
Chapter 14:
M ultigrid and Advection

Paul M. de Zeeuw
CWI

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

14.1 Introduction

In the previous chapter, Chapter 13, the virtues of multigrid methods were demon
strated through an elaborate example. That introduction enables us to regard a multi
grid method that comes much closer to solving real-life problems. We consider a general
linear 2nd order elliptic PDE in two dimensions

au au
Lu= -V' · (D'Vu) + b1(x, y) ax + b2(x, y) ay + c(x, y)u = f(x, y), (14.1)

on a bounded domain 0 c B.2 with suitable boundary conditions. D(x, y) is a positive
definite 2 x 2 matrix function and c(x, y) ;?: 0. We suppose that 0 is a rectangular
domain. For the general concept of multigrid methods we refer to Chapter 13 and
the extensive literature on this subject (for lots of exquisite theory see [6], for a more
practical viewpoint see [14]). For the multigrid method to be discussed we consider a set
of increasingly coarser grids (vertex-centered):

01 :::i 01-1 :::i .•. nk :::i ... :::i flo.

The grids are described as follows:

Ok= {(x;, y;) IX;= 01 + (i - l)hk, Yi= 02 + (j - l)h1c} (14.2)

where (01,02) is the origin and hk-l = 2hk· The discretization on the finest grid 0 1

evokes the linear system
(14.3)

Neither uniformity nor rectangularity of the grids is essential to our approach, prob
lem (14.1) may be discretized on a curvilinear grid.

Firstly, in section 14.2, we consider the coarse grid correction. It is explained why,
with a standard choice for the prolongation and restriction a multigrid algorithm may
fail to converge. We go on to show a remedy. Secondly, in section 14.3, we consider the
other major part of the multigrid algorithm: the smoother. In this chapter we confine
ourselves to structured grids and for that the Incomplete Line LU appears to be most
appropriate as smoother. Thirdly, in section 14.4 we show numerical results for problem 4
(the Molenkamp problem) defined in Chapter 1 of this book. A multigrid solver is used,
of which the major parts are described in the foregoing sections. This solver has proven
to be able to solve many 9-point discretized advection-di:ffusion problems [16]. The
Molenkamp problem, as it is specified, can be considered as the (difficult) limit-case
of an advection-di:ffusion problem for which the diffusion vanishes. In section 14.4 our
main concern is the efficiency of the iterative solver and not so much the accuracy of
differencing schemes. In section 14.5 conclusions are summarized.

335

14.2 The Galerkin approximation
In this section we study one of the main parts of a multigrid algorithm: the coarse
grid ~orrection. It is demonstrnted that the standard approach is not satisfactory; a
full analysis of the occurring difficulty is given, followed by a remedy which consists of
choosing the prolongation and restriction in an operator-dependent way.

Consider the coarse grid correction (CGC) within the multigrid correction scheme:

dk-1
solve Lk-1ek-1

ih

Rk-1(Jk - Lkuk);
dk-1;

Uk+ Pkek-1·

(14.4a)

(14.4b)

(14.4c)

Rk-l is the restriction operator that transfers the residual from the fine grid nk onto the
coarse grid nk-li Pk is the operator that transfers a correction for the solution from the
coarse to the fine grid. Firstly we raise the question how to make an appropriate choice
for Lk-l · One obvious and straightforward way is by discretization of the operator L
on flk-l· A disadvantage of this approach is that it may fail if L has (rapidly) varying
coefficients and nk-l is a very coarse grid, because then the sampling of the coefficients
becomes faulty. Another approach is suggested by the diagram in Figure 14.1 (S(01:)
denotes the space of grid-functions defined on nk)·

S(Dk)
Lk

S(Ok)

p, 1 l R,_,

S(Ok-1)-
Lk-1

- S(Ok-il

Figure 14.1: Diagram of Galerkin approximation

The operator Lk-l (corresponding to the dashed arrow) is defined by the sequence
of operations

(14.5)
Definition (14.5) is called the Galer kin coarse grid approximation [14]. Definition (14.5)
is an essential ingredient for a black-box algorithm. By the latter we mean an algorithm
with the linear system (14.3) as input, the solution as output and without parameters
which have to be tuned. No interference of the user with the algorithm is required. In
the context of multigrid methods this means that the user only needs to provide the
system on the finest grid. The corresponding systems on the coarser grids are derived
by an explicit construction according to (14.5). An advantage of (14.5) is that after the
coarse grid correction the restriction of the residual vanishes

(14.6)
336

This means that at each coarse grid point a weighted average (with non-negative weights)
of the fine-grid residual is zero, which implies that the residual consists of short wave
length components only. Such components can be reduced efficiently by a subsequent
smoothing step.

We choose the restriction to be the transpose of the prolongation

(14. 7)

Hence, once Pk has been chosen, Rk-l and Lk-l follow automatically and the coarse
grid correction is determined. Note that by (14.7) the possible (anti)symmetry of Lk is
maintained on the coarser grid. Further, when Lk is a conservative discretization of L
and Pk interpolates a constant function exactly, then the Galerkin approximation Lk-l
is conservative just as well (see [16]).

So finally we end up by having to make a choice for the prolongation. Under the
assumption of (14. 7), the prolongation must satisfy an accuracy condition in order to
obtain mesh-size independent rate of MG-convergence (see [2, 6, 7, 14])

2mp > 2m, (14.8)

where 2m is the order of the PDE, and mp is the highest order plus one, of polynomials
that are interpolated exactly by the prolongation. A standard choice for the prolonga
tion is bilinear interpolation which satisfies the accuracy condition. This interpolation
amounts to taking an equal average of solution-values at neighbouring coarse-grid points
(see Figure 14.2).

• 0 •
• coarse-grid point

0 0 0

o fine-grid point

• 0 •
1/2 1/2

Figure 14.2: Bilinear prolongation

At the grid-points of the fine grid that coincide with the coarse grid we take identical
values. The bilinear prolongation can also be denoted by the stencil

1
4
l
2
1
4

1
2
1
1
2

(14.9)

This stencil shows the non-zero values of the fine-grid function generated by the prolon
gation of a coarse-grid function which equals 1 at one point and 0 elsewhere. Because

337

of (14.7), the same stencil also represents the chosen restriction operator. Because of
the foregoing remarks it looks as if an accordingly constructed MG-algorithm, furnished
with an effective smoother, should do the job. Indeed, this is the case for a considerable
class of problems. Yet, when a dominating advection term is present, divergence may
occur. This is the topic of the next section.

14.2.1 Example of Galer kin approximation for an advection dominated prob
lem

Consider the following linear operator:

au
Lu = -ED.u + ox. (14.10)

For vanishing diffusion the following stencil is the result from some simple upwind dis
cretization on a grid with mesh-size equal to 1:

L, ~ [~: : : l (14.11)

By repeatedly applying (14.5) for the standard choice (14.7,14.9) we observe on then
times coarsened grid !11_n the stencil:

1 1 l [1
6 -12 -12
g. _l + 2n -.1 3 3 3
1 1 1
6 -12 - ii

0 +-1_ l 12

0 +1~ + ...
0 +12

(14.12)

with a remainder that is rapidly decreasing with n. (This observation is verified in
the next section.) The two stencils are the same ones as evoked by discretization with
bilinear finite elements of a diffusion and advection term in the x-direction. Apparently
the advection-stencil increases exponentially with n. Each time the grid is coarsened by
the factor 2, the mesh Peclet numbers are multiplied by the same factor, which is reflected
by the Galerkin coarse grid approximation. For increasing n the central advection-stencil
will dominate and spurious high-frequent solutions will be created on the coarse grid and
subsequently transferred to the fine grid. For small n it may be a feasible approach to
require that the relaxation method on the fine grids is such that those components are
sufficiently smoothed. However, when a really fine grid is employed, we need a substantial
number of grid-levels to make use of the coarsest grid, where the components with the
lowest frequency are reduced. In this case n can be so large that the spurious solutions
created on the coarse grids affect severely the convergence of the multigrid algorithm as
a whole. The equality (14.6) may still hold after the CGC, but we have to recognize that
the amplitude of the short wavelength components comes to a very large magnitude. A
first experimental result of divergence for an advection-diffusion problem, even when a
robust smoother like IL U is in use, can be found in [17] (together with a Fourier local
mode analysis).

14.2.2 Analysis of the Galerkin approach for constant coefficients

In this section we give an analysis of the behaviour of the Galerkin coarse grid approxi
mation for the advection-diffusion equation. We confine ourselves to the case of constant
338

coefficients. The matrix Lk is represented by a single nine-point stencil only. With
the choices (14.5),(14.7) and (14.9) we obtain a coarse grid matrix Lk-l which is also
represented by a nine-point stencil. Because of the constant coefficients, the construc
tion (14.5) can be seen as the linear transformation

Ji C1

f2 C2

fs C3

(14.13)

f6 C5

f7 C7

fs Cg

jg Cg

with G a 9 x 9-matrix. The vectors correspond to the stencils

r-[Jg l f5 ,

h

Cg l
C5 .

C3

(14.14)

The stencil J* is defined on the fine grid, the stencil c* is defined on the coarse grid. The
matrix G describes what becomes of a stencil on the fine grid under the Galerkin coarse
grid approximation. An eigenvalue decomposition of G exists and reads:

G = vnv- 1 ,c, v,D E Jm.9 x Jm.9 ,

where D is a diagonal matrix showing the eigenvalues of G and

v

v-1

1
3

1 1
4 -12
0 0
1 l

-4 12
1 1

-3 -3
1 1

-3 6
1 0
1

-1 -1 -1

1 1 1
1 l 1
6 -12 6

~ 0 -~
1 l 1
9 -i-8 9

1 1
-12 36 1

-l ~ -2

1 1

0 -2
1 1

-12 36 1 -1 1

0 ~
0

0

4
9

0 -2 -2
0 0 4

1
§ 0

1 1 1 12 36 -
1 l 2
3 9

2 -2

1 1

0 -2
1 1

12 36
l

-1 -1 1

6
l
6
0

1 1
-3 -3

1 1
6 -3
0 1

0 1 -1

0

1

0

0

0 1

1 1

0 -~
l 1

12 6
1 1 1

36 -l.8 §

1
6
1

-3
0

0

1 1

1 1
1 1

12 -5

0 -~
1 1

-18 9

(14.15)

(14.16a)

(14.16b)

339

D = diag (1 1 l 2 2 4 ~ ~ i) . (14.16c)

The proof follows from a straightforward but tedious evaluation (see [16]).
The column-vectors of V are the right-eigenvectors of G, the row-vectors of v- 1 are

the left-eigenvectors of G. Below we depict these vectors as 9-point stencils, together
with the corresponding eigenvalues. The stencils with the first six right-eigenvectors are
the ones as evoked by discretization with bilinear finite elements of partial derivatives,
ranging from zeroth to second order. The stencils read:

[_l
12

1
6

[-1
1
9

l]
12

l l

32
,..., -h2 ---~ A3 = 1, (14.17c) oxoy,

f)
,..., h

ox'

f)
,..., h--

oy'

,...., I,

A4 = 2, (14.l 7d)

A5 = 2, (14.17e)

A6 =4, (14.17f)

3 83 1 (,...., -2h aya--;;2,A1 = 2, 14.17g)

,...., -2h3 --f!3
· As=! (14.17h)

8xoy2 ' 2 '

84
,..., h4 -·- - Ag=~· (14.17i)

fJx2f)y2'

We denote the set of right-eigenvectors by { Vj L=1,. .. ,9 and the set of left-eigenvectors
by { WjL=1,. . .,9. The right-eigenvectors { Vj L=1, ... ,9 form a linearly independent set of
vectors that span 1.9. Because trivially v-1 V = I, we observe that the two sets of
eigenvectors satisfy a bi-orthonormality relation. Therefore, if we have some stencil f*,
we can easily determine the coefficients of the unique linear combination of the vj to

340

which it is equal
g

f = 2.:.Jw1, f)v1. (14.18)
j=l

For the advection-diffusion example described by (14.10) and (14.11) we find

(14.19)

Because
en= v nnv-1 , (14.20)

we ~nd after the n times subsequent application of the Galerkin coarse grid approxima
tion the stencil

L* 1 *+2n *+(l)nl *+(l)nl * (1421) l-n = 2V1 V4 2 12Vs 4 EiVg ·

on then times coarsened grid. We observe how, for increasing n, Li-n is dominated by
the central advection stencil v,j.

Remark Analogous results hold for 7-point stencils of type

provided (14.7) holds and
1
2
1
1
2

fs]
h

Here also exists an eigenvalue decomposition of G, which reads:

G = v nv-1 , G, v, DE J.7 x1.7 .

D is a diagonal matrix representing the eigenvalues of G and

0 -1 1 1 1 1 1
2 -6 -3 f2

0 0 1 1 1 1 -1 2 6 -5 f2
-1 0 1 1 1 1 -1 -2 -3 -5 f2

v 2 2 1 0 0 1 0 2
-1 0 1 1 1 1 1 -2 3 6 12

0 0 1 1 1 1 l 2 -6 6 f2
0 -1 1 1 1 1 -1 -2 6 3 12
1 1 1 1 1 1
6 3 -3 6 -3 -3
1 1 1 1 1 1

1
6
1

3 -3 6 6 6 -3 -3
1 5 1 1 1 5 1

-5 6 -5 -5 -6 6 -5
v-1 0 1 -1 0 1 -1 0

-1 -1 0 0 0 1 1

1 1 1 1 1 1 1
l 1 1 0 1 l 1
6 -6 -5 6 6 6

D diag (1 1 1 2 2 4 ~) .

(14.22)

(14.23)

(14.24)

(14.25a)

(14.25b)

(14.25c)

341

14.2.3 Upwind prolongation

The Galerkin coarse grid approximation (14.5) can be looked upon as discretizing Lk
into Lk-I (the analogue of discretizing L into L1_ 1). The type of this discretization
is determined by the choice of Pk and Rk-l· When we choose (14.7) and the bilinear
prolongation (14.9), the type of discretization is some central differencing scheme. This
central differencing is the reason why the ratio of numerical advection and numerical
diffusion is increasing at the same pace as the mesh Peclet number when the grid is
coarsened. The remedy is to use an upwind prolongation, that is related to the method
of characteristics. The restriction is again defined by (14.7), which hereby becomes of
upwind-type as well. By this remedy, the Galerkin coarse grid approximation (14.5)
becomes an upwind-type discretization of Lk into Lk-l · As an example, suppose we only
accept information from the left-hand side, i.e. the solution upstream. This corresponds
to a prolongation with biased weights as depicted in Figure 14.3.

0

0 coarse-grid point

0 0 0

o fine-grid point

0
1 0

Figure 14.3: Example of upwind prolongation

In stencil notation the upwind prolongation and restriction look like

[
1
2
1
1
2

1
2
1
1
2

In this case the Galerkin coarse grid approximation is given by

- -1 - 9 9 Gup = V DV , Gup, D E llR x I. ,

342

(14.26)

(14.27)

with\. given by (14.16a) and

2 0 0 0 0 I 0 0 0 3

0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0

jj = 0 0 0 0 2 0 0 0 0 (14.28)
0 0 0 0 0 4 0 0 0
0 0 0 0 1 0 1 0 0 12

0 0 0 0 0 0 0 I 0 2
0 I 0 0 0 0 0 0 1

12 2

\\'e observe that now the amplification of the diffusion-stencil (14.l 7a) in the x-direction
keeps pace with the amplification of the advection-stencil (14.l 7d). For the example
from section 14.2.1 and by repeatedly applying (14.7) and (14.5) we obtain on then
times coarsened grirl Sli-n (see [16]):

that is

L * _ 2n 1. * 2n, * + (I)n 1 * (l)n J * l-n - 2V1 + V4 2 jjVs + 2 12V9,

l
6
2
3
l
6

and we observe that the upwind approximation of the derivative is preserved.

(14.29)

(14.30)

Generally speaking, the point we like to make is as follows. We can use the 9-point
discretization that we prefer on the finest grid (not necessarily of upwind-type). The
coarse grid correction (14.4) can be viewed as accelerating method for the relaxation
on the finest grid. When we use bilinear interpolation for prolongation, the ratio of
convection over numerical diffusion may grow much larger on increasingly coarser grids
and thereby divergence of the CGC may occur. When we use a prolongation of upwind
type, the ratio of convection over numerical diffusion remains roughly the same at all
grids in use with the multigrid algorithm.

14.2.4 Matrix-dependent prolongations and restrictions

The bias in the upwind prolongation may have to be different in each grid-point be
cause of the varying problem-coefficients. The only way to obtain information about
these coefficients is by deriving them from the matrix (because we agreed to construct
a black box which only needs to know the matrix and the right-hand side). Therefore,
in this context, the upwind prolongation wished for is a matrix-dependent prolongation.
Matrix-dependent prolongations were introduced in [l, 4]. In [16] a matrix-dependent
prolongation operator has been proposed, able to handle both the case of dominant ad
vection (in general directions) and interface problems at the same time. Here we give
only an outline of the method. The grid Slk is split into four disjoint sub-grids as follows:

343

nk,(0,1) = {(x,y+ hk) E nk I (x,y) E flk_i},

nk,(1,1) = {(x + hk, y + hk) E !lk I (x, y) E flk-1},

where hk is the mesh-size of grid nk·
1. Let ~ E Dk,(1,0) or ~ E Dk,(O,l) be a point where we have to interpolate a coarse grid

correction. Decompose the matrix Lk in its symmetric and antisymmetric part.
The symmetric part Sk is presumed to correspond with diffusion and the zeroth
order term, the antisymmetric part Tk with advection.

2. Reconstruct the diffusion and zeroth order coefficients at ~ from Sk, and the ad
vection coefficients from Tk.

3. Use expressions that define an optimal choice for each sample of a set of degenerated
cases for Lk·

4. At the fine-grid points in nk,(O,o), adopt the values on nk-1·

5. At the fine-grid points in !lk,(l,l), solve the homogeneous equation to obtain the
correction.

Applying the derived formulae to the particular example of section 14.2.1 we obtain the
upwind prolongation in Figure 14.3. Also here we adhere to (14.7) and (14.5), though
the implementation of the latter is far from trivial. The actual computation of the coarse
grid matrices takes less work than the Incomplete Line LU-decompositions described in
the next section. The above is employed in the code MGD9V (this author). The code has
a NAG-like outward appearance and is readily available. It uses the sawtooth multigrid
correction scheme [13] (see Chapter 13) and Incomplete Line LU for smoother. For a
more detailed motivation of the prolongation and a description of the code, together with
numerical experiments to illustrate its good behaviour, see [16]. Reusken [10] proves uni
form convergence for a multigrid method applied to a lD singularly perturbed boundary
value problem when matrix-dependent prolongations and restrictions are employed (see
also Chapter 13, this book).

14.3 Smoothers for the advection-diffusion equation

A comprehensive survey of smoothers applicable to the advection-diffusion equation (14.1)
can be found in [14, § 7]. For non-adaptive grids the Incomplete Line LU (ILLU) (or
Incomplete Block LU) appears to be the most robust choice (see [8, 9, 11, 16]). By
this method full advantage is taken of the matrix-structure. Here we repeat the general
outline of this method, which has been originated by Underwood [12] (see also [3] for an
overview on block-type methods). We want to solve the linear system

Ax= b

that we assume to have a block tridiagonal form, so

Di U1
L2 D2 U2

A= L3 D3

344

(14.31)

(14.32)

where ny is the number of grid-points in they-direction. The block DJ has the tridiagonal
form:

dlj U1j

l2j d2j U2j

l3j d3j
(14.33)

dn,j

where n,, is the number of grid-points in the x-direction. In case of a discretization with
nine-point stencils the blocks Li and Ui have a similar form. The ILLU-decomposition
is defined by

with

Di,

Dj - tridiag(L)'.5j~ 1 Uj_i), j = 2(1)ny.

(14.34a)

(14.34b)

The operator tridiag() forces a block (by clipping) into the sparsity pattern of the Dj·
Without this particular operator, the factorization of A would be a complete one (see [5,
§ 8.5]). Performing one ILLU-relaxation sweep requires the following steps
ILLU-sweep:

r = b -Ax;
Z) = r1;

---1
Zj = rj - LiDJ_ 1Zj-li j = 2(l)ny;

---1
Cny = Dny Zny j

--1
Cj=Dj (zi-Uici+1), j=ny-1(-1)1;
Xnew = X +C.

In [15] the ILLU-relaxation has been generalized from the case of a discretized scalar
PDE to a set of coupled PDEs.

There exist several degenerated cases for which ILLU becomes a complete decompo

sition, e.g. when all Li or all Ui are zero. Another case of interest is the following

Proposition 14.3.1 If Lj = o:iD1, Ui-l = /3j- 1D1, Di = "1jD1,j = 2(1)ny where
O:j, f3j-l, "Ii are arbitrary scalars, then the ILL U-decomposition, if existent, is a complete
factorization.

Proof. If
tridiag(LrD}~ 1 Ui-il = Lj15j~ 1 Uj-1,J = 2(1)ny,

then the factorization is complete. We prove that scalars µi =I 0 exist such that

Di= µiD1,j = l(l)ny - 1.

The equality holds trivially for j = 1 with µ 1 = 1. For j > 1 we obtain (by induction)

Di= Di - tridiag(Lj15j~ 1 Ui-il::::} Di= Di-tridiag(LWi-\Dj1 Uj-1)::::}
345

with
/3 -1 µj = /j - O:j j-lµj-1•

From the assumption that the decomposition exists, it follows that µ1 f; 0. D
Note that (but for existence of the ILLU-decomposition) this proposition applies to

all the stencils on the right-hand side of (14.17), which correspond to the various partial
derivatives.

14.4 The Molenkamp test~problem
In Chapter 2 of this book, Vreugdenhil applies several difference schemes to the Molen
kamp problem. Those schemes are generated by central differencing in space and implicit
time-stepping. At each time-step a large, sparse linear system has to be solved. In
Chapter 2 this is done by using a standard banded-matrix routine from the NAG library.
The corresponding LU-decomposition needs to be done only once, yet this method puts
too high demands concerning CPU-time and memory allocation. Typically, on an n x n
grid such a direct method takes

n4 flops

for the decomposition, and at least

2n3 flops

for each subsequent solution step (one flop is the amount of work associated with a
multiplication joined with an addition). The storage requirements amount to

2(n + l)n2 reals.

Here we report on the performance of the iterative multigrid solver MGD9V (sec
tion 14.2.4) for the solution of the said large, sparse linear systems. Of course, also here
the automatic construction of the coarse grid matrices and the ILLU-decompositions
need to be done only once. The storage requirements of MGD9V amount to

68 2
3 n reals.

The total amount of work is not a fixed function of n because for an iterative method it
also depends on its convergence rate and the desired tolerance. However, if a multigrid
method is well constructed, it is known from both theory and practice that the work
necessary to reach some tolerance is ideally proportional to as little as n 2 , i.e. the number
of grid-points. In this section we check by experiment whether this statement holds for
MGD9V.

In scheme (2.28) of Chapter 2, two parameters do occur: B and o:. The B determines
the degree of time-implicitness: B = 1 corresponds to backward Euler, B = 0 corresponds
to forward Euler. Only if B = ~ the accuracy of the scheme is of second order in time. The
parameter a determines the space-discretization: a = 0 corresponds to the classical five
point scheme with central differences, a = ~ corresponds to the bilinear finite element
method and o: = i to the box-scheme. In principle, the convergence rate of MGD9V
may depend on these parameters.

346

14.4.1 Complexity and the Courant number

We solve the Molenkamp problem with the 2-d implicit schemes of Chapter 2, and per
form - as specified - a full rotation of the cone. When we solve the linear system at each
point of time by means of complete LU-factorization, this is called the direct approach;
when at each point of time we use the multigrid solver MG D9V instead, this is called the
multigrid approach. We use the solution at the previous point of time as initial solution
for MGD9V, and we solve the linear system up to a certain (fixed) tolerance. Suppose we
perform numerical experiments with varying n, but with fixed Courant number a. When
n is increased by a factor 2, the direct approach takes twice the number of time steps.
Because of the complexity of the decomposition and the subsequent time-stepping, the
work for one rotation then increases by a factor 24 . With the multigrid approach the
work for one rotation increases by a factor 23 , a factor 2 is explained by the number of
time-steps and the remaining factor 22 is explained by the number of grid-points. This
statement is valid under the condition that MGD9V presents mesh-independent con
vergence rate. The experimental verification of the statement follows from Figure 14.4.
Horizontally we put the 2-logarithm of the Courant number a, vertically we show the
number of multigrid cycles needed for a full rotation of the cone. Note that a multigrid
cycle is a fixed amount of work for a given grid, and proportional to n2. The experiments
are performed with a = J and (} == ~' which gives the highest accuracy of the solution.
For a = ~ the number of time-steps is 250, 500, 1000 for a 41 x 41, 81x81 and 161 x 161
grid respectively. We observe that for Courant numbers in the range of interest (a :::; 1),

4500

4000

3500

3000

2500
#MG-cycle

2000

1500

1000

500

0
-2

·---,---~,···-·- --··---,-----·--,---·--.. -

-1 0
log2 r;

41x41grid ~
81 x 81grid B- ·

161 x l6lgrid -8-

Figure 14.4: MG-cycles consumed versus log2 of Courant number, a== ~ and 8 = ~

the number of multigrid cycles is multiplied by a factor 2 when the grid-dimensions
are doubled. This factor is due to the doubled number of time-steps. Apparently the
number of multigrid cycles per time-step remains unchanged, which demonstrates the
mesh-independent convergence rate of the multigrid algorithm. Indeed, MGD9V turns
out to be very efficient; an average of only two multigrid cycles per time-step proves to
be quite common for this problem. This is due to the high convergence rate (typically a
reduction factor of 10-4 per multigrid cycle), and the advantage that is taken by using
the solution at the previous point of time as initial one (the smaller the time-step, the
better). Further we observe in Figure 14.4 that for each grid a range of Courant numbers

347

exists for which the amount of work is constant (we call this a plateau). Of course, the
lower Courant numbers yield the more accurate results because of the smaller time-step.
Apparently, when increasing the time accuracy, the computational cost of the multigrid
approach does not increase (provided rJ remains within the range of the plateau). This
is obviously contrary to the direct approach. For very small Courant numbers (at the
left-hand side of the plateau) the amount of work increases in a linear way with 0'-1.
That is because at each time step, at least one multigrid cycle has to be performed.
(A mere fraction of a multigrid cycle cannot be performed, of course). For very high
Courant numbers (at the right-hand side of the plateau) the amount of work increases
(and even divergence may occur) because of the deteriorating convergence rate and the
worsening initial solutions. For a = 0 we find similar results, see Figure 14.5.

4500

4000

3500 -

3000 -

2500
#MG-cycle

2000

1500

1000

500

41 x 41grid ~
81 x 81grid -8-

161 x 161grid 8-

0 ~---·~L-------L------~--,-~--
-2 -1 0 3

Figure 14.5: MG-cycles consumed versus log2 of Courant number, a = 0 and B = ~

14.4.2 Miscellaneous results and remarks

In section 14.4.1 we reported on results of MGD9V for a = ~ and a = 0, but not on
results for a = ~· In fact, MGD9V fails to convergence for this value of a even for
extremely small Courant numbers. The explanation is as follows. Let O' = 0, then the
difference scheme involves the following stencil for o: = ~ (see (2.28) in Chapter 2 of this
book)

~ ~ !~ l 8 4 8 .
1 1 1
f6 8 16

[
When we apply the corresponding matrix to the chess-board grid-function

c(ihi,jh1) = (-l)i+i

defined on n1, we obtain the zero grid-function. Also when Dirichlet boundary conditions
are taken into account, we obtain a similar result as we will see below. Consider the unit
square with Dirichlet boundary conditions all around. We take a uniform [O : n] x [O : n]
grid on this area. Consider the matrix for a = ~' rJ = 0. We substitute the discretized
348

Dirichlet boundary conditions. Define the near chess-board grid-function

b(ih,jh) = (-l)i+j sin('1r~)sin(7r;), i = l(l)n - 1, j = l(l)n -1, (14.35)

with h = ~· (This grid-function vanishes on the boundaries of the unit square.) It can
be easily verified that b corresponds to an eigenvector of the matrix, with eigenvalue

A= sin4 (;~).
Hence, for h l 0, this eigenvalue goes very rapidly to zero:

>- = fe7r4h4.

It follows that a small perturbation of the right-hand side of the linear system to be
solved, may produce a huge perturbation of the solution, an effect that is not present
for the continuous problem. In this sense we speak of an unstable discretization. The
foregoing explains why we find a highly oscillating (spurious) solution when we solve, or
try to solve, the linear system for a = i and o- = 0.

A similar argument holds when o- > 0, as we will see below. Consider the matrix
C(h) that corresponds to the convection-stencil (in the x-direction, a:= il

k [=~.~ ~ :i l
_l 0 +l

4 4

and with substituted Dirichlet boundary conditions. When the matrix C(h) is applied
to the grid-function (14.35), then

llC(h)bll :S ~ sin3 (:'1°2
1\

in the maximum-norm. Apparently, here too the near chess-board grid-function is anni
hilated for h l 0.

In Table 14.l we observe how the accuracy and the amount of work depends on B.
The results are for a 161 x 161-grid, a = L Courant number o- = ~' and for a full
rotation of the cone. Apparently, the results for B = ~ are both the most accurate and

Table 14.1: Accuracy and amount of work depending on (J

IB:L=lf ~~-cyci~iI C:in _ lf=7r:;:J

~
' ~-- -,oo, r,_9010---4_3310-'
T -------·~ ------1>-
4: 2052 -7.2110- 7.9810 ,

~- 300()_ -1.31_10-T l.4210_~J

the cheapest to obtain.
In Table 14.2 we measure the CPU-seconds consumed on a Silicon Graphics worksta

tion (R3000 Processor), by the multigrid approach for various grids. Again, the results
are for a full rotation of the cone, fixed Courant number o- = ~ and B = ~, a: = ~. The
benchmark-problem (see Chapter 15 of this book) took 2.40 CPU-seconds. By means of
the timing of this benchmark-problem, we can provide Table 14.2 also with the (ficti
tious) numbers of CPU-seconds consumed by the direct approach on the R3000 Processor
(courtesy of Vreugdenhil). We observe how the results match the predictions as made
at the outset of section 14.4. l.

349

Table 14.2: CPU-seconds consumed for a full rotation c-- 1141 x 41 I 81 x 81 1161 x 161]
direct approach 58 I 72f _J__ J

-multigrid approach 28 _ _j_~~i.=1:644_ .

14.5 Conclusions

In this chapter we considered the multigrid solution of advection-diffusion problems. The
use of implicit methods, as some of them are described in Chapter 2 of this book, requires
the solution of large, sparse linear systems. We studied the feasibility of a black-box
multigrid solver for the solution of such systems. We have shown that a standard choice
for the prolongation and restriction is not satisfactory and that an upwind approach for
these operators leads to an important improvement.

The implementation of this approach, together with a robust relaxation method,
resulted in the multigrid-code MGD9V. This code proves to be a highly efficient iterative
solver. Hence it is feasible to solve problems with both small mesh-size and small time
steps. In this way, implicit methods become competitive again. It is noteworthy that
smaller time-steps do not necessarily increase the amount of work, because of a better
convergence rate and a better initial solution.

The code performs only for the scalar case and within the constraints of a regu
lar domain and a structured grid. In [16] various results are reported for some hard
advection-diffusion problems (with stagnation points) and for problems with discontinu
ous diffusion-coefficients (among which Kershaw's problem). In [15] a result is reported
for Van der Vorst's aquifer-problem that is marked by both dominating convection and
discontinuous diffusion-coefficients. The code (written in standard FORTRAN 77) is
available from this author (electronic mail address: pauldz@cwi.nl).

References

[l] R.E. ALCOUFFE, A. BRANDT, J.E. DENDY JR. AND J.W. PAINTER: The multi
grid method for the diffusion equation with strongly discontinuous coefficients,
SIAM J. Sci. Stat. Comput., 2(4), 1981, pp. 430-454.

[2] A. BRANDT: Multi-level adaptive techniques (MLAT) for partial differential equa
tions: ideas and software, in: J. Rice (Ed.) Proc. Symposium on Mathematical
Software, (Academic, New York, 1977), pp. 277-318.

[3] P. CONCUS, G.H. GOLUB AND G. MEURANT: Block preconditioning for the
conjugate gradient method, SIAM J. Sci. Stat. Comput., 6 (1), 1985, pp. 220-252.

[4] J.E. DENDY JR.: Blackbox multigrid for nonsymmetric problems, Appl. Math.
Comput. 13, 1983, pp. 261-283.

[5] I.S. DUFF, A.M. ERISMAN, J.K. REID: Direct Methods for Sparse Matrices
(Monographs on Numerical Analysis, Clarendon Press, Oxford, 1986).

[6] W. HACKBUSCH: Multi-Grid Methods and Applications (Springer Ser. Comput.
Math. 4, Berlin, 1985).

350

[7] P. W. HEMKER: On the order of prolongations and restrictions in multigrid proce
dures, J. Comput. Appl. Math., 32, 1990, pp. 423-429.

[8] P.W. HEMKER AND P.M. DEZEEUW: Some implementations of multigrid linear
system solvers, in: D.J. Paddon and H. Holstein (Eds.) Multigrid methods for inte
gral and differential equations (Inst. Math. Appl. Conf. Ser. New Ser., Oxford Univ.
Press, New York, 1985), pp. 85-116.

[9] R. KETTLER: Analysis and comparison of relaxation schemes in robust multigrid
and preconditioned conjugate gradient methods, in: W. Hackbusch and U. Trot
tenberg (Eds.), Lecture Notes in Mathematics, 960 (Springer, Berlin, 1981), pp.
502-534.

[10] A. REUSKEN: Multigrid with matrix-dependent transfer operators for a singular
perturbation problem, Report RANA 92-09 (Dept. of Mathematics and Computing
Science, Eindhoven University of Technology, The Netherlands, 1992).

[11] P. SONNEVELD, P. WESSELING AND P.M. DEZEEUW: Multigrid and conjugate
gradient methods as convergence acceleration techniques, in: D.J. Paddon and H.
Holstein (Eds.) Multigrid methods for integral and differential equations (Inst. Math.
Appl. Conf. Ser. New Ser., Oxford Univ. Press, New York, 1985), pp. 117-167.

[12] R.R. UNDERWOOD: An approximate factorization procedure based on the block
Cholesky decomposition and its use with the conjugate gradient method, Report
NED0-11386 (General Electric Co., Nuclear Energy Div., San Jose, California,
1976).

[13] P. WESSELING: A robust and efficient multigrid method, in: W. Hackbusch and
U. Trottenberg (Eds.), Lecture Notes in Mathematics, 960 (Springer, Berlin, 1981),
pp. 614-630.

[14] P. WESSELING: An Introduction to Multigrid Methods (John Wiley & Sons Ltd.,
Chichester, England, 1991).

[15] P .M. DE ZEEUW: Incomplete line LU for discretized coupled PDEs as precondi
tioner in Bi-CGSTAB, Report NM-R9213 (CWI, Amsterdam, 1992).

[16] P .M. DE ZEEUW: Matrix-dependent prolongations and restrictions in a blackbox
multigrid solver, J. Comput. Appl. Math., 33, 1990, pp. 1-27.

[17] P.M. DE ZEEUW AND E.J. VAN ASSELT: The convergence rate of multi-level
algorithms applied to the convection-diffusion equation, SIAM J. Sci. Stat. Comput.,
6 (2), 1985, pp. 492-503.

351

