
An Elimination Theorem for Regular Behaviours

with Integration

Willem Jan Fokkink
CWI

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

e-mail: wan@cwi.nl

Abstract

In this paper we consider we consider a variant of the process algebra ACP

with rational time and integration. We shall indicate a subdomain of regular
processes for which an Elimination Theorem holds: for each pair of processes

p, q in this class there is a process z in this class such that p[jq and z have
the same behaviour. Furthermore, we indicate by some simple examples that

if the subdomain is restricted or enlarged, then the elimination result is lost.

The subdomain has a strong link with the model of timed automata of Alur

and Dill.
1991 Mathematics Subject ClassiB.cation: 68Q50, 68Q60.
1987 CR Categories: D.3.1, F.3.1.
Key Words & Phrases: ACP, relative time, integration, regular process, Elim

ination Theorem.
Note: This work is in the context of ESPRIT Basic Research Action no 7166,

CONCUR 2.

1 Introduction

In recent years, many papers have appeared that study real-time aspects of
systems. Most process algebras have been extended with constructs that mean
to describe some notion of either discrete or dense time. Some examples are
timed CCS [Wan90], timed ACP [BB91], ATP [NS90] and timed CSP [RR88].

This paper is based on the approach in [BB91]. Only, that paper focuses
on absolute time, while here we work with relative time, i.e., we assume that
an expression a[r] denotes an action a that is executed exactly r time units
after the previous action has been executed. However, all our definitions and
results can be translated to absolute time without any complications.

In [BB91] the notion of integration has been introduced, which describes
the possibility of an action happening within a dense interval in time. For
example, the process J'l!E(O,l) a[v] executes action a somewhere between time

433

0 and time 1. In this paper we take a more restrictive view on integration
than in [BB91], called prefixed integration, which originates from [Klu91]. In
general, a (prefixed) integral is of the form fuev a[v] or fuev a[v] ·p, where Vis
an interval and p is a process expression. Integration enables the description
of time dependencies, i.e., the process p may contain the variable v as a 'free'
variable. Such free occurrences of v in pare bound by the integral sign fuev·

This paper deals with regular processes. Traditionally, regularity is defined
in the sense of a process having a finite number of states, or a finite number
of transitions. However, here such a definition would not work, due to the
presence of the integral construct, which causes even finite processes to have
an infinite number of different transitions. Therefore, a regular process is
defined to be the solution of a linear specification. This definition is based on
the fact that regular processes in the untimed case are exactly the solutions
of linear specifications.

For the sake of verification, it is important to have an Elimination Theorem
for regular processes, which says that the parallel composition of two regular
processes is again a regular process. Because a verification mostly deals with
a process 8H(p1ll · · · llPk), where P1, ... ,pk are regular processes. Since there
is an Elimination Theorem for regular processes in untimed ACP, and also in
timed ACP without integration [Fok92], one can get rid of the merges during
the verification in these formalisms.

In this paper we set out to deduce an Elimination Theorem for timed ACP
with integration. The existence of time variables in the syntax of timed ACP
is essential for the validity of such a result, because Godskesen and Larsen
have proved that one cannot hope to find an Elimination Theorem in the
absence of time variables [GL92].

However, in this paper we shall encounter some examples which show that in
general one cannot eliminate the merge from regular processes in timed ACP
with integration. Thus, one cannot use the common verification techniques for
this algebra. Fortunately, it will turn out that one does obtain an Elimination
Theorem for a subdomain of the class of regular processes. This subdomain
is very specific; if it is restricted or enlarged in any obvious way, then we will
see by some simple examples that the elimination result is lost. At first sight
the syntactic restrictions for the subdomain may seem arbitrary, but if one
studies the examples more closely, it will turn out that linear specifications
which do not satisfy these restrictions tend to describe all kinds of irregular
behaviour, such as accelerations (see Examples 3.1 and 3.2) and oscillations
(see Example 3.3).

The subdomain for which we shall deduce an Elimination Theorem has a
strong link with the class of timed automata of Alur and Dill [AD90]. However,
we do not obtain a translation between the processes in our subdomain and
timed automata, due to the requirement of non-Zeno behaviour and the pres-

434

ence of fairness restrictions for languages accepted by timed automata. But if
these restrictions are discarded, the classes of strongly regular processes and
of timed automata turn out to be equivalent. Hence, the algebra of strongly
regular processes may be used as a syntax for timed automata, and moreover
the operations of ACP may be used to compose smaller automata into larger
ones. This compositionality is missing in existing timed automata work.

'IJJ.is paper is an extended abstract of [Fok93]. The main difference with the
full version is that the long and technical proof of the Elimination Theorem
has been replaced by a much shorter and more intuitive description of the
proof.

For the sake of simplicity we will not include the encapsulation operator
aH to the syntax. However, it can be added to the syntax without any
complications [Fok93].

Acknowledgements. Steven Klusener and anonymous referees are thanked
for helpful comments, and Frits Vaandrager for suggesting the link with timed
automata.

2 The Syntax and Semantics

This section contains a description of the syntax and operational semantics for
ACP with relative rational time and integration, denoted by ACP rqI, together
with recursion.

2.1 The Alphabet

Assume an alphabet A of atomic actions, together with a special constant
c5, representing deadlock. Furthermore, assume a communication function
I : AU {c5} x AU {c5} ...,. AU {c5} which is commutative and associative and
has c5 as zero element.

2.2 Bounds and Intervals

TV ar denotes a countably infinite set of time variables. Let t E Q>o U
{oo}, r E Q.o and v E TVar. The set of bounds, with typical eleme~t b,
is defined by

b ::= t I v I b + b I b ..:.. b I r · b

where ..:.. denotes the monus function, i.e. if t0 ~ t1 then to ..:.. t1 = 0. In the
sequel <f and } are elements of { (, [} and {),]} respectively. An interval V
is of the form <f bi, b2 } with bi, b2 bounds.

For a bound b, the set of time variables occurring in bis denoted by tvar(b).
Of course tvar(<f b,c }) = tvar(b) U tvar(c).

435

2.3 Process Terms

Let a E A U { 6}, v E TV ar, V an interval and b a bound. The set of process
terms, with typical element p, is defined by

p ::= r a[v] I r (a[v]. p) I p + p I p. p I P!IP I u~(p)
lveV lveV

The operator u _ is called the (negative) time shift. It is an auxiliary operator
that is needed in the operational semantics of the merge II· The process q:_(p)
denotes the process p that is shifted back r time units in time.

In the sequel fve[b,b] a[v] is abbreviated by a[b]. Furthermore, we shall use
a scope convention, saying that if we do not write scope brackets, then the
scope is as large as possible. Thus we write fveV a[v] · p for fvev(a[v] · p).

2.4 Time-closed Processes

In general, one cannot attach a transition system to a process term containing
time variables that are not 'guarded' by an integral sign. For example, what
would be the behaviour of a process fve[a:,y] a[v]. Therefore, the notion of a
time-closed process is introduced.

First, define inductively the collection FV(p) of time variables appearing
in a process term p that are not bound by an integral sign, the so-called free
variables:

FV(fvEV a[v]) = tvar(V)
FV(fveva[v] · p) - (FV(p)\{v}) Utvar(V)
FV(pDq) = FV(p) u FV(q) OE{+,·, Ii}
FV(u~(p)) - FV(p) U tvar(b)

A term p is called time-closed if FV(p) = 0. The model for ACP rql that we
shall consider contains only the time-closed process terms.

A substitution is a mapping O' : TVar - ~o U { oo }. We can extend u to
the collection of processes; u(p) denotes the process p with all free occurrences
of a variable v replaced by O'(v). Clearly, u(p) is a time-closed process, and we
denote u(p) by p[O'(v1)/v1, ... , u(vk)/vk], where v1, ... , Vk are the free variables
of p.

2.5 Ultimate Delay

The ultimate delay U(p) of a time-closed process p is the latest moment in
time till which p can idle without executing an initial action. Moller and Tofts
have introduced a similar construct [MT90], called the maximum delay. It is

436

defined inductively as follows, where a E A U { 6}.

U(J11ev a[vJ) - sup(V)
U(J11ev a[v] · p) - sup(V)
U(p+ q) - max{U(p), U(q)}
U(p· q) - U(p)
U(pllq) - min{U(p), U(q)}
U(u~(p)) - U(p) .:. r

The ultimate delay enables to distinguish processes that only differ in their
deadlock behaviour. For example, the processes a(l) + 6(1) and a(l) + 6(2)
can only execute the a at 1, but they have different ultimate delays.

2.6 Operational Semantics

Table 1 contains an operational semantics for ACP rqI, taken from [Klu91]. It
is assumed in Table 1 that a, b E A and r E G:bo.

The rules defining the communication operators are such that the merge
does not result in arbitrary interleavings. For this would result in transitions

such as a[l] II b[2] ~ u~(a[l]), which means that the process gets into a
deadlock. Such situations are avoided as follows. Suppose that p can execute
an action a[r]. Then pllq can execute action a[r] only if r < U(q).

2. 7 Bisimulation

We consider process expressions modulo (strong) bisimulation.

Definition 2.1 Two process expressions Po, q0 are said to be strongly bisimi
lar, notation Po ±:::t Qo, if there exists a symmetric, binary bisimulation relation
R such that

1. PoRQo.

2. If p ..'.±:! p' and pRq, then q ~ q' for some process q' with p'Rq'.

3. If P ..'.±:!../and pRq, then q a[r! ..;.

4. If p'f4, then U(p) = U(q).

Strong bisimulation is a congruence, which can be seen by extending the
operational semantics with rules defining predicates U (p) = r. Such mix fix
predicates fit into the tyft/tyxt format extended with predicates of Baeten
and Verhoef, called the path format (BV93]. Strong bisimulation defined by
transition rules within this format is always a congruence, and the strong
bisimulation that is induced by our extended operational semantics is exactly
the one given in Definition 2.1.

437

fvev If r E V\{O, oo}, then

+

II

fveva[v] ~ J

a.[r] I
p - v

a.[rl q
p·q -.!4

a.[r]
fveva[v]·p - p[r/v]

a[r] 1

p -- p
a[r] 1

p·q -- p ·q

a[r] / a[r] 1
P-v P-P

a[r] 1 a[r] a.[r] 1 a.[r] 1
p+q - y q+p - J p+q - p q+p - p

p ~ J r < U(q)

p ~ p' r < U(q)

If alb = c =I= 8, then

a.[r] / b[r] . /
P-v Q-v

pllq .:tl J

a[r] 1 b[r] /
p---+p q-q

pllq c[r] p'llq'

p.'.:!jJ s<r

Ci~ (p) a[r-s] J

p~J q~q'
Pllq c[r] q' qllp c[r] q'

p~p' s<r
8 () a[r-s] /

(j_ p --t p

Table 1: Action rules for ACP rqI

438

2.8 Recursion

We define what is a recursive specification E. Assume a set VE of pairs (X, k),
with X a recursion variable and k the number of its time parameters. Now
E consists of a collection of equations

{X(vi, ... , v1c) = tcx,1c) I (X,k) EVE}

where v1, •.• , v1c denote time variables and t(X,lc) a process expression, possibly
containing expressions of the form Y(bi, ... , bz), where (Y, l) E VE and b1, ... , b1
bounds.

In this paper we shall only consider finite recursive specifications, i.e. it is
assumed that for each recursive specification E the collection VE is finite.

In order to define the collections FV(tcx,1c)), it is sufficient to extend the
definition of free variables to expressions X(b1, ... , b1c):

A recursive specification is called well-defined if all its equations X(v1, ••• , v1c) =
tcx,1c) satisfy FV(tcx,1c)) ~ {v1, ... , v1c}.

The notion of a process term is extended by allowing expressions of the
form (X(b1, ... , b1c)IE) with E a well-defined specification and (X, k) E VE
and b1, ... , b1c bounds. By abuse of notation, (X(bi, ... , b1c)IE) is often denoted
by X(b1, ... , b1c).

In the following table the operational semantics for time-closed process
terms is extended to recursion variables, by supplying (X(r1, ... r1c)IE) with
the action rules of tcx,1c)(ri/v1, ... , r1c/v1c].

Here, the term (tcx,1c)[ri/v1, ... , r1c/v1c] I E) denotes t(x,1c)h/v1, ... , r1c/v1c] with
each occurrence of expressions Y(b1, ... , bz) replaced by (Y(b1, ... , bz)IE).

3 Eliminating the Merge

We prove an Elimination Theorem for a class of regular behaviours. Usu
ally, regularity of a process is defined in terms of having a finite number of
states. However, in the present setting this definition would backfire, due to
the presence of the integral construct, which causes even finite processes to
have an infinite number of states. Therefore, we use a different definition for
regularity here.

439

3.1 Linear Recursive Specifications

In untimed process algebras one can prove, for suitable models, that a process
is regular if and only if it is equivalent to a solution of a finite linear recursive
specification [Mil84). Here, we use this property as the definition of regularity.

A finite recursive specification over ACP rqI shall be called linear if all its
equations are of the form

A process is called regular if it is bisimilar to a solution of a linear recursive
specification.

3.2 A Counter-example

The following simple example shows that one cannot hope to find an Elimi
nation Theorem for general regular processes.

Example 3.1 Define

X = fve(O,l} a[v] · Y(v)

Y(v) = fwe[v,v] a[w] · Y(w)

Consider the process p = Xllb[l). For convenience we put aJb = 6.

Each trace of the process X is of the form a[r] · a[r] · a[r] · ... with r E (0, 1).
Let a[r) be the first transition that is executed by p. If r E {1/(n + 1), 1/n)
for certain n, then p will execute this a[r] n times, followed by b[l -nr], then
a[(n + l)r - 1], and after that only a[r)'s. And if r = 1/(n + 1), then p will
get into a deadlock, after n times executing a[r).

So a linear specification describing the behaviour of p would have to contain
infinitely many summands. Hence, p is not regular. {End example)

Thus, the class of solutions of linear specifications is too big for finding an
Elimination Theorem. On the other hand, if no occurrences of time variables
are allowed in the process terms, then the collection is clearly too small.
Because in this class even equivalences such as

1 a[v] II 1 b[w] - 1 a[v] · 1 . . b[w]
vE(0,1) wE(l,2) vE(0,1) wE(l-v,2-v)

cannot be expressed anymore.
So, is there an algebra in between, for which an Eliminq.tion Theorem can

be deduced? The answer is yes.

440

3.3 Strong Regularity

Define a process to be strongly regular if it is a solution of a linear specification
(of the form 1) that satisfies the following requirements:

• the bounds in the Vi are all of the form r or r ..:.. v;, where r E ~o U { oo}.

• the bounds bi; are all of the form v or v; + v, where v; '=/= v.

We shall deduce an Elimination Theorem for this algebra. But first, we give
two more examples to show that the elimination result would not hold for a
less restrictive definition of strong regularity.

3.4 Two More Examples

Example 3.1 already showed that if one allows not only expressions r and
r ..:.. v;, but also variables v; as bounds in the intervals of strong regularity,
then the elimination result is lost. The following example implies that neither
can one allow variables v; as bounds bij·

Example 3.2 Define

X = fve(O,l) a[v] · Y(v)

Y(v) = fwe[i.:.,,,1.:.v] a[w] · Y(v)

The process p = X llb[2] (with alb = 6) is not a solution of a linear specifica
tion.

Each trace of the process X is of the form a[r] · a[l - r] · a[l - r] · ... with
r E (0, 1). So if the first transition that p executes is a[r] with r E ((n -
2)/(n-1), (n-1)/n) for some n ~ 2, then p will first execute n+ 1 a's, then
a b and then only a's. And if r = (n - 2)/(n - 1), then p will execute n + 1
a's and get into a deadlock. (End example)

Finally, the following example shows that one cannot allow expressions
r ..:.. s · v as bounds in the intervals Vi, where s E Q,0 . This example is a bit
more complicated than the previous ones.

Example 3.3 Define

= f11e(o,1) a[v] . X2(v)

= fwe[~.:.! 11 ;i..:.lv] a[w] · X2(w)
2 2 1 2 2

The process X1llY1 (with a!b = 6) is not a solution of a linear specification.

441

Let us consider the processes X1 and Y1 in absolute time for a moment. An
easy calculation tells that if X1 executes its first action at timer, then its nth
action will be executed at (absolute) time n - (1- r)a:n, where

n-1 l .
an= I)--)'

i=O 2

So if the first action of X 1 is a[r], then for eliminating the merge from X 1 11 Y1 ,

it is essential to know whether a:n(l - r) is smaller or greater than 1/2 for
n = 1, 2, Because this inequality implies whether the nth a-action is
executed after or before the nth b-action. And if (1- r)an = 1/2 for some n,
then X 1 llY1 will deadlock after n - 1 transitions.

The equalities r = 1 - 1/(2an), n = 1, 2, ... give an infinite partition of the
interval {O, 1). {End example)

3.5 The Elimination Theorem

For the algebra of strongly regular processes we have an Elimination Theorem.

Theorem 3.4 {Elimination Theorem) For each pair of strongly regular pro
cesses p and q, there exists a strongly regular process z such that pllq ~ z.

We do not give the full proof of this theorem, which is quite technical and
takes many pages, but confine ourselves to an outline. For further details, the
reader is referred to [Fok93].

First, we formulate a preliminary lemma. Assume a finite collection of
bounds !3. An ordering a on l3 consists of an anti-symmetric relation <a:
together with a symmetric relation =a: on !3, such that for each pair b, b' E I3
either b <a b' or b' <a b or b =a b'.

For an ordering a on l3 and a substitution <T : TVar ---+ ~o, the set of
relations a(a:) results to either true (if all (in)equalities are true) or false
(otherwise). Let [a:] denote the collection of substitutions <T for which <T(a)
is true. Note that for each a there is exactly one ordering a on B such that
a E [a].

We consider a specific set of bounds. Let bi, ... , bm denote bounds and
t E (fb0 and N E N. Then Bt,N(b1 , ... , bm) is defined to be the following set of
bounds:

Bt,N(b1,. .. ,bm) = {kt, kt...:_ bi I k=O, ... ,N, i=l, ... ,m} U {oo}

Now the lemma is as follows. Let x, x1, ... , Xn denote time variables.

Lemma 3.5 For each ordering a of l3t,N(x1, ... ,xn)U{x} there is an ordering

/3 of Bt,N(x, X1 + x, ... , x,. + x) such that [a] ~ [/3].

442

The proof of this lemma is omitted. It consists of simply rewriting each
possible relation in Bt,N(x, x1 + x, ... , Xn + x) to a relation in Bt,N(xi, ... , xn) U

{x}.

Sketch of the proof of the Elimination Theorem:
Assume two strongly regular processes p and q. We construct a strongly
regular process z such that Pllq .!:::::. z.

By definition, p and q are bisimilar to processes (X1(r1, ... , rm(l))IE) and
(Y1(s1 1 ... ,sn(l))IE'} with ri,Si E ~o U {oo}, and the equations of E and E'
are of the form

where the bounds in the intervals Vk and Wz (respectively V£ and Wz') are
expressions r or r ..:.. Vi (respectively r ..:.. wi) with r E Q;;,o U { oo }, and the
bounds bki (respectively b/ci) are expressions v or Vj + v (respectively Wj + v).

Let {t1, ... , tm} be the collection of rationals that occur in E and E'. We
can assume this set to be non-empty. Let t be the greatest common divisor
of this collection, i.e., the greatest rational such that tif t is a natural number
for each i. Define

N = max{tift, ... , tm/t}

Ensure, by applying a-conversion, that the Vi and the Wj are all different.
In the linear specification to describe the behaviour of Pllq consists of the
following recursion variables (apart from the X1 and YJ). For each recur
sion variable W°' (x1, .. ., Xn) we assume that a ranges over all orderings of
Bt,N(X1, ... ,xn) for which [a] f 0.

1 X1(x,x1, ... ,Xm(I))

The expression Xr(v, v1 + v, ... , Vm(I) + v) describes the behaviour of the
process <7:'.'.'..(X1(v1,.-.,vm(I))).

2 YJ(X, Yi, ... , Yn(J))

The expression YJ(v, w1 +v,. .. , Wn(J) +v) describes the behaviour of the
process <7:'.'.'..(YJ(w1, ... , Wn(J))).

3 Z[J(x1, ... , Xm(I), Yi, .. ., Yn(J))

This recursion variable describes the behaviour under condition a of the
process X1(x1, ... , Xm(I))llYJ(Y1, ... , Yn(J))·

443

4 Z'!"J(x, X1, ••• , Xm(I), Yli ... , Yn(J))

This recursion variable describes the behaviour under condition a of the
process X1(x, x1, ... , Xm(I)) llYJ(Y1, ... , Yn(J))·

5 ZfJ(x1, .. .,Xm(I)1X1Y1, ... ,yn(J))

This recursion variable describes the behaviour under condition a of the
process X1(xi, ... , Xm(I))li?J(x, Yi. ... , Yn(J))·

We consider the process X1(v1, ... , Vm(I))llYJ(W1, ... , Wn(J)), to explain why
we need all these recursion variables. The behaviour of this expression cannot
be described by only one linear equation, due to the appearance of open
variables. Therefore, we have introduced a collection of variables ZfJ, where
a ranges over orderings on Bt,N(Vi, ... , Vm(I), w1, ... , Wn(J)) for which (a] =f. 0.

We give a short, intuitive description to explain the crux in constructing
the equation for such an expression Z.f:,(v1 1 ... ,Vm(I)iW1, ... ,wn(J))· Suppose
that it executes an initial action a,,:[v] with v E Vk (originating from X1). The
resulting behaviour is

which is described by zK1(bk11 ... , bkm(I1c)• v, W1 + v, .. ., Wn(J) + v). The only
problem is, what is the condition /3? Or in other words, does the condition
a/\ v E vk imply an ordering on Bt,N(bk11 ... , bkm(I1c)> v, W1 + v, ... , Wn(J) + v)?

According to Lemma 3.5, the answer is yes if a/\v E Vk implies an ordering on
Bt,N(v1, .. ., Vm(l)• w1, ... , Wn(J)) U {v}. And this can be ensured by partitioning
the intervals Vk into sufficiently small subintervals. {End sketch of proof)

3.6 An Example

We study an example, to give some more intuition for the Elimination The
orem. It turns out that even for very simple strongly regular processes, the
behaviour of their merge can only be described by a very complicated linear
specification.

Example 3.6 Define

x = r a[v]. x
lve(0,1)

Let p = Xllb[k] 1 where k EN and alb = 6. The process p is strongly regular.

444

The behaviour of p can be described by the following linear specification,
containing k + 3 equations.

Xo = fvE(O,l} a[v] · X1(v)

Xi(v) = fwe(o,i.:..v] a[w] . Xi(v + w) + fwE(i.:..v,l) a[w] . xi+l (v + w)

i = 1, ... , k -1

Xk(v) = fwe(o,k.:..v) a[w] · Xk(v + w) + fwe[k.:..v,k.:_v] b[w] · Y(w)

Y(v) = fwe(o,1.:..v) a[w] · X

x = fvE(O,l) a[v] . X

The idea behind this specification is quite easy. Process p will execute X until
it reaches (absolute) time k, when it executes a b. After that it continues
with X. Now, when hasp the possibility of executing bat k? This is if p has
executed an a after time k - 1. So if this is the case, the linear specification
must take into account the execution of b at k. And when can p execute an
a after k - 1? If it has executed an a after k - 2. So if this is the case, the
linear specification must take into account the execution of a after k - 1, etc.

The equations for the Xi, with i = 1, ... , k-1, register whether a is executed
after time i or not. If so, then xi+l is triggered, and otherwise xi is repeated.
Finally, Xk takes into account the execution of b. (End example)

3.7 Timed Automata

An automaton consists of a set of states S, a set of start states 80 ~ S, a set
of labels A and a set of transitions E ~ S x Ax S. The language accepted
by the automaton consists of all traces s0 ~ s 1 ~ s2 ~ · · · such that
(si, ai, Si+1) E E for i = 0, 1, 2, ... Furthermore, the trace must satisfy certain
fairness requirements, e.g., that it reaches a specific state an infinite number
of times.

The algebra of strongly regular processes can be linked to the class of timed
automata of Alur and Dill [AD90]. For a timed automaton, the elements of
E are supplied with timing constraints on 'clock variables'. These constraints
are of the form x < r or x ~ r or x > r or x ~ r with x a clock variable
and r E ~o, and there is a construct x := 0, denoting that while executing
this transition, clock x is set back to zero. A trace is only accepted by a
timed automaton if its transitions are performed at times that all the clocks
satisfy their constraints. Again, there is a fairness requirement for accepted
traces. Furthermore, Zeno behaviour has been explicitly excluded from timed

445

automata, i.e., traces are only accepted if they progress beyond every moment
in time.

The fairness restrictions, the non-Zeno requirement and the fact that only
infinite traces are considered are obstacles for the translation between timed
automata and strongly regular processes, since ACP rqI does not take into ac
count such semantic restrictions. However, if these restrictions are discarded,
then the classes of strongly regular processes and of timed automata turn out
to be equivalent.

We can translate strongly regular processes to the setting of timed automata
as follows. A strongly regular processes executes an action a[v] under restric
tions of the form vDr or vD(r ..:... Vi), with D E { <, >, ~. ~} and r E lfbo.
These last inequalities can be rewritten to the form (Vi+ v) Dr. The Vi+ v and
v can be regarded as clocks. Since we work in relative time, the v has been set
back to zero by v := 0 in the previous transition. The state that results after
executing a[v) is a recursive expression of the form X(v, v1 + v, ... , Vk + v).
The Vi + v and v are some kind of memories, which store the actual times of
the clocks at the moment of the transition a[v].

Conversely, the language accepted by a timed automaton (without semantic
restrictions) can always be described by a strongly regular process. We give
a simple example.

Example 3. 7 We consider a timed automaton with states so, s1, of which so
is start state, and clock variables x, y. The timed automaton is defined by the
following two transitions:

- (s0 , a, s 1) with time constraints x < 2, y := 0,

- (s1 , b, s0) with time constraints x < 3, y < 2, x := 0.

This automaton executes alternately a and b. We describe its behaviour by a
linear specification.

X = fve(O,l] a[v] · Y1 + fve[i,2) a[v) · Y2(v)

Y1 = fve(0,2) b[v] . X

Y2(v) = fwe(o,3.:..v)b[w]·X

The process X describes the behaviour of the timed automaton.
(End example)

446

References

[AD90]

[BB91]

[BV93]

R. Alur and D. Dill. Automata for modeling real-time behaviour. In
M. Paterson, editor, Proceedings 17th !GALP, Warwick, LNCS 443,
pages 322-335. Springer-Verlag, 1990.

J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Journal
of Formal Aspects of Computing Science, 3(2):142-188, 1991.

J.C.M. Baeten and C. Verhoef. A congruence theorem for struc
tured operational semantics with predicates. Report CSN-93/05,
Eindhoven University of Technology, Eindhoven, 1993.

[Fok92] W.J. Fokkink. Regular processes with rational time and silent steps.
Report CS-R9231, CWI, Amsterdam, 1992.

[Fok93] W.J. Fokkink. An elimination theorem for regular behaviours with
integration. Technical report, CWI, Amsterdam, 1993.

[GL92] J.C. Godskesen and K.G. Larsen. Real-time calculi and expansion
theorems. In R. Shyamasundar, editor, Proceedings 12th Conference
on Foundations of Software Technology and Theoretical Computer
Science, New Delhi, India, LNCS 652, pages 302-315. Springer
Verlag, 1992.

[Klu91] A.S. Klusener. Completeness in real time process algebra. In J.C.M.
Baeten and J.F. Groote, editors, Proceedings CONCUR 91, Amster
dam, LNCS 527, pages 376-392. Springer-Verlag, 1991.

[Mil84] R. Milner. A complete inference system for a class of regular be
haviours. Journal of Computer and System Sciences, 28:439-466,
1984.

[MT90] F. Moller and C. Tofts. A temporal calculus of communicating sys
tems. In J.C.M. Baeten and J.W. Klop, editors, Proceedings CON
CUR 90, Amsterdam, LNCS 458, pages 401-415. Springer-Verlag,
1990.

[NS90] X. Nicollin and J. Sifakis. ATP: An algebra for timed processes.
Technical Report RT-C26, IMAG, Laboratoire de Genie informa
tique, Grenoble, 1990.

[RR88] M. Reed and A.W. Roscoe. A timed model for communicating se
quential processes. Theoretical Computer Science, 58:249-261, 1988.

[Wan90] Y. Wang. A Calculus of Real Time Systems. PhD thesis, Chalmers
University of Technology, Goteborg, 1990.

