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14.1 Introduction 

In the previous chapter, Chapter 13, the virtues of multigrid methods were demon
strated through an elaborate example. That introduction enables us to regard a multi
grid method that comes much closer to solving real-life problems. We consider a general 
linear 2nd order elliptic PDE in two dimensions 

au au 
Lu= -V' · (D'Vu) + b1(x, y) ax + b2(x, y) ay + c(x, y)u = f(x, y), (14.1) 

on a bounded domain 0 c B.2 with suitable boundary conditions. D(x, y) is a positive 
definite 2 x 2 matrix function and c(x, y) ;?: 0. We suppose that 0 is a rectangular 
domain. For the general concept of multigrid methods we refer to Chapter 13 and 
the extensive literature on this subject (for lots of exquisite theory see [6], for a more 
practical viewpoint see [14]). For the multigrid method to be discussed we consider a set 
of increasingly coarser grids ( vertex-centered): 

01 :::i 01-1 :::i .•. nk :::i ... :::i flo. 

The grids are described as follows: 

Ok= {(x;, y;) IX;= 01 + (i - l)hk, Yi= 02 + (j - l)h1c} (14.2) 

where (01,02) is the origin and hk-l = 2hk· The discretization on the finest grid 0 1 

evokes the linear system 
(14.3) 

Neither uniformity nor rectangularity of the grids is essential to our approach, prob
lem (14.1) may be discretized on a curvilinear grid. 

Firstly, in section 14.2, we consider the coarse grid correction. It is explained why, 
with a standard choice for the prolongation and restriction a multigrid algorithm may 
fail to converge. We go on to show a remedy. Secondly, in section 14.3, we consider the 
other major part of the multigrid algorithm: the smoother. In this chapter we confine 
ourselves to structured grids and for that the Incomplete Line LU appears to be most 
appropriate as smoother. Thirdly, in section 14.4 we show numerical results for problem 4 
(the Molenkamp problem) defined in Chapter 1 of this book. A multigrid solver is used, 
of which the major parts are described in the foregoing sections. This solver has proven 
to be able to solve many 9-point discretized advection-di:ffusion problems [16]. The 
Molenkamp problem, as it is specified, can be considered as the (difficult) limit-case 
of an advection-di:ffusion problem for which the diffusion vanishes. In section 14.4 our 
main concern is the efficiency of the iterative solver and not so much the accuracy of 
differencing schemes. In section 14.5 conclusions are summarized. 
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14.2 The Galerkin approximation 
In this section we study one of the main parts of a multigrid algorithm: the coarse 
grid ~orrection. It is demonstrnted that the standard approach is not satisfactory; a 
full analysis of the occurring difficulty is given, followed by a remedy which consists of 
choosing the prolongation and restriction in an operator-dependent way. 

Consider the coarse grid correction ( CGC) within the multigrid correction scheme: 

dk-1 
solve Lk-1ek-1 

ih 

Rk-1(Jk - Lkuk); 
dk-1; 

Uk+ Pkek-1· 

(14.4a) 

(14.4b) 

(14.4c) 

Rk-l is the restriction operator that transfers the residual from the fine grid nk onto the 
coarse grid nk-li Pk is the operator that transfers a correction for the solution from the 
coarse to the fine grid. Firstly we raise the question how to make an appropriate choice 
for Lk-l · One obvious and straightforward way is by discretization of the operator L 
on flk-l· A disadvantage of this approach is that it may fail if L has (rapidly) varying 
coefficients and nk-l is a very coarse grid, because then the sampling of the coefficients 
becomes faulty. Another approach is suggested by the diagram in Figure 14.1 (S(01:) 
denotes the space of grid-functions defined on nk)· 

S(Dk) 
Lk 

S(Ok) 

p, 1 l R,_, 

S(Ok-1)-
Lk-1 

- S(Ok-il 

Figure 14.1: Diagram of Galerkin approximation 

The operator Lk-l (corresponding to the dashed arrow) is defined by the sequence 
of operations 

(14.5) 
Definition ( 14.5) is called the Galer kin coarse grid approximation [14]. Definition (14.5) 
is an essential ingredient for a black-box algorithm. By the latter we mean an algorithm 
with the linear system ( 14.3) as input, the solution as output and without parameters 
which have to be tuned. No interference of the user with the algorithm is required. In 
the context of multigrid methods this means that the user only needs to provide the 
system on the finest grid. The corresponding systems on the coarser grids are derived 
by an explicit construction according to (14.5). An advantage of (14.5) is that after the 
coarse grid correction the restriction of the residual vanishes 

(14.6) 
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This means that at each coarse grid point a weighted average (with non-negative weights) 
of the fine-grid residual is zero, which implies that the residual consists of short wave
length components only. Such components can be reduced efficiently by a subsequent 
smoothing step. 

We choose the restriction to be the transpose of the prolongation 

(14. 7) 

Hence, once Pk has been chosen, Rk-l and Lk-l follow automatically and the coarse 
grid correction is determined. Note that by (14.7) the possible (anti)symmetry of Lk is 
maintained on the coarser grid. Further, when Lk is a conservative discretization of L 
and Pk interpolates a constant function exactly, then the Galerkin approximation Lk-l 
is conservative just as well (see [16]). 

So finally we end up by having to make a choice for the prolongation. Under the 
assumption of (14. 7), the prolongation must satisfy an accuracy condition in order to 
obtain mesh-size independent rate of MG-convergence (see [2, 6, 7, 14]) 

2mp > 2m, (14.8) 

where 2m is the order of the PDE, and mp is the highest order plus one, of polynomials 
that are interpolated exactly by the prolongation. A standard choice for the prolonga
tion is bilinear interpolation which satisfies the accuracy condition. This interpolation 
amounts to taking an equal average of solution-values at neighbouring coarse-grid points 
(see Figure 14.2). 

• 0 • 
• coarse-grid point 

0 0 0 

o fine-grid point 

• 0 • 
1/2 1/2 

Figure 14.2: Bilinear prolongation 

At the grid-points of the fine grid that coincide with the coarse grid we take identical 
values. The bilinear prolongation can also be denoted by the stencil 

1 
4 
l 
2 
1 
4 

1 
2 
1 
1 
2 

(14.9) 

This stencil shows the non-zero values of the fine-grid function generated by the prolon
gation of a coarse-grid function which equals 1 at one point and 0 elsewhere. Because 
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of (14.7), the same stencil also represents the chosen restriction operator. Because of 
the foregoing remarks it looks as if an accordingly constructed MG-algorithm, furnished 
with an effective smoother, should do the job. Indeed, this is the case for a considerable 
class of problems. Yet, when a dominating advection term is present, divergence may 
occur. This is the topic of the next section. 

14.2.1 Example of Galer kin approximation for an advection dominated prob
lem 

Consider the following linear operator: 

au 
Lu = -ED.u + ox. (14.10) 

For vanishing diffusion the following stencil is the result from some simple upwind dis
cretization on a grid with mesh-size equal to 1: 

L, ~ [ ~: : : l (14.11) 

By repeatedly applying (14.5) for the standard choice (14.7,14.9) we observe on then 
times coarsened grid !11_n the stencil: 

1 1 l [ 1 
6 -12 -12 
g. _l + 2n -.1 3 3 3 
1 1 1 
6 -12 - ii 

0 +-1_ l 12 

0 +1~ + ... 
0 +12 

(14.12) 

with a remainder that is rapidly decreasing with n. (This observation is verified in 
the next section.) The two stencils are the same ones as evoked by discretization with 
bilinear finite elements of a diffusion and advection term in the x-direction. Apparently 
the advection-stencil increases exponentially with n. Each time the grid is coarsened by 
the factor 2, the mesh Peclet numbers are multiplied by the same factor, which is reflected 
by the Galerkin coarse grid approximation. For increasing n the central advection-stencil 
will dominate and spurious high-frequent solutions will be created on the coarse grid and 
subsequently transferred to the fine grid. For small n it may be a feasible approach to 
require that the relaxation method on the fine grids is such that those components are 
sufficiently smoothed. However, when a really fine grid is employed, we need a substantial 
number of grid-levels to make use of the coarsest grid, where the components with the 
lowest frequency are reduced. In this case n can be so large that the spurious solutions 
created on the coarse grids affect severely the convergence of the multigrid algorithm as 
a whole. The equality (14.6) may still hold after the CGC, but we have to recognize that 
the amplitude of the short wavelength components comes to a very large magnitude. A 
first experimental result of divergence for an advection-diffusion problem, even when a 
robust smoother like IL U is in use, can be found in [17] (together with a Fourier local 
mode analysis). 

14.2.2 Analysis of the Galerkin approach for constant coefficients 

In this section we give an analysis of the behaviour of the Galerkin coarse grid approxi
mation for the advection-diffusion equation. We confine ourselves to the case of constant 
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coefficients. The matrix Lk is represented by a single nine-point stencil only. With 
the choices (14.5),(14.7) and (14.9) we obtain a coarse grid matrix Lk-l which is also 
represented by a nine-point stencil. Because of the constant coefficients, the construc
tion (14.5) can be seen as the linear transformation 

Ji C1 

f2 C2 

fs C3 

(14.13) 

f6 C5 

f7 C7 

fs Cg 

jg Cg 

with G a 9 x 9-matrix. The vectors correspond to the stencils 

r-[ Jg l f5 , 

h 

Cg l 
C5 . 

C3 

(14.14) 

The stencil J* is defined on the fine grid, the stencil c* is defined on the coarse grid. The 
matrix G describes what becomes of a stencil on the fine grid under the Galerkin coarse 
grid approximation. An eigenvalue decomposition of G exists and reads: 

G = vnv- 1 ,c, v,D E Jm.9 x Jm.9 , 

where D is a diagonal matrix showing the eigenvalues of G and 

v 

v-1 

1 
3 

1 1 
4 -12 
0 0 
1 l 

-4 12 
1 1 

-3 -3 
1 1 

-3 6 
1 0 
1 

-1 -1 -1 

1 1 1 
1 l 1 
6 -12 6 

~ 0 -~ 
1 l 1 
9 -i-8 9 

1 1 
-12 36 1 

-l ~ -2 

1 1 

0 -2 
1 1 

-12 36 1 -1 1 

0 ~ 
0 

0 

4 
9 

0 -2 -2 
0 0 4 

1 
§ 0 

1 1 1 12 36 -
1 l 2 
3 9 

2 -2 

1 1 

0 -2 
1 1 

12 36 
l 

-1 -1 1 

6 
l 
6 
0 

1 1 
-3 -3 

1 1 
6 -3 
0 1 

0 1 -1 

0 

1 

0 

0 

0 1 

1 1 

0 -~ 
l 1 

12 6 
1 1 1 

36 -l.8 § 

1 
6 
1 

-3 
0 

0 

1 1 

1 1 
1 1 

12 -5 

0 -~ 
1 1 

-18 9 

(14.15) 

(14.16a) 

(14.16b) 
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D = diag ( 1 1 l 2 2 4 ~ ~ i ) . (14.16c) 

The proof follows from a straightforward but tedious evaluation (see [16]). 
The column-vectors of V are the right-eigenvectors of G, the row-vectors of v- 1 are 

the left-eigenvectors of G. Below we depict these vectors as 9-point stencils, together 
with the corresponding eigenvalues. The stencils with the first six right-eigenvectors are 
the ones as evoked by discretization with bilinear finite elements of partial derivatives, 
ranging from zeroth to second order. The stencils read: 

[ _l 
12 

1 
6 

[-1 
1 
9 

l] 
12 

l l 

32 
,..., -h2 ---~ A3 = 1, (14.17c) oxoy, 

f) 
,..., h .... 

ox' 

f) 
,..., h--

oy' 

,...., I, 

A4 = 2, (14.l 7d) 

A5 = 2, (14.17e) 

A6 =4, (14.17f) 

3 83 1 ( ,...., -2h aya--;;2,A1 = 2, 14.17g) 

,...., -2h3 --f!3 
· As=! (14.17h) 

8xoy2 ' 2 ' 

84 
,..., h4 -·- - Ag=~· (14.17i) 

fJx2f)y2' 

We denote the set of right-eigenvectors by { Vj L=1,. .. ,9 and the set of left-eigenvectors 
by { WjL=1,. . .,9. The right-eigenvectors { Vj L=1, ... ,9 form a linearly independent set of 
vectors that span 1.9. Because trivially v-1 V = I, we observe that the two sets of 
eigenvectors satisfy a bi-orthonormality relation. Therefore, if we have some stencil f*, 
we can easily determine the coefficients of the unique linear combination of the vj to 
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which it is equal 
g 

f = 2.:.Jw1, f)v1. (14.18) 
j=l 

For the advection-diffusion example described by (14.10) and (14.11) we find 

(14.19) 

Because 
en= v nnv-1 , (14.20) 

we ~nd after the n times subsequent application of the Galerkin coarse grid approxima
tion the stencil 

L* 1 *+2n *+(l)nl *+(l)nl * (1421) l-n = 2V1 V4 2 12Vs 4 EiVg · 

on then times coarsened grid. We observe how, for increasing n, Li-n is dominated by 
the central advection stencil v,j. 

Remark Analogous results hold for 7-point stencils of type 

provided (14.7) holds and 
1 
2 
1 
1 
2 

fs] 
h 

Here also exists an eigenvalue decomposition of G, which reads: 

G = v nv-1 , G, v, DE J.7 x1.7 . 

D is a diagonal matrix representing the eigenvalues of G and 

0 -1 1 1 1 1 1 
2 -6 -3 f2 

0 0 1 1 1 1 -1 2 6 -5 f2 
-1 0 1 1 1 1 -1 -2 -3 -5 f2 

v 2 2 1 0 0 1 0 2 
-1 0 1 1 1 1 1 -2 3 6 12 

0 0 1 1 1 1 l 2 -6 6 f2 
0 -1 1 1 1 1 -1 -2 6 3 12 
1 1 1 1 1 1 
6 3 -3 6 -3 -3 
1 1 1 1 1 1 

1 
6 
1 

3 -3 6 6 6 -3 -3 
1 5 1 1 1 5 1 

-5 6 -5 -5 -6 6 -5 
v-1 0 1 -1 0 1 -1 0 

-1 -1 0 0 0 1 1 

1 1 1 1 1 1 1 
l 1 1 0 1 l 1 
6 -6 -5 6 6 6 

D diag ( 1 1 1 2 2 4 ~ ) . 

(14.22) 

(14.23) 

(14.24) 

(14.25a) 

(14.25b) 

(14.25c) 

341 



14.2.3 Upwind prolongation 

The Galerkin coarse grid approximation (14.5) can be looked upon as discretizing Lk 
into Lk-I (the analogue of discretizing L into L1_ 1). The type of this discretization 
is determined by the choice of Pk and Rk-l· When we choose (14.7) and the bilinear 
prolongation (14.9), the type of discretization is some central differencing scheme. This 
central differencing is the reason why the ratio of numerical advection and numerical 
diffusion is increasing at the same pace as the mesh Peclet number when the grid is 
coarsened. The remedy is to use an upwind prolongation, that is related to the method 
of characteristics. The restriction is again defined by (14.7), which hereby becomes of 
upwind-type as well. By this remedy, the Galerkin coarse grid approximation (14.5) 
becomes an upwind-type discretization of Lk into Lk-l · As an example, suppose we only 
accept information from the left-hand side, i.e. the solution upstream. This corresponds 
to a prolongation with biased weights as depicted in Figure 14.3. 

0 

0 coarse-grid point 

0 0 0 

o fine-grid point 

0 
1 0 

Figure 14.3: Example of upwind prolongation 

In stencil notation the upwind prolongation and restriction look like 

[ 
1 
2 
1 
1 
2 

1 
2 
1 
1 
2 

In this case the Galerkin coarse grid approximation is given by 

- -1 - 9 9 Gup = V DV , Gup, D E llR x I. , 
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with\. given by (14.16a) and 

2 0 0 0 0 I 0 0 0 3 

0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 

jj = 0 0 0 0 2 0 0 0 0 (14.28) 
0 0 0 0 0 4 0 0 0 
0 0 0 0 1 0 1 0 0 12 

0 0 0 0 0 0 0 I 0 2 
0 I 0 0 0 0 0 0 1 

12 2 

\\'e observe that now the amplification of the diffusion-stencil (14.l 7a) in the x-direction 
keeps pace with the amplification of the advection-stencil (14.l 7d). For the example 
from section 14.2.1 and by repeatedly applying (14.7) and (14.5) we obtain on then 
times coarsened grirl Sli-n (see [16]): 

that is 

L * _ 2n 1. * 2n, * + (I )n 1 * ( l )n J * l-n - 2V1 + V4 2 jjVs + 2 12V9, 

l 
6 
2 
3 
l 
6 

and we observe that the upwind approximation of the derivative is preserved. 

(14.29) 

(14.30) 

Generally speaking, the point we like to make is as follows. We can use the 9-point 
discretization that we prefer on the finest grid (not necessarily of upwind-type). The 
coarse grid correction ( 14.4) can be viewed as accelerating method for the relaxation 
on the finest grid. When we use bilinear interpolation for prolongation, the ratio of 
convection over numerical diffusion may grow much larger on increasingly coarser grids 
and thereby divergence of the CGC may occur. When we use a prolongation of upwind
type, the ratio of convection over numerical diffusion remains roughly the same at all 
grids in use with the multigrid algorithm. 

14.2.4 Matrix-dependent prolongations and restrictions 

The bias in the upwind prolongation may have to be different in each grid-point be
cause of the varying problem-coefficients. The only way to obtain information about 
these coefficients is by deriving them from the matrix (because we agreed to construct 
a black box which only needs to know the matrix and the right-hand side). Therefore, 
in this context, the upwind prolongation wished for is a matrix-dependent prolongation. 
Matrix-dependent prolongations were introduced in [l, 4]. In [16] a matrix-dependent 
prolongation operator has been proposed, able to handle both the case of dominant ad
vection (in general directions) and interface problems at the same time. Here we give 
only an outline of the method. The grid Slk is split into four disjoint sub-grids as follows: 

343 



nk,(0,1) = {(x,y+ hk) E nk I (x,y) E flk_i}, 

nk,(1,1) = {(x + hk, y + hk) E !lk I (x, y) E flk-1}, 

where hk is the mesh-size of grid nk· 
1. Let ~ E Dk,(1,0) or ~ E Dk,(O,l) be a point where we have to interpolate a coarse grid 

correction. Decompose the matrix Lk in its symmetric and antisymmetric part. 
The symmetric part Sk is presumed to correspond with diffusion and the zeroth 
order term, the antisymmetric part Tk with advection. 

2. Reconstruct the diffusion and zeroth order coefficients at ~ from Sk, and the ad
vection coefficients from Tk. 

3. Use expressions that define an optimal choice for each sample of a set of degenerated 
cases for Lk· 

4. At the fine-grid points in nk,(O,o), adopt the values on nk-1· 

5. At the fine-grid points in !lk,(l,l), solve the homogeneous equation to obtain the 
correction. 

Applying the derived formulae to the particular example of section 14.2.1 we obtain the 
upwind prolongation in Figure 14.3. Also here we adhere to (14.7) and (14.5), though 
the implementation of the latter is far from trivial. The actual computation of the coarse 
grid matrices takes less work than the Incomplete Line LU-decompositions described in 
the next section. The above is employed in the code MGD9V (this author). The code has 
a NAG-like outward appearance and is readily available. It uses the sawtooth multigrid 
correction scheme [13] (see Chapter 13) and Incomplete Line LU for smoother. For a 
more detailed motivation of the prolongation and a description of the code, together with 
numerical experiments to illustrate its good behaviour, see [16]. Reusken [10] proves uni
form convergence for a multigrid method applied to a lD singularly perturbed boundary 
value problem when matrix-dependent prolongations and restrictions are employed (see 
also Chapter 13, this book). 

14.3 Smoothers for the advection-diffusion equation 

A comprehensive survey of smoothers applicable to the advection-diffusion equation (14.1) 
can be found in [14, § 7]. For non-adaptive grids the Incomplete Line LU (ILLU) (or 
Incomplete Block LU) appears to be the most robust choice (see [8, 9, 11, 16]). By 
this method full advantage is taken of the matrix-structure. Here we repeat the general 
outline of this method, which has been originated by Underwood [12] (see also [3] for an 
overview on block-type methods). We want to solve the linear system 

Ax= b 

that we assume to have a block tridiagonal form, so 

Di U1 
L2 D2 U2 

A= L3 D3 
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where ny is the number of grid-points in they-direction. The block DJ has the tridiagonal 
form: 

dlj U1j 

l2j d2j U2j 

l3j d3j 
( 14.33) 

dn,j 

where n,, is the number of grid-points in the x-direction. In case of a discretization with 
nine-point stencils the blocks Li and Ui have a similar form. The ILLU-decomposition 
is defined by 

with 

Di, 

Dj - tridiag(L)'.5j~ 1 Uj_i), j = 2(1)ny. 

( 14.34a) 

(14.34b) 

The operator tridiag() forces a block (by clipping) into the sparsity pattern of the Dj· 
Without this particular operator, the factorization of A would be a complete one (see [5, 
§ 8.5]). Performing one ILLU-relaxation sweep requires the following steps 
ILLU-sweep: 

r = b -Ax; 
Z) = r1; 

---1 
Zj = rj - LiDJ_ 1Zj-li j = 2(l)ny; 

---1 
Cny = Dny Zny j 

--1 
Cj=Dj (zi-Uici+1), j=ny-1(-1)1; 
Xnew = X +C. 

In [15] the ILLU-relaxation has been generalized from the case of a discretized scalar 
PDE to a set of coupled PDEs. 

There exist several degenerated cases for which ILLU becomes a complete decompo

sition, e.g. when all Li or all Ui are zero. Another case of interest is the following 

Proposition 14.3.1 If Lj = o:iD1, Ui-l = /3j- 1D1, Di = "1jD1,j = 2(1)ny where 
O:j, f3j-l, "Ii are arbitrary scalars, then the ILL U-decomposition, if existent, is a complete 
factorization. 

Proof. If 
tridiag(LrD}~ 1 Ui-il = Lj15j~ 1 Uj-1,J = 2(1)ny, 

then the factorization is complete. We prove that scalars µi =I 0 exist such that 

Di= µiD1,j = l(l)ny - 1. 

The equality holds trivially for j = 1 with µ 1 = 1. For j > 1 we obtain (by induction) 

Di= Di - tridiag(Lj15j~ 1 Ui-il::::} Di= Di-tridiag(LWi-\Dj1 Uj-1)::::} 
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with 
/3 -1 µj = /j - O:j j-lµj-1• 

From the assumption that the decomposition exists, it follows that µ1 f; 0. D 
Note that (but for existence of the ILLU-decomposition) this proposition applies to 

all the stencils on the right-hand side of ( 14.17), which correspond to the various partial 
derivatives. 

14.4 The Molenkamp test~problem 
In Chapter 2 of this book, Vreugdenhil applies several difference schemes to the Molen
kamp problem. Those schemes are generated by central differencing in space and implicit 
time-stepping. At each time-step a large, sparse linear system has to be solved. In 
Chapter 2 this is done by using a standard banded-matrix routine from the NAG library. 
The corresponding LU-decomposition needs to be done only once, yet this method puts 
too high demands concerning CPU-time and memory allocation. Typically, on an n x n
grid such a direct method takes 

n4 flops 

for the decomposition, and at least 

2n3 flops 

for each subsequent solution step (one flop is the amount of work associated with a 
multiplication joined with an addition). The storage requirements amount to 

2(n + l)n2 reals. 

Here we report on the performance of the iterative multigrid solver MGD9V (sec
tion 14.2.4) for the solution of the said large, sparse linear systems. Of course, also here 
the automatic construction of the coarse grid matrices and the ILLU-decompositions 
need to be done only once. The storage requirements of MGD9V amount to 

68 2 
3 n reals. 

The total amount of work is not a fixed function of n because for an iterative method it 
also depends on its convergence rate and the desired tolerance. However, if a multigrid 
method is well constructed, it is known from both theory and practice that the work 
necessary to reach some tolerance is ideally proportional to as little as n 2 , i.e. the number 
of grid-points. In this section we check by experiment whether this statement holds for 
MGD9V. 

In scheme (2.28) of Chapter 2, two parameters do occur: B and o:. The B determines 
the degree of time-implicitness: B = 1 corresponds to backward Euler, B = 0 corresponds 
to forward Euler. Only if B = ~ the accuracy of the scheme is of second order in time. The 
parameter a determines the space-discretization: a = 0 corresponds to the classical five
point scheme with central differences, a = ~ corresponds to the bilinear finite element 
method and o: = i to the box-scheme. In principle, the convergence rate of MGD9V 
may depend on these parameters. 
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14.4.1 Complexity and the Courant number 

We solve the Molenkamp problem with the 2-d implicit schemes of Chapter 2, and per
form - as specified - a full rotation of the cone. When we solve the linear system at each 
point of time by means of complete LU-factorization, this is called the direct approach; 
when at each point of time we use the multigrid solver MG D9V instead, this is called the 
multigrid approach. We use the solution at the previous point of time as initial solution 
for MGD9V, and we solve the linear system up to a certain (fixed) tolerance. Suppose we 
perform numerical experiments with varying n, but with fixed Courant number a. When 
n is increased by a factor 2, the direct approach takes twice the number of time steps. 
Because of the complexity of the decomposition and the subsequent time-stepping, the 
work for one rotation then increases by a factor 24 . With the multigrid approach the 
work for one rotation increases by a factor 23 , a factor 2 is explained by the number of 
time-steps and the remaining factor 22 is explained by the number of grid-points. This 
statement is valid under the condition that MGD9V presents mesh-independent con
vergence rate. The experimental verification of the statement follows from Figure 14.4. 
Horizontally we put the 2-logarithm of the Courant number a, vertically we show the 
number of multigrid cycles needed for a full rotation of the cone. Note that a multigrid 
cycle is a fixed amount of work for a given grid, and proportional to n2. The experiments 
are performed with a = J and (} == ~' which gives the highest accuracy of the solution. 
For a = ~ the number of time-steps is 250, 500, 1000 for a 41 x 41, 81x81 and 161 x 161 
grid respectively. We observe that for Courant numbers in the range of interest (a :::; 1), 

4500 

4000 

3500 

3000 

2500 
#MG-cycle 

2000 

1500 

1000 

500 

0 
-2 

·---,---~,···-·- --··---,-----·--,---·--.. -
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Figure 14.4: MG-cycles consumed versus log2 of Courant number, a== ~ and 8 = ~ 

the number of multigrid cycles is multiplied by a factor 2 when the grid-dimensions 
are doubled. This factor is due to the doubled number of time-steps. Apparently the 
number of multigrid cycles per time-step remains unchanged, which demonstrates the 
mesh-independent convergence rate of the multigrid algorithm. Indeed, MGD9V turns 
out to be very efficient; an average of only two multigrid cycles per time-step proves to 
be quite common for this problem. This is due to the high convergence rate (typically a 
reduction factor of 10-4 per multigrid cycle), and the advantage that is taken by using 
the solution at the previous point of time as initial one (the smaller the time-step, the 
better). Further we observe in Figure 14.4 that for each grid a range of Courant numbers 
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exists for which the amount of work is constant (we call this a plateau). Of course, the 
lower Courant numbers yield the more accurate results because of the smaller time-step. 
Apparently, when increasing the time accuracy, the computational cost of the multigrid 
approach does not increase (provided rJ remains within the range of the plateau). This 
is obviously contrary to the direct approach. For very small Courant numbers (at the 
left-hand side of the plateau) the amount of work increases in a linear way with 0'-1. 
That is because at each time step, at least one multigrid cycle has to be performed. 
(A mere fraction of a multigrid cycle cannot be performed, of course). For very high 
Courant numbers (at the right-hand side of the plateau) the amount of work increases 
(and even divergence may occur) because of the deteriorating convergence rate and the 
worsening initial solutions. For a = 0 we find similar results, see Figure 14.5. 

4500 

4000 

3500 -

3000 -

2500 
#MG-cycle 

2000 

1500 

1000 

500 

41 x 41grid ~ 
81 x 81grid -8-

161 x 161grid 8-

0 ~---·~L-------L------~--,-~--
-2 -1 0 3 

Figure 14.5: MG-cycles consumed versus log2 of Courant number, a = 0 and B = ~ 

14.4.2 Miscellaneous results and remarks 

In section 14.4.1 we reported on results of MGD9V for a = ~ and a = 0, but not on 
results for a = ~· In fact, MGD9V fails to convergence for this value of a even for 
extremely small Courant numbers. The explanation is as follows. Let O' = 0, then the 
difference scheme involves the following stencil for o: = ~ (see (2.28) in Chapter 2 of this 
book) 

~ ~ !~ l 8 4 8 . 
1 1 1 
f6 8 16 

[ 
When we apply the corresponding matrix to the chess-board grid-function 

c(ihi,jh1) = (-l)i+i 

defined on n1, we obtain the zero grid-function. Also when Dirichlet boundary conditions 
are taken into account, we obtain a similar result as we will see below. Consider the unit 
square with Dirichlet boundary conditions all around. We take a uniform [O : n] x [O : n]
grid on this area. Consider the matrix for a = ~' rJ = 0. We substitute the discretized 
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Dirichlet boundary conditions. Define the near chess-board grid-function 

b(ih,jh) = (-l)i+j sin('1r~)sin(7r;), i = l(l)n - 1, j = l(l)n -1, (14.35) 

with h = ~· (This grid-function vanishes on the boundaries of the unit square.) It can 
be easily verified that b corresponds to an eigenvector of the matrix, with eigenvalue 

A= sin4 (;~). 
Hence, for h l 0, this eigenvalue goes very rapidly to zero: 

>- = fe7r4h4. 

It follows that a small perturbation of the right-hand side of the linear system to be 
solved, may produce a huge perturbation of the solution, an effect that is not present 
for the continuous problem. In this sense we speak of an unstable discretization. The 
foregoing explains why we find a highly oscillating (spurious) solution when we solve, or 
try to solve, the linear system for a = i and o- = 0. 

A similar argument holds when o- > 0, as we will see below. Consider the matrix 
C(h) that corresponds to the convection-stencil (in the x-direction, a:= il 

k [ =~.~ ~ :i l 
_l 0 +l 

4 4 

and with substituted Dirichlet boundary conditions. When the matrix C(h) is applied 
to the grid-function (14.35), then 

llC(h )bll :S ~ sin3 ( :'1°2
1\ 

in the maximum-norm. Apparently, here too the near chess-board grid-function is anni
hilated for h l 0. 

In Table 14.l we observe how the accuracy and the amount of work depends on B. 
The results are for a 161 x 161-grid, a = L Courant number o- = ~' and for a full 
rotation of the cone. Apparently, the results for B = ~ are both the most accurate and 

Table 14.1: Accuracy and amount of work depending on (J 

IB:L=lf ~~-cyci~iI C:in _ lf=7r:;:J 

~
' ~-- -,oo, r,_9010---4_3310-' 
T -------·~ .... ------1>-
4: 2052 -7.2110- 7.9810 , 

~- 300()_ -1.31_10-T l.4210_~J 

the cheapest to obtain. 
In Table 14.2 we measure the CPU-seconds consumed on a Silicon Graphics worksta

tion (R3000 Processor), by the multigrid approach for various grids. Again, the results 
are for a full rotation of the cone, fixed Courant number o- = ~ and B = ~, a: = ~. The 
benchmark-problem (see Chapter 15 of this book) took 2.40 CPU-seconds. By means of 
the timing of this benchmark-problem, we can provide Table 14.2 also with the (ficti
tious) numbers of CPU-seconds consumed by the direct approach on the R3000 Processor 
(courtesy of Vreugdenhil). We observe how the results match the predictions as made 
at the outset of section 14.4. l. 
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Table 14.2: CPU-seconds consumed for a full rotation c-- 1141 x 41 I 81 x 81 1161 x 161] 
direct approach 58 I 72f _J__ J 

-multigrid approach 28 _ _j_~~i.=1:644_ . 

14.5 Conclusions 

In this chapter we considered the multigrid solution of advection-diffusion problems. The 
use of implicit methods, as some of them are described in Chapter 2 of this book, requires 
the solution of large, sparse linear systems. We studied the feasibility of a black-box 
multigrid solver for the solution of such systems. We have shown that a standard choice 
for the prolongation and restriction is not satisfactory and that an upwind approach for 
these operators leads to an important improvement. 

The implementation of this approach, together with a robust relaxation method, 
resulted in the multigrid-code MGD9V. This code proves to be a highly efficient iterative 
solver. Hence it is feasible to solve problems with both small mesh-size and small time
steps. In this way, implicit methods become competitive again. It is noteworthy that 
smaller time-steps do not necessarily increase the amount of work, because of a better 
convergence rate and a better initial solution. 

The code performs only for the scalar case and within the constraints of a regu
lar domain and a structured grid. In [16] various results are reported for some hard 
advection-diffusion problems (with stagnation points) and for problems with discontinu
ous diffusion-coefficients (among which Kershaw's problem). In [15] a result is reported 
for Van der Vorst's aquifer-problem that is marked by both dominating convection and 
discontinuous diffusion-coefficients. The code (written in standard FORTRAN 77) is 
available from this author (electronic mail address: pauldz@cwi.nl). 
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