 — R[3,4,A1(3)

is a surjection.

Thus, the strategy of the argument is to construct and use this
machinery to show that the computation of TF(S)(s*(c)) with m(o)=x%
can be simulated on N uniformly in X, by cov inductively definable map-
pings on A. More precisely, the reconstruction of the global behaviour of
S, as represented by 7%(S), from the localizations based on I" is made by
constructing a cov inductively definable map G,(S) on A that commutes
the following diagram:

170 Chapter 4

"
Rl3.a.4] -BOL R34, 4]u
r I,
AL]xNY1xNM2 &_(_S_)) AlE]xNYixNY2 u Ak] x{e}

wherein e is an M;+M, tuple coded within the domain N of A and used
to represent the error vector, ie. I',(¥,e)=¢. Notice that G4(S) is not
uniquely determined by the diagram. (Why?) The proof of the Basic
Lemma in 4.7.3 is then easy to conclude.

In the next few sections we will construct I" and G.

4.7.5 Enumerating finitely generated substructures

Each element y of the substructure <X > of A is obtained by finitely
many applications of the operations of A on the generators X. That is,
each element y is the value of a term ¢ € ProgTerm(%) at X and, recalling
the semantics of terms in 4.4.4, we can write y = r4(t)(¥). The enumera-
tion of the substructure <X > is made from a numerical coding of
ProgTerm(?) and simple term evaluation.

Consider again the codings of syntax first discussed in 3.6.3. From those
postulates we can derive a primitive recursive coding of ProgTerm(3)
with the monotonicity property that the code "t increases strictly with
compl(t). We also assume that the customary operations on syntax are
primitive recursive with respect to the coding; in particular the substitu-
tion of terms ¢y, ... ,t,, of typesiy,...,i, for the variables of a term tq of
type [p to make a term

to(t1/v], .. ,tn/vn)

of type [y is primitive recursive. Suppose that 7y denotes a right inverse of
the coding, i.e. it is the union over all sorts i of maps

7': N — ProgTerm;(3)
where, for t € ProgTerm;(3),
STt =t

Computability in an Abstract Setting 171

Next, we redefine the semantics of terms of 4.4.4 as the uniform simple
term evaluation TE,, which is the union over all sorts i of maps

TEi: ProgTerm;(3)xR[3,A] — A;,
by setting TE,(t,%) =1, (1)(X).

The construction of <X > can now be described by saying that <X > is the
image of ProgTerm(%) under the map

At-TE,(t,%): ProgTerm(3) — <i>cA.

Therefore, an enumeration with repetitions of <X > is defined by the
composition
te,(j,X)=TE,(7(j), %)

and the following diagram commutes:
ProgTerm(3) x R[3,A]

Y id

teA

N x R[3,A] = A

and tey(j,%) is the value of the j-th term applied to X. We will prove
that te, is a cov inductively definable enumeration.

4.7.6 Cov inductive definability of simple term evaluation
This theorem is the uniform version of Lemma 4.4.5 and is analogous to
Theorem 1 in 3.6.4:

BAsIC THEOREM. Corresponding with the r+2 sorts § =(1, ... ,,N,B) of
L, there is an r+2 tuple & of cov induction schemes of type
(M;+1; N,k,S) such that for each A€K and all t € ProgTerm(3) and
xeAlk]

{a}A("t %) = te ("t X).
PROOF. We prove the theorem by constructing the map fe, on A by

induction on the complexity of the code "t Let tei be the i-th sorted
component map of te,, so:

tei: N x R[3,A] = A;.

172 Chapter 4

We define:

ey o .
tei("v;, %) = x; if v; is of sort i
tei(TF(t,, ... t,)0%) = FAG(te, ("t %), ... tef (T, 7, %))

if Fisof type(m;iy, ... ,ipm,0)

) tei("t,0, %) if te§("p7,X)=1
tei("if b thent, elset, fi',x)={ 3y -

A ! 2 tei("t,',x) if teB("p7,%)=1
Thus (as seen before in 3.6.4) we are faced with a simultaneous course-of-
values recursion involving a definition by cases. The case distinction is
based upon the primitive recursive conditions that discover the status of
z€N as a code for a term; of which there are four, counting the default
case that z is not a code for a term. (Notice that the case distinction on
booleans, in the last clause, is an instance of the basic operation of
definition by cases.) The degree of simultaneity is r+2 and the relevant

5,(2),...,6,(2),8(z), d(z)

primitive recursively calculate codes for the subterms of z of the different
sorts, where they exist; the degree of cov induction is essentially the max-
imum arity of the function symbols of ¥. By Corollary 2 in 4.5.5, there
exist cov induction schemes to define te, uniformly over all A€l. O

This result is the key to the proof: for our simulation of T3(S) by means
of G4(S) on A is essentially a matter of primitive recursive computations
on numerical codes for syntax supplemented by calls to term evaluation.
This point will be prominent in the closing sections of this chapter.

4.7.7 The local representation map G,(S)

We now specify the localized representation of T3(S), which consists of
the maps I" and G,(S), roughly described in 4.7.4.
From the enumeration of elements of A by terms

te,: NxR[?,A]—> A

we make an enumeration of the finite functions on A. The idea is that a
finite function §€ <X >} of the form £:IN-> <X >/' may be represented

by a code z for a finite sequence
zZ = r(<n],21>, e ey <n)\,Z>\>)1

wherein the n, are all distinct, and a pair <n,,z,> represents that the

Computability in an Abstract Setting 173

Le e L .
element te(z,,%)€ <X >c A is assigned as the value £(n,); this, in turn,

means that te,:i(z,,,fc) is assigned to the n,-th location in the array q;.
Arguments of the function, and locations in the array, that do not appear
in the sequence are assumed to be unspecified.
If z is the code for the sequence above then let dom(z)={n,, ... ,n,}
We define the local enumeration of finite functions as a map

tef: NxR[5,A]xN — A%
for which the i-th sorted component map
et NxR[D,A]xN — AY
is defined by
tei(z,,%) if jedom(z)and j=n,
tex(z,%,j) =1, otherwise

We prefer to write tef*(z,%)(j) for te}i(z,x,j).

LEMMA. Corresponding with the r+2 sorts s s=(1,...,r,N,B) of X, there
is an r+2 tuple B of cov induction schemes of type (r+2 N,k,N,3) over
$U such that for each A€K and all %€ A[k), z,j €N

{814%(2,%,) = tef(z,%)(j).
PROOF. Obvious, given 4.7.6. O

We can now construct the local coding
r: AlKIxN"' xN"2 — R[3,d,A]

by simply defining, for #€Al[k], and appropriate code vectors

z=(zy,...,2zy) and 2'=(zj, ..., z4,), wherein
2i="(<n, 21> o <My 200, >)
the value
[(3, 2,2) = (teg(2,,%), . .. teg(zy , X)), te}(21, %), . . . ,tef(zj,,%)).

Notice that, for notational simplicity, we continue to suppress many pro-
perties of the numerical arguments considered as codes for syntax. For
example, no reference is made to the fact that each of the copies of N in
the domain of I is the set of codes for elements, or finite functions of a
particular sort. Nor do we give default values for our maps on numbers
that do not qualify as appropriate codes.

174 Chapter 4

Also, we must extend this I' to embrace the error vector £ adjoined to
R[?,d,A] Thus, we adjoin a special element 'e’ 1o the numerical
domain N of A to make a “numerical” vector

e=(Te?,...,"e")
to code £ by defining
T,: AlKIxN" xN"2 u A[K]xfe} — R[3,d, Alu{e)

by setting I',(¥,e)=¢ for all #€Alk] The adjunction of "¢ to N, and
hence to A, we treat as essentially a notational device, accommodated by
routine coding arguments on IN.

The codings ' and T, are clearly surjections (although they are not
necessarily bijections).

The map G,(S) is chosen to be a suitable map which commutes the fol-
lowing diagram:

TXS)
— >

R[?,d,A] R[?,d,A] u{¢}

r I,

Alk]xNMix M2 GSL ARIxNMxN"2 b ALK] xfe)

We partition the coordinate functions of G,(S) thus:
Go(S): ARIxNY xNM2 =5 A[k]
G, ($): AlKIxN" xN"> =5 Nu{feT) i=1,..., M,

G,(S): AlRIxNY xNY2 =5 Nu{fe} i=1,..., M,

omitting the reference to A.
Observe that the key maps are the G,,i(S) which calculate the code

G, (8)(%,z,2) of the value of the v; on executing S on an input state
whose values of 3 and @ have codes z and z' respectively; the Gai(S) act
similarly for the a;. The map Gy(S) we take to be the projection

Go(S)(i,Z,Z')=f .

Computability in an Abstract Setting 175

Observe, too, that using "e” as a notational device for a numerical code,
means that G4(S) is a map on A.

On proving that G,(S) is cov inductively definable, uniformly over A
for A€K, the Basic Lemma of 4.7.3 may be deduced as follows: the
required coordinate functions are definable as

T(S)E) ~ tey(G,(S)E, 3", null),)
TS)E))) ~ tef(G,(S)E, 57, nal),£)(j)

R

/4

wherein ™7 codes the variables d and null codes a list of everywhere
unspecified array variables a. Notice that in this decomposition of the
functions, the algebraic unspecified element u appears only through the
application of te}: this explains the use of A" in the Basic Lemma in 4.7.3.

On proving that G4(S) is cov inductively definable, one appeals to the
Basic Theorem in 4.7.6, and the Lemma earlier in this subsection, to con-
clude that the coordinate functions are cov inductively definable.

4.7.8 The map G,(S) is cov inductively definable
Thus, it remains to prove the following result:

LEMMA. There is a 2M+ M, tuple & of cov induction schemes such that
for all A€K, there is a choice of G4(S) such that for all

feA[k) (z,2)eNYM xNM2
{a}A(xX,2,2) ~ G,(8)X,z,2")
Moreover, one can e ffectively calculate & from S.

PROOF. At the heart of the proof is the construction of G,(S), by induc-
tion on the complexity of S, on A. From the construction, cov schemes &
will be seen to exist to define GA(S), uniformly over A€IK; furthermore, it
will be seen that the schemes are effectively calculable from S. Before
starting the construction of G4(S) we must build machinery for evaluat-
ing program terms on the local representation space A[Iz] XINM' XINMZ.

4.7.9 Program term evaluation
Recall from 1.2.5 that the semantics £, of program terms ProgTerm on
PR.STATE(A) is defined as the union, over all sorts i, of maps

Ri: ProgTerm; — (PRSTATE(A) —> A}).

Let ProgTerm(3,d) be the collection of all program terms involving vari-
ables in 9,a only, and let ProgTerm;(3,a) be the subset of terms of sort
i. Following the pattern of simple term evaluation in 4.7.5, we represent

176 Chapter 4

K, on R[,d,A] by the program term evaluation map PTE,. which is
the union over all sorts i of maps

PTE}: ProgTerm;(3,d)xR[?,d,A] — A}.

The i-th sort evaluation function PTE} can be inductively defined on the
structure of terms in the obvious way:
PTEi(v;,%,£) = x; if ; is of sort i
PTEi(a;(tM ,2,£) = ApA(¢;, PTEN (N, 2, £)
if a; is of sort i

PTEL(F(,, ... 1,),%,£) = FASPTEWN, %,), ...

.. PTE;(t,,%,£))
where F is of type (m; iy, ... ip,i)

PTEi(t,,%,) if PTEB(bZ,£)=1
PTEi(f b then ¢, else t, fi,#,£) = { PTEj(t),%,£) if PTE§(b%, £)=1
w if PTEB(b,%,£)=u

(Recall the original definition of program term evaluation in 1.2.5, and the
structure A* in 2.3.1.)

4.7.10 Cov inductive definability of program term evaluation

In the construction of G,(S), a numerical representation pte, of PTE, is
required that evaluates codes for program terms on the space

A[k]xN™ xIN¥2. To each PTE} we associate a2 map
ptei: N x A[E]xNY xNY2 > Nu{Tu)
such that for each € A[k], (z,z)eN"' xNY? and ¢ € ProgTerm;(3,d) we
have
PTEi(t,T(3,z,2)) =u iff pef(Tt%,2z,2")="u’
and if ptei("t7,%,z,2z")# u" then
PTEi(1,T(3,z,2)) = tei(ptei("t % ,2,2'),%).

Thus, as indicated, a special element fu' is coded within the numerical
domain of A to play the role of the unspecified algebraic element u in the
numerical simulation. Again, as with "e”, "u’ will be treated as a nota-
tional device and our discussion will remain focussed on A.

Computability in an Abstract Setting 177

The construction of pte,, and the proof that it is cov inductively
definable, are assisted by introducing certain auxiliary functions to do
with A%

Let Apf : A} xIN“ —> A¥ be locally represented by a map

apf: AKIxNx(Nu{u}) —> Nu{fu)
in the following way: for z="(<n,z;>,..., <n,,z,>)"
z, if jEN, tef(j,2)=n,
apf(X,z,j)={"u" if jeN, tel(j,)¢ dom(z)
Ma? if j="u'
Let FAM: Al x - x A" —> A} be locally represented by some map
i Nu{uH™ — Nu{u?}

which satisfies the following:

FCGy ooy jm)="u" iff j,="u"for some a=1,...,m
and if ji,...,j, #"u' then
FA(teA(j],i), .« ,teA(jm,i)) = teA(f(j], “ e ,jm),i).

This last equation suggests we choose as f that map which tracks the
application of the function symbol F to terms in ProgTerm(d), ie.

rF(tl, ... ,tm)1= f(rt]-l, PR ,rtm-l)

and modify it to satisfy the first condition.
We now define pte; in the obvious way, following the definition of
PTE;:
ptei("o,%,2,2") =z, if v; is of sort i
pei(a;[tN17,%,2,2") = app (%, 2], ptel (1N, %, 2,27)

if a; is of sort i
pei("F(ty, ... t,),2,2,2) = f(ptey h%,z,2),...
., ptem(t,7,%,2,2)

where F is of type (m;iy, ... ,ip,i)

178 Chapter 4

ptei("if b thent, else ¢, fi',%,2,2) =

pei(e,%,2,2") if pef("p7,%,2,2)=y,
y#"u'and teB(y, %)=t

ptei("t,0,%,2,2) if ptej("b,%,z,20=y,

y = u'and tef(y,%)=1

My if ptei("67,%,z,z0="u".

\

And we also define pte} on the code for the error state:
pei(j,%,e)="u’

for all x€ A[k).

4.7.11 Construction of G,(S)
We construct G,(8) by induction on the complexity of S.
Basis. There are two cases.

Simple variable assignment case, S =v;:=t. For A€K and e Alk],
¢=(z,20eN"1xNM2, we define G4(S) in two stages corresponding with
the normal and error cases:

normal case: if pte,("t7,%,¢)#"u’ then
G,(8)F,¢$) = pte ("t,%,¢)

G,(S)X3.0) =2 for j=1,...,i-1,i+1,..., M

G,,j(S)(i‘.',é’)=Zj' for j=1,.... M,
error case: otherwise, if pte,("t7,%,¢)="u" then

ij(s)(i,(')="e" for j=1,...,M,

G, (9, $H="e" for j=1,...,M,.

These coordinate functions can be defined by cov induction schemes &,
using program term evaluation schemes and definition by cases.

Array variable assignment case, S =a[t"]:=t. For A€K and X eAlk],
¢=(z,2"¢€ N1 xN*2, we define G,(S) in two stages:

Computability in an Abstract Setting 179

normal case: if pte,("tN,E,¢)="u" and pte,("t7,%,¢)#"u’ then let
y =tey(pte,(tN,%,¢),%) and

"(<nipzi>, oo, <y, ples("t,2,8)>, ...
G, (8)(E,¢) = e <My, 2 >)T i y €dom(z)

Mz, <y,ptea(t 3,65 if y € dom(z})
G, ()X,) =z for j=1,...,i-1,i+1,..., M,
G,,J.(S)(f,(‘)=2_,~ for j=1,..., M,

error case: otherwise,

GI,J_(S)(J*C,(')=re1 for j=1,...,M,
Gaj(S)(i,(‘)=re-' for j=1,...,M,.

These coordinate functions can be defined by cov induction schemes &,
using program term evaluation schemes and definition by cases.

Induction step. There are three cases:

Composition case, S =8,;S,. By the induction hypothesis there are
2M +M,; tuples of schemes &, and &, to define the families of mappings

{G,(5;)| AeK} and {G,(S,)| AekK}
uniformly over K. Clearly, for A€K, Z€ A[k], ¢e NY1 xNM2,

(i,e) if GA(S])(i,f)l(i,e)

Ga(8)E,) ~ (G4(85)°G4 (S)X, ¢) otherwise.

Notice that the condition G,(S;)(X, ¢ (¥,e) depends ultimately upon the
equality relation eqy:INxIN—>[B. Thus, by means of general definition
by cases, cov schemes & can be made from &; and &, to define
{G4(S) | A€K} uniformly over K.

Conditional case, S =if b then S, else S, fi. By the induction
hypothesis there are 2M,+M, tuples of schemes &, and &, to define

uniformly over K. For A€k, Z€A[£] and &€ N™' xN¥2 we define G4(S)
in two stages:

180 Chapter 4

-

normal case: if pte,("b7,%,¢)# u' then

Ga(S))(2,8) if tey(ptes(T67,%,¢),%)=1

Gy (8)%,¢) ~ Gi(S,)(Z,¢) if tey(pte,("07,%,¢8),%)=1

error case: otherwise, if pte,(™7,%,¢)="u' then
GA(S)(i,é') o (i,e).
By means of the cov schemes for simple term evaluation and program

term evaluation, and definition by cases, cov induction schemes & can be
made from &, and &, to define {G,(S) | A€K}.

Iteration case, S = whileb do Sy,od. By the induction hypothesis,
there is a 2M;+M, tuple of cov induction schemes &y to define
{G4(Sp) | A€K} uniformly over K. By means of the Iteration Lemma
456, one can construct a 2M;+M, tuple of cov induction schemes ay
which defines, uniformly over K, the following map corresponding with
the bounded iteration of S¢: for A€K, x € A[k] and ¢eNM xN™?

I,(S)0,%,¢8) ~ (X,¢)

(%,e) if I,(Se)(y,%,¢) (X, e)

I, (S)y +1,%,¢) =~ Ga(So)°I4(S)(y,%,&) otherwise.

Now we consider the “length of loop” function
Ly(8): AKRIxNY xNY2 =5

which counts the number of iterations of S before the ‘while’ construct is
exited, either normally or exceptionally. This has the following definition:

Ly(8$)Z, &) ~ (uy e N pte (7, I,(Sp)(y, %,)="u"}
or { pte, ("7, 1, (Sp)(y,%,¢) 4= u' and
tey,(pte ("0, I, (So)(y,%,¢)),%)=1}].

Notice how program term evaluation in the definition detects errors caused
by unspecified variables in b, and errors obtained earlier in the y-th execu-
tion of the body before the test b (because pte,(i,%,e)="u").

The family {L,(S)| A€K} is definable by a cov induction scheme a,.

Computability in an Abstract Setting 181

Finally, we can define
Gu(S)Z, &) =~ L (SoIL,(8)X,8),%,¢).

By means of general definition by cases, cov schemes & can be made {rom
ay, ag and the term evaluation schemes to define {G,(S) | A€K}.

4.8 MORE ON INDUCTION

Primitive recursion and course-of-values recursion on IN both define the
primitive recursive functions on IN; indeed there are other interesting
modifications of these recursions, allowing unbounded degrees of cov
recursion and certain dependencies on parameters, which greatly increase
the complexity of the computations generated, without leaving the class of
primitive recursive functions: see Péter [1967], §5. Behind these
equivalences is the primitive recursive coding of the natural numbers, of
course.

Outside the classical case of the natural numbers, the two mechanisms
of primitive recursion and course-of-values recursion are distinct in their
power of definition. For ‘while’ programs are strictly less expressive than
‘while™-array programs over standard structures. (This is commonly stated
as: ‘while’ programs with counters are strictly less expressive than
‘while’-array programs with counters.) Thus, the principal theorems of
this chapter imply that the mechanisms are distinct in the presence of the
least number operator. Yet they are inequivalent in the stronger sense
that the primitive induction functions are a proper subclass of the primi-
tive cov induction functions. The following is a very important observa-
tion:

THEOREM. T he term evaluation operator
te,: NxA[k] — A

is not primitive inductively definable on every A, but it is primitive cov
inductively de finable on any A.

A proof of this can be made (albeit in a roundabout way) from results in
Moldestad, Stoltenberg-Hansen and Tucker [1980a,1980b] and Section 4.7.
A direct proof will appear in a revision of Moldestad and Tucker [1981],
which will include many results about the relationship between primitive
recursion and simultaneous recursions of various degrees, generalized in an
abstract setting.

182 Chapter 4

The importance of term evaluation, as studied in 4.7.5 and 4.7.6, and
used in the simulations of 4.7.7 and 4.7.11, is this:

Term evaluation is a tool that links computation on the abstract struc-
ture A to computation on syntax coded in N. More precisely: suppose a
formalism for computation on A can be simulated by the partial recursive
processing of its syntax coded in N, together with calls to term evaluation
to obtain semantic values in A. Then the formalism does not extend com-
putationally that of cov inductive de finability.

To exemplify this in the case of formalisms for inductive definability,
consider the following strengthening of the cov induction mechanism
which introduces varying algebraic parameters in the recursion:

Course-of-values recursion with varying parameters.

Let g, ...,gm be functions with g; of type (n;lz,l,-) fori=1,...,m and
let hy,...,h, be functions with k; of type (n+1+dm N.k,L,....L15)
(d times [) for i=1,...,m. Let 6y,...,6; be functions of type
(n+1;N,k,N) and let 7,,...,my be functions with 7; of type
(n+1; N,k k) for j=1,...,d. Then define fi, ..., fm DY

£i(0,%) =~ g;(%)
and for z >0,
fi(z,%) = h(z2,%, f;6(2,%),m(2,2)), ..., Fu(81(2,%),my(2,%))
s 1By (2,3),mg (2, 3D, ..o, Fin(0a(2,%),ma(2, %))

where, as before, 8(z,%)~min(6(z,%),z=1).

The change in the computations generated by this new scheme is
significant because the neat bottom-up structure of the computations, so
useful in the proofs in Sections 4.3 and 4.6, has disappeared. But if cov
recursion on IN is exchanged for this cov recursion on A with variable
parameters, then is a new class of functions obtained? The answer is No;
because term evaluation is at hand to reduce the computations on A to
computations on IN. (The reader is invited to reconsider the simulations of
Section 4.7 in this way; and to show, more directly, that cov inductive
definability with variable parameters implies ‘whil€’-array program com-
putability, as their equivalence then follows.)

Computability in an Abstract Setting 183

4.9 THE COV INDUCTIVELY DEFINABLE FUNCTIONS

The classes IND(K) and CIND(KK) are both generalizations of the set of par-
tial recursive functions on IN to an arbitrary class K of standard many-
sorted structures. The equivalence of cov inductive definability and
‘while’-array program computability, and the significance of the cov
inductive definability of term evaluation, suggests that cov inductive
definability is a more useful, and more faithful, generalization for compu-
tability theory than inductive definability. This is true and, as we shall
explain in the next section, the concept of cov inductive definability
belongs at the centre of the theory of computation in an abstract setting;
indeed the cov inductively definable functions can be made the subject of
a Generalized Church-Turing Thesis of interest in applications to pro-
gramming theory, logic and algebra (see Section 4.11). First, we pursue
the comparison between the cov inductively definable functions and the
partial recursive functions.

The theory of the partial recursive functions on N is based upon the
enumeration or indexing of the set PREC(N)={¢, |e€ N} of partial recur-
sive functions, and basic results are the theorem about the existence of
universal partial recursive functions, the s-m-n Theorem, and the various
recursion and fixed-point theorems (see Kleene [1952], §§65,66 or Rogers
[1967], Chapters 1 and 11). The idea of indexing is equally important in
the more general setting of K:

The set CIndSch(X) of all cov induction schemes over the signature X
can be enumerated by a primitive recursive Godel numbering

7: N — CIndSch(%)
and the code or index e €N of a scheme y(e) transferred to the family
M(y(e) = {My(y(e) | AeK}

of partial functions it defines: recall 4.5.2. Thus, under this composition
we get I'=Me°y and write, after Kleene,

I'(e) = M(y(e) = {e}K
and, in particular, for A€KK we have I'={I", | A€K} where
I'x: N — CIND(A)
and Fale) =M(y(e)={e}?.

With this coding it possible to study the action of schemes on the class K
using cov inductively definable functions:

184 Chapter 4

UNIVERSALITY THEOREM. Let K be a class. For each type (n; k1) there
is a family

Ulk,l1={Ulk,1], | A€k}
of mappings of type (n+1; N,%,1), cov inductively definable uniformly
over K, such that for each A€K, the map

Ulk,l],: NxA[k] = A,
satis fies for all e €N, FeAlk],

Ulk,11,(e,3) ~ {e}A(3).
Moreover, an index ulk,1] for the family U [k,l]is e fFectively calculable
from the type (n; k,1).

The proof of the theorem is rather involved, and is founded on the now
familiar idea of using term evaluation as a bridge between computation
localized in A and computation on N. Thus, the proof cannot be adapted
to IND(K) and, indeed, there is no Universality Theorem for IND(KK).

S-m-k THEOREM. Let K be a class. For each type (m+n; N, ... ,N,Iz,l)
(m times N), there is a family
Slm, k1=1{8[m,k], | Ack}
of mappings of type (m+1;N,... ,N,N) (m+2 times N), cov inductively
de finable uniformly over K, such that for each A€ the map
Slm,kl,: NxN™ — N
satis fies for all e €N, 2eN™, € Alk],
{SIm, k(e 2 NA(3) = {e}A(2,%).
Moreover, an index slm,k] for the family Slm,k] is effectively calcul-
able from the given type.

These two theorems generalize, to the many-sorted case, results in Moldes-
tad, Stoltenberg-Hansen and Tucker [1980b).

Many more results about the partial recursive functions (including the
Recursion Theorems) may be generalized to the cov inductively definable
functions on a class K.

Computability in an Abstract Setting 185

4.10 A SURVEY OF COMPUTABILITY IN AN
ABSTRACT SETTING

The cov inductively definable functions can be distinguished as a class of
functions definable by several disparate approaches to computability in an
abstract setting. In this and the last section we will survey some of these
approaches and discuss a Generalized Church-Turing Thesis that draws
support from the equivalence theorems. The alternative methods for
defining the cov inductively definable functions are to be found in various
mathematical contexts and have various objectives; though, technically,
they share the abstract setting of a single-sorted abstract structure.
Nevertheless, here we suppose their common purpose to be the characteri-
zation of those functions effectively calculable in an abstract setting; and
we assume their generalization to a class of many-sorted abstract struc-
tures as a matter of course.

In the context of the present work, the inductively definable and cov
inductively definable functions are functions invented with the needs of
logical representability and definability in mind.

Clearly, the various induction schemes on IN are a primary source of
technical ideas about functions computable on an abstract structure A.
Although a generalization almost equivalent to the induction schemes of
Section 4.1 was made early on, in Engeler [1968a)], the methods have not
been examined in detail or applied. (Let us note that inductive
definability also has a pleasing theoretical and practical motivation in con-
nection with parallel architectures: see Thompson and Tucker [1985].)
These functions can also be characterized by approaches based upon

(i) machine models;

(i) high-level programming constructs;
(iii) axiomatic methods;

(iv) equational calculi;

(») fixed-point methods;

(vi) set theoretic methods.

We will say something about each in turn, concentrating on the first three
approaches, as they are directly relevant to the concerns of the present
work.

4.10.1 Machine models

Perhaps the most concrete approach to generalizing computability theory
from N to an abstract structure A is that based upon models of machines
that handle data from A. To be specific, we consider some models called

186 Chapter 4

A-register machines that generalize to A the register machine models on N
in Shepherdson and Sturgis [1963] (see also Cutland [1980] for a develop-
ment of recursive function theory using register machines); the first A-
register machines appeared in Friedman [1971).

The study of these machine models on A reveals some basic combina-
torial properties of computation in an abstract setting that have no analo-
gue in computation on N. In order to explain these features we will dis-
cuss the models for an arbitrary single-sorted relational structure A.

An A-register machine has a fixed number of registers, each of which
can hold a single element of A. The machine can perform the basic opera-
tions of A and decide the basic relations of A; in addition, it can relocate
data and test when two registers carry the same element.

Thus, the programming language that defines the A -register machine has
register names or variables rg,7y,73, .., Fpy - - and labels 0,1,2, ..., and
allows instructions of the form

ne=F@,,15)

rA =C

7}‘ po rp

if R(r,,.,...,r,)theni else j

if r,=r, theni else j

wherein A, g, iy, ... 4m€N; i, jEN and are considered as labels; and
F,c, R are symbols for a basic operation, constant and relation respectively.

A program for an A-register machine is called a finite algorithmic pro-
cedure or fap, and it has the form of a finite numbered or labelled list of
A -register machine instructions

L...1,.

Given a formal definition of a machine state, containing the contents of
registers and the label of a current instruction, is it easy to give a formal
semantics for the finite algorithmic procedures — one in which the
instructions are given their conventional meaning.

On setting conventions for input and output registers we obtain the
class FAP(A) of all partial functions on A computable by all finite algo-
rithmic procedures on A-register machines.

Secondly, an A-register machine with counting is an A -register machine
enhanced with a fixed, finite number of counting registers. Each counting
register can hold a single element of N and the machine is able to put zero
into a counting register, add or subtract one from a counting register, and
test when two counting registers contain the same number. Thus, an

Computability in an Abstract Setting 187

A -register machine with counting is an A -register machine augmented by
a conventional register machine on N.
The programming language that defines the A -register machine with

counting has new variables cg,¢;,C;, ... for counting registers and new
instructions

c, =0

cr=c,+1

cy=c¢,—-1

if c,=c, theni else j

for A, €N and i, j€NN considered as labels.

A program for an A -register machine with counting is called a finite
algorithmic procedure with counting, or fapC, and is a finite numbered
list of machine instructions. Once again it is easy to give a formal seman-
tics for the language and to rigorously define the class FAPC(A) of alil
partial functions on A computable by A-register machines with counting.

Notice that this machine model is directly concerned with the process of
“standardization” of the structure A by the addition of the natural
numbers. However, the two-sorted structure obtained has as numerical
domain Presburger Arithmetic,

(N; 0, x+1,x~1)

rather than the standard model of the natural numbers, which has multi-
plication. Computationally the structures are equivalent, but they are
radically different in their program correctness theories (see Bergstra and
Tucker [1982a]). The point of this model is that it enhances computation
on the abstract algebraic structure A with computation on IN.

The A-register machine and A -register machine with counting, and
their classes of partial functions FAP(A) and FAPC(A), were introduced
in Friedman [1971].

Next, an A-register machine with stacking is an A -register machine aug-
mented with a stacking device into which the entire contents of the alge-
braic registers of the A -register machine can be copied at various points in
the course of a computation.

The programming language that defines the A-register machine with
stacking has a new variable s for the store or stack and the new instruc-
tions:

188 Chapter 4

stack(i,rq, ..., 7))
restore(rg,7i 1s7is1s - -« 1 Tm)
if s =0 then i else marker.

Here i€IN is considered as a label. Intuitively, their meaning for the
machine are as follows: the ‘stack’ instruction commands the device to
copy the contents of all the registers and store at the top of a (single)
stack, along with the instruction label i. The ‘restore’ instruction returns
to the registers 7, ..., 7; 1,741, - - - 1 Tm the values stored at the top of the
stack; the value of r; is lost (in order not to destroy the result of the sub-
computation preceeding the ‘restore’ instruction), as is the instruction
label. The test instruction passes control to instruction i if the stack is
empty and to the instruction indexed by the label contained in the top-
most element of the stack otherwise.

A program for an A-register machine with stacking is called a finite
algorithmic procedure with stacking, or fapS, and is a finite numbered
list of machine instructions. On formalizing the semantics for the
language, it is easy to define the class FAPS(A) of all partial functions on
A computable by A -register machines with stacking.

Of course there are many alternative designs for a stacking device of
equivalent computational power (we have chosen a mechanism that is
generous in regard of its algebraic storage and control). The point of this
model is that it enhances the bounded finite algebraic memory available in
computation by an A-register machine with unbounded finite algebraic
storage.

Finally, an A-register machine with counting and stacking is an A-
register machine augmented by both a counting and stacking device. A
program for such a machine is called a finite algorithmic procedure with
counting and stacking, or fapCS, and the class of all partial functions on
A computable by such machines is denoted FAPCS(A).

This stack device and its associated classes of functions FAPS(A) and
FAPCS(A), were introduced in Moldestad, Stoltenberg-Hansen and Tucker
[1980a, 1980b].

Now in the case of computability of the natural numbers A=N we have

FAP(N) = FAPC(N) = FAPS(N) = FAPCS(N)

but in the abstract setting we have:

Computability in an Abstract Setting 189

THEOREM. For any single-sorted structure A, the relationship between

the sets of functions is

FAPC(A)

FAPS(A) /

Moreover, there exists a structure on which the above inclusions are
strict.
This theorem is taken from Moldestad, Stoltenberg-Hansen and Tucker

[1980bl. It and other results about these models make clear the fact that,
when computing in the abstract setting of a structure A, adding

FAP(A) FAPCS(A)

computation on N

unbounded algebraic memory over A
both separately, and together, increases the computational power of the
formalism.

The connection with the inductive definability formalism is easily
explained. Assuming the straight-forward generalization of the machine
models to accommodate many-sorted structures, we have
THEOREM. For any standard many-sorted structure A,

IND(A) = FAPC(A)
CIND(A) = FAPCS(A).

il

Two other machine model formalisms of interest are the A-register
machines with index registers and countable algorithmic procedures in
Shepherdson [1975] and the generalized Turing algorithms in Friedman
[1971]; these are equivalent to cov inductive definability; in the obvious
notations:

THEOREM. For any standard many-sorted structure A,
FAPCS(A) = GTA(A) = FAPIR(A) = CAP(A) = CIND(A).

190 Chapter 4

In addition, it is convenient at this point to mention Friedman’s e ffective
de finitional schemes which are a simple and transparent technical device
for defining and analyzing computability on A. The effective definitional
schemes have found a useful role in the logic of programs (see Tiuryn
[1981], for example).

THEOREM. For any standard many-sorted structure A,
FAPCS(A) = EDS(A) = CIND(A).

4.10.2 High-level programming constructs; program schemes

The study of computability via machine models is akin to low level pro-
gramming, where there is a simple correspondence between instructions
and machine operations. In high-level programming, abstractions away
from the machine are achieved wherein a program statement or command
can set off a sequence of machine operations. This break with program-
ming a specific architecture increases the practical need for mathematical
semantics.

We have, of course, already studied some high-level constructs in the
languages for

(i) ‘while-array programs, and
(ii) recursion-array programs.

Both formalisms are equivalent with cov inductive definability. (See Sec-
tions 4.6 and 4.7 for a detailed account of (i); the argument for (ii) can
then be presented as a “programming exercise”, showing that (i) and (ii)
are equivalent languages. A direct argument for (i) requires a refinement
of Section 3.6 using the techniques of Section 4.7.)

However, in contemplating high-level constructs with regard to general-
izing computability theory, close attention must be paid to the special
ideas about algorithms that motivate their introduction. Clearly, recursion
and iteration are quite distinct tools for defining and implementing algo-
rithms. But non-deterministic constructs, such as those in the guarded
command language (Dijkstra [1975]), or the non-deterministic assignment

x:=y.9(x,y),

where @ is some condition relating y to x (Back [1983]), or the random
assignment

x=?
(Apt and Plotkin [1986]), are constructs proposed as tools for algorithm
design and specification, in order to abstract away from algorithmic
implementation.

Computability in an Abstract Setting 191

In these early stages of building a generalization, we think it prudent to
concentrate on making a deterministic theory, having clear relations with
“classical” computability theory on IN; and therefore to neglect these
important specification constructs for the present. Technically, to appreci-
ate such non-deterministic constructs, a deterministic theory is a necessary
prerequisite. Unfortunately, there are many unanswered questions as to
the nature of the relationships between non-determinism and specification,
and determinism and implementation. The programming of computations
involving concurrency and communication is also an important territory
we here leave unexplored. (See Thompson and Tucker [1985]), Thompson
(1987} and Martin and Tucker [1987] for work that exploits the parallel-
ism inherent in the simultaneous induction schemes used here.) We will
return to the broad theme of programming languages and computability
theory in Section 4.11.

Instead, we will briefly draw attention to a body of early work on the
computational power of elementary control and data structures.

The classification of programming features such as iterations, recursions,
‘goto’s, arrays, stacks, queues, lists seems to have begun in earnest with
Luckham, Park and Paterson [1970] and Paterson and Hewitt [1970]. The
central notions are that of a program scheme and its interpretation on a
model, and that of the equivalence of program schemes on all models.
These ideas may be considered as direct technical precursors of the
corresponding syntactic and semantic concepts we use here, namely: pro-
gram, state transformer semantics, abstract data type, equivalence on K.
The importance of a general syntactic notion of a program scheme that can
be applied to abstract structures was first discussed in Luckham and Park
[1964] and in Engeler [1968b]. We note that in the latter paper computa-
tion over arbitrary classes of structures is treated in the course of analyz-
ing program termination by means of logical formulae from a fragment of
L., . ; Engeler [1968b] is the origin of algorithmic and dynamic logic.

The study of the power of programming features came to be known as
program schematology. Like program verification, the subject was con-
temporary with, but independent of, research on programming language
semantics (recall Section 0.1). The necessity of introducing abstract struc-
tures in such a classification project is easy to understand. From the point
of view of programming theory the equivalence of most algorithmic for-
malisms for computing on IN with the partial recursive functions on N is a
mixed blessing. This stability of the computational models illuminates
our perception of the scope and limits of computer languages and architec-
tures; and has many technical applications in the mathematical theory of
computation (recall the origins of this chapter in Chapter 3). However,

192 Chapter 4

the restriction to IN fails to support an analysis of the intuitive differences
between programming with and without arrays, ‘goto’s, boolean vari-
ables, and so forth.

The research on schematology has produced many program constructs
that are weaker or equivalent with those four basic classes we have dis-
cussed. We refer the reader to the book Greibach [1975] for a general
introduction to schematology and, in particular, to Shepherdson [1985] for
a detailed discussion of many important results and their relation to
machine models. Other significant references are Constable and Gries
[1972], Chandra [1973], Chandra and Manna [1975].

4.10.3 Axiomatic methods

In an axiomatic method one defines the concept of a computation theory as
a set O(A) of partial functions on a structure A having some of the essen-
tial properties of the set of partial recursive functions on N. To take an
example, @(A) can be required to contain the basic algebraic operators of
A; be closed under operations such as composition; and, in particular, pos-
sess an enumeration for which appropriate universality and s-m-n proper-
ties are true. Thus, in Section 4.9, we explained that CIND(A) is a compu-
tation theory in this sense. We also showed implicitly how the idea uni-
formizes over [K: a computation theory over K is a class
O(K)={0(A) | AeK} with a uniform enumeration of an appropriate Kind.

[t is important to note that computation theory definitions, of which
there are a number of equivalent examples, require IN to be part of the
underlying structures A for the indexing of functions; here (current)
axiomatic methods specifically address standard structures and classes
of standard structures.

With reference to the definition sketched above, the following theorem
is of importance here:

THEOREM. The set of cov inductively definable functions CIND(A) on a
structure A is the smallest set of partial functions on A to satisfy the
axioms of a computation theory; in consequence, CIND(A) is a subset of
every computational theory ©(A) on A.

The definition of a computation theory favored here is from Fenstad
[1975,1980] which takes up the initiative in Moschovakis [1971]. We note
that the cov inductively definable functions coincide with the prime com-
putable functions of Moschovakis. The above theorem can be deduced
using work in Moldestad, Stoltenberg-Hansen and Tucker [1981b]; see also
Chapter O in Fenstad [1980].

Computability in an Abstract Setting 183

4.10.4 Equational definability

One of the earliest formalizations of effective computability was by means
of functions effectively reckonable in an equational calculus, a method
known as equational or Herbrand-Godel-Kleene definability. This was
the method employed to define the recursive functions in important writ-
ings such as Church [1936] and Kleene [1952].

Equational definability may be generalized from N to an arbitrary struc-
ture A with the natural result that, in case A is a standard structure,
equational definability is equivalent with cov inductive definability. The
first attempt at such a generalization is Lambert [1968]. However, we
prefer to sketch a simpler treatment from Moldestad and Tucker [1981].

First we choose a language EL=EL(X) for defining equations over sig-
nature ¥ and transforming them in simple deductions. Let EL have con-
stants a,b,c,... and variables x,y,z,... for data; and variables
p.q.r,... for functions. Using the basic operations of the signature we
inductively define terms in the usual way, namely:

ti=alx|ply,....t))|F(,,t,)]if tBthent, elset, fi.

An equation in EL is any expression e = (¢, =t,).

Let E be a set of equations. An equation e is defined to be formally
derivable or deducible from the equations of E, written E e, if one of
the following conditions holds:

(i) e€E;

(ii) e is obtained from some e', such that Ele’, by replacing every
occurrence of a variable x in e’ by a constant c;

(iii) e is obtained from some e, such that E le’, by replacing at least one
occurrence of a subterm ¢ of e' by a constant ¢, where ¢t has no free
variables and E ¢t =c.

A deduction of an equation e from a set of equations E is a list ey, ...,
of equations such that E t¢; for alli and ¢, =e.

Thus, it remains to formulate equational deductions with respect to a
given structure A of signature X in order to formulate what it means for
a function f on A to be equationally definable on A. This is essentially
giving our system a semantics. The first semantical problem is to allow
the basic operations of A to play a role in deductions from a set of equa-
tions E and this is accomplished by permitting

194 Chapter 4

ElF F(cy,...,cp)=c¢ if FAGP,cM=cA
E}_ ifb then C[else C2 fi =C] lf bA='ﬂ'
Erifb thenc,elsec, fi=c, if bA=1

This is the reason we add the constants to EL.
The second semantical problem is to prove a single-valuedness property
of the form:

EFP(C],...,C,[)=(1] and El‘p(C],...,Cn)=a2 = a;=4a,.

This done, we can define f: A[k]—> A to be equationally definable over
A if for some finite set of equations £ and some function symbol p,

Ebplcy,....ch)=c iff flcftcH)=c?

for all constants of EL.
Let EQN(A) denote the set of all equationally definable functions on A.

THEOREM. For any structure A
EQN(A) = FAPS(A)
and, in particular, for any standard structure A

EQN(A) = CIND(A).

4.10.5 Fixed-point methods

The familiar definition of the recursive functions on N based on the primi-
tive recursion scheme of Dedekind and Gddel, and the least number opera-
tor of Kleene, appeared in Kleene [1936]. In Kleene [1959,1963] appeared a
thorough revision of the process of recursion on N sufficiently general to
include recursion in objects of higher function type. In Platek [1966] there
is an abstract account of higher-type recursion. The central technical
notion is that of the explicit definition of fixed-point operators.

In Moldestad, Stoltenberg-Hansen and Tucker [1981a] Platek’s methods
were analysed and classified in terms of the machine models of 4.10.1.
Like equational definability, definability by fixed-point operators applies to
an arbitrary structure A and is there equivalent to fapS-computability.
Thus, this notion coincides with cov-inductive definability of A in a stan-
dard structure. We will sketch the method.

First we construct the language FL=FL(Z) for defining fixed-point
operators. Let FL have the data and function variables of EL, the equa-
tion language of 4.10.4. Using the basic operations of the signature ¥ and
the A-abstraction notation we create a set of fixed-point terms of both data

Computability in an Abstract Setting 195

and function types:
tz=x|plFI|DCIT(y, ... t,)|IFP[Ap -y, ... ¥, t].

Here p is a function variable, F is a basic operation of X, DC is the
definition by cases functional (all of type function), 7 is a term of type
function, ¢;,...,t, and t are terms of type data, and y,,...,y, are data
variables.

Each term defines a function on each structure A of signature X. The
definition of the semantics of terms is by induction on their construction,
the terms of the form

FPIApP y5, ..., Yat]

being assigned the unique least fixed-point of the continuous monotonic
operator defined by the notation Ap -y, ...,¥,.t.

A function f: A[k]—> A is definable by fixed-point terms over A if
there is a term ¢ such that for all x€ A[k], f(x) ~t(x).

Let FPD(A) denote the set of all functions definable by fixed-point terms
over A.

THEOREM. For any structure A,
FPD(A) = FAPS(A)
and, in particular, for any standard structure A
FPD(A) = CIND(A).

For the many necessary details see Moldestad, Stoltenberg-Hansen and
Tucker [1981a).

4.10.6 Set recursion

Given a structure on A one can construct a set-theoretic hierarchy H(A)
over A, taking A as urelements, and, depending upon the construction,
develop a recursion theory on H(A). This is the methodology in Normann
[1978] where combinatorial operations on sets are employed to make a gen-
eralization of computability. In Moldestad and Tucker [1981], Normann’s
set recursion schemes are applied to the domain HF(A), the set of heredi-
tarily finite subsets so as to invest the general construction with computa-
tional content. HF(A) is inductively defined as follows:

(i) A cHF(A)
(@) if ay,...,a,€HF(A) then {a, ... ,a,}€ HF(A), n=0.

Thus, @€ HF(A), a copy of INc HF(A) and copies of cartesian products of
A are embedded in HF(A). From computability on HF(A) a notion of

196 Chapter 4

computability on A may be easily obtained. It is the case that a Jfunction
on A is set-recursive if , and and only if , it is cov-inductively de finable
on A.

4.10.7 Some other approaches

Finally, we will record for completeness some further notions of finite
computability which are significant, but which do not coincide with cov-
inductive definability.

In Moschovakis [1969] there are three classes of functions on a standard
structure of interest. The absolutely prime computable functions on a
standard structure A are precisely CIND(A). The prime computable func-
tions on A are those functions definable by the cov induction schemes
enhanced by allowing all constant functions on A.

The third class of functions is called the class of search computable
functions and is made by adjoining to prime computability a global search
operator on A, justified by the postulation of a well-ordering on A or by
the axiom of choice. Such a search operator can also be brought into play
in the definition of cov inductive definability to preserve the equivalence
of the concepts. The technical value of the non-constructive search opera-
tor lies in its role in linking computability and logical definability on
abstract structures: without search the class of semicomputable sets need
not be closed under existential quantification.

In Montague [1968] semicomputability is identified with ¥,-definability
in a certain infinitary language. Taking Montague’s cardinal index =N
one obtains a finite definability which is proved, in Gordon [1970], to be
equivalent to search computability. A similar situation obtains in the
more general set-theoretic definability approach on HF(A) in Barwise
[1975]

Thus, in working with the class of cov inductively definable functions
we neglect the constant functions and X,-definability in favour of a
stricter interpretation of finite computability in an abstract setting.

4.11 A GENERALIZED CHURCH-TURING THESIS

The cov inductively definable functions are a mathematically interesting
and useful generalization of the partial recursive functions on N to an
abstract structure A and class K of structures. Do the cov inductively
definable functions also give rise to an interesting and useful generaliza-
tion to A and K of the Church-Turing Thesis, concerning effective compu-
tability on IN?

Computability in an Abstract Setting 197

They do; though this answer is difficult to explain fully and impossible
to explain briefly. In this last section we can only sketch some reasons
directly relevant to the concerns of this monograph. Two subjects will
receive attention: the idea of effective calculability in an abstract setting,
and the status of a Church-Turing Thesis in programming language
theory. We will formulate two Generalized Church-Turing Theses that
we believe are consistent and useful for work on programming languages.

4.11.1 Some first attempts at generalizations
Consider the following statement:

A NAIVE GENERALIZED CHURCH-TURING THESIS. The functions and
relations e ffectively calculable on a many-sorted abstract structure A, or
class K of structures, are the functions and relations cov inductively
definable on A, or definable uniformly over KK, res pectively.

What can be meant by “effective calculability” on an abstract structure or
class of structures?

The idea of effective calculability is complicated in the standard situa-
tion of calculation with N, as it is made up from many philosophical and
mathematical ideas about the nature of finite computation with finite or
concrete elements. For example, its analysis raised questions about the
mechanical representation and manipulation of finite symbols; and about
the formalization of constituent concepts such as algorithm; deterministic
procedure; computer program; functions definable by these entities; func-
tions reckonable in formal systems; functions computable by machines;
and so on.

The idea of effective calculability is particularly deep and valuable
because of the close relationships that can be shown to exist between its
distinct constituent concepts. Only some of these constituent concepts can
be re-interpreted or generalized to work in an abstract setting; and hence
the general concept (and the term) of effective calculability does not
belong in a generalization of the Church-Turing Thesis. In addition, since
finite computation on finite data is truly a fundamental phenomenon, it is
approriate to preserve the term with its established meaning.

In seeking a generalization of the Church-Turing Thesis we are trying
to make explicit certain primary informal concepts that are formalized by
the technical definitions, and hence to clarify the nature and use of the
computable functions in programming language theory.

We will start by trying to clarify the nature and use of abstract struc-
tures. Mathematically, there are three points of view from which to con-
sider the step from concrete structures to abstract structures, and hence

198 Chapter 4

three points of view from which to consider the cov inductively definable
functions.

First, there is abstract algebra, which is a theory of calculation based
upon the “behaviour” of elements in calculations without reference to
their “nature”. This abstraction is achieved through the concept of isomor-
phism between concrete structures; an abstract structure A is a concrete
structure considered unique only up to isomorphism.

Secondly, there is logic and, in particular, model theory, which is a
theory about the scope and limits of axiomatizations and proofs. Here
structures and classes of structures are used to discuss formal systems in
terms of consistency, soundness, completeness, and so on.

Thirdly, in programming language theory, there is data type theory,
which is about data types that users may care to define and that arise
independently of programming languages. Here structures are employed
to discuss the semantical structure of data types, and isomorphisms are
employed to make the semantics independent of implementations. In addi-
tion, axiomatic theories are employed to discuss their specifications and
implementation.

Data type theory is mathematically dependent upon the first two sub-
jects and is our main point of view.

Each of these theories, because of its special concerns and technical
emphasis, leads to a distinct theory of computability on abstract structures.

Suppose, for example, the cov inductively definable functions are con-
sidered with the needs of doing algebra in mind. Then the context of
studying algorithms and decision problems for groups, rings and fields, etc,
leads to a formalization of a Generalized Church-Turing Thesis tailored to
use by an algebraist:

GENERALIZED CHURCH-TURING THESIS FOR ALGEBRA. The set of func-
tions and relations on an abstract algebraic structure A, or class K of
algebras, that are calculable by means of finite deterministic algebraic
algorithms on A, or uniformly over the algebras of K, is the set of func-
tions and relations cov inductively definable on A, or uniformly over K.

A detailed account of computability on abstract structures from the point
of view of algebra is Tucker [1980].

We will formulate two generalizations tailored to the uses of a pro-
gramming language designer. The first is essentially a translation of the
algebraist’s thesis into the terminology of the theory of abstract data types
(important: recall Section 0.3, if necessary):

Computability in an Abstract Setting 199

GENERALIZED CHURCH-TURING THESIS FOR PROGRAMMING
LANGUAGES: VERSION 1. Consider a deterministic programming
language over an abstract data type di. The set of functions and rela-
tions on a structure A, representing an implementation of the abstract
type dt, that can be programmed in the language, is contained in the set
CIND(A) of cov inductively definable functions and relations. The class
of functions and relations over a class K of structures, representing a
class of implementations of the abstract type dt, that can be programmed
in the language, uniformly over all implementations of K, is contained in
the class CIND(K).

The second generalization (given in 4.11.3) is a refinement of the first,
obtained by considering the implementation of functions and relations in
an arbitrary (not necessarily deterministic) programming language. In
programming language theory, the computational equivalence of different
languages is a central concern, and one in which computable functions and
relations, and a generalized Church-Turing Thesis, will play a leading role.
This we will now explain.

4.11.2 Equivalence of programming languages

In the theory of programming languages we are interested in properties of
languages for expressing algorithms and their underlying models of com-
putation. Thus, we are interested in properties of languages such as pro-
gram transformations; program equivalence; specification methods;
verification methods; side-effects; errors; run-time and space performance;
and so on. What is the role of the classes of functions and relations com-
putable by the languages?

The computable functions and relations allow us to compare different
programming languages; in particular, they allow us to prove that certain
disparate programming languages compute the same classes of functions
and relations. Thus, classes of functions and relations are used to classify
programming languages in terms of their computational power. In this
classification the Church-Turing Thesis is often used (for example) to jus-
tify the criterion that for a formalism to be a general purpose program-
ming language it is necessary and sufficient that it can implement the
partial recursive functions on IN.

lLet us reconsider the equivalence of programming languages, as
described in Section 4.10 in the style conventional to computability
theory.

Consider the equivalence of a von Neumann language, such as the
‘while’ or ‘while’-array language, and a functional language, such as the

200 Chapter 4

induction schemes or cov induction schemes. A von Neumann language
defines programs that transform a store or memory; a functional language
defines programs that compute functions; thus some care must be taken in
defining the meaning of equivalence between programs from the two
types of language. In Section 4.3 we defined how functions are computed
by von Neumann languages and this was sufficient to define a notion of
program equivalence to compare languages: programs are equivalent on K
if they compute the same functions on K.

DEEINITIONS. Let L=L(X) be a programming language over a class K. We
say that L implements or computes functions over K if there is a subset
L' of L such that to each program S € L' we can uniformly assign a func-
tion f§ on each A€, and hence assign a function

Js ={f§ 1 Aek}

on K.

We say that a function f on K is implementable or programmable in,
or computable by L, if there exists a program S € L such that f = fg on K.
This informal terminology allows us to express the general conventional
form of the equivalence theorems seen in this chapter.

FORM FOR EQUIVALENCE THEOREMS: VERSION L. Let L, and L, be pro-
gramming languages that compute functions over K. Let f be any func-
tion over K Then fis computable by Ly iff f is computable by L.

To make the equivalence of L, and L, explicit we need the following
definition:

DEFINITION. Let L; and L, be programming languages that compute func-

tions over K. We say that L, and L, are functionally equivalent over K if
for each S;€L; there is S,€L; such that fg =fs, on K and for each

S,€ L there is S; € Ly such that fg = fs onK.
FORM FOR EQUIVALENCE THEOREMS: VERSION II. Let L, and L, be

programming languages that compute functions over K. Then L, and L,
are functionally equivalent over [K.

In the theory of programming languages, equivalence theorems should

have a richer structure than that traditionally allowed them in computa-

bility theory. Further reflection on a theorem having the form of Version

Il leads us also to make explicit the fact that in its proof two mappings
¢;: Ly—> Ly and c¢;: Ly —> L,

are constructed that perform the translations. These mappings are

Computability in an Abstract Setting 201

compilers; and equivalence theorems are theorems about the existence of
compilers.

Less obviously, equivalence theorems are also theorems about compiler

correctness defined by the notions of program equivalence based upon
functional specifications. We will reanalyse Version II using the follow-
ing concepts.
DEFINITIONS. Let L; and L, be programming languages that compute
functions over K. Let F be a class of functions on K. Then we define pro-
grams §,€L; and S,€ L, to be equivalent on K up to the speci fications of
F if there is f€F such that S, and S, implement f, ie.

fS, = fS2 = f N
In these circumstances, we say S; and S, are F-equivalent and write
S] =F Sz.
The idea of F -equivalence is used in the concept of compiler correctness as
follows:

DEFINITIONS. Let L, and L, be programming languages that compute
functions on K. A map c:L,—> L, is called a compiler if it maps syn-
tactically well-formed L, programs to syntactically well-formed L, pro-
grams.

The compiler c¢:L,— L, is said to be correct up to equivalence under
the functional specifications of a class of functions F on K if for any
S€L, if fg€F we have c(§)=p S. We will abbreviate this terminology
to: ¢ is correct up to F-equivalence.

With this terminology we can re-express the general form of equivalence
theorems as follows:

FORM FOR EQUIVALENCE THEOREMS: VERSION III (COMPILER VERSION).
Let L, and L, be languages that compute functions on K. Let F be a
class of functions on K. Then there is a pair of compilers

C]: L]%Lz and Cz: LZQLI
that are correct up to F-equivalence.

The functions can be replaced by relations, and by more general concep-
tions of program specifications, that lead to more general conceptions of
compiler correctness and hence of programming language equivalence.

Version III leads to further enhancements of interest in the theory of
programming languages. For example, properties of the compiler, such as
its efficiency and the size and efficiency of the programs it returns, can be
included.

202 Chapter 4

4.11.3 A second generalization

In the second generalization we will refine Version I of 4,11.1, by clarify-
ing the implementation of functions, and by replacing the hypothesis of
the determinism on the language; the account of abstract structures and
data types will not be refined. We need the following concepts:

DEFINITIONS. Let L be a programming language that implements func-
tions on K. Let F be a class of functions on [K. Then
(i) L is sound for F if for each program S € L' the function f5 computed
by § isin F;
(ii) L is adequate for F if for each f€F there is a program § €L’ that
implements f, ie. fs=71;
(iii) L is complete for F if L is sound and adequate for F.
With this terminology, we can recast the Church-Turing Thesis and its
generalizations as statements about soundness. For example, the Church-
Turing Thesis can be stated:
Any deterministic programming language that imple-
ments functions on N is sound for the set of partial
recursive functions on IN.

And a commonly used criterion for a general purpose language can be
stated as:

a programming language is a general purpose language

if it is complete for the partial recursive functions on

IN.

These statements about N can be generalized to [K by applying the termi-
nology to Version I; in particular, we have the following revision of Ver-
sion I:

GENERALIZED CHURCH-TURING THESIS FOR PROGRAMMING
LANGUAGES: REVISED VERSION 1. Any deterministic programming
language that implements functions on K is sound for the class of cov
inductively de finable functions on K.

This thesis is clearly equivalent to Version I. We will now consider some
languages of interest and relate them to the thesis. This will suggest a
new formulation, Version II, that is worth considering.

Examples of languages that are sound, but are not adequate, are com-
monplace. For instance, if the ‘while’ construct in the ‘while’ language is
replaced by a bounded iterative construct

Computability in an Abstract Setting 203

don times S od

where n is a natural number variable, the new language implements pre-
cisely the primitive recursive functions on IN.

Examples of languages that are adequate, but are not sound, are neces-
sarily non-deterministic, according to Version I of our Generalized
Church-Turing Thesis.

If we replace the assignment statement in the ‘while’ language with
non-deterministic assignment statements of the form

x:=y.9(x,y)

which assigns a value for y that satisifies the first-order formula ¢; or
with the random assignment

x:=?

then in both cases, under simple and appropriate semantics, the languages
implement more than the partial recursive functions on IN.

Alternately, if we define the ‘while’ language axiomatically, by means
of first-order Hoare logic, the semantics obtained is not, in general, the
standard semantics of the language and, in particular, need not be either
sound or adequate for the partial recursive functions: see Bergstra and
Tucker [1984b].

However, it is important to note that some non-deterministic languages
are sound for the partial recursive functions and relations, and the cov
inductively definable functions and relations. For example, the guarded
command language is sound for both under a simple semantics.

It is not appropriate to the concerns of this monograph to attempt an
analysis of the ideas of determinism and non-determinism in programming
languages that can resolve this conceptual discrepancy with computability.
Instead we will formulate a different thesis that we think is better suited
to present concerns and that we believe is consistent with Version I; we
will replace the hypothesis of determinism with a related hypothesis on
the semantics of the language.

GENERALIZED CHURCH-TURING THESIS FOR PROGRAMMING
LANGUAGES: VERSION II. Any programming language that implements
functions on K under an operational semantics is sound for the cov
inductively de finable functions on K.

Thus we have adopted determinism and operational semantics as the pri-
mary concepts delimited by the cov inductively definable functions, in the
general setting of abstract data types.

204 Chapter 4

4.11.4 Concluding remarks

Since we wish to program <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>