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Abstract 

In this paper we consider we consider a variant of the process algebra ACP 

with rational time and integration. We shall indicate a subdomain of regular 
processes for which an Elimination Theorem holds: for each pair of processes 

p, q in this class there is a process z in this class such that p[jq and z have 
the same behaviour. Furthermore, we indicate by some simple examples that 

if the subdomain is restricted or enlarged, then the elimination result is lost. 

The subdomain has a strong link with the model of timed automata of Alur 

and Dill. 
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1 Introduction 

In recent years, many papers have appeared that study real-time aspects of 
systems. Most process algebras have been extended with constructs that mean 
to describe some notion of either discrete or dense time. Some examples are 
timed CCS [Wan90], timed ACP [BB91], ATP [NS90] and timed CSP [RR88]. 

This paper is based on the approach in [BB91]. Only, that paper focuses 
on absolute time, while here we work with relative time, i.e., we assume that 
an expression a[r] denotes an action a that is executed exactly r time units 
after the previous action has been executed. However, all our definitions and 
results can be translated to absolute time without any complications. 

In [BB91] the notion of integration has been introduced, which describes 
the possibility of an action happening within a dense interval in time. For 
example, the process J'l!E(O,l) a[v] executes action a somewhere between time 
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0 and time 1. In this paper we take a more restrictive view on integration 
than in [BB91], called prefixed integration, which originates from [Klu91]. In 
general, a (prefixed) integral is of the form fuev a[v] or fuev a[v] ·p, where Vis 
an interval and p is a process expression. Integration enables the description 
of time dependencies, i.e., the process p may contain the variable v as a 'free' 
variable. Such free occurrences of v in pare bound by the integral sign fuev· 

This paper deals with regular processes. Traditionally, regularity is defined 
in the sense of a process having a finite number of states, or a finite number 
of transitions. However, here such a definition would not work, due to the 
presence of the integral construct, which causes even finite processes to have 
an infinite number of different transitions. Therefore, a regular process is 
defined to be the solution of a linear specification. This definition is based on 
the fact that regular processes in the untimed case are exactly the solutions 
of linear specifications. 

For the sake of verification, it is important to have an Elimination Theorem 
for regular processes, which says that the parallel composition of two regular 
processes is again a regular process. Because a verification mostly deals with 
a process 8H(p1ll · · · llPk), where P1, ... ,pk are regular processes. Since there 
is an Elimination Theorem for regular processes in untimed ACP, and also in 
timed ACP without integration [Fok92], one can get rid of the merges during 
the verification in these formalisms. 

In this paper we set out to deduce an Elimination Theorem for timed ACP 
with integration. The existence of time variables in the syntax of timed ACP 
is essential for the validity of such a result, because Godskesen and Larsen 
have proved that one cannot hope to find an Elimination Theorem in the 
absence of time variables [GL92]. 

However, in this paper we shall encounter some examples which show that in 
general one cannot eliminate the merge from regular processes in timed ACP 
with integration. Thus, one cannot use the common verification techniques for 
this algebra. Fortunately, it will turn out that one does obtain an Elimination 
Theorem for a subdomain of the class of regular processes. This subdomain 
is very specific; if it is restricted or enlarged in any obvious way, then we will 
see by some simple examples that the elimination result is lost. At first sight 
the syntactic restrictions for the subdomain may seem arbitrary, but if one 
studies the examples more closely, it will turn out that linear specifications 
which do not satisfy these restrictions tend to describe all kinds of irregular 
behaviour, such as accelerations (see Examples 3.1 and 3.2) and oscillations 
(see Example 3.3). 

The subdomain for which we shall deduce an Elimination Theorem has a 
strong link with the class of timed automata of Alur and Dill [AD90]. However, 
we do not obtain a translation between the processes in our subdomain and 
timed automata, due to the requirement of non-Zeno behaviour and the pres-
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ence of fairness restrictions for languages accepted by timed automata. But if 
these restrictions are discarded, the classes of strongly regular processes and 
of timed automata turn out to be equivalent. Hence, the algebra of strongly 
regular processes may be used as a syntax for timed automata, and moreover 
the operations of ACP may be used to compose smaller automata into larger 
ones. This compositionality is missing in existing timed automata work. 

'IJJ.is paper is an extended abstract of [Fok93]. The main difference with the 
full version is that the long and technical proof of the Elimination Theorem 
has been replaced by a much shorter and more intuitive description of the 
proof. 

For the sake of simplicity we will not include the encapsulation operator 
aH to the syntax. However, it can be added to the syntax without any 
complications [Fok93]. 

Acknowledgements. Steven Klusener and anonymous referees are thanked 
for helpful comments, and Frits Vaandrager for suggesting the link with timed 
automata. 

2 The Syntax and Semantics 

This section contains a description of the syntax and operational semantics for 
ACP with relative rational time and integration, denoted by ACP rqI, together 
with recursion. 

2.1 The Alphabet 

Assume an alphabet A of atomic actions, together with a special constant 
c5, representing deadlock. Furthermore, assume a communication function 
I : AU {c5} x AU {c5} ...,. AU {c5} which is commutative and associative and 
has c5 as zero element. 

2.2 Bounds and Intervals 

TV ar denotes a countably infinite set of time variables. Let t E Q>o U 
{oo}, r E Q.o and v E TVar. The set of bounds, with typical eleme~t b, 
is defined by 

b ::= t I v I b + b I b ..:.. b I r · b 

where ..:.. denotes the monus function, i.e. if t0 ~ t1 then to ..:.. t1 = 0. In the 
sequel <f and } are elements of { (, [} and {),]} respectively. An interval V 
is of the form <f bi, b2 } with bi, b2 bounds. 

For a bound b, the set of time variables occurring in bis denoted by tvar(b ). 
Of course tvar(<f b,c }) = tvar(b) U tvar(c). 
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2.3 Process Terms 

Let a E A U { 6}, v E TV ar, V an interval and b a bound. The set of process 
terms, with typical element p, is defined by 

p ::= r a[v] I r (a[v]. p) I p + p I p. p I P!IP I u~(p) 
lveV lveV 

The operator u _ is called the (negative) time shift. It is an auxiliary operator 
that is needed in the operational semantics of the merge II· The process q:_(p) 
denotes the process p that is shifted back r time units in time. 

In the sequel fve[b,b] a[v] is abbreviated by a[b]. Furthermore, we shall use 
a scope convention, saying that if we do not write scope brackets, then the 
scope is as large as possible. Thus we write fveV a[v] · p for fvev(a[v] · p). 

2.4 Time-closed Processes 

In general, one cannot attach a transition system to a process term containing 
time variables that are not 'guarded' by an integral sign. For example, what 
would be the behaviour of a process fve[a:,y] a[v]. Therefore, the notion of a 
time-closed process is introduced. 

First, define inductively the collection FV(p) of time variables appearing 
in a process term p that are not bound by an integral sign, the so-called free 
variables: 

FV(fvEV a[v]) = tvar(V) 
FV(fveva[v] · p) - (FV(p)\{v}) Utvar(V) 
FV(pDq) = FV(p) u FV(q) OE{+,·, Ii} 
FV(u~(p)) - FV(p) U tvar(b) 

A term p is called time-closed if FV(p) = 0. The model for ACP rql that we 
shall consider contains only the time-closed process terms. 

A substitution is a mapping O' : TVar - ~o U { oo }. We can extend u to 
the collection of processes; u(p) denotes the process p with all free occurrences 
of a variable v replaced by O'( v ). Clearly, u(p) is a time-closed process, and we 
denote u(p) by p[O'(v1)/v1, ... , u(vk)/vk], where v1, ... , Vk are the free variables 
of p. 

2.5 Ultimate Delay 

The ultimate delay U(p) of a time-closed process p is the latest moment in 
time till which p can idle without executing an initial action. Moller and Tofts 
have introduced a similar construct [MT90], called the maximum delay. It is 
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defined inductively as follows, where a E A U { 6}. 

U(J11ev a[vJ) - sup(V) 
U(J11ev a[v] · p) - sup(V) 
U(p+ q) - max{U(p), U(q)} 
U(p· q) - U(p) 
U(pllq) - min{U(p), U(q)} 
U(u~(p)) - U(p) .:. r 

The ultimate delay enables to distinguish processes that only differ in their 
deadlock behaviour. For example, the processes a(l) + 6(1) and a(l) + 6(2) 
can only execute the a at 1, but they have different ultimate delays. 

2.6 Operational Semantics 

Table 1 contains an operational semantics for ACP rqI, taken from [Klu91]. It 
is assumed in Table 1 that a, b E A and r E G:bo. 

The rules defining the communication operators are such that the merge 
does not result in arbitrary interleavings. For this would result in transitions 

such as a[l] II b[2] ~ u~(a[l]), which means that the process gets into a 
deadlock. Such situations are avoided as follows. Suppose that p can execute 
an action a[r]. Then pllq can execute action a[r] only if r < U(q). 

2. 7 Bisimulation 

We consider process expressions modulo (strong) bisimulation. 

Definition 2.1 Two process expressions Po, q0 are said to be strongly bisimi­
lar, notation Po ±:::t Qo, if there exists a symmetric, binary bisimulation relation 
R such that 

1. PoRQo. 

2. If p ..'.±:! p' and pRq, then q ~ q' for some process q' with p'Rq'. 

3. If P ..'.±:!../and pRq, then q a[r! ..;. 

4. If p'f4, then U(p) = U(q). 

Strong bisimulation is a congruence, which can be seen by extending the 
operational semantics with rules defining predicates U (p) = r. Such mix fix 
predicates fit into the tyft/tyxt format extended with predicates of Baeten 
and Verhoef, called the path format (BV93]. Strong bisimulation defined by 
transition rules within this format is always a congruence, and the strong 
bisimulation that is induced by our extended operational semantics is exactly 
the one given in Definition 2.1. 
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fvev If r E V\{O, oo}, then 

+ 

II 

fveva[v] ~ J 

a.[r] I 
p - v 

a.[rl q 
p·q -.!4 

a.[r] 
fveva[v]·p - p[r/v] 

a[r] 1 

p -- p 
a[r] 1 

p·q -- p ·q 

a[r] / a[r] 1 
P-v P-P 

a[r] 1 a[r] a.[r] 1 a.[r] 1 
p+q - y q+p - J p+q - p q+p - p 

p ~ J r < U(q) 

p ~ p' r < U(q) 

If alb = c =I= 8, then 

a.[r] / b[r] . / 
P-v Q-v 

pllq .:tl J 

a[r] 1 b[r] / 
p---+p q-q 

pllq c[r] p'llq' 

p.'.:!jJ s<r 

Ci~ (p) a[r-s] J 

p~J q~q' 
Pllq c[r] q' qllp c[r] q' 

p~p' s<r 
8 ( ) a[r-s] / 

(j_ p --t p 

Table 1: Action rules for ACP rqI 
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2.8 Recursion 

We define what is a recursive specification E. Assume a set VE of pairs (X, k ), 
with X a recursion variable and k the number of its time parameters. Now 
E consists of a collection of equations 

{X(vi, ... , v1c) = tcx,1c) I (X,k) EVE} 

where v1, •.• , v1c denote time variables and t(X,lc) a process expression, possibly 
containing expressions of the form Y(bi, ... , bz), where (Y, l) E VE and b1, ... , b1 
bounds. 

In this paper we shall only consider finite recursive specifications, i.e. it is 
assumed that for each recursive specification E the collection VE is finite. 

In order to define the collections FV(tcx,1c)), it is sufficient to extend the 
definition of free variables to expressions X(b1, ... , b1c): 

A recursive specification is called well-defined if all its equations X( v1, ••• , v1c) = 
tcx,1c) satisfy FV(tcx,1c)) ~ {v1, ... , v1c}. 

The notion of a process term is extended by allowing expressions of the 
form (X(b1, ... , b1c)IE) with E a well-defined specification and (X, k) E VE 
and b1, ... , b1c bounds. By abuse of notation, (X(bi, ... , b1c)IE) is often denoted 
by X(b1, ... , b1c). 

In the following table the operational semantics for time-closed process 
terms is extended to recursion variables, by supplying (X(r1, ... r1c)IE) with 
the action rules of tcx,1c)(ri/v1, ... , r1c/v1c]. 

Here, the term (tcx,1c)[ri/v1, ... , r1c/v1c] I E) denotes t(x,1c)h/v1, ... , r1c/v1c] with 
each occurrence of expressions Y(b1, ... , bz) replaced by (Y(b1, ... , bz)IE). 

3 Eliminating the Merge 

We prove an Elimination Theorem for a class of regular behaviours. Usu­
ally, regularity of a process is defined in terms of having a finite number of 
states. However, in the present setting this definition would backfire, due to 
the presence of the integral construct, which causes even finite processes to 
have an infinite number of states. Therefore, we use a different definition for 
regularity here. 
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3.1 Linear Recursive Specifications 

In untimed process algebras one can prove, for suitable models, that a process 
is regular if and only if it is equivalent to a solution of a finite linear recursive 
specification [Mil84). Here, we use this property as the definition of regularity. 

A finite recursive specification over ACP rqI shall be called linear if all its 
equations are of the form 

A process is called regular if it is bisimilar to a solution of a linear recursive 
specification. 

3.2 A Counter-example 

The following simple example shows that one cannot hope to find an Elimi­
nation Theorem for general regular processes. 

Example 3.1 Define 

X = fve(O,l} a[v] · Y(v) 

Y(v) = fwe[v,v] a[w] · Y(w) 

Consider the process p = Xllb[l). For convenience we put aJb = 6. 

Each trace of the process X is of the form a[r] · a[r] · a[r] · ... with r E (0, 1). 
Let a[r) be the first transition that is executed by p. If r E {1/(n + 1), 1/n) 
for certain n, then p will execute this a[r] n times, followed by b[l -nr], then 
a[(n + l)r - 1], and after that only a[r)'s. And if r = 1/(n + 1), then p will 
get into a deadlock, after n times executing a[r). 

So a linear specification describing the behaviour of p would have to contain 
infinitely many summands. Hence, p is not regular. {End example) 

Thus, the class of solutions of linear specifications is too big for finding an 
Elimination Theorem. On the other hand, if no occurrences of time variables 
are allowed in the process terms, then the collection is clearly too small. 
Because in this class even equivalences such as 

1 a[v] II 1 b[w] - 1 a[v] · 1 . . b[w] 
vE(0,1) wE(l,2) vE(0,1) wE(l-v,2-v) 

cannot be expressed anymore. 
So, is there an algebra in between, for which an Eliminq.tion Theorem can 

be deduced? The answer is yes. 
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3.3 Strong Regularity 

Define a process to be strongly regular if it is a solution of a linear specification 
(of the form 1) that satisfies the following requirements: 

• the bounds in the Vi are all of the form r or r ..:.. v;, where r E ~o U { oo}. 

• the bounds bi; are all of the form v or v; + v, where v; '=/= v. 

We shall deduce an Elimination Theorem for this algebra. But first, we give 
two more examples to show that the elimination result would not hold for a 
less restrictive definition of strong regularity. 

3.4 Two More Examples 

Example 3.1 already showed that if one allows not only expressions r and 
r ..:.. v;, but also variables v; as bounds in the intervals of strong regularity, 
then the elimination result is lost. The following example implies that neither 
can one allow variables v; as bounds bij· 

Example 3.2 Define 

X = fve(O,l) a[v] · Y(v) 

Y(v) = fwe[i.:.,,,1.:.v] a[w] · Y(v) 

The process p = X llb[2] (with alb = 6) is not a solution of a linear specifica­
tion. 

Each trace of the process X is of the form a[r] · a[l - r] · a[l - r] · ... with 
r E (0, 1). So if the first transition that p executes is a[r] with r E ((n -
2)/(n-1), (n-1)/n) for some n ~ 2, then p will first execute n+ 1 a's, then 
a b and then only a's. And if r = (n - 2)/(n - 1), then p will execute n + 1 
a's and get into a deadlock. (End example) 

Finally, the following example shows that one cannot allow expressions 
r ..:.. s · v as bounds in the intervals Vi, where s E Q,0 . This example is a bit 
more complicated than the previous ones. 

Example 3.3 Define 

= f11e(o,1) a[v] . X2( v) 

= fwe[~.:.! 11 ;i..:.lv] a[w] · X2(w) 
2 2 1 2 2 

The process X1llY1 (with a!b = 6) is not a solution of a linear specification. 
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Let us consider the processes X1 and Y1 in absolute time for a moment. An 
easy calculation tells that if X1 executes its first action at timer, then its nth 
action will be executed at (absolute) time n - (1- r)a:n, where 

n-1 l . 
an= I)--)' 

i=O 2 

So if the first action of X 1 is a[r], then for eliminating the merge from X 1 11 Y1 , 

it is essential to know whether a:n(l - r) is smaller or greater than 1/2 for 
n = 1, 2, .... Because this inequality implies whether the nth a-action is 
executed after or before the nth b-action. And if (1- r)an = 1/2 for some n, 
then X 1 llY1 will deadlock after n - 1 transitions. 

The equalities r = 1 - 1/(2an), n = 1, 2, ... give an infinite partition of the 
interval {O, 1). {End example) 

3.5 The Elimination Theorem 

For the algebra of strongly regular processes we have an Elimination Theorem. 

Theorem 3.4 {Elimination Theorem) For each pair of strongly regular pro­
cesses p and q, there exists a strongly regular process z such that pllq ~ z. 

We do not give the full proof of this theorem, which is quite technical and 
takes many pages, but confine ourselves to an outline. For further details, the 
reader is referred to [Fok93]. 

First, we formulate a preliminary lemma. Assume a finite collection of 
bounds !3. An ordering a on l3 consists of an anti-symmetric relation <a: 
together with a symmetric relation =a: on !3, such that for each pair b, b' E I3 
either b <a b' or b' <a b or b =a b'. 

For an ordering a on l3 and a substitution <T : TVar ---+ ~o, the set of 
relations a(a:) results to either true (if all (in)equalities are true) or false 
(otherwise). Let [a:] denote the collection of substitutions <T for which <T(a) 
is true. Note that for each a there is exactly one ordering a on B such that 
a E [a]. 

We consider a specific set of bounds. Let bi, ... , bm denote bounds and 
t E (fb0 and N E N. Then Bt,N(b1 , ... , bm) is defined to be the following set of 
bounds: 

Bt,N(b1,. .. ,bm) = {kt, kt...:_ bi I k=O, ... ,N, i=l, ... ,m} U {oo} 

Now the lemma is as follows. Let x, x1, ... , Xn denote time variables. 

Lemma 3.5 For each ordering a of l3t,N(x1, ... ,xn)U{x} there is an ordering 

/3 of Bt,N(x, X1 + x, ... , x,. + x) such that [a] ~ [/3]. 
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The proof of this lemma is omitted. It consists of simply rewriting each 
possible relation in Bt,N(x, x1 + x, ... , Xn + x) to a relation in Bt,N(xi, ... , xn) U 

{x}. 

Sketch of the proof of the Elimination Theorem: 
Assume two strongly regular processes p and q. We construct a strongly 
regular process z such that Pllq .!:::::. z. 

By definition, p and q are bisimilar to processes (X1(r1, ... , rm(l))IE) and 
(Y1(s1 1 ... ,sn(l))IE'} with ri,Si E ~o U {oo}, and the equations of E and E' 
are of the form 

where the bounds in the intervals Vk and Wz (respectively V£ and Wz') are 
expressions r or r ..:.. Vi (respectively r ..:.. wi) with r E Q;;,o U { oo }, and the 
bounds bki (respectively b/ci) are expressions v or Vj + v (respectively Wj + v ). 

Let {t1, ... , tm} be the collection of rationals that occur in E and E'. We 
can assume this set to be non-empty. Let t be the greatest common divisor 
of this collection, i.e., the greatest rational such that tif t is a natural number 
for each i. Define 

N = max{tift, ... , tm/t} 

Ensure, by applying a-conversion, that the Vi and the Wj are all different. 
In the linear specification to describe the behaviour of Pllq consists of the 
following recursion variables (apart from the X1 and YJ ). For each recur­
sion variable W°' ( x1, .. ., Xn) we assume that a ranges over all orderings of 
Bt,N(X1, ... ,xn) for which [a] f 0. 

1 X1(x,x1, ... ,Xm(I)) 

The expression Xr( v, v1 + v, ... , Vm(I) + v) describes the behaviour of the 
process <7:'.'.'..(X1(v1,.-.,vm(I))). 

2 YJ(X, Yi, ... , Yn(J)) 

The expression YJ(v, w1 +v,. .. , Wn(J) +v) describes the behaviour of the 
process <7:'.'.'..(YJ(w1, ... , Wn(J))). 

3 Z[J(x1, ... , Xm(I), Yi, .. ., Yn(J)) 

This recursion variable describes the behaviour under condition a of the 
process X1(x1, ... , Xm(I))llYJ(Y1, ... , Yn(J))· 
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4 Z'!"J(x, X1, ••• , Xm(I), Yli ... , Yn(J)) 

This recursion variable describes the behaviour under condition a of the 
process X1(x, x1, ... , Xm(I)) llYJ(Y1, ... , Yn(J))· 

5 ZfJ(x1, .. .,Xm(I)1X1Y1, ... ,yn(J)) 

This recursion variable describes the behaviour under condition a of the 
process X1(xi, ... , Xm(I))li?J(x, Yi. ... , Yn(J))· 

We consider the process X1(v1, ... , Vm(I))llYJ(W1, ... , Wn(J)), to explain why 
we need all these recursion variables. The behaviour of this expression cannot 
be described by only one linear equation, due to the appearance of open 
variables. Therefore, we have introduced a collection of variables ZfJ, where 
a ranges over orderings on Bt,N(Vi, ... , Vm(I), w1, ... , Wn(J)) for which (a] =f. 0. 

We give a short, intuitive description to explain the crux in constructing 
the equation for such an expression Z.f:,(v1 1 ... ,Vm(I)iW1, ... ,wn(J))· Suppose 
that it executes an initial action a,,:[v] with v E Vk (originating from X1). The 
resulting behaviour is 

which is described by zK1(bk11 ... , bkm(I1c)• v, W1 + v, .. ., Wn(J) + v). The only 
problem is, what is the condition /3? Or in other words, does the condition 
a/\ v E vk imply an ordering on Bt,N(bk11 ... , bkm(I1c)> v, W1 + v, ... , Wn(J) + v)? 

According to Lemma 3.5, the answer is yes if a/\v E Vk implies an ordering on 
Bt,N(v1, .. ., Vm(l)• w1, ... , Wn(J)) U {v}. And this can be ensured by partitioning 
the intervals Vk into sufficiently small subintervals. {End sketch of proof) 

3.6 An Example 

We study an example, to give some more intuition for the Elimination The­
orem. It turns out that even for very simple strongly regular processes, the 
behaviour of their merge can only be described by a very complicated linear 
specification. 

Example 3.6 Define 

x = r a[v]. x 
lve(0,1) 

Let p = Xllb[k] 1 where k EN and alb = 6. The process p is strongly regular. 
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The behaviour of p can be described by the following linear specification, 
containing k + 3 equations. 

Xo = fvE(O,l} a[v] · X1(v) 

Xi(v) = fwe(o,i.:..v] a[w] . Xi( v + w) + fwE(i.:..v,l) a[w] . xi+l ( v + w) 

i = 1, ... , k -1 

Xk(v) = fwe(o,k.:..v) a[w] · Xk(v + w) + fwe[k.:..v,k.:_v] b[w] · Y(w) 

Y(v) = fwe(o,1.:..v) a[w] · X 

x = fvE(O,l) a[v] . X 

The idea behind this specification is quite easy. Process p will execute X until 
it reaches (absolute) time k, when it executes a b. After that it continues 
with X. Now, when hasp the possibility of executing bat k? This is if p has 
executed an a after time k - 1. So if this is the case, the linear specification 
must take into account the execution of b at k. And when can p execute an 
a after k - 1? If it has executed an a after k - 2. So if this is the case, the 
linear specification must take into account the execution of a after k - 1, etc. 

The equations for the Xi, with i = 1, ... , k-1, register whether a is executed 
after time i or not. If so, then xi+l is triggered, and otherwise xi is repeated. 
Finally, Xk takes into account the execution of b. (End example) 

3.7 Timed Automata 

An automaton consists of a set of states S, a set of start states 80 ~ S, a set 
of labels A and a set of transitions E ~ S x Ax S. The language accepted 
by the automaton consists of all traces s0 ~ s 1 ~ s2 ~ · · · such that 
(si, ai, Si+1) E E for i = 0, 1, 2, ... Furthermore, the trace must satisfy certain 
fairness requirements, e.g., that it reaches a specific state an infinite number 
of times. 

The algebra of strongly regular processes can be linked to the class of timed 
automata of Alur and Dill [AD90]. For a timed automaton, the elements of 
E are supplied with timing constraints on 'clock variables'. These constraints 
are of the form x < r or x ~ r or x > r or x ~ r with x a clock variable 
and r E ~o, and there is a construct x := 0, denoting that while executing 
this transition, clock x is set back to zero. A trace is only accepted by a 
timed automaton if its transitions are performed at times that all the clocks 
satisfy their constraints. Again, there is a fairness requirement for accepted 
traces. Furthermore, Zeno behaviour has been explicitly excluded from timed 
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automata, i.e., traces are only accepted if they progress beyond every moment 
in time. 

The fairness restrictions, the non-Zeno requirement and the fact that only 
infinite traces are considered are obstacles for the translation between timed 
automata and strongly regular processes, since ACP rqI does not take into ac­
count such semantic restrictions. However, if these restrictions are discarded, 
then the classes of strongly regular processes and of timed automata turn out 
to be equivalent. 

We can translate strongly regular processes to the setting of timed automata 
as follows. A strongly regular processes executes an action a[v] under restric­
tions of the form vDr or vD(r ..:... Vi), with D E { <, >, ~. ~} and r E lfbo. 
These last inequalities can be rewritten to the form (Vi+ v) Dr. The Vi+ v and 
v can be regarded as clocks. Since we work in relative time, the v has been set 
back to zero by v := 0 in the previous transition. The state that results after 
executing a[v) is a recursive expression of the form X(v, v1 + v, ... , Vk + v). 
The Vi + v and v are some kind of memories, which store the actual times of 
the clocks at the moment of the transition a[v]. 

Conversely, the language accepted by a timed automaton (without semantic 
restrictions) can always be described by a strongly regular process. We give 
a simple example. 

Example 3. 7 We consider a timed automaton with states so, s1, of which so 
is start state, and clock variables x, y. The timed automaton is defined by the 
following two transitions: 

- (s0 , a, s 1 ) with time constraints x < 2, y := 0, 

- (s1 , b, s0 ) with time constraints x < 3, y < 2, x := 0. 

This automaton executes alternately a and b. We describe its behaviour by a 
linear specification. 

X = fve(O,l] a[v] · Y1 + fve[i,2) a[v) · Y2( v) 

Y1 = fve(0,2) b[v] . X 

Y2(v) = fwe(o,3.:..v)b[w]·X 

The process X describes the behaviour of the timed automaton. 
(End example) 
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