
Applied Numerical Mathematics 13 (1993) 221-240 
North-Holland 

APNUM 439 

221 

Explicit, high-order Runge-Kutta-Nystrom 
methods for parallel computers 

B.P. Sommeijer 
Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, Netherlands 

Received 22 September 1992 
Accepted 24 September 1992 

Abstract 

Sommeijer, B.P., Explicit, high-order Runge-Kutta-Nystrom methods for parallel computers, Applied Numer­
ical Mathematics 13 (1993) 221-240. 

The paper describes the construction of explicit Runge-Kutta-Nystri:im (RKN) methods of arbitrarily high 
order. The order is borrowed from an underlying implicit RKN method. For the approximate solution of this 
method, an iteration scheme is defined. Prescribing a fixed number of iterations, the resulting scheme is an 
explicit RKN method. The iteration scheme is defined in such a way that many of the right-hand side 
evaluations can be done concurrently. As a result, explicit RKN schemes of order p are obtained which 
require, on a parallel computer, approximately p /2 right-hand side evaluations per step. Both in fixed- and 
variable-step mode, the schemes are compared with existing (sequential) high-order RKN methods from the 
literature and are shown to demonstrate superior behaviour. 

Keywords. Explicit Runge-Kutta-Nystri:im methods; predictor-corrector methods; parallelism; error control. 

1. Introduction 

Consider the initial-value problem for the system of special second-order, ordinary differen­
tial equations (ODEs) 

y"(t)=f(t,y(t)), y(t0 )=y0 , y'(t 0 )=y~, (1.1) 

where y: IR. ~ IR.N, f: IR. X !RN---+ !RN, and t0 ~ t ~ tenct· In this paper, the ODEs are assumed to 
be nonstiff. Problems of this kind are encountered in e.g. celestial mechanics. Quite often, the 
solution of (1.1) is required with high precision; for that purpose integration methods of high 
order are most efficient. 

A possible approach is to convert (1.1) into a (double dimensioned) system of first-order 
ODEs and to apply a (high-order) Runge-Kutta (RK) method. However, since the right-hand 
side function f in ( 1.1) does not depend on y ', the use of a direct method is usually more 
efficient. An example of such a direct method is the (one-step) Runge-Kutta-Nystrom (RKN) 
method. 

Correspondence to: B.P. Sommeyer, Centre for Mathematics, P.O. Box 4079, 1009 AB Amsterdam, Netherlands. 

0168-9274 /93 /$06.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved 



222 B.P. Sommeijer /Explicit Runge-Kutta-Nystrom methods 

In the literature, several high-order RKN methods have been proposed. Methods up to order 
8 can be found in [1,2,6,11] and in [13] a method of order 10 is presented. A common challenge 
in all these papers is to reduce, for a given order, the required number of !-evaluations per 
step. To illustrate that the use of an RKN method for the special problem (1.1) is cheaper than 
an RK method for the corresponding first-order ODE, we mention that the RKN method of 
order 10 constructed in [13] requires eleven f-evaluations per step, whereas all known RK 
methods of the same order need (at least) seventeen !-evaluations. Within the class of RKN 
methods with minimal number of !-evaluations, we are not aware of methods of order higher 
than 10. 

The present paper is concerned with the construction of explicit RKN methods of arbitrarily 
high order for which the effective number of f-evaluations (or, effective stages) per step is 
approximately equal to half its order. Here, we have to define what we mean by effective 
stages: Let T be the CPU time (on a sequential computer) needed to perform one evaluation of 
the right-hand side function f. Then an explicit RKN method is said to require M effective 
stages if the total CPU time to complete all f-evaluations equals M · T. 

For the methods presented in this paper, the low number of effective stages, relative to the 
order, is obtained by exploiting the fact that many of the stages can be performed concurrently. 
Hence, on a parallel computer these RKN methods are expected to be more efficient. In [15], 
similar type of methods have been constructed for nonstiff first-order ODEs. In that paper, the 
effective number of stages equals the order. Hence, for second-order ODEs, the number of 
stages can be reduced by a factor 2 by exploiting the special form of ( 1.1). 

In Section 2, we discuss general RKN methods and define the construction of the low-stage, 
high-order, parallel RKN methods. Furthermore, order results and stability characteristics arc 
presented. Numerical comparisons with existing (sequential) high-order RKN methods arc 
given in Section 3. Here we measure the efficiency of the various methods in terms of the 
number of effective stages for a fixed stepsize. However, a "realistic" implementation of an 
integration method requires the facility to change the stepsize, and possibly the order. Section 4 
is devoted to this subject. In changing the stepsize we need some error control mechanism. 
Common practice nowadays in explicit RK- and RKN-based codes is to calculate a reference 
solution (in addition to the approximation to proceed the integration) by means of embedding 
techniques. The idea of embedding is that both approximations share as many f-values as 
possible to minimize the total number of required stages. Nevertheless, the number of stages in 
the "combined" scheme is significantly larger than in the case where the additional reference 
solution was not required. Following this approach, Fehlberg [6] constructed a set of RKN pairs 
of orders p( p + 1) (i.e., order p for the step continuation and order p + 1 for the reference 
method), for p up to 8. Other embedded RKN methods have been derived by Dormand and 
Prince [5] (order 7(6), requiring 9 stages), Fehlberg, Filippi and Graf [8] (order 1()(11), requiring 
17 stages), Filippi and Graf [9] (order 11(12), requiring 20 stages), and, by the same authors 
[10], methods of order p + 1( p ), where p runs from 7 to 10 and the corresponding number of 
stages runs from 9 to 17). 

In Section 4 we discuss how the parallel RKN methods can be equipped with an embedded 
reference solution, without additional costs, resulting in an RKN pair of order p( p - 2), with 
approximately p /2 effective stages. Based on a simple stepsize strategy, we show the perfor­
mance of these embedded parallel RKN methods and we make comparisons with the sequen­
tial codes form the literature. In Section 5 we briefly discuss some possibilities for further 



tp to order 
~challenge 
ations per 
~aper than 
method of 
nown RK 
s of RKN 
jer higher 

arbitrarif.; 
,er step ~ 
r effective 
1luation of 
r effective 

:ive to the 
.currentfy. 
Lt. In [15], 
Japer, the 
umber of 

low-stage, 
ristics are 
:hods are 
ns of the 
[on of an 
Section4 
:chanism. 
reference 
nbedding 
values as 
stages in 
·eference 
KN pairs 
derence 
1and and 
·equiring 

authors 
1mber of 

ibedded 
2), with 
perfor· 

sequen· 
further 

B.P. Sommeijer / Explicit Runge-l<J.ltta-Nystrom methods 223 

improvement of the efficiency of the parallel code and some conclusions are formulated in 
Section 6. 

2. Runge-Kutta-Nystrom methods 

For the numerical integration of (1.1) the general RKN method is defined by 
s 

Yn+l =yn+hy~+h2 '[,bJ(tn+c;h, Y;), 
i=I 

s 

Y~+ 1 = Y~ + h L dJ(tn + C;h, Y;), 
i= 1 

s 

Y;=yn+c;hy~+h 2 '[,aijf(tn+cjh, lj), i=l, ... ,s, 
j= I 

(2.la) 

(2.lb) 

(2.lc) 

where Yn::::: y(t0 + nh), h is the (constant) stepsize, b;, d;, and a;j are real coefficients, and s is 
called the number of stages. The method is conveniently represented by means of its so-called 
Butcher array 

(2.2) 

Definition 2.1. Let the locally exact solution y satisfy y(t) = Yn and y'(t) = y~. If 

Yn+I -y(tn+I) = O(hPi+l), Y~+l -y'(tn+l) = O(hP 2 + 1}, 

then the RKN method (2.1) is said to be of order p == min{p 1, p 2}. 

2.1. Parallel, explicit RKN methods 

In this subsection, we describe the construction of the parallel, explicit RKN method. For 
that purpose, it is convenient to introduce a succinct notation for the general RKN method 
(2.1). 

Introducing f:=(Y1T, .. .,Y,T)T, e:=(l, .. .,l)T, and 

F(tne+eh, Y)==(fT(tn+c 1h, Y1), ••• ,fT(tn+e5 h, Y,))T, 

the RKN method (2.1) can be written as 

Yn+I =yn+hy~+h2(bT®I)F(tne+eh, Y), 

Y~+I = y~ + h(dT ® I)F(tne +eh, f), 

Y = e ® y n + he ® y ~ + h 2 (A ® I) F (t n e + eh, Y), 

(2.3a) 

(2.3b) 

(2.3c) 

where I is the N x N identity matrix, and © denotes the Kronecker product. It should be 
observed that, for a general full A-matrix, this method is implicit, which would require the 



224 B.P. Sommeijer / Explicit Runge-Kutta-Nystrom methods 

solution of a system to find Y. Since we are aiming at nonstiff problems, we will restrict our 
considerations to explicit methods, which correspond to a strictly lower triangular A-matrix. 
Consequently, we only have to do [-evaluations rather than solving a system of equations. To 
arrive at such an explicit RKN method, we propose the following algorithm: 

Step 1. Select a fully implicit RKN method of the form (2.3) as the starting point (henceforth 
called the corrector). 

Step 2. Apply, say m, functional iterations to the equation (2.3c). 
Step 3. Substitute the mth iterate into (2.3a) and (2.3b) to obtain the approximation and its 

derivative at the next step point. 

Thus we have defined the method 

yUl=e®yn+he@y~+h2 (A@I)F(tne+ch, yU-l)), j=l, ... ,m, 

Yn+I = Yn + hy~ + h2 (bT © /)F(tne +eh, yCm)), 

Y~+l =y~ +h(dT @I)F(tne +eh, f(ml). 

(2.4a) 

(2.4b) 

To start the iteration (2.4a) we need, of course, an initial approximation yc0l, which will be 
referred to as the predictor. In this section we shall consider the "trivial" (one-step) predictor 

ycol = e 0 Yn +he 0 y~. (2.4c) 

Although this predictor is of modest accuracy, it has the advantage that we remain in the class 
of one-step methods; multistep predictors of higher accuracy wi11 be discussed in Section 5. 
Now, the method (2.4a)-(2.4c) is indeed an explicit RKN method, defined by the Butcher array 

c 0 }s stages (j = 0) 
c A 0 }s stages (j = 1) 
c 0 A 0 }s stages (j = 2) 

(2.5) 

c 0 A 0 }s stages (j = m) 
---<r--~~~~~~~~~~~~ 

OT OT bT 
OT OT dT 

where 0 and oT denote a matrix and a vector respectively (both of dimension s) with zero 
entries. We observe that the number of stages in (2.5) equals (m + 1) · s. However, in 
calculating yui, the iterate yU-ll is a given vector and hence the /-evaluations of its s 

components (i.e., the components of F(tne +eh, yU-ll)) can be computed in parallel, provided 
that we have a computer with s processors. Consequently, the effective computational time 
needed for one iteration of (2.4a) is approximately equal to the time needed to perform one 
!-evaluation on a sequential computer. Taking the final !-evaluation needed in (2.4b) into 
account, we see that the scheme (2.4) requires m + 1 effective stages. In the sequel, these 
Parallel-Iterated RKN schemes will be referred to as PIRKN methods. 

Let us first consider the order of accuracy of PIRKN methods. The next theorem is 
formulated for predictors that are more general than (2.4c) so that we can use the result also in 
the case of higher-order predictors (to be discussed in Section 5). 



B.P. Sommeijer /Explicit Runge-Kutta-Nystrom methods 225 

Theorem 2.2. Let {A, c, b T, dT} define a (not necessarily implicit) RKN method of order p and 
let the predictor be of order q, i.e., Y - y<0> = O(hq). Furthermore, let f be Lipschitz continuous. 
Then the PIRK.N method (2.4a)-(2.4b) is of order p* := min{p, 2m + q}. 

Proof. Let y satisfy y(tn) = Yn and y'(tn) = y~. Let (un+t• u~+ 1 ) denote the locally exact 
solution of the corrector. Then 

= O(hP2+ 1) + h(dT ® !)[ F(tne +eh, Y) -F(tne +eh, y<m>)], 

where min{p 1, p 2} = p. Since 

Y- Y(j) = h2(A ® !)[ F(tne +eh, Y) -F(tne +eh, yU- 1>)] 

= [y-yU-l)j · O(h 2 ), 

we see that we gain two orders in each iteration. Hence, using 

Y- y<0> = O(hq), 

the result after m iterations is 

F(tne+ch, Y)-F(tne+eh, y<m>)=O(h2m+q), 

resulting in 

y(tn+1) -Yn+1 = O(hP1+l) + Q(h2m+q+2), 

y'(tn+1)-Y~+l = O(hP2+l) + O(h2m+q+1). 

By Definition 2.1, the PIRKN method is seen to be of order min{p, 2m + q}. D 

Remark 2.3. From this theorem we see (i) that we cannot exceed the order of the underlying 
corrector, and (ii) that after m = rep - q) /21 iterations this maximum order is reached; this 
m-value will be denoted by mP. 

2. 2. Choice of the corrector 

To arrive at a high-order PIRKN method we need, according to Theorem 2.2, a corrector of 
high order. Correctors having this property are easily obtained from high-order Runge-Kutta 
methods for first-order ODEs in the following way [12]: Let 

(2.6a) 



226 B.P. Sommeijer /Explicit Runge-Kutta-Nystrom methods 

denote an s-stage RK method of order p. Then 

c = c RK A = (ARK) 2 

bT =b1KARK 

d T-bT - RK 

(2.6b) 

defines ans-stage RKN method of the same order. Well-known RK methods that can serve for 
this purpose are those of Gauss-Legendre and Radau type, which are easily constructed for 
arbitrary values of s (cf. [3]). They possess a high order, relative to the number of stages, i.e., 
p = 2s and p = 2s - 1, respectively. Owing to this property, the (high-order) RKN correctors 
considered in this paper will be based on Gauss-Legendre and Radau type RK methods. 
Observe that, in the present context of PIRKN methods, this low number of stages with respect 
to the order means that we need a low number of processors. Although this property is not of 
decisive importance, it is certainly not an unpleasant feature. 

2.3. Optimality 

Combining the results of the Sections 2.1 and 2.2, we see that, if the PIRKN method 
(2.4a)-(2.4b) uses (2.4c) as the predictor (i.e., q = 2) and an s-stage Gauss-Legendre method as 
the corrector (i.e., p = 2s), then after mP iterations, an explicit RKN method is obtained of 
order 2s requiring only s effective stages. This is an optimal result, since it can be shown that 
the order of an arbitrary s-stage, explicit RKN method cannot exceed 2s. In fact, this optimal 
order can only be achieved for s = 1; for s ~ 2, one should change to a (fully) implicit RKN 
method to obtain this optimal order 2s. 

2.4. Linear stability of PIRKN methods 

The linear stability of PIRKN methods is investigated by applying these schemes to the test 
equation y" = Ay, where A is supposed to run through the (negative) eigenvalues of the 
Jacobian matrix af ;ay. Defining vn := (yn, hy~)T and z := h2A, it is easily verified that applica­
tion of (2.4) to the test equation yields the recursion 

( 
1 + zb TWm( z )e 

Vn+l =Mm(z)vn, Mm(z)== T 
zd Wm(z)e 

1 + zbTWm(z)c) 
l+zdTWm(z)c ' 

(2.7) 

where Wm(z) =I+ zA + (zA)2 + · · · +(zA)m. The matrix Mm(z), which determines the stabil­
ity of the method, will be called the amplification matrix. 

Definition 2.4. The interval [ -/3m, O] is called the stability interval if, in this interval, p(Mm(z)) 
~ 1, where p( ·) denotes the spectral radius; /3m is called the stability boundary. 

The explicit PIRKN methods have, of course, a finite stability boundary, which implies that 
the integration step has to satisfy the condition 

h2 /3m 
~ p(af ;ay) . (2.8) 



(2.6b) 

erve for 
:ted for 
~es, i.e., 
rrectors 
iethods. 
respect 
snot of 

method 
:thod as 
lined of 
wn that 
optimal 
it RKN 

the test 
of the 

ipplica-

(2.7) 

: stabil-

es that 

(2.8) 

B.P. Sommeijer /Explicit Runge-Kutta-Nystrom methods 227 

Thus, if we have a stiff problem-in which case p(af jay) is large-then this condition is a 
severe restriction on the stepsize and we should change to an (implicit) A-stable RKN method. 

A straightforward way to (numerically) calculate the stability boundaries f3m would be to run 
along the negative z-axis and to check up to what point the spectral radius of Mm(z) is 
bounded by 1. However, for z-values in the neighbourhood of the origin, the spectral radius is 
close to 1 and, due to rounding errors, it is hard to decide whether the stability interval is 
empty or not. Therefore, we shall describe an alternative approach which allows for an 
analytical calculation of the entries of M and uses a numerical verification only in the final part 
of the calculations. This approach will be demonstrated form= 1; for larger m-values only the 
results will be given since the techniques are analogous. 

We will confine our considerations to the correctors discussed in the preceding section, i.e., 
the Gauss-Legendre and Radau-based RKN methods and we shall use some properties of the 
generating RK methods. 

Using the relations between the RKN corrector and the underlying RK method as defined in 
the Butcher arrays (2.6a) and (2.6b), the amplification matrix Mm(z) (cf. (2.7)) can be written as 

( 
1 +zbT A [I +zA 2 + · · · +zmAlm ]e Af ( Z) := RK RK RK RK 

m zbT [l+zA 2 + ··· +zmA2m]e RK RK RK 

Now, we use the following well-known result [4] 

an RKmethod (with ARKe=cRK) of order p satisfies blK(ARKr- 1 e=~, 
J. 

(2.9) 

j=l, ... ,p. (2.10) 

Substitution of these relations into (2.9) drastically simplifies the matrix Mm(z). Let us work 
this out for m = 1. Here, we have to distinguish three different situations for the order p of the 
generating RK method: 

(i) p = 3, e.g., the two-point Radau IIA method; 
(ii) p = 4, e.g., the two-point Gauss-Legendre method; 

(iii) p;;;:,. 5, e.g., higher-point Radau IIA or Gauss-Legendre methods. 

Case (i). For a third-order RK method we need the values of blKAiKcRK and b]~.KA~KcRK 
since they are not covered by property (2.10). For the Radau IIA method, these values are 
easily found to be 1/36 and -1/108, respectively. Hence, we find 

( 
1 + iz + -i<;z 2 1 + iz - 1 ~8 Z 2 l 

M 1(z) == , 
z+iz 2 l+iz+-ftz 2 

the eigenvalues of which are the zeros of ~ 2 - T( z )~ + D( z ), with T( z) == Trace( M 1( z)) and 
D(z) == Det(M1(z)). According to the Hurwitz criteria, these zeros are on the unit disc if 

R 1(z)==l-D(z)~O, 

R 2(z) ==D(z) + 1-T(z) ~ 0, 

R 3(z) == D(z) + 1+T(z)~0. 

(2.11) 



228 B.P. Sommeijer /Explicit Runge-Kutta-Nystrom methods 

Calculating the zeros of the polynomials R / z ), it is easily deduced that R/ z) ;?; 0, j = 1, 2, 3, if 
z E [ -4.94067 ... , O], yielding {3 1 :::: 4.94. 

Case (ii). In this case the only value not yet defined by (2.10) is h1KAiKcRK; for the 
two-point Gauss-Legendre method, we find the value 1/144. Hence, in this case we have the 
amplification matrix 

M1(z):= z 24 ( 
1 + .!.z + ...!..z 2 

z + lz 2 
6 

1 I l 2 l + t;Z + 144Z • 

1 + .!.z + ...!..z 2 
2 24 

We find that the polynomials R/z), j= 1,2,3, as defined in (2.11) are nonnegative if 
Z E (-12,0]. 

Case (iii). For p ;:-; 5, all terms in the amplification matrix are determined by (2.10) and 
hence this matrix is independent of the particular choice of the corrector. We have stability if 
Z E [-7.06782 ... ,0]. 

Summarizing the above results, we have: 

Theorem 2.5. For m = 1, the PIRKN method (2.4a)-(2.4c) based on 
(i) the two-point Radau !IA method is of order 3 and has {3 1 = 4.94, 

(ii) the two-point Gauss-Legendre method is of order 4 and has {3 1 = 12, 
(iii) the s-point Radau !IA or Gauss-Legendre methods with s ;:-; 3 is of order 4 and has 

/31=7.06. 

For larger values of m, the same techniques can be used. We only need to calculate values 
for h1KAtKcRK in the case that k ;:-; p and to calculate the zeros of the "Hurwitz polynomials" 
R/z). For the Radau IIA and Gauss-Legendre methods of various orders we have performed 
these calculations to find the stability boundaries; the results are given in the Tables 1 and 2, 
respectively. In these tables we also give results for m-values that are larger than necessary to 
obtain the maximal order (i.e., m > mP). This is done to see the effect on the stability boundary 
if we continue the iteration beyond mP. The results corresponding to mP are indicated in bold 
face in Tables 1 and 2. Furthermore, each stability boundary is followed (in parentheses) by the 
order p * of the corresponding PIRKN method. 

Table 1 
Stability boundaries /3m (and the orders p*) of the PIRKN methods based on Gauss-Legendre RK methods 

s= 2 s=3 s=4 s=5 s=6 s=7 
p=4 p=6 p=8 p= 10 p=12 p=14 
mP=l mp=2 mP=3 mP=4 mp=5 mP=6 

m=l 12.00 (4) 7.06 (4) 7.06 (4) 7.06 (4) 7.06 (4) 7.06 (4) 
m=2 12.00 (4) 0.00 (6) 0.00 (6) 0.00 (6) 0.00 (6) 0.00 (6) 
m=3 0.00 (4) 9.81 (6) 9.51 (8) 9.51 (8) 9.51 (8) 9.51 (8) 
m=4 12.00 (4) 0.00 (6) 0.00 (8) o.oo (10) 0.00 (10) 0.00 (10) 
m=5 12.00 (4) 9.75 (6) 0.00 (8) 9.86 (10) 9.86 (12) 9.86 (12) 
m=6 0.00 (4) 0.00 (6) 9.86 (8) 0.00 (10) 0.00 (12) 0.00 (14) 



B.P. Sommeijer /Explicit Runge-Kutta-Nystrom methods 229 

Table 2 

Stability boundaries Pm (and the orders p*) of the PIRKN methods based on Radau IIA RK methods 

s-2 s=3 s=4 s=5 s=6 s=7 
p=3 p=5 p=7 p=9 p=ll p= 13 
mp=l mp=2 mP=3 mp=4 mp=5 mp=6 

m=l 4.94 (3) 7.06 (4) 7.06 (4) 7.06 (4) 7.06 (4) 7.06 (4) 
m=2 4.99 (3) 2.19 (5) 0.00 (6) 0.00 (6) 0.00 (6) 0.00 (6) 
m=3 3.52 (3) 10.46 (5) 9.50 (7) 9.51 (8) 9.51 (8) 9.51 (8) 
m=4 5.03 (3) 4.76 (5) 18.21 (7) 0.21 (9) 0.00 (10) 0.00 (10) 
m=5 5.44 (3) 11.70 (5) 5.40 (7) 26.35 (9) 9.86 (11) 9.86 (12) 
m=6 4.90 (3) 7.81 (5) 18.57 (7) 5.80 (9) 34.68 (11) 0.00 (13) 

From these tables we conclude that the stability boundaries show a rather irregular 
behaviour. Moreover, we see that several PIRKN methods possess a zero stability boundary. 
Although the degree of instability is usually rather mild in these cases, these methods are too 
dangerous to be used, especially in long-range integrations. Unfortunately, for the Gauss­
Legendre-based PIRKN methods with odd s-values, these zero stability boundaries occur (also) 
on the diagonal in Table 1, which corresponds to the "optimal" situation, i.e., m = m p· 

Therefore, in such cases we have to choose an other combination of m and s, and possibly of 
the generating RK method. For example, if we apply m = 4 iterations to an RKN corrector 
based on the five-point Gauss-Legendre method, then we arrive at a PIRKN method of order 
10; however, this method has an empty stability interval. A possible remedy to recover stability 
is to apply one additional iteration to the same corrector, yielding a stable (/3 = 9.86) PIRKN 
method, still of order 10, with m = s = 5. Another possibility is to change to a Radau-based 
corrector. The combinations (m = 4, s = 5) and (m = 5, s = 6) both yield a method with a 
nonempty stability interval of orders 9 and 11, respectively. 

In Table 3 we specify the selection of PIRKN methods that will be used in the numerical 
tests. Here, the principal variable is the number of iterations m. For m = l, ... , 5, we select the 
PIRKN method of highest possible order, provided that it possesses a nonempty stability 
interval. In case of non-uniqueness, we choose the method with smallest s (i.e., the smallest 
number of processors needed). 

We see that the Gauss-Legendre-based methods (with even s-value) have a reasonable 
stability boundary, whereas the Radau-based methods possess a small /3, especially method IV. 

Table 3 
Selection of PIRKN methods 

Method Number of Type of gener~ting Number of stages Order of Stability 
iterations m RK method ( = processors) PIRKN method boundary 

I 1 Gauss-Legendre 2 4 12.00 
II 2 Radau IIA 3 5 2.19 
III 3 Gauss-Legendre 4 8 9.51 
IV 4 Radau IIA 5 9 0.21 
v 5 Gauss-Legendre 6 12 9.86 



230 B.P. Sommeijer / Explicit Runge-Kutta-Nystrom methods 

For methods II and IV we have also calculated the stability boundaries in the case that the 
predictor (2.4c) is replaced by the even simpler variant 

y<Ol = e ® Yn· (2.4c') 

Notice that this predictor yields q = 1 (cf. Theorem 2.2), but this does not increase the value of 
mP since the Radau methods are of odd order. Unfortunately, this predictor did not improve 
the stability (as a matter of fact, the resulting stability intervals turned out to be empty). Also 
for the methods based on other (m, s) combinations, this predictor did not give rise to larger 
stability boundaries. Consequently, we will restrict our considerations to the predictor (2.4c). 

3. Numerical experiments 

In this section, we will test the methods specified in Table 3 and compare their behaviour to 
several sequential explicit RKN methods from the literature. 

In all experiments described here, we shall use a fixed stepsize. An implementation using 
variable steps will be discussed in the next section. 

The low-order PIRKN methods I and II will be compared with the very first RKN method, 
constructed by Nystrom in 1925 [20] and defined by 

0 0 
1/2 1/8 

1 0 1/2 

1/6 1/3 0 
1/6 2/3 1/6 

This method is of order 4 and its stability boundary is 6.69. This method will be referred to as 
N4. 

Most papers dealing with high-order RKN methods that we found in the literature provide 
an embedded pair, allowing for stepsize variation. This property increases the number of stages 
that is needed to obtain a certain order; therefore, it would be unfair to use them as a 
reference method in this section where error control is not applied. Within the class of methods 
without embedding, we selected the eighth-order, eight-stage RKN method constructed by 
Hairer [11], and the eleven-stage method of order 10 given by the same author in [13]. We are 
not aware of a method of still higher order using the fewest number of stages possible. 
Furthermore, we will use the eighth-order, nine-stage method constructed by Beentjes and 
Gerritsen [2] as a reference method. Although this method uses one extra f-evaluation to reach 
order 8 (which is used to construct an seventh-order embedded reference solution), it has been 
chosen because of its small error constants and at the same time large stability boundary; it 
possesses /3 = 26.6. These three reference methods will be denoted by H8, HlO, and BG8, 
respectively. 

3.1. Specification of test problems 

To test the performance of the various methods, they will be applied to a selection of test 
problems found in the literature. 



B.P. Sommeijer /Explicit Runge-Kutta-Nystrom methods 231 

Our first test example is the two-body gravitational problem, which is Problem Class D from 
the test set of Hull et al. [18] (see also [10]) 

II Y1 
Y1 = -3, 

r 
II - Y2 . h v 2 2 0 20 Y2 - - 3, wit r = y1 + y 2 , ~ t ~ . 

r 
(3.1) 

The initial conditions are given by y(O) = (1 - s, O)T and y'(O) = (0, /(1 + e )/(1 - e) )T, where 
e denotes the eccentricity of the orbit. In the tests we set s = 0.9. The exact solution can be 
found in [18]. 

The second example is a well-known test problem in the RKN literature (cf. e.g. [6,7,9,10]), 
defined by 

2Y2 
Y 11 =-4t 2 y --

1 I ' r 
/t-rr ~ t ~ 10, 

(3.2) 
where the initial conditions are taken from the exact solution given by y(t) = (cos(t 2), sin(t 2))T. 

The last two examples are scalar problems and are taken from [9]. They are defined by 

Y II = 2 Y 3 ' 1 ~ t .;;; 100, y(l) = 1, 

yielding the exact solution y(t) = l/t, and by 

y" + 25y = 100 cos(St), 0 ~ t.;;; 10, 

y'(l) = -1, 

y(O) = 1, y'(O) = 5, 

for which the exact solution is given by y(t) = cos(St) + sin(5t) + lOt sin(5t). 

3.2. Test results 

(3.3) 

{3.4) 

In this subsection we will present the results obtained by applying the PIRKN methods I-V 
and the reference methods to the set of test problems. In the tables of results, we give the value 
of D, denoting the number of correct decimal digits at the endpoint, i.e., we write the 
maximum norm of the global error (for the y-component) in the form 10-n. Furthermore, we 
measure the computational effort of a particular scheme by the number M, denoting the total 
number of effective f-evaluations required over the whole interval of integration. To allow for 
an easy comparison of the various methods, we choose a number of fixed M-values and 

Table 4 
D-values for problem (3.1) obtained for several values of M 

Method p M=3200 M=6400 M= 12800 M= 25600 M= 51200 

N4 4 0.1 1.1 2.4 3.8 5.1 
PIRKN I 4 0.9 2.3 3.7 5.0 6.2 
PIRKN II 5 1.0 2.4 3.8 5.3 6.8 

H8 8 0.1 2.0 4.6 7.4 10.6 
BG8 8 0.6 3.1 6.5 8.2 10.5 
HlO 10 0.3 1.8 4.9 8.4 11.7 
PIRKN III 8 3.1 5.5 8.1 10.7 13.2 
PIRKN IV 9 2.8 5.3 7.7 10.4 13.l 
PIRKNV 12 3.7 7.4 11.1 15.5 19.1 



232 B.P. Sommeijer / Explicit Runge-Kutta-Nystrom methods 

Table 5 
D-values for problem (3.2) obtained for several values of M 

Method p M=400 M=800 M= 1600 M=3200 M=6400 

N4 4 0.6 1.8 3.0 4.2 5.4 

PIRKN I 4 1.1 2.4 3.5 4.7 5.9 

PIRKN II 5 1.7 3.3 4.9 6.5 8.0 

H8 8 0.3 2.6 5.2 7.6 10.0 

BG8 8 0.9 3.1 5.6 8.0 10.4 

HlO 10 -0.3 2.2 5.4 8.5 11.5 

PIRKN III 8 2.7 5.1 7.6 9.9 12.3 

PIRKN IV 9 3.4 6.4 9.4 12.2 15.1 

PIRKNV 12 4.1 7.6 11.2 14.9 18.5 

adapted the stepsize of each method to arrive (approximately) at those pre-selected M-values. 
The results for the test problems (3.1)-(3.4) can be found in Tables 4-7, respectively. 

For the first problem, we may draw the following conclusions: 

(i) Especially the PIRKN methods nicely show their theoretical order behaviour; in this 
connection we remark that-for a method of order p-the value of D should increase 
by log 10(2P)::::: 0.3p on halving the stepsize. 

(ii) Both for low-order and high-order methods, the parallel PIRKN methods are more 
efficient than the corresponding sequential RKN methods. 

(iii) Comparing the best sequential RKN method (i.e., HlO) and the best parallel PIRKN 
method (i.e., method V), we see that the global errors of the PIRKN method are-for 
the same amount of work-smaller by several orders of magnitude; or, putting it 
differently, the PIRKN methods can obtain a certain accuracy in about 30% of the 
number of [-evaluations needed by HlO. 

(iv) It is remarkable that the BG8 method can easily compensate for the extra stage in 
comparison with the H8 method, which is of the same order. 

The results for the second problem are given in Table 5 and give rise to roughly the same 
conclusions as formulated for the first example. 

Table 6 
D-values for problem (3.3) obtained for several values of M 

Method p M=800 M=1600 M=3200 M=6400 M=12800 

N4 4 * * * * 1.8 
PIRKN I 4 * * * 1.9 3.0 
PIRKN II 5 * * 1.8 3.2 4.7 

H8 8 * * 2.5 4.8 7.2 
BG8 8 * * 2.2 4.6 7.0 
HlO 10 * * 3.0 6.1 9.4 
PIRKN III 8 * 2.6 4.9 7.3 9.7 
PIRKN IV 9 0.2 3.1 5.6 8.3 11.0 
PIRKNV 12 2.4 5.3 8.7 12.2 15.7 



B.P. Sommeijer /Explicit Runge-Kutta-Nystrom methods 233 

Table 7 
D-values for problem (3.4) obtained for several values of M 

Method p M-200 M=400 M=800 M = 1600 M= 3200 

N4 4 -0.2 0.9 2.1 3.3 4.5 
PIRKN I 4 0.2 1.4 2.6 3.8 5.0 
PIRKN II 5 1.1 2.7 4.3 5.9 7.4 

H8 8 0.5 2.6 5.0 7.4 9.8 
BG8 8 2.6 3.2 5.5 7.8 10.2 
HlO 10 0.6 2.7 5.7 8.7 11.7 
PIRKN III 8 2.8 5.0 7.3 9.7 12.1 
PIRKN IV 9 4.0 6.6 9.5 12.4 15.3 
PIRKNV 12 5.9 8.5 11.9 15.5 18.7 

For the third test problem (3.3), we observe that an approximation to the local value of 
a f jay is given by 6 y 2 , which is positive. Consequently, the methods show an unstable behaviour 
for particular values of the stepsize; such results are indicated by an " *" in Table 6. For h 
sufficiently small, we see that the behaviour of the methods is dictated by their convergence 
properties, resulting in an accurate integration. Again, the PIRKN methods are superior to the 
sequential methods; the number of required [-evaluations of the most accurate members from 
both families (viz. PIRKN V and HlO) differ by a factor which is approximately equal to 3. For 
this problem, the H8 method is slightly more efficient than the BG8 method. 

For the fourth test example (3.4) we draw the same conclusions as formulated for the first 
problem. The most accurate PIRKN method is more efficient than the best sequential method 
by a factor 4 (see Table 7). 

4. Variable-step implementation 

As mentioned in the introduction, a "realistic" implementation of an ODE solver requires 
the possibility to adapt the stepsize to the local behaviour of the solution. For that purpose, one 
usually employs the technique of embedding, which means that apart from the approximation 
for Yn+l• an additional result (of a different order) is calculated based on the same !-evalua­
tions. A comparison of both results then gives an indication of the local truncation error. Many 
of such embedded RKN pairs have been constructed by Fehlberg. In [6-8] pairs are presented 
of the form p( p + 1) for p up to 10, where p is the order of the approximation to proceed the 
integration and p + 1 is the order of the reference solution. However, similar to embedded 
pairs of RK methods for first-order ODEs, it is now generally believed that the strategy to use 
the highest-order approximation for the step continuation is superior. Based on this approach, 
Dormand and Prince [5] constructed an embedded RKN pair of order 7(6) using nine stages (an 
implementation of this method can be found in [14, code DOPRIN]). More recently, Filippi 
and Graf continued this work and increased the order. In [10], they present pairs of order 
p + 1( p) with p running from 7 until 10, the corresponding number of stages varying between 9 
and 17. Based on the test problems (3.1) and (3.2) they make in the same paper a comparison 
between many embedded pairs. Their conclusion is that (i) indeed the p + 1( p) strategy is more 



234 B.P. Sommeijer / Explicit Runge-Kutta-Nystrom methods 

efficient than the "old" p(p + 1) approach, and (ii) that it is worthwhile to have high-order 
methods, because of the usually stringent accuracy demands for this type of problems. 

The variable-step implementation based on their 11(10) pair (using 17 stages) is reported to 
be superior, particularly in the high-accuracy range. Therefore, the results of this code 
(denoted by FGll) will be used as a reference for the variable-step implementation of the 
PIRKN methods. 

The error control that we have implemented is analogous to the one we have used in our 
code PIRK for first-order ODEs (this code is given in the appendix to [15]). This error control 
is essentially based on the observation that the order of the iterates yu> in (2.4a) increases by 2 
in each iteration and that substitution of yen into the final line of the RKN methods (i.e., into 
(2.3a)), yields a reference solution zn+l of order min{p, 2j + q} (cf. Theorem 2.2). 

Since yU> and its f-evaluation are anyhow needed to continue the iteration to reach the final 
iterate y<mP>, the additional computational effort to construct this "embedded" reference 
solution is negligible. In principle, any j from the range 0 to m P - 1 can be used for this 
purpose. In our implementation we set j = mP - 1, and as an estimate of the local error LTE in 
the step from tn to tn+I' we take 

(4.1) 

for some norm II· II. Using the definition of mP, it is easily verified that, locally, LTE behaves 
as O(h 2s), both for Gauss-Legendre and Radau-based methods. 

As usual, LTE is compared to some (user-)specified tolerance TOL and the step is accepted 
if LTE ~ TOL, and rejected otherwise. Furthermore, based on the value of LTE, the new 
stepsize is calculated according to (cf. [14, p. 167]) 

hnew = ho1ct · min{ 'Yup, max{ 'Yiow, a(TOL/LTE)11<2s>}}, 
where the constants 'Yup and 'Yiow serve to avoid a too drastic change in the stepsize (viz. the 
amplification factor to obtain the new stepsize is required to be in the interval [ 'Yiow> 'Yup]), and 
a is introduced as a "safety parameter". In our code, which will be termed PIRKN, these 
parameters are set to 'Yup = 4, 'Yiow = !, and a= 0.9. It turned out that variation of the y-values 
does not have a large influence on the performance of the code; this is what we expect, since a 
small change in the stepsize will result, for a high-order method, in a significant change in the 
local truncation error. The influence of a is noticeable, although its choice is not very critical. 

For several values of the tolerance parameter TOL we applied the code PIRKN to the test 
problems. The results are given in the Tables 8-11. In these tables we give the values of D 
(accuracy) and M (computational effort), as defined in the previous section, as well as the total 
number of steps and, in parentheses, the number of rejected steps. 

The orbit equation (3.1) represents a severe test for the error control mechanism, particu­
larly due to its relatively large e-value. Since low-accuracy results are not provided in (10], the 
codes PIRKN and FG 11 can only be compared for very high precisions. From Table 8 we see 
that, in this range, the PIRKN code is much more efficient (roughly by a factor 3). A 
comparison of PIRKN with DOPRIN reveals that PIRKN is more efficient by a factor 2 in the 
low-accuracy range, increasing to a factor 10 in the high-precision range. 

Another conclusion that can be drawn is that using variable stepsizes is much more efficient 
than integrating with a fixed stepsize (cf. Table 4). For this problem, the solution shows 



er 

to 
je 

b.e 

ur 
'Ol 
'2 
to 

1al 
ce 
iis 
in 

1) 

es 

B.P. Sommeijer /Explicit Runge-Kutta-Nystrom methods 235 

Table 8 
Performance of the parallel code PIRKN and the sequential codes FG 11 and DOPRIN when applied to problem 
(3.1) 

Code TOL D M Total number of steps 
(rejected ones) 

PIRKN 10 4 1.2 306 51 (19) 
10-s 4.7 462 77 (23) 
10-12 8.9 786 131 (33) 
10-16 12.2 1488 248 (59) 
10-20 16.7 2694 449 (67) 
10-24 19.3 4806 801 (0) 

FGll 17.0 9000 
18.0 10900 
19.0 13300 

DOPRIN 10-4 2.3 737 92 (35) 
10-s 5.7 1545 193 (56) 
10-12 9.7 3777 472 (70) 
10-16 14.7 11945 1493 (12) 
10-20 18.5 44273 5534 (7) 

ed relatively much variation in the neighbourhood oft= 2,,., 4,,., and 6,,.. Since PIRKN is able to 
:w reduce its stepsize in the vicinity of these points and takes large steps outside these regions, we 

see that PIRKN is approximately 10 times faster than the fixed stepsize analogue, i.e., 
method V. 

For the second problem, we selected the best result form [10], viz. the 11( 10) pair with the 
" . . . more or less arbitrary choice ... " for the parameter A = 1.4 · 10- 6, which turned out to be 

he optimal for this problem. Unfortunately, only one TOL-value has been tested in [10]. Since this 
11d test problem has been used in other papers too, we collected some results from the literature 
se and added these results to Table 9. 
es For this problem the difference between the variable-step and fixed-step implementation is 
: a much less pronounced than for the previous example. In fact, the stepsize variation in PIRKN 
he is very modest and we observe almost the theoretical order behaviour of the underlying method 
al. of order 12: the quotient of the numbers of (successful) steps for successive TOL-values is 
:st approximately 2.15; the corresponding gain in the D-value is seen to be 4 digits, which reflects 
D the relation (2.15) 12 ::::: 104. 

:al Making a mutual comparison of the sequential codes, we see that FG 11 is indeed the most 
efficient one, at least in the high-precision range (the question marks in the table mean that the 

u- number of rejected steps was not specified). However, when compared to PIRKN, the 
he sequential code FG 11 requires a number of !-evaluations which is 2.5 times as large. For 
ee DOPRIN we observe that, similar to the first test problem, its relatively low order prevents this 
A code to be competitive in the high-accuracy range (say, D ~ 10); if modest accuracies are 
he required (say, D = 4), then we see that PIRKN is about two times faster. 

For the third test example, we found results in [7-9]. These results are listed in Table 10, 
:nt together with the results of PIRKN and DOPRIN. Again, PIRKN is by far the most efficient 
ws code; DOPRIN encounters difficulties both in the low- and in the high-precision range. Also 



236 B.P. Sommeijer / Explicit Runge-Kutta-Nystrom methods 

Table 9 
Performance of the parallel code PIRKN, the sequential codes FGl 1 and DOPRIN, and some additional methods 
when applied to problem (3.2) 

Code TOL D M Total number of steps 
(rejected ones) 

PIRKN 10-4 3.9 300 50 (4) 
10-8 7.9 588 98 (3) 
10-12 12.0 1242 207 (2) 
10-16 16.0 2658 443 (0) 
10-20 19.9 5736 956 (0) 

FGll 10-24 20.7 15614 919 (?) 

8(9) pair from [6] 10-17 13.5 15973 1452 (?) 

9(10) pair from [7] 10-17 15.l 8793 628 (?) 
10-24 21.4 45291 3235 (?) 

11(12) pair from [9] 10-24 20.3 17521 876 (?) 

DOPRIN 10-4 3.8 633 79 (4) 
10- H 8.3 2825 353 (51) 
10-12 12.3 9665 1208 (43) 
10-16 16.3 35729 4466 (41) 
10-20 20.3 133337 16667 (54) 

for this example, we observe that the variable-step implementation PIRKN is very effective 
compared with the use of fixed stepsizes. Comparing the results of Tables 6 and 10, we observe 
a gain factor 15. 

Table 10 
Performance of the parallel code PIRKN, the sequential code DOPRIN, and some additional methods when applied 
to problem (3.3) 

Code 

PIRKN 

9(10) pair from [7] 

10(11) pair from [8] 

11( 12) pair from [9] 

DOPRIN 

TOL 

10 4 
10-K 
10- 12 

10 -16 

10-20 

10--24 

10-24 

10-24 

10-4 
10-H 
w- 12 

10-16 

10 20 

D M 

3.1 72 
5.0 102 
8.4 168 

11.7 318 
15.5 636 

17.5 4831 

16.2 3146 

17.4 2641 

code could not solve the problem 
3.7 273 
7.5 897 

11.6 3193 
15.6 11777 

Total number of steps 
(rejected ones) 

12 (0) 
17 (0) 
28 (0) 
53 (0) 

106 (0) 

345 (?) 

185 (?) 

132 (?) 

34 (0) 
112 (0) 
399 (0) 

1472 (0) 



B.P. Sommeijer / Explicit Runge-Kutta-Nystrom methods 237 

Table 11 

Performance of the parallel code PIRKN, the sequential code DOPRIN, and an additional method when applied to 
problem (3.4) 

Code 

PIRKN 

11(12) pair from [9] 

DOPRIN 

TOL 

10 4 
10-8 

10-12 

10-16 

10-20 

10-20 

10-4 
10-8 
10-12 

10-16 

10-20 

D 

2.5 
6.6 

10.5 
14.5 
18.4 

15.7 

2.6 
7.2 

11.3 
15.2 
19.1 

M Total number of steps 
(rejected ones) 

168 28 (3) 
366 61 (11) 
666 111 (6) 

1374 229 (4) 
2958 493 (8) 

4861 243 (?) 

393 49 (9) 
1529 191 (43) 
4641 580 (38) 

16481 2060 (33) 
60833 7604 (29) 

Results for the last test problem are found only in [9]. Together with the PIRKN and 
DOPRIN results, they are listed in Table 11. 

For this problem, the variable-step implementation is not more efficient than the fixed-step 
version (cf. Table 7). A mutual comparison of the variable-step codes reveals that PIRKN 
offers a gain of a factor 3 when compared with the 11( 12) pair from Filippi and Graf and with a 
factor ranging from 2 to 15 (depending on the accuracy requested) when compared to 
DOPRIN. 

5. Further improvement 

In the following subsections, we briefly discuss a number of modifications that might further 
increase the efficiency of the code PIRKN. 

5.1. The order of the predictor 

In the code PIRKN we used the "trivial" predictor (2.4c). An advantage of this simple choice 
is that we remain within the class of one-step methods; clearly, a disadvantage is its low order, 
i.e., q = 2. Since the number of iterations m P is defined as f ( p - q) /21, it is obvious that we can 
save some iterations if we start with a predictor of higher order. The information needed to 
construct such a prediction could be obtained from approximations calculated in the preceding 
step. For example, in [17], van der Houwen and Nguyen huu Cong analyse (for first-order 
ODEs) a block version of the PIRK method [15] with the aim to construct a high-order 
prediction. The idea is to apply a PIRK method (which is very similar to a PIRKN method) not 
only with stepsize h, but, in addition (and simultaneously) with stepsizes h; = a;h, i = 1, ... , 
r - 1. In this way, r approximations are found in each step and this information is used to 
create a high-order prediction in the next step. Compared with the original PIRK method (i.e., 



238 B.P. Sommeijer / Explicit Runge-K.utta-Nystrom methods 

with blocklength r = 1), a substantial increase in efficiency is reported in [17]. This idea is of 
course equally well applicable in the present context of second-order equations. 

As a consequence of this modification, we leave the class of one-step methods and, second, 
this extension needs r · s processors. However, both effects seem to be not too restrictive. 

5.2. The rate of convergence 

In the aforementioned considerations the number of iterations was merely determined by 
order conditions, i.e., we used the minimal number to reach to order of the corrector. A slightly 
different approach would be to really obtain the solution of the corrector, rather than only its 
order. Taking this point of view, (2.4a) is now considered as an iteration scheme, where 
"iteration" has to be understood in the classical sense of the word. Hence, to converge as fast 
to the corrector solution as possible, a simple analysis based on the model equation y" = Ay 
indicates that we should minimize the spectral radius of the iteration matrix h 2AA. In [19], 
Nguyen huu Cong studied this subject in more detail and found that RKN correctors based on 
so-called "direct collocation" (see also [16]) possess a smaller convergence factor (i.e., p(A)) 
than the "indirect collocation"-based correctors that we used in the present paper. Although 
these "direct RKN correctors" are usually not unconditionally stable, their stability boundaries 
are in many cases sufficiently large for nonstiff problems. 

5.3. An inhomogeneous term 

Finally, we mention a feature of PIRKN methods that is not present in the sequential 
~mbedded RKN pairs, such as FGll and DOPRIN. From (2.4a) we see that, throughout the 

erations, the independent variable t is evaluated at the fixed point tn + cih for the ith 
)mponent. This implies that if we have to solve an ODE of the form y"(t) = f(t, y) + g(t), 

.hen the evaluation of g has to be done only in the first iteration and can be re-used in all 
subsequent iterations. Since most traditional RKN methods have c-vectors with many different 
elements, this option is not applicable for these methods. 

6. Conclusions 

An algorithm to obtain explicit Runge-Kutta-Nystrom (RKN) methods of arbitrarily high 
order has been described. These methods are obtained by iterating an implicit RKN method 
(called the corrector) of sufficiently high order. Correctors satisfying this property are easily 
obtained by transforming a high-order Runge-Kutta (RK) method for first-order ODEs (which 
in turn are straightforwardly constructed; cf. [4]) to the case of second-order ODEs. 

Applying the iteration scheme m times to an s-stage RKN corrector yields an explicit RKN 
scheme with (m + 1) · s stages. However, on a parallel computer with at least s processors, the 
scheme allows for the concurrent computation of the s !-evaluations within each iteration. In 
this way, the effective number of [-evaluations is reduced to m + 1. Taking r< p - q) /21 
iterations ( p and q denoting the order of the corrector and the predictor, respectively) it is 
proved that the order of the resulting Parallel-Iterated RKN (PIRKN) method equals the order 
of the corrector. For the Gauss-Legendre-based RKN correctors of order p we obtain a 



B.P. Sommeijer / Explicit Runge-Kutta-Nystrom methods 239 

PIRKN method of the same order requiring p /2 effective f-evaluations, which is an optimal 
result within the class of explicit RKN methods. For Radau HA-based correctors of order p, 
the required number of effective /-evaluations equals (p + 1)/2. 

For these PIRKN methods we have studied the stability properties and it turned out that 
there are many (m, p) combinations that result in an empty stability region. On the basis of 
these results, we give a selection of suitable (m, p, corrector)-combinations. The resulting 
PIRKN methods have been compared with existing high-order (sequential) methods from the 
literature. We found that the PIRKN methods are more efficient by a factor 3 or 4. 

A nice feature of the PIRKN methods is that they provide an embedded reference solution 
without additional /-evaluations. This feature has been exploited to control the local error in a 
variable step implementation of a PIRKN method of order 12. The resulting code, termed 
PIRKN, has been compared with high-order (sequential) codes from the literature, which also 
use the technique of embedding to control the local error. In terms of the required number of 
!-evaluations, PIRKN is shown to be much more efficient, especially in the high-accuracy range 
(which is the usual range for many of the problems under consideration). 

Finally, in Section 5, some modifications and improvements have been mentioned, which 
may result in a further speedup of the parallel code over the sequential codes. 

References 

(l] R.H. Battin, Resolution of Runge-Kutta-Nystrom condition equations through eighth order, A/AA!. 14 (1976) 
1012-1021. 

[2] P.A. Beentjes and W.J. Gerritsen, Higher order Runge-Kutta methods for the numerical solution of second 
order differential equations without first derivative, Report NW 34/76, Centre for Mathematics and Computer 
Science, Amsterdam (1976). 

[3] J.C. Butcher, Implicit Runge-Kutta processes, Math. Comp. 18 (1964) 50-64. 
[4] J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations, Runge-Kutta and General Linear 

Methods (Wiley, New York, 1987). 
[5] J.R. Dormand and P.J. Prince, New Runge-Kutta-Nystrom algorithms for numerical simulation in dynamical 

astronomy, Celestial Mech. 18 (1978) 223-232. 
[6] E. Fehlberg, Classical eighth- and lower-order Runge-Kutta-Nystrom formulas with stepsize control for special 

second-order differential equations, NASA Tech. Report R-381; summary, Computing 10 (1972) 305-315 (in 
German). 

(7] E. Fehlberg, Eine Runge-Kutta-Nystrom-Formel 9-ter Ordnung mit Schrittweitenkontrolle fiir Differential­
gleichungen x" = f(t, x), Z. Angew. Math. Mech. 61(1981)477-485. 

(8] E. Fehlberg, S. Filippi and J. Graf, Ein Runge-Kutta-Nystrom Formelpaar der Ordnung 10(11) fiir Differen­
tialgleichungen der Form y" = f(x, y), Z. Angew. Math. Mech. 66 (1986) 265-270. 

(9] S. Filippi and J. Graf, Ein Runge-Kutta-Nystrom-Formelpaar der Ordnung 11(12) fiir Differentialgleichungen 
der Form y" = f(x, y), Computing 34 (1985) 271-282. 

[10] S. Filippi and J. Graf, New Runge-Kutta-Nystrom formula-pairs of order 8(7), 9(8), 10(9) and 11(10) for 
differential equations of the form y" = f(x, y ), !. Comput. Appl. Math. 14 (1986) 361-370. 

[11] E. Hairer, Methodes de Nystrom pour !'equation differentielle y" = f(x, y), Numer. Math. 27 (1977) 283-300. 
[12] E. Hairer, Unconditionally stable methods for second order differential equations, Numer. Math. 32 (1979) 

373-379. 
[13] E. Hairer, A one-step method of order 10 for y" = f(x, y), IMA!. Numer. Anal. 2 (1982) 83-94. 
[14] E. Hairer, S.P. N!llrsett and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Springer 

Series in Computational Mathematics 8 (Springer, Berlin, 1987). 



240 B.P. Sommeijer / Explicit Runge-Kutta-Nystrom methods 

[15] P.J. van der Houwen and B.P. Sommeijer, Parallel iteration of high-order Runge-Kutta methods with stepsize 
control, J. Comput. Appl. Math. 29 (1990) 111-127. 

[16] P.J. van der Houwen, B.P. Sommeijer and Nguyen huu Cong, Stability of collocation-based Runge-Kutta­
Nystrom methods, BIT 31 (1991) 469-481. 

[17] P.J. van der Houwen and Nguyen huu Cong, Parallel block predictor-corrector methods of Runge-Kutta type, 
Appl. Numer. Math. 13 (1993) 109-123 (this issue). 

[18] T.E. Hull, W.H. Enright, B.M. Fellen and A.E. Sedgwick, Comparing numerical methods for ordinary 
differential equations, SIAM J. Numer. Anal. 9 (1972) 603-637. 

[19] Nguyen huu Cong, Note on the performance of direct- and indirect Runge-Kutta-Nystrom methods, J. 
Comput. Appl. Math. 45 (1993) 347-355. 

[20] E.J. Nystrom, Uber die numcrische Integration von Differentialgleichungen, Acta Soc. Sci. Fenn. 50 (13) (1925) 
1-54. 


