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Abstract

We study a network of parallel single-server queues, where the speeds of the servers are varying over time and
governed by a single continuous-time Markov chain. We obtain heavy-traffic limits for the distributions of the
joint workload, waiting-time and queue length processes. We do so by using a functional central limit theorem
approach, which requires the interchange of steady-state and heavy-traffic limits. The marginals of these limiting
distributions are shown to be exponential with rates that can be computed by matrix-analytic methods. Moreover,
we show how to numerically compute the joint distributions, by viewing the limit processes as multi-dimensional
semi-martingale reflected Brownian motions in the non-negative orthant.

Keywords: Functional central limit theorem, layered queueing networks, machine-repair model, semi-martingale
reflected Brownian motion.

1 Introduction
In this paper, we consider a parallel network of N single-server queues. The speeds of the servers vary over time
and are in addition mutually dependent. More specifically, we assume that these service speeds are governed by a
single, irreducible, continuous-time Markov chain with a finite state space. For this network, we are interested in
both the marginal and the joint workload processes for each of the queues, as well as the processes describing the
virtual waiting time and the queue length. Stationary distributions for these processes are difficult to obtain, since
the workload process pertaining to one queue, as well as the virtual waiting-time and the queue length processes,
are correlated with the corresponding processes of the other queues. Our goal in this paper is to derive the heavy-
traffic behaviour of the network by obtaining the limiting stationary distributions of the aforementioned processes.
These results can serve as simple and accurate approximations when the network is heavily utilised or can be
combined with known light-traffic results to obtain approximations for arbitrarily loaded systems (see e.g. [14]).

The study of this general network is motivated by the fact that multi-queue performance models with time-
varying and mutually dependent service speeds find a wide variety of applications. An example is the field of
wireless networks, where multiple users transmit data packets through a wireless medium at speeds that are typ-
ically varying over time and mutually dependent, e.g. due to phenomena such as ‘shadow fading’ (cf. [38]).
Another such application constitutes an I/O subsystem of an application server (see e.g. [40]), in which the content
of multiple I/O buffers is transferred to clients at varying and mutually dependent speeds, due to the varying level
of congestion of the application server’s network connection. A final example is given by the phenomenon of
garbage collection in multi-threaded computer systems (cf. [33]). Typically, when the total memory utilisation in
such a system exceeds a certain threshold, the processing speeds of the threads are temporarily reduced, and are
as such mutually dependent.
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Queueing models with service speeds that vary over time have received attention in multiple settings in the
literature. In practice, service speeds may be dependent on factors such as the workload present in the system,
which lead to the formulation of queues with state-dependent service rates; see e.g. [3] for an overview. Another
branch of work on time-varying service speeds is that of service rate control, where the aim is to minimise waiting
and capacity costs (e.g. [2, 16, 35, 41]) or to optimise a trade-off between service quality and service speed (e.g.
[20]) based on the state of the system by dynamically varying the service speed. In our case, the service speeds
depend on an external environment that is governed by a Markov process. Analyses of single-server queueing
models with Markov-modulated service speeds can be found in [17, 27, 29, 30, 37]. However, none of these
papers concern themselves with the derivation of heavy-traffic asymptotics. In this paper, we focus on a queueing
network where the service speeds of all servers in the network are simultaneously governed by a single continuous-
time Markov chain. This allows us to incorporate mutual dependencies between the service speeds into the model.
Conceptually, there are no additional challenges in obtaining heavy-traffic results for the queueing network with
multiple queues compared to the single-queue case, although deriving the results for the multi-queue case is more
cumbersome at times.

We are mainly interested in the heavy-traffic asymptotics of the network of queues. The study of queues in
heavy traffic was initiated by Kingman with a series of papers in the 1960s, starting with [24]; see [25] for an
overview of these early results. These papers were largely focused on the use of Laplace transforms. In our case,
however, Laplace transforms for the stationary distribution of the total workload process or even the workload
process for a queue in isolation are hard to obtain. The workload process of a queue in isolation can in principle be
modelled as a reflected Markov additive process (MAP). For the definition and an overview of the standard theory
on MAPs, see [1, Section XI.2]. However, the stationary distribution of the workload process is not easily derived
from that. For example, standard techniques such as relating the Laplace transforms of the stationary workload
conditional on the states of the modulator to each other typically lead to a linear system with a number of equations
smaller than the number of unknowns, defying straightforward solutions, as shown in [21]. Less straightforward
computations might involve studying the singularities of the characterising matrix exponent pertaining to the
reflected MAP (cf. [21]). In the past, stationary distributions for special cases of reflected MAPs have also been
analysed by studying their spectral expansion (e.g. [28]) or by determining the boundary probabilities in terms of
the solution of a generalised eigenvalue problem (e.g. [39]).

As it is not clear the approach via Laplace transforms will work in our case, we will use a functional central
limit theorem approach mainly developed by Iglehart and Whitt; see [43] for an overview. This is not always
trivial; see for example [10, 26]. Heavy-traffic approximations for generalised Jackson networks were studied in
[5, 15]. However, the model that we consider does not fall in the framework of generalised Jackson networks.
Instead, we tailor more classical arguments for single-node systems to our setting. An advantage of our approach
is that it can be extended to allow for variations or generalisations of our model. For example, it is assumed that the
workload input processes of the queues are compound Poisson processes. As we will see in the sequel, however,
our heavy-traffic analysis still works through completely under relaxed assumptions if Lemma 3.2 can be proved
for this more general setting.

As we study networks with general service speeds, our model also captures a class of queues with service in-
terruptions. Heavy-traffic asymptotics for single-server queues with vacations have been studied in [23]. Related,
but different problems are networks with interruptions, of which durations and frequency scale with the traffic
intensity, and have been studied in [6, 23] and [43, Section 14.7]. As opposed to these models, our model allows
the durations of consecutive service interruptions, which we assume to be independent of the traffic intensity, to be
interdependent through the Markovian random environment (see also [8]), and the interruptions are not restricted
to a point in time the queue empties.

For the network that we study in this paper, we find that the marginal workload, virtual waiting-time and queue
length processes pertaining to a queue in isolation exhibit state-space collapse under heavy-traffic assumptions
and have exponential limiting distributions. Moreover, we show that the limiting distribution of the joint workload
process (as well as that of the virtual waiting-time and the queue length processes) corresponds to the stationary
distribution of an N -dimensional semi-martingale reflected Brownian motion (SRBM) with state space RN+ (see
e.g. [7, Theorem 6.2] for a definition). The reflection matrix corresponding to this SRBM is an identity matrix,
so that positive conclusions about the existence of a stationary distribution can be drawn (cf. [18]). However,
computing this distribution is challenging. The conditions needed for the stationary distribution to have a product
form do not apply to our model, and results such as those of [11] seem hard to translate to our setting. In this
paper, we therefore show how to use the numerical methods developed in [9] for steady-state analysis of multi-
dimensional SRBMs to analyse the joint limiting distribution of the stationary workload process. This allows us
to compute quantities such as the correlation coefficients between the marginal components.
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The rest of this paper is organised as follows. Section 2 describes the model in detail, gives the necessary
notation and gives several preliminary results. In Section 3, we derive the heavy-traffic limit for a properly scaled
workload process, and observe that the stationary distribution of the marginal workload processes converges to
an exponential distribution. Section 4 extends these results to heavy-traffic limits for the virtual waiting-time
and queue length processes. Finally, in Section 5 we study how one can compute the joint distribution of the
limiting processes pertaining to the workloads, virtual waiting times and the queue lengths, by viewing these as
SRBMs. By means of simulation results, we also show that the obtained heavy-traffic results give rise to accurate
approximations for considerably loaded systems, which marks the usefulness of the heavy-traffic analysis that we
perform from an application perspective.

2 Notation and preliminaries
In this section, we introduce the notation used in this paper, and we present several preliminary results. In the
remainder of this paper, vectors and matrices are printed in bold face. Furthermore, 0 and 1 represent vectors of
appropriate size where each of the elements are equal to zero and one respectively.

Arrival processes We study the heavy-traffic asymptotics of a network consisting of N parallel single-server
queues Q1, . . . , QN , each with its own dedicated arrival stream. Type-i customers arrive at Qi according to a
Poisson process with rate λi and have a service requirement distributed according to a random variable Bi with
finite first two moments E[Bi] and E[B2

i ]. In particular, we represent by Bi,j the service requirement of the j-
th arriving type-i customer. We assume the service requirements of all customers to be mutually independent.
Further, we denote by {Ni(t), t > 0} a unit-rate Poisson process. Then, the cumulative workload that enters Qi
during the time interval [0, t) is given by

Vi(λit) =

Ni(λit)∑
j=1

Bi,j ,

where the arrival rate is left as part of the argument, as this will prove to be useful for heavy-traffic scaling purposes
in the sequel. In the remainder of this paper, we will refer to {Vi(t), t ≥ 0} as the arrival process of Qi. The mean
corresponding to this arrival process is given by mV,i = E[Vi(1)] = E[Bi]. Similarly, the variance is given by
σ2
V,i = Var[Vi(1)] = E[Ni(1)]Var[Bi] + Var[Ni(1)]E[Bi]

2 = Var[Bi] + E[Bi]
2 = E[B2

i ]. Note that the arrival
process has stationary and independent increments, so that t−1E[Vi(t)] = mV,i and t−1Var[Vi(t)] = σ2

V,i for any
t > 0.

Cumulative service processes The service speeds of the N servers serving Q1, . . . , QN may vary over time
and are mutually dependent. More specifically, the joint process of these service speeds is modulated by a single
irreducible, stationary, continuous-time Markov chain {Φ(t), t ≥ 0} with finite state space S and invariant prob-
ability measure π = (πi)i∈S . When this Markov chain resides in the state ω ∈ S, the server of Qi drains its
queue at service rate φi(ω). We have as a consequence that the workload that the server of Qi has been capable
of processing during the time interval [0, t) is represented by

Ci(t) =

∫ t

s=0

φi(Φ(s))ds.

We will also refer to the process {Ci(t), t ≥ 0} as the cumulative service process of Qi. Note that, as the Markov
process {Φ(t), t ≥ 0} is in stationarity, the increments of the process {Ci(t), t ≥ 0} are also stationary. The mean
corresponding to the process {Ci(t), t ≥ 0} is given by

mC,i = E[Ci(1)] =

∫ 1

s=0

∑
ω∈S

φi(ω)P(Φ(s) = ω)ds =
∑
ω∈S

φi(ω)πω.

Since the Ci-process has stationary increments, it holds that t−1E[Ci(t)] = mC,i for any t > 0. We denote the
asymptotic variance limt→∞ t−1Var[Ci(t)] by σ2

C,i. Similarly, the long-run time-averaged covariance between the
cumulative service processes of the servers at Qi and Qj is represented by γCi,j = limt→∞

1
tCov[Ci(t), Cj(t)].

Computing expressions for σ2
C,i and γCi,j is not trivial. We focus on this problem in Section 5.2.
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Scaling A queueQi is said to be ‘stable’ if the expected amount of arriving work λiE[Bi] per time unit is smaller
than the average workload mC,i its server is capable of processing per time unit. Equivalently, Qi is stable if its
load, defined as ρi = λiE[Bi]

mC,i
, is less than one. We are interested in the performance of the network of queues

in heavy traffic; i.e., the case for which the arrival rates λ1, . . . , λN are scaled so that (ρ1, . . . , ρN ) → 1. For
this purpose, it is convenient to introduce the index r. In the r-th system, each arrival rate λi is taken so that
βi(1 − ρi)−1 = r, where the βi-parameters control the rate at which the arrival rates are scaled by r, while the
series of service requirements Bi,1, Bi,2, . . . and the Ci-processes are not scaled by r. The heavy-traffic limit for
any performance measure of the system corresponds to the limit r → ∞. We denote by λi,r the arrival rate of
type-i customers corresponding to the r-th system, so that λi,r → mC,i

E[Bi] when r →∞. For notational convenience,
we write for two functions f(r) and g(r) that f(r) = o(g(r)) if limr→∞ f(r)/g(r) = 0.

Functional central limit theorems for primitive processes For purposes that will become clear in the sequel,
we now state heavy-traffic limits for the primitive processes that are scaled in time by a factor r2. First, for
the scaled arrival processes, we observe that E[Vi(λi,rr

2t)] = λi,rr
2E[Bi]t. As the arrival processes constitute

independent renewal reward processes, the functional central limit theorem for renewal reward processes (see e.g.
[43, Theorem 7.4.1]) implies that{(V1(λ1,rr

2t)− λ1,rr2E[B1]t√
λ1,rr

, . . . ,
VN (λN,rr

2t)− λN,rr2E[BN ]t√
λN,rr

)
, t ≥ 0

}
d→{ZV (t), t ≥ 0} (1)

as r → ∞, where {ZV (t), t ≥ 0} is an N -dimensional Brownian motion with zero drift and covariance matrix
ΓV = diag(σ2

V,1, . . . , σ
2
V,N ).

Similarly, after observing that E[Ci(r
2t)] = mC,ir

2t, it follows from results in [42] that the time-scaled
cumulative service processes satisfy{(C1(r2t)−mC,1r

2t

r
, . . . ,

Cn(r2t)−mC,Nr
2t

r

)
, t ≥ 0

}
d→{ZC(t), t ≥ 0} (2)

as r → ∞, where {ZC(t), t ≥ 0} is an N -dimensional Brownian motion with zero drift and covariance matrix
ΓC with elements ΓCi,j = γCi,j . Alternatively, this result follows from the functional central limit theorem for
MAPs obtained in [34, Theorem 3.4]. Using the results of [34], we will show how to obtain expressions for γCi,j
in Section 5.2.

A heavy-traffic limit for the joint scaled net-input process now follows by combining (1) and (2) with the
observation that λi,rr

2E[Bi]t−mC,ir2t
r = βimC,it. In particular, this leads to

{(V1(λ1,rr
2t)− C1(r2t)

r
, . . . ,

VN (λN,rr
2t)− CN (r2t)

r

)
, t ≥ 0

}
d→{Z(t), t ≥ 0} (3)

as r → ∞, where {Z(t) = (Z1(t), . . . , ZN (t)), t ≥ 0} is an N -dimensional Brownian motion with drift vector
µ = (−β1mC,1, . . . ,−βNmC,N ) and covariance matrix

Γ = diag(
mC,1

E[B1]
σ2
V,1, . . . ,

mC,N

E[BN ]
σ2
V,N ) + ΓC . (4)

Representations Let {W r(t) = (W1,r(t), . . . ,WN,r(t)), t ≥ 0} be the process that describes the workload in
each queue of the r-th system at time t and let W r = (W1,r, . . . ,WN,r) = W r(∞) denote the workload in the
system in steady state. The processes {Dr(t), t ≥ 0} and {Lr(t), t ≥ 0} as well as Dr and Lr are similarly
defined for the virtual waiting time (the delay faced by an imaginary customer arriving at time t) and the queue
length (excluding the customer in service) respectively.

The workload Wi,r(t) present in Qi at time t can be represented by the one-sided reflection of the net-input
process {Vi(λi,rt)− Ci(t), t ≥ 0}, under the assumption that Wi,r(0) = 0:

Wi,r(t) = Vi(λi,rt)− Ci(t)− inf
s∈[0,t]

{Vi(λi,rs)− Ci(s)}

= sup
s∈[0,t]

{Vi(λi,rt)− Vi(λi,rs)− (Ci(t)− Ci(s))}. (5)
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As the joint cumulative service process {(C1(t), . . . , CN (t)), t ≥ 0} has stationary increments, it holds
that

(
C1(t) − C1(s), . . . , CN (t) − CN (s)

)
d
=
(
C1(t − s), . . . , CN (t − s)

)
, where d

= means equality in dis-
tribution. Furthermore, since the arrival processes are independent and compound Poisson processes have time-
reversible increments, we also have that

(
V1(λ1,rt)− V1(λ1,rs), . . . , VN (λN,rt)− VN (λN,rs)

)
d
=
(
V1(λ1,r(t−

s)), . . . , VN (λN,r(t− s))
)

. Due to this, we have by (5) thatW r(t) satisfies

W r(t)
d
=
(

sup
s∈[0,t]

{V1(λ1,r(t− s))− C1(t− s)}, . . . , sup
s∈[0,t]

{VN (λN,r(t− s))− CN (t− s)}
)

=
(

sup
s∈[0,t]

{V1(λ1,r(s))− C1(s)}, . . . , sup
s∈[0,t]

{VN (λN,r(s))− CN (s)}
)
.

By letting t→∞, this results in

W r
d
=
(

sup
s≥0
{V1(λ1,rs)− C1(s)}, . . . , sup

s≥0
{VN (λN,rs)− CN (s)}

)
. (6)

In this study, we are particularly interested in the distribution of the scaled workload W̃ r = W r

r (as well as
the similarly defined scaled virtual waiting time D̃r and scaled queue length L̃r) in heavy traffic, i.e., as r →∞.
It is easily seen from (6) that the scaled workload can be written in terms of the similarly scaled net-input process.
That is, after scaling time by a factor r2, we have

W̃ r
d
=
(

sup
t≥0

{V1(λ1,rr
2t)− C1(r2t)

r

}
, . . . , sup

t≥0

{VN (λN,rr
2t)− CN (r2t)

r

})
. (7)

3 Heavy-traffic asymptotics of the workload

In this section, we derive the following heavy-traffic asymptotic result for the scaled workload W̃ r.

Theorem 3.1. For the scaled workload vector W̃ r, we have

W̃ r
d→Z,

as r →∞, where Z = (Z1, . . . , ZN ), Zi = supt≥0{Zi(t)} and Zi(t) is as introduced in Section 2.

In order to prove this theorem, observe that, as opposed to the infinite-domain case, the supremum of càdlàg
functions on a finite domain [0,M), M ∈ R+ is a continuous functional; see e.g. [43]. The proof uses this fact in
combination with an additional result stated in Lemma 3.4. To prove Lemma 3.4, we first establish upper bounds of
the tail probabilities for the suprema of the processes {Vi(λi,rt)−E[Vi(λi,r)]t, t ≥ 0} and {E[Ci(1)]t−Ci(t), t ≥
0} in Lemmas 3.2 and 3.3, respectively.

Lemma 3.2. For the arrival process {Vi(λi,r), t ≥ 0} of Qi, we have that

P( sup
t∈[0,T )

{Vi(λi,rt)− E[Vi(λi,r)]t} ≥ x) ≤ λi,rE[B2
i ]T

x2
,

for any r, x, T ∈ R+.

Proof. As {Vi(λi,rt) − E[Vi(λi,r)]t, t ≥ 0} is a right-continuous martingale, we have by Doob’s inequality (cf.
[31, Theorem II.1.7]) that P(supt∈[0,T ){Vi(λi,rt)− E[Vi(λi,r)]t} ≥ x) ≤ x−2 supt∈[0,T ){Var[Vi(λi,rt)]}. Since
Var[Vi(λi,rt)] = λi,rσ

2
V,it is strictly increasing in t, the lemma follows.

Lemma 3.3. For the cumulative service process {Ci(t), t ≥ 0} pertaining to the server ofQi, there exist for every
x, T ∈ R+ a set of positive real constants c1, c2, c3 and c4 such that

P( sup
t∈[0,T )

{E[Ci(1)]t− Ci(t)} ≥ x) ≤ c1T

x2
+
c2
T

+
c3T

ec4
√
x
.
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Proof. The lemma is a consequence of Proposition 1 in [22]. Define h = maxω∈S{φi(ω)} andH(t) = ht−Ci(t).
The process {H(t), t ≥ 0} represents increments of the regenerative process {h−φi(Φ(t)), t ≥ 0} and regenerates
for example every time the Markov process {Φ(t), t ≥ 0} enters the reference state ω = Φ(0). We denote the
n-th of such regeneration times by Tn. Furthermore, we define γ∗n = supTn−1≤t≤Tn{H(t) − H(Tn−1)} and
νn = Tn−Tn−1. Note that ν1, ν2, . . . can be seen as i.i.d. samples from a random variable Y , and represent return
times of state ω in the Markov chain {Φ(t), t ≥ 0}. Proposition 1 in [22] now implies that, for all x, T ∈ R+,
there exist positive real constants d1, d2, d3 and d4 such that

P( sup
t∈[0,T )

{E[Ci(1)]t− Ci(t)} > x) ≤ d1(e−d2
x2

T + e−d3T + Te−d4
√
x), (8)

if E[e
√

sup0≤t≤Y {H(t)}] < ∞ and E[e
√
γ∗n ] < ∞ for any n ∈ N+. This statement follows by substituting the

variables Bt, b and Q(x) in [22, Proposition 1] by H(t), h − E[Ci(1)] and
√
x respectively. To show that the

necessary conditions hold in our case, observe that H(t) is non-decreasing in t and takes values from [0, ht]. By
combining this with the fact that

√
x < εx + 1

ε for any x ≥ 0 and ε > 0, we have that E[e
√

sup0≤t≤Y {H(t)}] =

E[e
√
H(Y )] ≤ E[e

√
hY ] < E[eεhY+ε−1

] = eε
−1E[eεhY ] for any ε > 0. As γ∗n ≤ hνn for any n > 0, similar

computations yield that E[e
√
γ∗n ] < eε

−1E[eεhY ] for all n ∈ N and any ε > 0. Subsequently, note that the
regeneration time Y , which constitutes the return time of state ω in the Markov chain {Φ(t), t ≥ 0}, can be
decomposed into a period of time Y1 until the transition away from ω, and the following period Y2 until reentry
to state ω. The former period Y1 is exponentially distributed with a certain rate α, so that E[eεhY1 ] = α

α−εh
for ε < h−1α. The latter period Y2 is easily seen to be stochastically smaller than a geometrically distributed
random variable with the positive success parameter q = minω′∈S\{ω}{P(Φ(1) = ω | Φ(0) = ω′)}. Hence,

E[eεhY2 ] ≤ qeεh

1−(1−q)eεh for ε < −h−1 log(1 − q). As Y1 and Y2 are mutually independent, we thus have for

0 < ε < h−1 min{α,− log(1 − q)} that eε
−1E[eεhY ] ≤ eε

−1 α
α−εh

qeεh

1−(1−q)eεh < ∞, so that the necessary
conditions are satisfied. The lemma now follows from (8) by noting that e−T < T−1 for all T > 0 and taking
c1 = d1d

−1
2 , c2 = d1d

−1
3 , c3 = d1 and c4 = d4.

Based on the results obtained in Lemmas 3.2 and 3.3, we now establish the final auxiliary result needed to
prove Theorem 3.1. This result is summarised in the following lemma.

Lemma 3.4. The scaled net-input process {Vi(λi,rr
2t)−Ci(r2t)
r , t > 0} corresponding to Qi satisfies

lim
M→∞

lim
r→∞

P( sup
t≥M

{Vi(λi,rr2t)− Ci(r2t)
r

}
≥ x) = 0

for all x,M ∈ R+.

Proof. The first part of the proof is inspired by the proof of (20) in [32]. For any r, let bi,r =
E[Vi(λi,r)]+E[Ci(1)]

2 ,
so that bi,r − E[Vi(λi,r)] = E[Ci(1)] − bi,r =

mC,i−λi,rE[Bi]
2 = 1

2βimC,ir
−1. Due to the subadditivity property

of the supremum operator, we have for any M > 0 that

P( sup
t≥M

{Vi(λi,rr2t)− Ci(r2t)
r

}
≥ x)

≤ P( sup
t≥M

{Vi(λi,rr2t)− bi,rr2t
r

}
+ sup
t≥M

{bi,rr2t− Ci(r2t)
r

}
≥ x)

≤ P( sup
t≥M
{Vi(λi,rr2t)− bi,rr2t} ≥ 0) + P( sup

t≥M
{bi,rr2t− Ci(r2t)} ≥ 0)

≤
∞∑
j=0

P( sup
t∈[2jM,2j+1M)

{Vi(λi,rr2t)− bi,rr2t} ≥ 0) +

∞∑
j=0

P( sup
t∈[2jM,2j+1M)

{bi,rr2t− Ci(r2t)} ≥ 0)

=

∞∑
j=0

P( sup
t∈[2jr2M,2j+1r2M)

{Vi(λi,rt)− E[Vi(λi,r)]t−
1

2
βimC,ir

−1t} ≥ 0)

+

∞∑
j=0

P( sup
t∈[2jr2M,2j+1r2M)

{E[Ci(1)]t− Ci(t)−
1

2
βimC,ir

−1t} ≥ 0)
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≤
∞∑
j=0

P( sup
t∈[0,2j+1r2M)

{Vi(λi,rt)− E[Vi(λi,r)]t} ≥ 2j−1βimC,irM)

+

∞∑
j=0

P( sup
t∈[0,2j+1r2M)

{E[Ci(1)]t− Ci(t)} ≥ 2j−1βimC,irM)

≤
∞∑
j=0

λi,rE[B2
i ]2j+1r2M

22j−2β2
im

2
C,ir

2M2
+

∞∑
j=0

( c12j+1r2M

22j−2β2
im

2
C,ir

2M2
+

c2
2j+1mC,ir2M

+
c32j+1r2M

ec4
√

2j−1βimC,irM

)
(9)

for certain positive constants c1, c2, c3 and c4. The second-to last inequality follows by observing that the max-
imum value of − 1

2βimC,ir
−1t in the domain t ∈ [2jr2M, 2j+1r2M ] equals −2j−1βimC,irM and by enlarging

the intervals of the suprema to also include [0, 2jr2M). The last inequality follows from Lemmas 3.2 and 3.3.
Simplifying (9) leads to

P( sup
t≥M

{Vi(λi,rr2t)− Ci(r2t)
r

}
≥ x) ≤ 16(λi,rE[B2

i ] + c1)

β2
im

2
C,iM

+
c2

mC,ir2M
+

∞∑
j=0

fi,j(r,M), (10)

where fi,j(r,M) = c32j+1r2Me−c4
√

2j−1βimC,irM . The lemma now follows from (10) by taking the limit
r →∞ and subsequently the limit M →∞, if limr→∞

∑∞
j=0 fi,j(r,M) = 0. To show that this condition holds,

observe that the derivative of fi,j with respect to r reads ∂
∂rfi,j(r,M) = c32jrMe−hi,j(M)

√
r(4− hi,j(M)

√
r),

where hi,j(M) := c4
√

2j−1βimC,iM . As a result, ∂
∂rfi,j(r,M) < 0 if and only if 4− hi,j(M)

√
r < 0. Due to

the monotonicity of hi,j(M) and
√
r in j and r respectively, there thus exist positive constants j0 and r0, so that

∂
∂rfi,j(r,M) < 0 for any j ≥ j0 and r ≥ r0. This results in the fact that supr≥r∗ fi,j(r,M) = fi,j(r∗,M) for
every r∗ ≥ r0. Hence, an upper bound for

∑∞
j=0 fi,j(r,M) when r ≥ r∗ ≥ r0 is given by

∞∑
j=0

fi,j(r,M) =

j0−1∑
j=0

fi,j(r,M) +

∞∑
j=j0

fi,j(r,M) ≤
j0−1∑
j=0

fi,j(r,M) +

∞∑
j=j0

fi,j(r∗,M). (11)

When r →∞, we can use (11) with r∗ taken arbitrarily large so that

lim
r→∞

∞∑
j=0

fi,j(r,M) ≤ lim
r→∞

j0−1∑
j=0

fi,j(r,M) +

∞∑
j=j0

lim
r∗→∞

fi,j(r∗,M).

By observing that limr→∞ fi,j(r,M) = 0, this inequality reduces to limr→∞
∑∞
j=0 fi,j(r,M) ≤ 0. Since

fi,j(r,M) ≥ 0, it thus must hold that limr→∞
∑∞
j=0 fi,j(r,M) = 0, which concludes the proof.

Using these auxiliary results, we can now prove Theorem 3.1.

Proof of Theorem 3.1. By (7), it is enough to show that

lim
r→∞

P(

N⋂
i=1

{
sup
t≥0

{Vi(λi,rr2t)− Ci(r2t)
r

}
≥ xi

}
) = P(

N⋂
i=1

{
sup
t≥0
{Zi(t)} ≥ xi

}
) (12)

for all x1, . . . , xN ≥ 0. We first obtain a lower bound for the left-hand side of (12):

lim
r→∞

P(

N⋂
i=1

{
sup
t≥0

{Vi(λi,rr2t)− Ci(r2t)
r

}
≥ xi

}
)

≥ lim
r→∞

P(

N⋂
i=1

{
sup

t∈[0,M)

{Vi(λi,rr2t)− Ci(r2t)
r

}
≥ xi

}
) = P(

N⋂
i=1

{
sup

t∈[0,M)

{Zi(t)} ≥ xi
}

) (13)

for all M ∈ R+, where the equality follows from (3) together with a combination of the continuous mapping
theorem and the continuity property of the supremum operator applied to càdlàg-functions on the finite domain
[0,M). Next, to derive an upper bound for the left-hand side of (12), denote by EM,i the event that

sup
t∈[0,M)

{Vi(λi,rr2t)− Ci(r2t)
r

}
= sup

t≥0

{Vi(λi,rr2t)− Ci(r2t)
r

}
,
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and let EcM,i be its complementary event. It is trivial to see that P(
⋂N
i=1{supt∈[0,M){Zi(t)} ≥ xi}) is an upper

bound for limr→∞ P(
⋂N
i=1{supt≥0{

Vi(λi,rr
2t)−Ci(r2t)
r } ≥ xi;EM,i}) for all M ∈ R+. Furthermore, we have

that
∑N
i=1 P(supt≥M{

Vi(λi,rr
2t)−Ci(r2t)
r } ≥ xi) is an upper bound for P(

⋂N
i=1{supt≥0{

Vi(λi,rr
2t)−Ci(r2t)
r } ≥

xi};
⋃N
i=1E

c
M,i). Therefore, we obtain by using De Morgan’s law that

lim
r→∞

P(

N⋂
i=1

{
sup
t≥0

{Vi(λi,rr2t)− Ci(r2t)
r

}
≥ xi

}
)

≤ P(

N⋂
i=1

{
sup

t∈[0,M)

{Zi(t)} ≥ xi
}

) + lim
r→∞

N∑
i=1

P( sup
t≥M

{Vi(λi,rr2t)− Ci(r2t)
r

}
≥ xi). (14)

When M → ∞, the lower bound established in (13) converges to P(
⋂N
i=1

{
supt∈[0,∞){Zi(t)} ≥ xi

}
). The

upper bound found in (14) also converges to this expression, as the second term in the right-hand side of (14)
vanishes due to Lemma 3.4. From this, (12) immediately follows, which proves the theorem.

Remark 3.1. The joint distribution of Z is not straightforward to derive explicitly. However, explicit expres-
sions for the marginal distribution of Zi are not hard to obtain. Note that Zi = supt≥0 Zi(t) is the all-time
supremum of a one-dimensional Brownian motion with negative drift −βimC,i and variance mC,i

E[Bi]σ
2
V,i + σ2

C,i.
It is well-known that the all-time supremum of a Brownian motion with negative drift −a and variance b is ex-
ponentially ( 2ab ) distributed. Therefore, the distribution of the steady-state scaled workload W̃i,r present in Qi

converges to an exponential distribution with rate 2βi

(
σ2
V,i

E[Bi] +
σ2
C,i

mC,i

)−1
as r → ∞. In the next section, we will

see that the limiting distributions of D̃i,r and L̃i,r only differ from the limiting distribution of W̃i,r by a multi-
plicative factorm−1C,i and E[Bi]

−1, respectively. As a result, the distributions of the steady-state delay D̃i,r and the

steady-state queue length L̃i,r also converge to exponential distributions with rates 2βimC,i

(
σ2
V,i

E[Bi] +
σ2
C,i

mC,i

)−1
and 2βiE[Bi]

(
σ2
V,i

E[Bi] +
σ2
C,i

mC,i

)−1
, respectively. We will study the derivation of the complete distribution of Z in

Section 5.3.

4 Extension to virtual waiting times and queue lengths

In Section 3, we derived a heavy-traffic limit theorem for the scaled workload vector W̃ r. In this section, we
extend this result to heavy-traffic limits for the distributions of the virtual waiting-time vector D̃r and the queue
length vector L̃r by regarding the joint distribution of D̃r and W̃ r as well as that of L̃r and W̃ r in Section 4.1
and Section 4.2 respectively. It turns out that, when r →∞, the distributions of both D̃r and L̃r are elementwise
equal to the distribution of W̃ r up to a multiplicative constant.

4.1 Heavy-traffic asymptotics of the virtual waiting time
We now study the distribution of the scaled virtual waiting time in heavy traffic. First, we obtain the tail probability
of the joint distribution of D̃r and W̃ r as r → ∞ in Proposition 4.1. Based on this, we obtain an extension of
Theorem 3.1 for the scaled virtual waiting time in Corollary 4.2.

Proposition 4.1. The tail probability of the limiting joint distribution of D̃r and W̃ r satisfies

lim
r→∞

P(

N⋂
i=1

{
D̃i,r ≥ si; W̃i,r ≥ ti

}
) = P(

N⋂
i=1

{
Zi ≥ max{mC,isi, ti}

}
)

with Z1, . . . , ZN as defined in Theorem 3.1.

Proof. Observe that since the waiting time faced by an imaginary type-i customer arriving at time u is longer than
si time units, the workload present in Qi just before u is larger than Ci(u+ si)−Ci(u). This is evident, since the
latter number represents the amount of work the server of Qi is able to process in the si time units following time
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u. In other words, {Di,r(u) > si} is tantamount to the event {Wi,r(u) > Ci(u+ si)−Ci(u)} for i = 1, . . . , N ,
so that in steady state (i.e., u→∞) we have

P(

N⋂
i=1

{
Di,r > si;Wi,r > ti

}
) = P(

N⋂
i=1

{
Wi,r > max{Ci(si), ti}

}
). (15)

Based on this, we obtain an expression for the tail probability of the joint distribution of D̃r and W̃ r:

P(

N⋂
i=1

{
D̃i,r ≥ si; W̃i,r ≥ ti

}
) = P(

N⋂
i=1

{
Wi,r ≥ max{Ci(rsi), rti}

}
)

= P(

N⋂
i=1

{
W̃i,r ≥ max

{Ci(rsi)
r

, ti

}}
), (16)

where we used (15) in the first equality. We now focus on showing that

lim
r→∞

P(

N⋂
i=1

{
W̃i,r ≥ max

{Ci(rsi)
r

, ti

}}
) = P(

N⋂
i=1

{
Zi ≥ max{mC,isi, ti}

}
), (17)

which combined with (16) directly implies the result to be proved. To this end, we observe that, since {Ci(t), t ≥
0} is a renewal reward process, r−1Ci(rsi)→ mC,isi almost surely as r →∞ due to standard results in renewal
theory. Denote by F εi,r for any ε > 0 the event that r−1Ci(rsi) ∈ [mC,isi − ε,mC,isi + ε] and let F ε,ci,r be its
complementary event. Thus, limr→∞ P(F εi,r) = 1. As a result, we have due to De Morgan’s law that

P(

N⋂
i=1

{
W̃i,r ≥ max

{Ci(rsi)
r

, t1

}}
) = P(

N⋂
i=1

{
W̃i,r ≥ max

{Ci(rsi)
r

, ti

}
;F εi,r

}
) + o(1).

Letting r →∞ in this expression, using the definition of the event F εi,r and applying Theorem 3.1, we obtain the
following lower bound for the left-hand side of (17):

lim
r→∞

P(

N⋂
i=1

{
W̃i,r ≥ max

{Ci(rsi)
r

, ti

}}
) ≥ P(

N⋂
i=1

{
Zi ≥ max{mC,isi + ε, ti}

}
). (18)

Similarly, an upper bound for the left-hand side of (17) is given by

lim
r→∞

P(

N⋂
i=1

{
W̃i,r ≥ max

{Ci(rsi)
r

, ti

}}
) ≤ P(

N⋂
i=1

{
Zi ≥ max{mC,isi − ε, ti}

}
). (19)

In Remark 3.1, we found that Zi is exponentially distributed for i = 1, . . . N , so that the joint distribution of Z
has no discontinuity in the point (mC,1s1, . . . ,mC,NsN ). As a consequence, by taking the limit ε → 0 in the
right-hand sides of (18) and (19), we obtain (17), which, as explained above, proves the proposition.

From Proposition 4.1, the heavy-traffic limit for the virtual waiting time follows in the following corollary.

Corollary 4.2. For the scaled virtual waiting-time vector D̃r, it holds that

D̃r
d→
( 1

mC,1
, . . . ,

1

mC,N

)
Z,

as r →∞, with Z defined in Theorem 3.1.

Proof. This is an immediate result from Proposition 4.1 by taking t1 = . . . = tN = 0.
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4.2 The joint queue-length distribution

In this section, we obtain an extension of Theorem 3.1 for the scaled steady-state queue length L̃r in heavy traffic.
Let BRi,r be the remaining service requirement of a type-i customer in service in the r-th system if Li,r > 0, and
zero otherwise. It is then trivially seen that

W r = (BR1,r, . . . , B
R
N,r) +

( L1,r∑
j=1

B̂1,j , . . . ,

LN,r∑
j=1

B̂N,j

)
(20)

for all i > 0, where B̂i,j represents the service requirement of the waiting customer in the j-th waiting position of
Qi and is distributed according toBi. These service requirements are mutually independent as well as independent
fromW r and Lr. Note that B̂i,j is defined differently from Bi,j , which we defined in Section 2 to be the service
requirement of the j-th arriving type-i customer since the start of the queueing process. The scaled version of (20)
is given by

W̃ r = (B̃R1,r, . . . , B̃
R
N,r) +

1

r

( rL̃1,r∑
j=1

B̂1,j , . . . ,

rL̃N,r∑
j=1

B̂N,j

)
, (21)

where B̃Ri,r = 1
rB

R
i,r for i = 1, . . . , N . It is intuitively tempting to conclude that (B̃R1,r, . . . , B̃

R
N,r) → 0 as

r → ∞, and based on that, conclude that W̃ r and L̃r are equal elementwise up to a multiplicative constant.
However, this is not straightforward, since, for example, L̃r and (B̃R1,r, . . . , B̃

R
N,r) are not independent. We make

these results rigorous in this section. Inspired by [44, Proposition 1], we first obtain another representation for the
joint distribution of L̃i,r and W̃i,r for a single queue Qi in Lemma 4.3. Based on this result, we derive the heavy-
traffic asymptotics for (L̃i,r, W̃i,r, B̃

R
i,r) in Lemma 4.4, which imply that B̃Ri,r → 0 as r → ∞. We subsequently

conclude that (B̃R1,r, . . . , B̃
R
N,r) → 0 as r → ∞ and derive the joint distribution of L̃r and W̃ r as r → ∞ in

Proposition 4.5. From this, an extension of Theorem 3.1 for the scaled queue length L̃r follows in Corollary 4.6.
In order to construct an additional representation for the joint distribution of L̃i,r and W̃i,r, we need to intro-

duce some additional notation. Denote by W r
i,n and Lri,n the workload present in Qi and the queue length of Qi

respectively in the r-th system, just before the n-th arrival of a type-i customer. Furthermore, Ari,j refers to the
time between the j-th and the (j + 1)-st arriving type-i customer in the r-th system, so that SA,ri,n =

∑n
j=1A

r
i,j

and SBi,n =
∑n
j=1Bi,j represent the cumulative series of interarrival times and service requirements of type-i

customers. By construction of the heavy-traffic scaling, Ari,j
d→Ai,j and E[Ari,j ] → E[Ai,j ] as r → ∞, where

Ai,j are i.i.d. samples from an exponential (mC,i/E[Bi]) distribution. Finally, we define Sri,n = SBi,n−Ci(S
A,r
i,n ).

The required representation is now given in the following lemma.

Lemma 4.3. For any x, y > 0 and i = 1, . . . , N , the joint distribution of L̃i,r and W̃i,r satisfies

P(L̃i,r ≥ x; W̃i,r ≥ y) = P(Wi,r +Bi ≥ Ci(SA,ri,drxe);

r−1 max
{
Wi,r + Sri,drxe, max

j∈{1,...,drxe}
{Sri,drxe − S

r
i,j}
}
≥ y).

Proof. The proof is inspired by [44, Proposition 1]. Observe that, for any k ≥ 1 and n ≥ 1, the event {Lri,n+k ≥
k} coincides with the event that the workload the server at Qi was capable of processing between the arrival of
the n-th and (n+ k)-th customer, Ci(S

A,r
i,n+k−1)−Ci(SA,ri,n−1), does not exceed the amount W r

i,n +Bi,n of work
present in Qi just after the arrival of the n-th customer. Hence, we have that

{Lri,n+k ≥ k} = {W r
i,n +Bi,n ≥ Ci(SA,ri,n+k−1)− Ci(SA,ri,n−1)}. (22)

Moreover, due to Lindley’s recursion, which is given by W r
i,n+1 = max{W r

i,n + Sri,n − Sri,n−1, 0} or W r
i,n+k =

max{W r
i,n + Sri,n+k−1 − Sri,n−1,maxj∈{0,...,k−1}{Si,n+k−1 − Si,n+j}}, we have for any y ≥ 0 that

{W r
n+k ≥ y} =

{
max

{
W r
i,n + Sri,n+k−1 − Sri,n−1, max

j∈{0,...,k−1}
{Sri,n+k−1 − Sri,n+j}

}
≥ y
}
. (23)
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By combining (22) and (23), taking the probabilities of these events, letting n→∞ and observing that the vector
(Lri,n,W

r
i,n) weakly converges to (Li,r,Wi,r), we obtain

P(Li,r ≥ k;Wi,r ≥ y) = P(Wi,r +Bi ≥ Ci(SA,ri,k ); max
{
Wi,r + Sri,k, max

j∈{1,...,k}
{Sri,k − Sri,j}

}
≥ y),

for any k ≥ 1, y ≥ 0. By noting that P(L̃i,r ≥ x, W̃i,r ≥ y) = P(Li,r ≥ drxe, r−1Wi,r ≥ y), the desired
statement follows immediately.

Based on Lemma 4.3, we derive the heavy-traffic asymptotics of (L̃i,r, W̃i,r, B̃
R
i,r) in the following lemma.

This lemma directly implies that B̃Ri,r → 0 as r →∞.

Lemma 4.4. For any queue, the scaled steady-state queue length, workload and remaining service requirement
exhibit state-space collapse under heavy-traffic assumptions. In particular, we have that

(L̃i,r, W̃i,r, B̃
R
i,r)

d→
(

1

E[Bi]
, 1, 0

)
Zi

as r →∞ for any i ∈ {1, . . . , N}, with Zi defined in Section 2.

Proof. Again, the proof is inspired by [44, Proposition 1]. We first focus on the joint distribution of L̃i,r and W̃i,r.
Due to the strong law of large numbers, r−1SA,ri,drxe → E[Ai,j ]x = E[Bi]x

mC,i
almost surely as r → ∞. Moreover,

t−1Ci(t)→ mC,i almost surely as t→∞, so that

Ci(S
A,r
i,drxe)

r
=
Ci(S

A,r
i,drxe)

SA,ri,drxe

SA,ri,drxe

r
→ E[Bi]x (24)

in probability as r → ∞. We further have due to the weak law of large numbers that r−1SBi,drxe → E[Bi]x, so
that r−1Sri,drxe → 0 and r−1 maxj∈{1,...,drxe}{Sri,drxe − S

r
i,j} → 0 as r → ∞. Let, for any ε > 0, Gεi,R denote

the event

{r−1Ci(SA,ri,drxe) ∈ [E[Bi]x− ε,E[Bi]x+ ε]; r−1SBi,drxe ∈ [E[Bi]x− ε,E[Bi]x+ ε];

r−1Sri,drxe ∈ [−ε, ε]; r−1 max
j∈{1,...,drxe}

{Sri,drxe − S
r
i,j} ∈ [0, ε]}.

Due to the convergence results above, limr→∞ P(Gεi,r) = 1 so that P(L̃i,r ≥ x; W̃i,r ≥ y) = P(L̃i,r ≥ x; W̃i,r ≥
y;Gεi,r) + o(1). After combining this with Lemma 4.3 and consequently taking the limit r →∞, we obtain

lim
r→∞

P(W̃i,r ≥ max{E[Bi]x+ ε, y + ε})

≤ lim
r→∞

P(L̃i,r ≥ x; W̃i,r ≥ y) ≤ lim
r→∞

P(W̃i,r ≥ max{E[Bi]x− ε, y − ε}),

since B̃i → 0 as r →∞. By first applying Theorem 3.1 on the left-hand side and the right-hand side, next noting
that the distribution of Zi has no discontinuity points (cf. Remark 3.1), and finally letting ε→ 0, we obtain

lim
r→∞

P(L̃i,r ≥ x; W̃i,r ≥ y) = P(Zi ≥ max{E[Bi]x, y}). (25)

It remains to consider the convergence of B̃Ri,r. We show that limr→∞ P(B̃Ri,r > δ) = 0 for all δ > 0, which
finalises the proof of the desired statement. Note that due to representation (21), we have that P(B̃Ri,r > δ) =

P(W̃i,r >
1
r

∑rL̃i,r
j=1 B̂i,j + δ). Let Hε

i,r denote the event { 1n
∑n
j=1 B̂i,j ∈ (E[Bi]− ε,E[Bi] + ε) for all n ≥

√
r}.

By using the law of total probability and noting that limr→∞ P(Hε
i,r) = 1 due to the weak law of large numbers,

we thus have similar to earlier calculations that

P(B̃Ri,r > δ) = P(W̃i,r >
1

r

rL̃i,r∑
j=1

B̂i,j + δ;Hε
i,r) + o(1) = P(W̃i,r > L̃i,r

1

rL̃i,r

rL̃i,r∑
j=1

B̂i,j + δ;Hε
i,r) + o(1).
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By taking the limit r →∞ and using the established convergence of L̃i,r, we obtain

lim
r→∞

P(W̃i,r > L̃i,r(E[Bi] + ε) + δ) ≤ lim
r→∞

P(B̃Ri,r > δ) ≤ lim
r→∞

P(W̃i,r > L̃i,r(E[Bi]− ε) + δ).

By letting ε→ 0 and noting, as before, that the limiting distribution of W̃i,r has no discontinuity points, this leads
to limr→∞ P(B̃Ri,r > δ) = limr→∞ P(W̃i,r > L̃i,rE[Bi] + δ) for any δ > 0. Observe that (25) implies that
limr→∞ P(W̃i,r > L̃i,rE[Bi] + δ) = 0 for any δ > 0, which completes the proof.

Based on the previous results, we now obtain the limiting joint distribution of L̃r and W̃ r in the following
proposition.

Proposition 4.5. The tail probability of the limiting joint distribution of L̃r and W̃ r satisfies

lim
r→∞

P(

N⋂
i=1

{
L̃i,r ≥ si; W̃i,r ≥ ti

}
) = P(

N⋂
i=1

{
Zi ≥ min{E[Bi]si, ti}

}
) (26)

with Z1, . . . , ZN defined in Section 2.

Proof. Equation (21) implies that the event {L̃i,r ≥ si} coincides with the event {W̃i,r ≥ B̃Ri,r + 1
r

∑rsi
j=1 B̂i,j},

as the B̂i,j can only take non-negative values. Thus, we have

P(

N⋂
i=1

{
L̃i,r ≥ si; W̃i,r ≥ ti) = P(

N⋂
i=1

{
W̃i,r ≥ max{B̃Ri,r +

1

r

rsi∑
j=1

B̂i,j , ti}
}

).

Let Hε
i,r be defined as before and recall that limr→∞ P(

⋂N
i=1H

ε
i,r) = 1, so that due to the law of total probability,

P(

N⋂
i=1

{
L̃i,r ≥ si; W̃i,r ≥ ti

}
) = P(

N⋂
i=1

{
W̃i,r ≥ max{B̃Ri,r + si

1

rsi

rsi∑
j=1

B̂i,j , ti};Hε
i,r

}
) + o(1).

Note that, according to Lemma 4.4, B̃Ri,r → 0 as r →∞ for i = 1, . . . , N , so that also (B̃R1,r, . . . , B̃
R
N,r)→ 0 as

r →∞. We thus obtain

lim
r→∞

P(

N⋂
i=1

{
W̃i,r ≥ max{E[Bi] + ε, ti}

}
) ≤ lim

r→∞
P(

N⋂
i=1

{
L̃i,r ≥ si; W̃i,r ≥ ti

}
)

≤ lim
r→∞

P(

N⋂
i=1

{
W̃i,r ≥ max{E[Bi]− ε, ti}

}
).

By taking the limit ε → 0, an application of Theorem 3.1 and the notion that the distribution of Z has no
discontinuity points yields the desired result.

Corollary 4.6. For the scaled queue length vector L̃r, it holds that

L̃r
d→
( 1

E[B1]
, . . . ,

1

E[BN ]

)
Z,

as r →∞, with Z defined in Section 2.

Proof. The desired statement follows immediately from Proposition 4.5 by taking t1 = . . . = tN = 0.
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5 Application to a two-layered network
In this section, we apply the results obtained so far in this paper to a network that is inspired by a manufacturing
application and fits the class of so-called layered queueing networks (see e.g. [12, 13, 14]). We will also refer to
this network as the two-layered network. We first describe the network in more detail in Section 5.1 and show
that this particular model fits naturally in the general framework described in Section 2. Then, in Section 5.2, we
study the question of how to compute the covariance matrix Γ of the N -dimensional Brownian motion Z based
on this example. More specifically, we obtain expressions for the covariance terms γCi,j , by using results from the
literature on MAPs. We also compute the limiting distributions of W̃ r, D̃r and L̃r. Doing so in an exact fashion
turns out to be hard. Therefore, we study how to numerically obtain the limiting distributions, by viewing Z as
an N -dimensional SRBM in Section 5.3. Finally, in Section 5.4, we conclude by means of simulation that the
distribution of W̃ r converges quickly to the distribution of Z as r → ∞, and therefore, that the heavy-traffic
asymptotics constitute useful approximations for stable systems with a considerable load.

5.1 Description of the two-layered network
The two-layered network that we consider in this section is an extension of the machine-repair model (cf. [36,
Chapter 5]) and consists of N machines M1, . . . ,MN as well as a single repairman R, see Figure 1. The second
layer of this network constitutes the classical machine-repair model, where each machine breaks down after a
stochastic lifetime and the repairman repairs the machines in the order of breakdown. In the event of a breakdown,
the machine moves to the repair buffer, where it will wait if the repairman is busy repairing, otherwise repair will
start instantly. Contrary to the classical machine-repair model, we assume that each machine Mi also processes
its own queue Qi of products at a service speed of one when it is operational, which forms the first layer of the
two-layered network.

When lifetimes and repair times follow a phase-type distribution, this networks fits the general model given
in Section 2, as the availability of the Markov chains can then be modelled by a continuous-time Markov chain
{Φ(t), t ≥ 0}. For the sake of brevity, we will assume in the remainder of Section 5 that N = 2 and that the
lifetime and repair-time distributions of Mi are exponentially distributed with rate σi and νi, respectively. Then,
{Φ(t), t ≥ 0} operates on the state space S = {(U,U), (U,R), (R,U), (W,R), (R,W )}. A stateω = (ω1, ω2) ∈
S represents for each machine Mi its condition of being up (ωi = U ), in repair (ωi = R), or waiting in the repair
buffer for repair (ωi = W ) at time t. The generator matrix Q with elements qi,j , i, j ∈ S that corresponds to this
Markov chain is given by

Q =


−σ1 − σ2 σ2 σ1 0 0

ν2 −ν2 − σ1 0 σ1 0
ν1 0 −ν1 − σ2 0 σ2
0 0 ν2 −ν2 0
0 ν1 0 0 −ν1

 ,

and we let qi = −qi,i be the sum of the outgoing rates of state i. The continuous-time Markov chain {Φ(t), t ≥ 0}
is irreducible and aperiodic, so that its invariant probability measure π = (πj)j∈S is uniquely determined by the
equations πQ = 0 and π1 = 1, and can be obtained explicitly in terms of the model parameters σ1, σ2, ν1 and ν2.
Since the machines drain their queues of products at service rate one if they are operational (and zero otherwise),
the connection with the general framework in Section 2 is completed by choosing the state-dependent service
speeds as φi(ω) = 1{ωi=U}, where 1{A} denotes the indicator function on the event A.

5.2 Derivation of the covariance matrix
Now that the two-layered network is cast as a special instance of the general model given in Section 2, we show
how to compute expressions for the covariance matrix Γ of the N -dimensional Brownian motion Z completely in
terms of the model parameters. We do this based on the example of the two-layered network described in Section
5.1. However, the following methods can also be used to find the covariance matrix Γ for any instance of the
model given in Section 2 without any conceptual complications. By (4), it remains to compute expressions for the
covariance terms γCi,j = limt→∞

1
tCov[Ci(t), Cj(t)] for all i, j ∈ {1, . . . , N}. In order to compute these, observe

that the increments of {Ci(t), t ≥ 0} and {Cj(t), t ≥ 0} are conditionally independent given {Φ(t), t ≥ 0}.
Therefore, we can view {(Φ(t), Ci(t)), t ≥ 0}, {(Φ(t), Cj(t)), t ≥ 0} and {(Φ(t), Ci(t) + Cj(t)), t ≥ 0} as
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Figure 1: The two-layered model under consideration.

MAPs. As a consequence, a functional central limit theorem for MAPs obtained in [34] can be applied to compute
γCi,j for all i, j ∈ {1, . . . , N}. Let ωref ∈ S be an arbitrary reference state and let Tk be the k-th time after t = 0
that the Markov chain {Φ(t), t ≥ 0} enters this state. Then, the results of [34] imply the following lemma.

Lemma 5.1. Suppose that {Y (t), t ≥ 0} is a Markov-modulated drift process, of which the drift equals dk when
the Markov chain {Φ(t), t ≥ 0} is in state k ∈ S. Furthermore, suppose that |dk| < ∞ for each k ∈ S and that∑
k∈S πkdk = 0. Then, { 1√

s
Y (st), t ≥ 0} converges in distribution, as s → ∞, to a driftless Brownian motion

starting at 0 with variance parameter

σ2
Y = 2

∑
k∈S

πk

d2k
qk

+
∑

l∈S\{{k}∪{ωref}}

qk,ldkfl
qk

 , (27)

where the fl-parameters are the unique solution to the set of linear equations

fm =
dm
qm

+
∑

n∈S\{{m}∪{ωref}}

qm,n
qm

fn.

In particular, we have that limt→∞
1
tVar[Y (t)] = σ2

Y .

Proof. The convergence in distribution immediately follows from [34, Theorem 3.4] by taking X(t) = Φ(t) and
Di,j = Vi,j = υi = 0 for all i, j in the notation of that paper. To show the result for the asymptotic variance of the
modulated process Y , observe thatM(t) = maxk:Tk≤t{k} counts the number of times the Markov chain returned
to the reference state up till time t, so that {M(t), t ≥ 0} can be interpreted as a (delayed) renewal process. As a
consequence,

lim
t→∞

Var[Y (t)]

t
= lim
t→∞

Var[Y (
∑M(t)
i=1 (Ti+1 − Ti))] + o(t)

t

= lim
t→∞

E[M(t)]Var[Y (T2 − T1)] + Var[M(t)]E[Y (T2 − T1)]2

t

=Var[Y (T2 − T1)] lim
t→∞

E[M(t)]

t
=

Var[Y (T2 − T1)]

E[T2 − T1]
.

Section 3 in [34] shows that Var[Y (T2 − T1)] = E[(Y (T2 − T1))2] = σ2
Y E[T2 − T1], which concludes the

proof.
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We now apply this lemma to obtain the covariance matrix for the two-layered model with N = 2. In par-
ticular, to compute σ2

C,1, we study the process Y (t) = C1(t) − E[C1(t)] = C1(t) − (π(U,U) + π(U,R))t with
conditional drift dk = 1{k∈{(U,U),(U,R)}} − (π(U,U) + π(U,R)) when the modulator Φ resides in state k. As
Var[Y (t)] = Var[C1(t)] for any t ≥ 0, an expression for σ2

C,1 is then readily given in Lemma 5.1 by (27).
An expression for σ2

C,2 can be found similarly to the computations above or simply by interchanging the in-
dices in the expression of σ2

C,1. Observe that an expression for limt→∞
1
tVar[C1(t) + C2(t)] can also be found

using the same technique, but now considering the process Y (t) = C1(t) + C2(t)− (E[C1(t) + C2(t)]) =
C1(t) + C2(t)− (2π(U,U) + π(U,R) + π(R,U))t instead with dk = 1{k∈{(U,U),(U,R)}} + 1{k∈{(U,U),(R,U)}} −
(2π(U,U) + π(U,R) + π(R,U)). Again, it then holds that an expression for limt→∞

1
tVar[C1(t) + C2(t)] is given

in (27). After these computations, the covariance matrix Γ can be expressed explicitly in terms of the model
parameters. The covariance parameters γC1,1 and γC2,2 are by definition equal to σ2

C,1 and σ2
C,2, for which we have

already derived explicit expressions. As for the remaining parameters, we have that both γC1,2 and γC2,1 are equal to

lim
t→∞

1

t
Cov[C1(t), C2(t)] =

1

2

(
lim
t→∞

1

t
Var[C1(t) + C2(t)]− lim

t→∞

1

t
Var[C1(t)]− lim

t→∞

1

t
Var[C2(t)]

)
,

where all of the terms between the brackets in the right-hand side are now known. As the rest of the terms
appearing in (4) were already expressed in terms of the model parameters, the covariance matrix Γ is now explicitly
known.

5.3 Numerical evaluation of the limiting distribution of Z
Now that Γ can be computed explicitly, we investigate in this section the joint distribution of Z, i.e. the limiting
distribution of the scaled workload W̃ r, in stationarity. Since the limiting distributions of D̃r or L̃r equal the
distribution ofZ up to a scalar as observed in Corollaries 4.2 and 4.6, the results also directly relate to the limiting
distributions of the scaled virtual waiting time and the scaled queue length.

To study the joint distribution of Z as defined in Theorem 3.1, we first observe that this distribution equals the
stationary distribution of an N -dimensional SRBM. In particular, by the definitions of Z(t) and Zi(t) in Section
2 and Theorem 3.1, respectively, we have that the process Z(t) = {Z1(t), . . . , ZN (t)} satisfies

Z(t) =

(
sup
s∈[0,t]

{Z1(s)}, . . . , sup
s∈[0,t]

{ZN (s)}

)
d
=

(
sup
s∈[0,t]

{Z1(t)− Z1(t− s)}, . . . , sup
s∈[0,t]

{ZN (t)− ZN (t− s)}

)

=

(
Z1(t)− inf

s∈[0,t]
{Z1(s)}, . . . , ZN (t)− inf

s∈[0,t]
{ZN (s)}

)
=Z(t) +RY (t),

where the equality in distribution follows since multi-dimensional Brownian motions are time-reversible [4,
Lemma II.2]. In this representation, R is the N × N identity matrix, and Y (t) = (Y1(t), . . . , YN (t)) =
(− infs∈[0,t] {Z1(s)}, . . . ,− infs∈[0,t] {ZN (s)}). Observe that {Y (t), t ≥ 0} is a continuous, non-decreasing
process starting in 0, of which the elements Yi can only increase at times t when Zi(t) = 0. A process with
such a representation is known to be an SRBM on the state space RN+ (see e.g. [7, Section 7.4]). By letting
t → ∞, it is now clear that the joint distribution of Z coincides with the stationary distribution of an SRBM on
the non-negative orthant with drift vector µ, covariance matrix Γ and reflection matrixR.

Computing the stationary distribution of a multi-dimensional SRBM is in general a challenging problem.
Although the SRBM corresponding to our model satisfies the conditions derived in [18] for a unique stationary
distribution to exist, it does not necessarily satisfy the necessary requirements found in [19] for this distribution
to have a product form. A numerical approach obtained in [9] to compute the stationary distribution is however
applicable to our setting.

We now apply this numerical algorithm to the two-layered network and observe several parameter effects.
Note that for the two-layered network, R resolves to a 2×2 identity matrix, and the underlying Brownian motion
{Z(t), t ≥ 0} has a drift vector µ =

(
−β1(π(U,U) + π(U,R)),−β2(π(U,U) + π(R,U))

)
and a covariance matrix

Γ = diag
(

E[B2
1 ]

E[B1]
(π(U,U) + π(U,R)),

E[B2
2 ]

E[B2]
(π(U,U) + π(R,U))

)
+ ΓC , where ΓC is a 2×2 matrix consisting of the
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In
st

an
ce

no
.

β
1

β
2 E[
B

1
]

E[
B

2 1
]

E[
B

2
]

E[
B

2 2
]

σ
1

σ
2

ν 1 ν 2 E[
Z

1
]

E[
Z

2
]

C
or

r[
Z

1
,Z

2
]

1 1 1 1 2 1 2 1
10

1
10

1
10

1
10 4.33 4.33 0.274

2 1
2 1 1 2 1 2 1

10
1
10

1
10

1
10 8.67 4.33 0.228

3 1 1 1 5 1 5 1
10

1
10

1
10

1
10 5.83 5.83 0.195

4 1 1 1
2

1
2 2 8 1

5
1
20

1
5

1
20 3.84 7.18 0.446

5 1 1 1 2 1 2 1 1 1 1 1.33 1.33 0.080

6 1 1 1 2 1 2 1
20

1
20

1
5

1
5 2.06 2.06 0.124

Table 1: Numerical results for several instances of the two-layered network.

elements γCi,j computed in Section 5.2. For a number of instances of the two-layered network, we have computed
several characteristics of the stationary distribution, such as the first two moments and the cross-moment of Z1

and Z2. The results are summarised in Table 1, where for each of the instances the found values for E[Z1], E[Z2]

and the correlation coefficient Corr[Z1, Z2] = E[Z1Z2]−E[Z1]E[Z2]√
E[Z2

1]−E[Z1]2
√

E[Z2
2]−E[Z2]2

are given. Recall that the marginal

distribution of Zi is exponential, so that E[Z
2

i ] = 2E[Zi]
2. Observe also that the limiting distributions of D̃r and

L̃r are equal to the distribution of Z up to a scalar, so that Corr[Z1, Z2] does not only represent the correlation
coefficient pertaining to the limiting distribution of the scaled workload W̃ r, but also to that of the scaled virtual
waiting time and the scaled queue length. It follows from Table 1 that the competition between the machines of the
repair facilities can be of such a level, that the correlation coefficient pertaining to the queue lengths is significant.
Moreover, by taking the first instance as a reference, we observe that the correlation coefficient is highly influenced
by the relative convergence speed of the arrival rates (instance no. 2), the variability of the service times (instance
no. 3), the level of asymmetry in the model parameters (instance no. 4), the frequency of machine breakdowns and
speed of machine repairs with respect to the arrivals and services of products (instance no. 5), and the duration of
the machine lifetimes with respect to that of their repairs (instance no. 6).

5.4 Comparison with simulation results

We end this section with an assessment of the quality of the distribution of Z as an approximation for the joint
workload distribution in systems with a considerable load. In Table 2, simulation results for the scaled workload
W̃ r corresponding to the values r = 5, 10, 20 are given for each of the instances given in Table 1. Recall that
ρi = 1 − βi

r , so that r = 5, 10, 20 corresponds to ρi = 0.8, 0.9, 0.95 if βi = 1. Thus, the values r = 5, 10, 20
represent systems that operate under a high load, as is often the case in practice.

As expected, Tables 1 and 2 suggest that the distribution of Z generally approximates the distribution of W̃ r

well in terms of marginal means and the correlation coefficient. In particular, the tables confirm that E[W̃i,r]
converges to E[Zi] from below as r → ∞ at a fast rate, so that E[Zi] is a provably useful upper bound close to
the actual value of E[W̃i,r] for large r (i.e., significantly loaded systems). Surprisingly, the rate at which E[W̃i,r]
converges to E[Zi] does not seem to differ much between the model instances. The slowest convergence occurs
in the third model instance due to the high variability of the service times, but it does not deviate much from the
other instances. The only outlying rate of convergence can be found in the expected scaled waiting time of the
first queue in the second model instance, where convergence is a lot faster. However, this is obvious by the nature
of our scaling, since β1 = 1/2 for that model instance instead of β1 = 1. Furthermore, the values of Corr[Z1, Z2]

turn out to be accurate approximations of the values Corr[W̃1,r, W̃2,r], r = 5, 10, 20, for almost all of the model
instances. Thus, the limiting distribution seems to capture the correlation structure between the queue lengths in
the stable case rather well. One can argue that the fifth model instance is an exception to this. However, due to the
high frequency of machine breakdowns and repairs, there hardly is any correlation between the queues, making
correlation coefficients hard to approximate accurately.
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st
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.

E[
W̃

1
,5

]

E[
W̃

1
,1
0
]

E[
W̃

1
,2
0
]

E[
W̃

2
,5

]

E[
W̃

2
,1
0
]

E[
W̃

2
,2
0
]

C
or

r[
W̃

1
,5
,W̃

2
,5

]

C
or

r[
W̃

1
,1
0
,W̃

2
,1
0
]

C
or

r[
W̃

1
,2
0
,W̃

2
,2
0
]

1 3.46 3.90 4.12 3.46 3.90 4.12 0.262 0.271 0.273

2 7.80 8.23 8.45 3.46 3.90 4.12 0.217 0.225 0.228

3 4.42 5.11 5.47 4.42 5.11 5.47 0.180 0.189 0.192

4 3.08 3.46 3.65 5.72 6.46 6.82 0.466 0.460 0.453

5 1.07 1.20 1.27 1.07 1.20 1.27 -0.053 0.001 0.044

6 1.64 1.85 1.95 1.64 1.85 1.95 0.121 0.126 0.125

Table 2: Simulation results for W̃ 5, W̃ 10 and W̃ 20.
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