
Comparative transition system semantics

Tim Fernando*
fernando<Ocwi.nl

CWI, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Abstract. Employing the notion of a. transition system, programs, conceived
a.s binary (transition) relations on states, a.re related to processes, viewed a.s
dynamic states. The comparative study is carried out syntactically over rules
for transitions, and semantically in terms of bisimulation equivalence. A cer
tain form of transitions is studied, and a. "logical" a.pproa.ch to the notion of
a bisimula.tion is ta.ken tha.t a.re somewhat non-standard (but, it is hoped, il
luminating). Sequential composition, non-deterministic choice, iteration, a.nd
interleaving a.re a.nalyzed alongside a notion of data. Atomization a.nd syn
chronization a.re also considered.

A (labelled) transition system is a triple {L, S, -+} consisting of a set L of labels, a
set S of states, and a transition relation - ~ S x L x S. This general scheme brings

together various notions of "transitions" s -!.. s1 (encoded as (s, l, s1) E -+), where
labels and states can be analyzed in terms of each other. In some studies, such as
process algebra (see, for instance, Baeten and Weijland [2] and the references cited
therein), a label is taken to be primitive, the main p<:>int being to ana.lyze what a
state - i.e., process - is. Another point of view reduces a label to the pairs of states
that it relates via-+. Indeed, the analysis in dynamic logic (see, for example, Harel
[11]) of a program as a binary relation on data-states yields a transition system
whose labels are programs, a.nd whose states are data-states. Now, although any
family R of binary relations on some set X can be regarded as a transition system
{R, X,~) with

"-h = {(x,R,y) EX x Rx X I (x,y) ER},

it is not the case that every transition system can be obtained this way. A ternary
relation -+ can support at least two different kinds of transitions that a set of binary
relations cannot (under the usual encoding of relations as sets). First, -+ allows two
disLinct labels l and l' to relate the sa.me states

{(s, s') I s-!.. s'} =
I' {(s, s') I s -+ s'} .

• My thanks to Jan Willem Klop for suggesting that a report entitled "Comparative tran
sition system semantics" be written, a.nd for help along the way; also to Jan Rutten,
Daniele Turi, Alban Ponse, Frits Vaandrager, Johan va.n Benthem, Prakash Pa.na.nga.den,
Fer-Jan de Vries, Ja.n van Eijck, and Franck van Breugel for useful discussions. The work
wa.s funded by the N etherla.nds Organization for Scientific Research (NWO project NF
102/62-356, 'Structural and Semantic Parallels in Natura.I Languages and Programming
Languages').

150

Second, by the usual axioms of set theory, circular predicates such as (l, l) E l can

never hold, whereas l ..!.. l might. Now, if labels are ta.ken to be programs, then
the possibility of distinct labels relating the same states is, in fact, just what the
view of programs as relations on states forbids. In contrast, as will become clear
below, a restriction to non-circular transitions would represent a severe limitation
for an account of programs (inasmuch as that account requires an analysis of in
termediate states in a possibly non-terminating computation). The restriction can
be relaxed, but not without introducing complications of its own, revolving around
equality - complications that can be overcome either by reading "programs as re
lations" as "programs isomorphic to relations", or, alternatively, by passing to the
non-well-founded set theory presented in Aczel [l]. These "alternatives" turn out to
be equivalent, and, what's more, related to a well-known notion of equivalence on
transition systems based on so-called bisimulations (Park [13]).

Conceptually, then, the present paper is directed towards reconciling two points
of view,

(Pl) a program as a (binary) relation on states,

and

(P2) a process a.s a state in a transition system,

enriching the former by incorporating a program into its notion of state, a.nd the
latter by passing from atomic transitions to a finite sequence of such transitions. The
comparison given of (Pl) and (P2) is carried out for the regular program constructs
(viz., sequential composition, non-deterministic choice and iteration) and interleav
ing over a notion of data. Atomization and synchronization are also discussed briefly
in the final section and in an appendix.

The paper begins with an informal account of five transition systems from dy
namic logic, process algebra and the ground in between (more specifically, transition
systems from Groote and Ponse [9], and De Boer, Kok, Palamidessi, and Rutten [6],
which have been modified to highlight their essential characteristics - at least from
the point of view of the present paper). This is followed in section 2 by a syntactic
study based on a single unifying transition system. A semantics for (Pl) is worked
out in section 3, providing an "alternative" approach (based on (Pl)) to the no
tion of a bisimulation designed for (P2). Section 4 relates the different transition
systems semantically by analyzing models that are in a suitable sense final. Some
directions for further work are discussed in section 5, and an appendix containing
certain technical details behind section 3 attached.

1 Five transition systems

The present section concentrates on essential intuitions, leaving a precise formulation
of the transition systems to the next section. In addition to writing (L, S, -+) for a
transition system (to be instantiated below in different ways), the following notation

151

is adopted, and kept throughout the pa.per. D is a set of "data-states" d, d', d1, .•. ;

P1 is the set of "program(term)s" p, ... given by

P ::= a I P1;P2 I Pl +P2 I P1llP2 I Pi

over a set A of "atomic programs" a, ea.eh of which comes with an "interpretation"
Id~ D x D.

While there is general agreement as to what ;,+ and • mean, the "parallel"
construct II is a bit more troublesome. A view of II is adopted throughout this paper,
allowing the program x := lll(x := O;x := x + 1) to end in a state where x = 2
(resulting from interleaving x := 1 between x := 0 and x := x + 1). Otherwise,
the program x := O; x := x + 1 should be "atomized" (see De Bakker and De Vink
[3], the references cited therein, and also section 5 below) before composing it in
parallel with x := 1. Beyond interleaving, however, a notion of synchronization is
often incorporated into II· Such complications a.re ta.ken up in Appendix B.

1.1 Dynamic logic (semantics)

The first example is an extreme, extensional formulation of (Pl) where states a.re
inputs and/or outputs.

Example 1. Let Po be the set of programs in P1 with no occurrences of II· The
semantic framework underlying dynamic logic provides a transition system where
L =Po and S = D, with transitions written

d [p]o d' (1)

indicating that program p can yield (as output) d11 given input d (and where [a]o =
Id). (Note: the present pa.per concerns only the semantic component of dynamic
logic, and not the modal logic for a.nalyzing these structures.)

A well-known limitation of (1) is that it cannot support a compositional account
of parallelism in that [x := l]o = [x := O;x := x + l]o, whereas [x := lllx := l]o
better not equal [x := lll(x := O; x := x + l)]o. (The concurrent extension of
dynamic logic in Peleg [14] where programs a.re interpreted as subsets of D x 2D is
inconsistent with this view.) Beyond the matter of compositiona.lity, a. direct analysis
of intermediate states is suggested also by interest in non-terminating computations.

1.2 Process algebra

A fine-grained, intensiona.l analysis of programs is developed in

Example 2. Taking for granted a translation into P1 of the corresponding processes,
an example of a transition system in process algebra. is provided by L = A + { v'}
and S = P1 + h/}, with transitions

B I
p--+ p (2)

indicating that process p can execute the atomic program a, and in so doing trans
form itself into p 1• The symbol ../denotes successful termination.

152

1.3 Process algebra with data

Comparing Example 1 with Example 2, a question that arises is what happened to
the data-states in D? D is (re-)introduced into the picture in

Example 3. In Groote and Ponse [9], L =A+ {v1}, and S = (Pi+ {v1}) X D
(so-called "configurations"), with transitions of the form

(p, d) ..!!3 (p'' d') (3)

extending Example 2 with the condition that dla.d'. Under this account, it is clear
that implicit in the basic axiom a; p ~ p for (2) is the assumption that for every
"normal" a EA, it is the case that \fd 3d' d I .. d'. Atomic programs that need not
have this property are central to Groote and Ponse [9), where they are called guards.

1.4 Data-state pairs as labels

Abstracting away the atomic program a from (3) and promoting the data-states to
the center stage, above the arrow, we arrive at

Example 4. In De Boer, Kok, Palamidessi, and Rutten [6], L = D x D, and S =
P1 + { y'}, with transitions

d,d' I
p -+4 p (4)

indicating that program p can turn into p' starting from an initial data-state d
which is updated to d'. A program p can then be assigned denotations (following De

Boer, Kok, Palamidessi, and Rutten [6]) based on sequences p d..:.+!; Pi d.:.+'7 P2 · · ·
of transitions that may or may not be connected in the sense that d~ may or may
not equal di+l · (This, at least, is the case for programs without • and of bounded
non-determinism.)

The passage from d: to d;+; is made explicit in the next example, where symbols
in (4) are moved around a bit, and transitions caused by programs possibly more
complicated than a E A are allowed.

1.5 Programs as relations on data and programs

The principle that programs are only "visible" through their effects on data is de
veloped further in our fifth example, which trades atomicity for transitions that
intuitively may take more than a single step (consistent with the absence of a global
clock).

Example 5. Let L = Pi, S = D x (P1 + { v'}), and consider transitions

(5)

reflecting the intuition that an operating system with a data-state d1 and a sus
pended job Pl can respond to an external request p by updating its data-state to
d2 and its "jobs-to-do" to P2· (5) reduces to (1) when p1 = P2 = ../, and p E Pa.

153

External requests are assumed to have priority equal to internal jobs. Very roughly
(i.e., up to one-step transitions), (5) is related to (4) as follows

(d1,pi) (p) (d2,J>2) iff P1llP d~!2 P2

p ~~ p' iff (d,v'} [p} (d',p').

While the idea that transitions can compose to produce transitions is a natural
one, work on transition systems has tended to focus on atomic labels. A notable
exception is Boudol and Castellani [5], where "at each step, the performed action is
a compound one, namely a labelled poset, not just an atom" (p. 25). The work below
is most definitely related to Boudol and Castellani [5}, and, going back further, to
Plotkin [15], where resumptions from a domain Y satisfying

Y = DJ..-+ Pow(D.L + (D.L x Y))

are considered. A simple connection between transition systems and P1 can be es
tablished by interpreting P1 in a domain X satisfying the equation

X = Pow((D x (X + {v'})) x (D x (X + {v'}))). (6)

A rough way (ignoring 1-) of relating (6) to Y is by a map from y E Y to Xy E X
such that

y(d) :::::: {d' I (d,./) x 1 (d',.,/)} + {(d',y') ED x X I (d,.,/) x., (d',x.,•)},

following the associations

D-+ Pow(D + (D x Y)) :::::: (D x h/})-+ Pow((D x {./}) + (D x Y))

:::::: (D x {v'})-+ Pow(D x (Y +h/})).

Section 3 describes a "final" model for (6), without appealing to domain theory
or introducing 1-. The essential complication addressed is the indefinite character
of equality brought on by circularity - a difficulty resolved below by a quotient
construction essentially going back (at least) to Milner [12].

Remark. To confuse the symbol v' with some "no-op" skip EA (relating identical
data states) is to invite trouble in grounding the circular notion of a program as
a relation on S = D x (P1 + { v'}). (See pa.rt l of Theorem 2 below.) The second
component of such a state is, intuitively, a (finite) "bag" of programs to be executed
- of which any number of instances of skip may be included. The symbol v' is not
a program, but is an indicator that the bag is empty. The identification of bags with
elements of P1 +. { v'} is possible because the external request p in (5) is assumed
to have as much right to be executed as any of the suspended internal programs
(whence a non-empty bag can, through II, be reduced to a single program). For a
different scheduling policy (involving, for example, priorities), the rules given in the
next section must be modified accordingly.

154

2 One transition system for five

To relate transitions (1) through (5), the transition system of Example 5 is extended
below by taking L = P1 x A•, with transitions of the form

where a E A• records the sequence a1 ... a,. of atomic programs actually executed.
The idea is that

(1) becomes 3a (d,Y) [p,a)(d',Y)
(2) becomes "Id ;ld' (d,v') (p,a} (d',p')
(3) becomes (d,Y) (p,a} (d',p')
(4) becomes 3a (d, Y) (p, a} (d',p')
(5) becomes 3a (d1,p1) (p, a} (d2,P2) .

To be more precise, assume that among the a's in A is skip, with I skip = {(d, d) I d E

D}, and fix the following collection of rules, abusing notation so that d, p, 8, a, a, .. .
are understood as schematic variables ranging over D, P1 , e = P1 U { v1}, A, A•, ... ,
respectively, and a E A is identified with the sequence of length one consisting of a.
For every a E A and (d, d') E la, throw in the axiom

(d,a,d') (./') [) (v') d, a,a d',

and close these transitions under

(;) (d,v') [p1,a) (d1,Y) ~~1·v? [p2,b} (d',8)
(d, v') [p1;p2, ab) (d, 8)

() (d, v') [F1, a:) (d', e)
+r (d,v') (p1 +p2,a) (d',B)

(*) (d, Y) [skip + p; p*, a) (d', 8)
(d, v') (p•, a:) (d', 8)

(II) (d, ./') [p, a:) (d',p1)
·r (d,p2) (p, a) (d',P1llP2)

(l) (d, ./') [p2, b} (d', 8)
+ (d, Y) [1'1 + P2, b) (d', 8)

(Iii) (d,Y)[p,a}(d',v')
(d,p') [p,a) (d',p')

(trans) (d, 8) [p, a) (di, P1) (d1, v') (p11 b) (d', 8')
(d,B) [p,ab} (d',8')

(j i) (d, y') [p1) a) (d' Ip)
(d, v') [pi; p2, o:) (d', p; P2)

155

(; i') (d, y') [pi, o:) (d', y')
(d, v') [p1; P21 a) (d', P2)

The rules (d,a,d'), (;), (+r), (l+) and(•) correspond exactly to dynamic logic's
semantic clauses for regular constructs. The remaining rules have been introduced
to insure that II is closed under interleaving. This can be made precise, although
(suppressing the sequences of atomic programs from the labels for the sake of sim
plicity) the following derivation of (d,p') [p) (d2,p11Jp2) from (d, y') [p) (d1,p1) and
(di, y') [p') (d2, P2) should be sufficient to make the point

The reader interested in notions of parallelism connected with synchronization is
referred to Appendix B.

For the record, the transition system defined above is (P1 x A•, D x e, ~) where
~is

{((d, 8), (p, a), (d', 8')) I (d, 8) [p; a) (d', B') is derivable from the rule set above} .

Observe that whenever (d1, P1) [p, a1 ... an) (d2, P2) is derivable, then di Ia1 o · · · o
Ia.. d2. Other than the axioms (d, a, d'), the only rules that change the sequences
of atomic programs in a transition (or the data-states related) are the "transitive"
rules (;) and (trans), both of which increase the length of sequences. Neither has
a counterpart in Examples 2 through 4, which are confined to sequences in A•
of length one. Thus, the rules (;) and (trans) can be introduced "conservatively"
into Examples 2 through 4, since these are rendered irrelevant by the restriction
to transitions with atomic program sequences of length one. (The addition of these
rules takes on some significance, however, if rules reducing the length of atomic
program sequences in transitions are subsequently introduced - see the discussion
in the concluding section.) Thus, as pointed out informally at the begining of this
section, the sets of transitions for Examples 1, 3, 4 and 5 can be described by the
following definitions, where an additional example lying between Examples 4 and 5
(and so denoted 4.5) is included for later reference

Ho = {(d,p,d') I (d,y') [p,a) (d',y') is derivable from axioms (do,ao,d~)

by(;), (+r), (I+), and(•), for some a}

->3 = {((p,d),a,(B',d')) J (d,y') ~ (d',B')}

-->4,5

= {(p, (d, d'), ()') I (d, y') ~ (d', B') for some a}

= {(p, (d, d'), ()') I (d, y') ~ (d', ()') for some a}

= {((d,B),p,(d',e')) I (d,B) ~ (d',B') for some a}.

156

We show next that ==> extends [·)o "conservatively" in the sense that for every

p E Po and all d,d' ED, if (d,./) ~ (d',v') for some a, then d[p]od'. For this
purpose, it is convenient to work with rules where the sequences of atomic programs
in labels are erased, so that L = P1 and transitions have the form of (5). Call the
resulting set of rules I'i, and let I'o be the subset of I'1 given by (d, a, d')'s, (;), (+r),
(l+), and(•) with the atomic sequences dropped from the labels. It is easy to see
that

Uo = {(d,p, d') I (d, ./) (p) (d', v') is derivable from I'o}
-+5 = {((d,8),p,(d1,81)) J (d,8) [p) (d',81) is derivable from I'i}.

Theorem 1. ==> is a conservative extension of dynamic logic: that is, for every
program p E Po,

(d, J) [p) (d', J) follows from I'o ifI (d, ./) [p) (d', J) follows from I'1 .

Proof. Only (<=) requires an argument. First, establish by induction on the length
of I'1 -derivations that

(t) For every p E Po, and every I'i-derivation of (d,J) (p) (d',8), it is the case

that 8 E Po U { ./} and the rules (sym), (shift), (Iii), (11-r), and (1-11) do not

occur in the derivation.

Next, to push through an induction on the length of I'1-derivations, it is use
ful to strengthen the induction hypothesis as follows. Given a I'1 -derivation D of
(d, ./) fp) (d1, 8), let ip(D) be the assertion

if 8 = .j, then I'o proves that (d, J) [p') (d', ./),
else if 8 = p' and I'o proves that (d', J) (p') (d", J), then I'o proves that
(d,J) [p) (d",J).

Now, induct on the length of D, noting from (t) that 8 E P0 U { ./}, and that (sym),
(shift), (Iii), (11-r), and (1-11) do not occur in such a derivation. The argument breaks
up into different cases, according to the last rule applied in D. For lack of space,
this is left to the reader. -1

Having established Theorem 1, note that the rule (;) is derivable from (trans) and
(;i').

3 Semantic foundations for 'programs as relations'

This section works out a semantic.s for programs based on (Pl), "a program as a
relation on states", over a transition system (P, D x e, [·) r) (with e = P + { ./})
whose transition relation is given by some rule set I' (such as I'o or I'1) as follows

(d,8) [p)r (d',8 1) iff (d,8) (p) (d',8 1) follows from r.
Notice that "(d, 8) [p) (d', 8')" is viewed in the right hand side above as a syntactic
expression - a practice that we will adapt for the remainder of the paper. Formally,

157

the idea is to work in a logical system without equality, but with (atomic) predicate
symbols

(d, ·) [·) (d', ·)' (d, v') [·} (d', ·)' (d, ·) [·} (d', v') ' (d, v') [·) (d', v')

for every d and d' E D. The holes · are to be filled by programs in P. Now, a
"semantics" for the set P of programs is at the very least a map/ with domain P.
One might expect this map to be defined by induction on terms (as in first-order
logic), but for the time being, we will simply take f to be given, and will return to
the matter of compositionality later. For f to be, in any sense, a model of I', all
transitions (d,80) [p}r (d',80) must hold in f. Without saying anything about the
co-domain off, let us focus on the "equality" relation {(p,p') E PxP I J(p) = /(p')}
on P that f induces. While our list of predicate symbols does not include equality,
the principle of "substituting equals for equals" can be implemented by closing [·}r
under equality

(d,8) [p} (d',8'} is I'-true in/ iff 39o,80 /(80) = f(8), !(80) = /(8') and

(d, 80) [p} r (d', 80) ,

where, for notational convenience, f has been extended to 8 by setting /(v') = .j.
Now, a minimal2 condition of soundness on f with respect to I' is that if f identifies
p with p' then for every d, d' E D and 8, 8' E 8,

(d,8) [p) (d',8') is I'-true in f iff (d,9) [p') (d',81) is I'-true in f.

In other words, if [/]r is defined as the map from P given by

[f]r(p) = {((d,8},(d1,81)) J (d,8) [p} (d',8') is I'-true in!},

then

(*) ('tp,p1 E P) /(p) = f(p') implies [f]r(P) = [f)r(p'),

or, equivalently,

(*)' for all p,p1,di,d2,81 ,82 such that f(p) = f(p1) and {di,81) [p}r (d2,82), there
exist 8~ and 82 such that /(OD= /(81), /(82) = /(82) and (di. BD [p'}r (d2, 82).

2 As pointed out to the author by P. Panangaden, coarser notions of equivalence may for
various purposes be desirable. But not every equivalence can be considered an "equality"
from the point of view of a logical system given by the (atomic) predicate symbols
(d, ·) [·) (d', ·), (d, v0 [-) (d', ·), (d, ·) [·) (d', v'), and (d, v')[·) (d', y') for every d and d' ED.
Of course, one can, as in logic, consider restrictions (i.e., "reducts") of this language,
or translate from this language to another - for example, tra.nsla.ting a program p to
its a.tomiza.tion [p] (discussed in section 5) would a.bstra.ct out intermediate states, and
identify programs with the same input-output behavior. While Theorem 2 below holds
quite generally, the congruence a.nd so•mdness results in the a.ppendix do not.

158

A second condition to impose on f is

(**) (WJee) /(8)=./iff.8=../.

This condition was justified conceptually by the final remark in section 1.5 above,
and can be motivated technically by part 1 of Theorem 2 below. In a.ny case, call
a function J with domain e satisfying (*) and (**) r-consistent. Assuming that
./ ~ P (as we do throughout the paper), the identity id on e is I'-consistent. A
more interesting example arises from attempting to satisfy (*) trivially by asking for
a.n f which, restricted to P, is [f]r.

There are two possible complications with this request. One is that such f's might
fail to exist - which is precisely the case for the usual universe of sets satisfying the
axiom of foundation. So let's drop the axiom of foundation. The second complication
is that there may be different f's for which f = [/Jr. While this "complication"
may not seem so terrible, it is this very point that makes the domain equation (6)
problematic (as the axiom of extensiona.lity is no longer sufficient to settle questions
of identity once circularity is admitted). It turns out to be convenient to appeal to
the Anti-Foundation Axiom (AFA) in Aczel [l) asserting the uniqueness of an f for
which f =[/Jr. (Readers familiar with Aczel [l] can see this by noting that for every
pE P,

[l]r(p) = {((d,f(9)),(d',J(8'))) I (d,8) [p}r (d',8')},

a.nd that ../ can certainly be assumed not to be a set of ordered pairs.) Working in a
universe of sets satisfying AFA and the usual set-theoretic axioms minus foundation,
let's call that unique solution [-Jr. One way to see the importance of Mr is through
a little category theory.

Form a category Cr with I'-consistent functions as objects as follows. For a I'
consistent function f, a function a~ with domain/" P (i.e., the image {f(p) Ip E P}
of P under J) can be defined by requiring

a~(f(p)) = [l]r(p)

since/ satisfies(*). The Cr-morphisms from f tog are (by definition) the functions
'P from /" e to g" e such that 'P(./) = ../ and for every p E P,

a}(ipfp) = {((d,ip/8),(d',ip/81)) I (d,8) [p)r (d',8')}.

This equation can be pictured as follows

f al
P ---+- /" P __!:._.. F(!" P)

l~ ~ !F(~)
P --9--g" P ___!__.. F(g" P)

159

where Fis the functor on classes X (and class maps) given by

F(X) = Pow((D x (X + {v'})) x (D x (X + {v'})))

together with the obvious map on morphisms (Aczel [1]).

Next, let 8 "'I' 9' abbreviate (9]r = (9']r, and for every I'-consistent f, define
the function rni with domain p to record the input-output behavior of a program

[f]}(p) = {(d, d') I (d, ./) [p) (d', ./)is I'-true in!}

= {(d,d') I (d,./) [f]r(P) (d',./)}.

Also, let us understand ''the theory" of a I'-consistent object f to mean the set of all
expressions (d, 9)[p)(d', 9') I'-true in f. The following theorem records some pleasant
logical properties enjoyed by Cr, the first of which expresses that the input-output
behavior prescribed by r is respected.

Theorem 2.

1. For every Cr-object f, [f]}(p) = [idJHp).
2. Cr-morphisms preserve truth; that is, if there is a Cr-morphism from f tog

mapping /(p) to g(p') then [f]r(p) i;;; [g]r(p').
3. id is initial in Cr, and has the least theory of all objects in Cr.
4 (AFA). At the other extreme, Mr is final in the category Cr. It has the largest

theory of all objects in Cr.
5 (AFA). For all p, p' E P, p "'r p' iff there is a I' -consistent function f with

f(p) = f(p') .

Proof. Unwrap the definitions, which, in the case of [-]r, includes a uniqueness
property. In particular, note that for every Cr-object /, ip is a Cr-morphism from
I to Mr iff r.p of= [·]r. ~

So long as one is content with "a program isomorphic to a relation on states", it
is only the equivalence { (p, p') I f (p) = f (p')} induced by an interpretation f that
matters. Thus, having characterized "'I' above with the help of AFA, it is possible
to forget Ur and AFA, and "simply" show that the function sending ..J to v' and p
to {p' E P Ip ,..,.r p'} is final in Cr. It is the categorical property of finality that is
interesting, not only because it captures a certain maximality formulated in part 4
of the· theorem above, but also because it turns out to be useful in establishing that
the equality induced is a congruence, provided I' has a "nice" form. The technical
details have been relegated to an appendix, since, as it happens, the case of I'i is
reducible to results from Groote and Vaandrager (10]. One other point that Appendix
A attends to is that I' is indeed sound for Mr (under certain assumptions on I').

4 Relating the examples semantically

Underlying Examples 1 and 2, on which the other examples build, are the conceptions
(Pl) and (P2). Preserving (Pl), Example 5 extends Example 1 (conservatively)
by attaching programs to data-states. Similarly, Example 3 attaches data-states to
Example 2's process-states, while Example 4 replaces atomic program labels with

i60

data-state pairs (from the atomic programs). The question arises as to whether
(P2) and (Pl) are fundamentally different. To attack this question semantically,
we consider "natural" models for the examples above, focussing on the relations of
"equality" induced on the programs in P1.

The case of Example 5 has already been treated in the previous section; summa
rizing (and suppressing I'i from the notation for simplicity), define

p,..., p' iff there is a Ti-consistent f such that /(p) = f(p')

where f is I'i-consistent iff it is a function with domain e meeting conditions

(*)' for all p,p',d1,d2,81,82 such that /(p) = f(p') and (d1,81) -1!5 (d2,82), there

exist 8~ and 82 such that f(8D = f(8i), /(82) = !(82) and (d1, BD -is (d2, 82),

and

(**) for all 8 E 8, /(8) =Jiff 8 = ,/.

As for (P2), a standard notion of equivalence due to Park (13] is given as follows
(modified slightly to take J into account). Define a bisimulation on a transition
system (L, S, ->)to be a relation R S:;; S x S such that whenever sRs', then for every
l EL,

(Vt .!- s) (3t' .!..- s') tRt' and (Vt' ..'..- s') (3t .!..- s) tRt' ,

and s = J iff s' = J. The V3-conjuncts above should be compared with condition
(*)' for I'-consistent functions, noting that the symmetry of the predicate f (p) =
f(p') renders the other half of the back-and-forth clause for(*)' unnecessary. Next,
define the bisimilarity relation :::: on (L, S,-+) by

s :::: s' iff there is a bisimulation on (L, S,-..) relating s to s' .

The semantics studied in BKPR [6] does not build on bisimulations, but, as pointed
out to the author by J. Rutten, it follows from Groote and Vaandrager (10] (see also
Rutten [16]) that the bisimilarity predicate ::::_4 for Example 4 is a congruence. This
property is preserved by the addition of the rule (trans); that is, the predicate ~.5
for (D x D, e, -+4.5) is a congruence.

Theorem 3. ~.5 is equal to"'·

Proof. That p ,..., p' implies p ~.s p' follows from the fact that "' is a bisimulation
for (D x D, e, -+4.5)· Conversely, define a function I with domain e by setting
/(./) = J and for p E P1, f(p) = {8 / p ~.5 8}. It is easy to see that if p ~.5 p'
then f witnesses p ,..., p' because, as noted above, ~.s is a congruence with respect
to j/. -1

Adding the rule (trans) to Example 4 represents a real change in that, for instance,
a+ skip; a ""' skip; a (although skip; skip 1' skip) while Example 4 differentiates
between these when la i= I.kip· Whereas the step from Example 1 to Example 4
shows that bisimilarity can become finer with an increase in rules, the move from
-+4 to -+u shows that it can also become coarser when the rule set is extended.

161

(Note that the transition predicate occurs both positively and negatively in the
definition of a bisimulation.)

Theorem 4. ~ is finer than"'• and, in general, strictly so.

Proof. Following the previous proof, define a function I with domain e by setting
/(./) = v' and for p E Pi. f(p) = {8 Ip~ 8}. Next, to see that f is I'1-consistent,
it suffices to show that

(t) if a transition (d, 8) [p} (d', 8') can be derived in I'1 , then there are d1 ,pi. d2 1P2,
.. ., d1c,P1c such that (d,8) -l4 (d1,P1), (di.v') .!l4 (d2 1 p2), ... ,(d1c,v') ..!:_.
(d',8'), whence repeated applications of (trans) yield (d, 8) [p)r1 (d',8').

The assertion (t) holds because (i) the rule(;) can be replaced by (trans) and (;i'),
and (ii) the rule (trans) can always be moved below a rule applied after it - for
example, by locally converting the result of (trans) and (•)applied in that order

(d, 8) [skip+ p; p•) (d1 , p') (di,./) [p'} (d', 81)

(d, 8) [skip+ p; p•) (d1, 81)

to the result of (*) and then (trans)

(d,8) [skip+p;p*) (d1,p')
(d,8) [p•) (d1,p')

(d, 8) [ii-) (d'' 81)

(d,8) [P•) (d1,81)

(d1, v') [p') (d',8')

Note: a rule called (at) is introduced in the next section with which (trans) cannot
commute as above. -1

Similarly, Example 3 is even less abstract than Example 4. A glol>a.l D-bisimulation
on (A, P x D, - 3) is defined in Groote and Ponse [9] to be a relation R ~ (P x D) x
(P x D) such that whenever (p, d)R(p', d), then for every a EA,

'v'(p1,d1) ~3 (p,d) 3(p~,d1) ~3 (p',d) 'v'd2 (p1,d2)R(p~,d2) and

'v'(p~, di) ~3 (p', d) 3(pi. di) ~3 (p, d) 'Vd2 (P1, d2)R(p~, d2) .

The difference in the treatment of data from that of a process might be defended by
appealing to the intuition that data is "irreducible" in a sense that a process is not.
As it turns out, however, even for (1), the notion of a bisimula.tion is interesting, a
point to which we will return in the final section. In any case, let

p !::3 p' iff for all de D there is a global D-bisimulation R such that (p, d)R(p', d) .

Theorem 5. !::3 is finer than ~. and, in general, strictly so.

Proof. If p ~~ p', then (p, d) -'!3 (p', d') for some a with dl ad'. So if R is a global
D-bisimulation relating (p, d) to (po, d) then for some (p0, d') ~3 (po, d), R relates

(p', d") to (p0, d") for every d". But in that case, Po ~~ Po· Hence, p !:!3 p' implies
p~p'.

As for the reverse direction, consider a1 + a2 and a when Ia1 U Ia2 =la (or, to
see that strictness can result even when every la is a distinct total function, a3 +a,.
where la, U la2 =la, U 144). -1

162

5 Discussion

As is ma.de precise by Theorems 3 and 4, the key element setting Example 5 (the
synthesis of (Pl} and (P2}) apart from Examples 2 through 4 is the explicit incor
poration into transitions of the composition rule (trans). If the rule (trans) increases
the length of an atomic sequence labelling a transition, then what about a dual rule
decreasing the length of the sequence? An example is provided by adding a closure
clause for the "atomization" [p) of p to P1 , together with the rule

(d, ./) [p, a} (d', ./)
(at) (d, ./) ([p], [p]} (d'' ./) '

reset.Ling L to Px(AU{(p] IP E .f'})*. (De Bakker and De Vink (3] provide a different
treatment; the rule above is similar to one proposed independently by Franck van
Breugel. It would be interesting to "eliminate" so-called 'T· or silent steps by suitable
applications of the atomization construct.) The congruence and soundness results
described in Appendix A cover this extension.

Intuitively, the rule (trans) functions as the computational "glue" between tran
sitions, possessing something of the transitive character of the cut rule in logic.
Accordingly, a proof that a particular extension of the rule set of section 2 is, in
some sense, conservative (e.g., Theorem 1) will likely involve an induction principle
in which the rule (trans) plays a crucial role. The (i) inevitability of such exten
sions, and the (ii) measure of computational content (either of the initial system
or of the extension) the induction principles provide would seem to be interesting
topics to investigate. The line of thinking here is mo-tivated largely by the prevailing
view behind applications of proof theory to programming language semantics that
computation is related in a deep sense to cut-elimination (or more broadly, to de
duction). This view would be a bit more convincing if it can be shown to shed light
on computations that need not terminate.

A final point (suggested by the reference in section 3 to the set theory in Aczel
[l]) is that the step from syntactic presentations of transition systems to semantic
(extensional) notions of identity might be analyzed against a generalization of ordi
nary (numerical) recursion theory to a computational theory for sets. In particular,
the set-theoretic recursion theory described in Barwise (4] has proved fruitful for in
finitary extensions of first-order logic, which might be employed for getting a logical
grip on "' (Fernando [7] (8]).

References

1. Peter Aczel. Non- Well-Founded Sets. CSLI Lecture Notes Number 14, Stanford, 1988.
2. J.C.M. Baeten a.nd W.P. Weijla.nd. Process Algebra. Cambridge Tracts in Theoretical

Computer Science 18. Cambridge University Press, 1990.
3. J.W. de Bakker a.nd E.P. de Vink. Bisimula.tion semantics for concurrency with atom

icity a.nd action refinement. Technical Report CS-R9210, Centre for Mathematics and
Computer Science, 1992.

4. Jon Barwise. Admissible Sets and Structures. Springer-Verlag, Berlin, 1975.

163

5. G. Boudol and I. Castellani. Concurrency and atomicity. Theoretical Computer Sci
ence, 59, 1988.

6. F.S. de Boer, J.N. Kok, C. Palamidessi, and J.J.M.M. Rutten. The failure of failures
in a paradigm for asynchronous communication. In Proc. Concur '91, LNCS 527.
Springer-Verlag, Berlin, 1991.

7. Tim Fernando. A primitive recursive set theory and AFA: on the logical complexity of
the largest bisimulation. To appear in the proceedings of Computer Science Logic '91
(Berne).

8. Tim Fernando. Between programs and processes: absoluteness and open ended-ness.
Technical Report !AM 92-011, Institut fiir Informatik, Universitii.t Bern, 1992.

9. J.F. Groote and A. Ponse. Process algebra with guards: combining Hoare logic with
process algebra. In Proc. Concur '91, LNCS 527. Springer-Verlag, Berlin, 1991.

10. J.F. Groote and F.W. Vaandrager. Structured operational semantics and bisimula.tion
as a congruence. In Proc. 16th /GALP, LNCS 372. Springer-Verlag, Berlin, 1989.

11. David Hare!. Dynamic logic. In Ga.bba.y et al, editor, Handbook of Philosophical Logic,
Volume !!. D. Reidel, 1984.

12. Robin Milner. Calculi for synchrony a.nd asynchrony. Theoretical Computer Science,
25, 1983.

13. David Pa.rk. Concurrency and automata. on infinite sequences. In P. Deussen, editor,
Proc. Sth Cl Conference, LNCS 104. Springer-Verla.g, Berlin, 1981.

14. David Peleg. Concurrent dynamic logic. J. Assoc. Computing Machinery, 34(2), 1987.
15. Gordon D. Plotkin. A powerdomain construction. SIAM J. Comput., 5(3), 1976.
16. J.J.M.M. Rutten. Processes as terms: Non-well-founded models for bisimulation, 1992.

To appear in Mathematical Structures in Computer Science.

Appendix A: a final congruence sound for 'programs as
relations'

This appendix addresses the matter of compositiona.lity and soundness of I'-consistent
functions. Compositionality is trivial for the initial Cr-object id, but is most interesting for
the final Cr-objects. The problem of interpreting the program constructs;,+,· and 11 over
a I'-consistent function f reduces to showing that the equality {(p,p') E P1 x P1 I f(p) =
f(p')} it induces is a congruence with respect to the constructs. The point is, for example,
tha.t ; ca.n be interpreted under f in at most one wa.y • - viz., f(p) • f(p') = f(p;p').
This equation can be taken as a sound definition of • iff it can be shown to be independent
of the choice of representatives p and p' (i.e., iff {(p,p') I f(p) = f(p')} is a congruence
with respect to ;). As is made clear in Groote and Vaandrager [10], this property becomes
problematic for a. semantic analysis based on syntactic rules, such as (*) in section 2,
without a "subformula. property."

The constraints imposed by r apply more directly to [f]r(p) than to f(p), suggesting
tha.t it may be useful to restrict attention to Cr-objects f for which a 1 is1-1 (i.e., for all p
and p' E P1 , [f]r(p) = [f]r(p') implies f(p) = f(p')). But even this property is not strong
enough to overcome obstacles posed by rules such as (; i) to a.n argument (by induction on
rules) that

The "strong extensionality" of [-]r is, however, sufficient for a wide collection of rules, as
will be shown shortly.

164

Given a set X of program variables and a family :F ;;;! A of function symbols of various
a.rities including 0 (e.g., ;, •,a e A), let :F(X) be the resulting collection of program tenu
with program variables in X. (Thus, P1 =(AU{+,;,•, II})(0).) Define R to be the following
relation on :F(0)

{(t[p1 1 ••• ,p.,],t[p;, ... ,p~]) I n<w, t(:i:1,. .. ,:i:,.) E.1"({:1:1 1 ••• ,:i:,.}) and

Pt "'r P~ , · · · ,p.,.. "'r P~} ·

Call a rule set I' nice if for all (p,p') e R, 81,82 e e, and d1,d2 e D such that
(d1,81} [p)r (d2,82),

30;, o; s.t. (Bi. 8~) e Ru {(y', ./)} , (82, e;) e Ru {(y', v')}
and (d1, o;) [p')r (d2,8;) .

Lemma A (AFA). For every nice rule set I', "'r is a congruence with respect to every
function symbol in .1".

Proof. Since I' is nice, it follows that the map f sending ,,/ to y' and every p E .1"(0) to
{p' I pRp'} is a Cr-object. But by Theorem 2, [-]r is final, whence R is rvr, as desired. -i

Proving that the particular rule set I'1 is nice by induction on I'i-derivations is compli
cated by the rules (sym) and (shift). (Try it.) For this reason, it is convenient to consider
the stronger property

(N) for all (p,p') ER, 81, 82 Ee, d1, dz ED, and 8~ s.t. (81 1 e;) ER U {(y', v')},
if (d1,l11) (p}r (d2,82) then 3e; s.t. (112 1 8;) E Ru{(y',v')} and

(d1,e;) [p'}r (d2,o;).

Property (N) can be proved by induction on the length of I'-derivations assuming the
rules in I' have a certain form. To describe such a form, fix a countable set X of program
variables, and call a program term in .:F(X) primitive if it is either {a constant denoting)
an element of A or a program variable (E X). For 0 E .:F(X) U { v'}, let Var(0) be the set
of variables in X occurring in 0. Now, consider a rule of the form

where

(r) (d;, 8;) [p;) (d:, oi) (i < n)
(d,8) [p) (d',81)

(cO) d;, d: (i < n), d, and d' a.re (constants denoting) elements of D or variables ranging
over D,
8; (i < n), and 8' e .:F(X) U { y'},
for i < n, p; E :F(X).

(cl) 8 and every Oi (i < n) a.re primitive program terms or,,/,
(c2) Var(B) n Var(p) = 0,
(c3) Var(Bi)nVar(Oj)=0fori<j<n,
(c4) Var(p;) n Var(8j) = Var(O;) n Var(Oj) = 0 for i $ j < n,
(c5) Var(p) n Var(8i) = Var(O) n Var(Bi) = 0 for i < n, and
(c6) p is either a primitive program term or J(x1, ... , Xn) for some n-ary f E :F.

Condition (cO) is not much of a restriction; the other conditions a.re best appreciated in
the course of establishing congruence and soundness. Note that I'1 can be presented as a.
set of rules with the form of (r) - a rule with variables ranging over e can be broken up
(by cases) into multiple rules of the form (r), using the fa.et that e = P 1 u {v'}.

165

Lemma B. If all rules in I' have the form of (r) above, then property (N) holds and I' is
therefore nice.

Proof. Assume all rules in I' have the form of (r) above. To prove that (N) holds, first
establish

(t) whenever (di,81) [p)r (d2,62) and (91,8i) E Ru{(J, v')}, then there is a 92 such that
(82,82) E RU{(.,/,v')} and (d1,9D [p}r (d2,62).

A proof of (t) proceeds by induction on the length of I'-derivations. Consider the la.at
rule (r) of a shortest I'-derivation of (d1,81) [p) (d2,82). The point is that (cl) a.nd (c2)
allow the the premise to be re-instantiated appropriately with 81 replaced by Bi, using
the induction hypothesis and conditions (c3) to (c5). Then a 82 ca.n be chosen such that
(82, 92) E RU {(.,/, v')} a.nd the conclusion of (r) ca.n be instantiated by (d1 , Bi) (p) (d2, 92).

Now, suppose (p,p') E R, 81,82 E e, d1,d2 E D, (81,9i) E RU {(.,/,v')}, and
(d1,8i) (p}r (d2,82). If p "'I' p' then appeal to (t) above. Otherwise, adapt the induc
tion argument for (t) using (c6) to replace p by p'. -i

Lemmas A a.nd B yield

Theorem C (AFA). If I' is a set of rules with the form of(r), then "'r is a congruence
with respect to every function symbol in :F.

Note that the theorem applies to I'1, and the connection with the general congruence results
of Groote and Va.andrager [10] is made above for the particular case of;,+, II a.nd •, with
interleaving playing a central role in reducing Example 5 to Example 4 (via 4.5).

Finally, observe that another consequence of Lemma B (appealing to (N), (c3) and
(c4)) is

Theorem D (AFA). If r is a set of rules with the form of (r), then r is sound for Hr.

Appendix B: living with 'programs as relations'

The "parallel" construct II formulated above captures interleaving. What about (a.s F.
Va.andrager has asked) notions of synchronization say, on a set H ~ A of atomic programs?
Consider the binary program construct llH, described in the usual transition system format
of Example 2 (without data) by the rules

a / a /
(a) p1-<>P1 p2-+P2 aEH

Pii1HP2 ~ P;liHPl

Rules (a) and (.8) do not specify how data-states are transformed. Presumably, (/3) trans
lates, in the format of section 2, to

(d,.../)(p1,a)(d1 ,p~) a~H
(d, .,/) [pil!HP2, a) (d',p~i1HP2)

but how about (a)? One possibility is that there are functions i and j from D 4 to D,
allowing (a) to be reformulated a.s

(d1,.,/) [p1,a) (d'i.P~) (d2 1 .,/) [p2,a) (d2,p2) H
a E .

(i(di, d~, d2, d2), v') [pdlHP2, a) (j(d1, d~, d2, d2), P~ l\HP2)

These rules present a problem for (Pl) in that they a.re dependent on the specific atomic
programs executed.

166

One way around this problem is to assume a sufficiently rich notion of data-state so as to
be able to synchronize on data. It is true enough that data-states in dynamic logic only give
values of program variables. But in the abstract set-up above, one ca.n expand the notion
to include ~synchronization information" which the regular programs and interleaving II
will ignore. Pushing the operating system intuition mentioned in section 1.5 further, the
idea is that some processes will operate on only a. section of the computer's memory. That
is beca.use other parts of the computer's memory are devoted to matters of control.

More concretely, suppose D is the set of finite functions from some set Store to some
set of values, and that for every a EA, we have an la !;: D x D. Now, form a new set b of
data-states by adjoining a. slot for A marked by some i rt Store as follows

b = {du{(§,a)} I deD, ae A}.

Then for every a E A, pass from la to

ia = {(du {(i,a')},d' u {(i,a)}) I a.' e A, dlad'}'

so that the slot§ records the atomic program executed. Now, given an H ~ A, the rule (a)
can be formulated as

(~)' (d1, v') [p1) (d~,p~) (d2, J) [p2) (d!,z, P2)
~ (v')[p)(d 'II ') SH(d1,d'11d2,d'2,d,d') d, 1i1HP2 11P1 HP2

where

SH(d1,d~,d2,d'2,d,d1) ift' d'1(i)=d2(i)EH, d=d1Ud2, d1 =ri1Ud~.

Similarly, for ((3), take

(f.I)' (d,v') [p1) (d',pD £(") d H
I" (d,v') [pdlHP2) (d1 ,PrnHP2) 8 I" •

The rule (a)' can be adapted for a synchronization construct & that is "continued" by a
possibly different construct [-, ·]&.:, but which is assumed to come with some predicate S&.:

() II (di, v') [p1) (d'1.P'1) (d2, v') [p2) (d2,P2) s (d a, d tt d rl)
Q (d,.j) [p1&p2) (d',[p~,p2].i.) " 1, l• 2, 2• ' .

(In Groote and Ponse [9], for example, note that the construct l is continued by 11.) The
possibilites a.re legion, but the essential point for the present pa.per is that rules of the form
(a)', (.B)' and (a)" are within the scope of the theory described in section 3 and Appendix
A. (Side conditions such as S"(di. dJ., d2, d!,i, d, d'} can be eliminated by splitting the rule
into the-cardinality-of-S"-many rules.)

While the "trick" a.hove is quite general, certainly not every notion of control we dream
up can be a.ccomodated directly in the formulation of (Pl} by the domain equation (6).
(And notice that skip is no longer interpreted a.s the identity on data-states by is/cip•

although the extension from D to b and ! 0 to ia is, in a. suitable sense, conservative.}
The question is whether (Pl) is conceptually natural enough tha.t we should welcome the
discipline it imposes on our thinking. A trade-off between (PI} and (P2) (especially a.s
realized by Example 2) is mediated by data.-states and atomic programs, with the passage
D, lo 1-+ D, ia, suggesting a broad interpretation of "data." that includes atomic programs.
But uniformity for uniformity's sake can obscure simple ideas, and to insist (beyond ob
serving that it can be done in principle) that a transition rule be put in a form with L = P
and S = D x (P +{./})would be silly.

