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Abstract

Kinetic Alfvén waves represent an important subject in space plasma physics, since they are

thought to play a crucial role in the development of the turbulent energy cascade in the solar

wind plasma at short wavelengths (of the order of the proton inertial length dp and beyond). A full

understanding of the physical mechanisms which govern the kinetic plasma dynamics at these scales

can provide important clues on the problem of the turbulent dissipation and heating in collisionless

systems. In this paper, hybrid Vlasov-Maxwell simulations are employed to analyze in detail the

features of the kinetic Alfvén waves at proton kinetic scales, in typical conditions of the solar

wind environment. In particular, linear and nonlinear regimes of propagation of these fluctuations

have been investigated in a single-wave situation, focusing on the physical processes of collisionless

Landau damping and wave-particle resonant interaction. Interestingly, since for wavelengths close

to dp and proton plasma beta β of order unity the kinetic Alfvén waves have small phase speed

compared to the proton thermal velocity, wave-particle interaction processes produce significant

deformations in the core of the particle velocity distribution, appearing as phase space vortices and

resulting in flat-top velocity profiles. Moreover, as the Eulerian hybrid Vlasov-Maxwell algorithm

allows for a clean almost noise-free description of the velocity space, three-dimensional plots of

the proton velocity distribution help to emphasize how the plasma departs from the Maxwellian

configuration of thermodynamic equilibrium due to nonlinear kinetic effects.

PACS numbers: ?
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I. INTRODUCTION

The solar wind is a turbulent plasma [1], mainly composed by protons and electrons, which

can be considered collisionless in good approximation. Because of the turbulent character of

the interplanetary medium, the energy injected into it at large scales as Alfvénic fluctuations

is transferred towards short scales along the turbulent spectrum. In such a collisionless

medium, what physical mechanism drives the short-scale dissipation of the energy injected

at large scales still remains an unanswered question and attracts nowadays a significant

scientific interest. In fact, the identification of the fluctuations responsible for channeling the

energy toward short wavelengths and the full understanding of the dissipation mechanisms

in the solar wind represent two top priority subjects in space plasma physics.

The power spectrum of the solar-wind fluctuating fields in the range of long wavelengths

manifests a behavior reminiscent of the k−5/3 Kolmogorov power law for fluids [2–6], k being

the wavenumber. The Kolmogorov-like spectral behavior extends down to a range of wave-

lengths close to typical proton kinetic scales (the proton inertial length dp, and/or the proton

Larmor radius). Here, the features of the spectra abruptly change with the appearance of a

spectral break [7–9] and kinetic effects presumably govern the system dynamics.

In these range of scales and even down to typical electron kinetic scales, many solar-wind

observational analyses [9–14], theoretical works [15–17] and numerical simulations [18–20]

suggest that the so-called Kinetic Alfvén waves (KAWs) can play an important role in the

mechanism of turbulent energy dissipation and heating. KAWs are Alfvén cyclotron waves

propagating almost perpendicularly to the background magnetic field. An extensive linear

analysis of these waves has been performed by Hollweg in 1999 [21] (see also references therein

for a more complete view on the subject). The fact that these fluctuations can be important

in the development of the solar-wind turbulent cascade is supported by observational data

which show that the distribution of wavevectors of long wavelength magnetic fluctuations

has a significant population quasi-perpendicular to the ambient magnetic field [22, 23].

In this paper we make use of the hybrid Vlasov-Maxwell (HVM) code [24], to study

numerically the characteristics of the KAWs in linear and nonlinear regime, in the range of

spatial scales close to proton skin depth. The HVM algorithm integrates numerically the

Vlasov equation for the proton distribution function in multi-dimensional phase space. In

the present work, we restrict our analysis to the 1D-3V (one dimension in physical space and
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three dimensions in velocity space) phase space configuration. Within the HVM model the

electrons are considered as a fluid and a generalized Ohm equation is employed for computing

the electric field, which retains the Hall term and the electron inertia effects. Quasi neutrality

is assumed and the displacement current is neglected in the Ampere equation, making the

assumption of low frequency dynamics. Finally, an isothermal equation of state for the

scalar electron pressure is employed to close the HVM system (for more details on the HVM

equations and on the numerical algorithm see Ref.[24, 25]). The HVM code is a well-tested

algorithm which has been successfully employed for numerical studies of plasma turbulence

[26–32] and ion-cyclotron heating [33].

We present the results of a series of linear and nonlinear simulations, in a situation of

single-wave propagation, with a single wavenumber slightly larger than the proton skin depth

wavenumber. Our goal is to perform a detailed analysis of the process of wave-particle in-

teraction, in linear and nonlinear regime, involving resonant protons and KAWs, in typical

conditions of the solar wind environment and in a range of spatial scales close to dp. As

discussed in detail in the following, our numerical results show that the efficient resonant in-

teraction between the KAWs and the protons can significantly shape the particle distribution

function, making the plasma depart from the Maxwellian configuration of thermodynamical

equilibrium.

This paper is organized as follows. In Section II the dispersion relation of the KAW

and corresponding eigenmodes for magnetic and velocity perturbations are derived in the

framework of linear two-fluid theory, under the assumptions of quasi-neutrality and negligible

displacement current. Section III is devoted to the description of the hybrid Vlasov-Maxwell

simulations and of the numerical results for the propagation of the KAWs, both in linear

and nonlinear regimes. We conclude and summarize in Section IV.

II. TWO-FLUID DISPERSION RELATION AND EIGENMODES

In this Section, we revisit the two-fluid approach to derive the dispersion relation and the

eigenmodes of the KAWs in linear approximation. To make contact with the HVM model,

the set of linear two-fluid (protons and electrons) equations have been solved under the

assumption of quasi-neutrality (ne ≃ np = n) and by neglecting the displacement current in

the Ampere equation. Moreover, proton and electron scalar pressures have been assigned a
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general adiabatic equation of state. This analysis allows us to specialize to the hybrid case

the linear expectations for the wave frequency of KAWs obtained in previous works (see,

for instance, Ref. [21]). The linear results obtained in this Section will be used to guide

the HVM simulations discussed in detail in the following. In particular, the linear frequency

and the expressions of the eignemodes for the KAW branch will be employed to initialize

the HVM simulations both in linear and nonlinear regime.

We choose the reference frame pictured in Fig. 1, in which the wave vector k = (k, 0, 0)

is along the positive x direction and the background magnetic field B0 = (B0x, B0y, 0) lies

in the x-y plane, inclined at an angle θ with respect to the x axis. In these conditions the

problem is intrinsically one dimensional in physical space.

By coupling the continuity equations for particle density and momentum equations to

Maxwell equations for fields, under the assumptions discussed above, after some algebra, one

can obtain the dimensionless wave dispersion relation in the form of a sixth-order polynomial

equation, which can be written as:

Aω6 +Bω4 + Cω2 +D = 0 (1)

where:

A = (1 + k2d2e)
2

B = −(1 + k2d2e)k
2[1 + cos2 θ + β(1 + k2d2e)] +

−k4 cos2 θ

C = k4 cos2 θ[1 + βk2 + 2(1 + k2d2e)]

D = βk6 cos4 θ

The above equations have been rescaled by normalizing time by the inverse proton cy-

clotron frequency Ω−1

cp , velocities by the Alfvén speed V
A
, mass by the proton mass mp,

and lengths by the proton inertial length dp = V
A
/Ωcp. In these units, the electron inertial

length is given by de = (me/mp)
1/2. Also, the modulus of the background magnetic field

is set B0 = 1. For now on, all physical quantities will be rescaled by the characteristic

parameters listed previously.

Eq. (1) can be solved analytically by making use of the so-called Vieta’s substitution

[34], to obtain values of the wave frequencies for any given angle θ, any value of β and for
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any range of wave numbers. In Fig. 2, we show, in a logarithmic plot, the three roots of

Eq. (1), obtained for positive values of ω, for a specific case with θ = 85◦ and β = 1, in

the range of wavenumbers around the proton skin depth wavenumber (k = 1). In this plot,

the black (red) solid line represents the branch of fast (slow) magnetosonic waves, while

the blue solid line refers to the KAW branch. The green-dashed curves are the solutions

obtained under the cold plasma approximation (β ≪ 1), for which the slow magnetosonic

branch disappears.

Moreover, from the analysis of the linearized two-fluid equations, one can also get explicit

expressions of the eigenmodes for magnetic (δB) and velocity (δu) perturbations, which read:

δBz = 2a cos (kx) (2)

δBy = −
cos θ

ω

[

1−
ω2(1 + k2d2e)

k2 cos2 θ

]

2a sin (kx) (3)

δuz = −
k cos θ

ω
2a cos (kx) (4)

δuy =
k cos2 θ

ω2

[

1−
ω2(1 + k2d2e)

k2 cos2 θ

]

2a sin (kx) (5)

δux =
k sin (2θ)

2 (ω2 − βk2)

[

1−
ω2(1 + k2d2e)

k2 cos2 θ

]

×

2a sin (kx) (6)

where a is real number.

It is worth noting from the expressions above that the magnetic and the velocity eigen-

modes have elliptic polarization and a π/2 phase displacement.

The previous expressions for magnetic and velocity perturbations will be used to initialize

the HVM simulations of KAWs, presented in the next Section. Clearly, Eqs. (2)-(6) are not

exact eigenmodes of the HVM equations; nevertheless, as we will show in the following, when

used as initial perturbations in the HVM simulations, they allow to excite predominantly

one desired wave mode, by selecting the appropriate value of ω for a given k. For our

purpose of studying numerically the features of the KAWs, this is crucial since it prevents

the excitation of mixture of modes which would complicate the analysis.
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III. HYBRID VLASOV-MAXWELL SIMULATIONS

We solve numerically the HVM equations [24] in 1D-3V phase space configuration. The

set of HVM equations in dimensionless units can be summarized in the form:

∂f

∂t
+ v · ∇f + (E+ v ×B) ·

∂f

∂v
= 0 (7)

E− d2e∆E = −(u×B) +
1

n
(j×B)−

1

n
∇Pe +

+
d2e
n

[

∇ ·Π+∇ · (uj+ ju)−∇ ·

(

jj

n

)]

(8)

∂B

∂t
= −∇× E; ∇×B = j (9)

where f is the proton distribution function, E and B the electric and magnetic fields,

respectively and j the total current density (the displacement current has been neglected in

the Ampere equation and quasi-neutrality is assumed). In Eq. (8) the following compact

notations have been used (see Ref. [24] for more details):

[∇ · (uj+ ju)]i =
∂

∂xj
(uijj + jiuj) (10)

[

∇ ·

(

jj

n

)]

i

=
∂

∂xj

(

jijj
n

)

(11)

In 1D-3V configuration, the spatial variations occur along the x-direction, but each vector

has three components; in this case, ∇ = d/dx, ∆ = d2/dx2. The proton density n, bulk

velocity u and pressure tensor Π are obtained as velocity moments of f . The scalar electron

pressure Pe is assigned an isothermal equation of state Pe = nTe, where Te is the electron

temperature. As in the previous Section, the background magnetic field is chosen to lie in

the x-y plane (see Fig. 1).

The numerical algorithm employed to solve the above HVM equations (7)-(9) is based on

the coupling of the well-known splitting method [35] and the Current Advance Method [36]

for the electromagnetic fields, generalized to the hybrid case in Ref.[24]. Periodic boundary

conditions are employed in physical space, while in the velocity domain the distribution

function is set equal to zero at |v| > vmax, where vmax fixes the limits of the numerical

domain in each velocity direction. For each simulation discussed in the following, the time

step ∆t has been chosen in such a way to satisfy the Courant-Friedrichs-Levy condition [37],

for the numerical stability of time explicit finite difference algorithms.
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A. Linear regime

The numerical analysis of the linear regime of wave propagation, presented in this Section,

is preparatory for the study of the nonlinear regime discussed in the following. These

preliminary simulations can be, therefore, considered as a benchmark to show that the

HVM code is able to describe properly the evolution of the KAWs and that the numerical

resolution employed is adequate to ensure a satisfactory conservation of the HVM invariants

(energy, mass, entropy).

For the analysis of the linear regime, we simulate a plasma embedded in a uniform

magnetic field B0 = B0xex + B0yey (see Fig. 1). At t=0, protons have homogeneous and

constant density and Maxwellian distribution of velocities. We set β = 2v2thp/V
2

A
= 1 (vthp

being the proton thermal speed), while the electron to proton temperature ratio is Te/Tp = 1

and the proton to electron mass ratio is set mp/me = 100 (we point out that, for a realistic

mass ratio, the electron skin depth de cannot be adequately resolved with the numerical

resolution chosen for the HVM simulations). This initial condition is perturbed at t = 0 by

imposing on the system the magnetic and velocity perturbations in Eqs. (2)-(6), calculated

for the KAW solution, with a = 10−5 and k = mk0, where k0 = 2π/L is the fundamental

wave number; we fixed m = 6, thus k = 3d−1

p .

The length of the spatial box is L = 4π, while vmax = 4.5vthp in each velocity direction.

The numerical 1D-3V phase space domain is discretized by Nx = 512 grid points in physical

space and NVy
= NVz

= 41 grid points along the vy and vz directions. The number of grid

points used to discretized the vx direction has been chosen in such a way to avoid effects

of numerical recurrence. In fact, in the case of very weak electric and magnetic fields, as it

happens in linear regime, Eq. (7) describes a motion close to free streaming and its solution,

in 1D physical space, can be written as fk(v, t) = f0(v) exp [ik(x− vt)]. If the mesh spacing

in the vx velocity direction is ∆vx = 2vmax/NVx
, there is a numerical recurrence occurring

at TR = 2π/(k∆vx). Therefore, if tmax is the maximum time of the simulation, ∆vx must

be chosen in such a way that tmax < TR, for a fixed value of k. For example, for tmax = 125,

k = 3 and vmax = 4.5vthp, one must choose NVx
= 401 in such a way to have TR ≃ 132 > tmax.

From linear kinetic plasma theory [38], small-amplitude waves in a uniformly magnetized

plasma undergo Landau damping if they have a component of propagation along the back-

ground magnetic field B0; only particle moving along B0 contribute to damping, because
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in a uniform magnetic field there is no net motion of particles across the field. In order

to analyze the effects of Landau damping [39] on the KAW oscillations, as dependent on

the propagation angle with respect to B0, we performed 14 simulations for different values

of θ (the angle between the wave vector and the background magnetic field) in the range

69◦ ≤ θ ≤ 85◦. In Fig. 3 we report, in semilogarithmic plot, the time evolution of the

absolute value of the m = 6 Fourier component of the magnetic fluctuation δBz,k(m = 6, t),

normalized to its value at t = 0, for θ = 81◦, 83◦, 85◦ (blue-solid, red-solid and black-solid

line, respectively). In agreement with linear kinetic theory [38], the oscillation amplitude

decays exponentially in time, the damping rate γ appearing strongly dependent on θ (the

smaller θ, the larger γ). Note that for the simulation with θ = 85◦ we fixed tmax = 125,

while simulations with smaller θ, for which heavily damped oscillations are recovered, have

been stopped at earlier time. The blue-dashed, red-dashed and black-dashed lines in this

figure represent the best fits for the damping rates of the oscillations, whose absolute values

result |γ| ≃ 0.24, 0.085, 0.009 for θ = 81◦, 83◦, 85◦, respectively.

In order to show that the oscillations recovered in our simulations are in fact KAWs,

in Fig. 4, we plot the numerical results for the oscillation frequency ω [blue diamonds in

panel a)], and for the absolute value of the damping rate |γ| [blue diamonds in panel b)], as

functions of θ, for the 14 simulations performed. In panel a), we also reported the theoretical

prediction for ω = ω(θ) on the KAW branch obtained from the two-fluid approach (black-

solid curve) discussed in Section II [see Eq. (1)] and from a kinetic linear Vlasov solver

(red-solid curve). In panel b), the solution of |γ| = |γ(θ)| for the KAW branch, obtained

from a kinetic linear Vlasov solver, is indicated by a red-solid curve. We note that the

linear Vlasov solutions have been obtained by employing the standard kinetic theory for

an electron-proton plasma [40]. However, in order to mimic the HMV system, we have

considered the limit me/mp → 0. Panels a) and b) in Fig. 4 show a nice agreement between

numerical results and analytical (two-fluid and kinetic) predictions, demonstrating that the

fluctuations recovered in our HVM simulations can be identified as KAWs.

To conclude this Section, we shortly discuss the conservation of the HVM invariants

during the simulations. In particular, we consider the conservation of proton mass and

entropy and total energy. Concerning the latter quantity, we point out that for the HVM

equations (7)-(9), a standard conservation law cannot be derived for the total energy, as

a consequence of neglecting the displacement current in the Ampere equation. In fact, by
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multiplying the proton Vlasov Eq. (7) by v2/2, through integration over the whole velocity

space and over the 1D periodic spatial domainD = [0, L] (the result can be easily generalized

to the 3D case in physical space), one gets the following dimensionless equation:

∫ L

0

[

∂

∂t

(

3

2
nTp +

1

2
nu2 +

B2

2

)

+ E · je

]

dx = 0 (12)

where jp = nu and je = ∇× B − jp are proton and electron current densities, respectively

(we remind the reader that in scaled units the proton mass is mp = 1 and the proton electric

charge is e = 1). In Eq. (12) one recognizes the contribution of the thermal energy density

3/2nTp, of the kinetic energy density 1/2nu2 and of the magnetic energy density B2/2, while

the term E · je represents the work of the electric field on the electrons.

As anticipated before, Eq. (12) is not in the usual form of conservation law; nevertheless,

if one sets:

Le =

∫ L

0

dx

∫ t

0

E · je dt
′; EM =

∫ L

0

B2

2
dx (13)

Ekin =

∫ L

0

nu2

2
dx; Eth =

∫ L

0

3nTp

2
dx, (14)

Eq. (12) can be re-written in the following form:

∂

∂t
(Le + Eth + Ekin + EM) = 0 (15)

or, equivalently, as:

Etot = Le + Eth + Ekin + EM = const. (16)

The quantities Le, EM , Eth and Ekin can be evaluated at each time step in the HVM

simulations, in such a way to control the conservation of Etot.

For the linear simulations discussed in this Section, typical relative mass variations are

limited to ∼ 10−5%, entropy variations to ∼ 0.036% and total energy variations to ∼ 0.088%,

confirming the adequacy of the numerical resolution adopted and the reliability of the nu-

merical results.

B. Nonlinear regime

To investigate the nonlinear regime of propagation of the KAWs, we considered six dif-

ferent simulations, whose typical parameters (β, Te/Tp, mp/me), initial condition and initial
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magnetic and velocity perturbations are the same as those described in the previous Section,

except for the amplitude of the perturbations that is set now a = 0.15, 0.17, 0.19, 0.21, 0.23,

0.25, respectively. The length of the spatial box is, as for the linear simulations, L = 4π,

while we set vmax = 5vthp. The number of grid points in the spatial domain is Nx = 512 and

in the three-dimensional velocity domain we set NVx
= NVy

= NV z = 91. These nonlinear

simulations follow the plasma dynamics up to a time tmax = 1000. The typical relative

variations of mass, energy and entropy for these nonlinear simulations are ∼ 10−3%, ∼ 1%

and 0.8%, respectively.

In order to compare the evolution of the magnetic fluctuations for large initial pertur-

bation amplitudes with that obtained in linear regime, in Fig. 5 we plot δBz,k(m = 6, t),

normalized to its value at t = 0, for θ = 85◦, in the cases with a = 0.15 [panel a)] and

a = 0.25 [panel b)]. In the linear case (see Fig. 3), the magnetic oscillations for θ = 85◦ ap-

pear exponentially damped up to a time t = 120. On the other hand, in the nonlinear regime

pictured in Fig. 5, after a preliminary stage of exponential decay of the wave amplitude,

Landau damping is saturated by nonlinear effects and, for both a = 0.15 and a = 0.25, the

magnetic fluctuations display characteristic envelope oscillations, whose period appears to

be inversely proportional to a (larger values of a correspond to smaller envelope oscillation

periods). It is worth noting that no decay instability toward smaller wavenumbers has been

recovered during the simulation, even though the wavelength of the imposed perturbations

is not the largest wavelength that fits in the spatial simulation box; the KAW mode excited

at t = 0 remains dominant with a small amuont of energy stored in its harmonics.

The phenomenology described above is clearly reminiscent of the nonlinear saturation of

Landau damping of electrostatic waves, due to particle trapping [41–44]. We analyzed in

detail the dependence of the period τ of the envelope oscillations displayed in Fig. 5 on the

amplitude a of the initial perturbations. Assuming a relation of the type τ = ap, in Fig. 6

we show ln (τ) versus ln (a) for the six nonlinear simulations (black stars). The red-dashed

line in this figure represents the best fit of the numerical data; the best-fitting procedure

gives a value p = −1.23.

Simple arguments help to understand how protons can be trapped by a pseudo-potential

and give rise to envelope oscillations in the wave amplitude, as shown in Fig. 5 and in

analogy with the electrostatic case. Assuming spatial variations only in the x direction, in

a reference frame moving with the wave phase speed vφ, the electric potential φ can be seen

10



as a static potential, depending only on a single variable ξ = x − vφt. For a single proton

with velocity v = (vx, vy, vz), one can then derive a dimensionless energy conservation law,

in the form:

E =
(vx − vφ)

2 + v2y + v2z
2

+ φ(ξ) = const. (17)

φ(ξ) = −

∫ ξ

ξ0

Ex(ξ
′)dξ′ (18)

ξ0 being an arbitrary constant.

Moreover, conservation equations for the canonical momentum in y and z directions can

be used:

vy + Ay(ξ) = vy0; vz + Az(ξ) = vz0 (19)

Ay(ξ) =

∫ ξ

ξ0

Bz(ξ
′)dξ′ (20)

Az(ξ) = −

∫ ξ

ξ0

By(ξ
′)dξ′ (21)

vy0 and vz0 being two constants, and Ay(ξ), Az(ξ) the y and z components of the magnetic

potential. Eqs. (19) allow to express (v2y + v2z)/2 as a function of ξ and, from Eq. (17), one

gets:

E(ξ, vx) =
(vx − vφ)

2

2
+ φ(ξ) +

1

2
[vy0 − Ay(ξ)]

2 +

+
1

2
[vz0 − Az(ξ)]

2 = const. (22)

The above equation can be re-written as:

E(ξ, vx) =
(vx − vφ)

2

2
+ Φ(ξ) = const. (23)

Here, Φ(ξ) = φ(ξ) + [vy0 −Ay(ξ)]
2/2 + [vz0 −Az(ξ)]

2/2 can be viewed as a pseudo-potential

which can trap resonant protons.

As the HVM code allows for a clean low-noise description of the proton distribution

function, the role of nonlinear kinetic effects on the plasma dynamics, and in particular of

the trapping of protons in the pseudo-potential Φ, can be directly observed in phase space

contour plots or in three-dimensional velocity iso-surface plots of f .

In Fig. 7 we report the x − vx level lines of f calculated at vy = vz = 0 (i. e., we

selected the phase space along the direction of k) at four different times for the simulation
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with a = 0.25 (t = 300, 500, 700, 1000 from top to bottom). The phase velocity of the

fluctuations, evaluated through the Fourier analysis on the numerical signals, is ω/k ≃ 0.2.

In panel a) of Fig. 7, vortical phase space structures are clearly visible in the velocity range

around vx = 0. These phase space vortices are typical signature of the presence of trapped

particle populations [42–44]. The resulting complicated phase space contour lines of f are

determined by the nonlinear interaction and beating of two counter-propagating signals (in

our initial condition both positive and negative values of the wavenumber are excited for a

given positive frequency). At larger times, in panel b), c), and d), the phase space structures

with positive mean velocity moves along the positive x direction, while the one with negative

mean velocity moves in the negative x direction, giving rise to different phase space shapes.

Due to the fact that the phase velocity of the fluctuations is small compared to both V
A
and

vthp, these strong phase space distortions are located in the middle of the core of the proton

distribution function, confined in the velocity range −1 <
∼ vx <

∼ 1 for each spatial position.

Figure 8 shows four different slices of the x− vx proton distribution function at t = 300,

evaluated at four different spatial positions x0 ≃ 2.5, 3.5, 8.5, 10 (red, black, blue and green,

respectively), indicated by vertical red-dashed lines in Fig. 7 a). It is clear from the curves

in Fig. 8 that the nonlinear wave-particle interaction, occurred in the velocity range −1 <
∼

vx <
∼ 1, has produced peculiar flat-top velocity profiles, by flattening the peak of the vx

proton velocity distribution. It is worth to point out that the velocity width of the flat-top

region is nearly independent on x, as it can be deduced from Fig. 8.

Finally, in Fig. 9 we report the velocity iso-surfaces of the proton distribution function at

t = 300 evaluated at the spatial locations x0 ≃ 2.5, 3.5, 8.5, 10 (top-left, top-right, bottom-

left, bottom-right, respectively). In these three-dimensional plots it is clearly visible that the

flattening along the vx direction, produced by nonlinear effects as discussed above, makes

the 3D proton velocity distributions look like flat disks (or pancakes), almost independently

on the spatial location x0 at which the 3D plot is considered. It is also worth noting that the

ring-like modulations of the 3D velocity distributions along the vy axis (especially visible in

the top-right and bottom-right panels) presumably indicate vy resonance velocity shells.
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IV. SUMMARY AND CONCLUSIONS

In this paper, we have analyzed numerically the kinetic features of the KAWs at large

propagation angles, in typical conditions of the solar-wind environment, by employing the

kinetic hybrid Vlasov-Maxwell code [24] in 1D-3V phase space configuration. Our kinetic

simulations in nonlinear regime have been guided by a preliminary analysis of the two-

fluid theory for the KAWs and by a set of linear simulations with helped us to choose the

simulation parameters, the initial condition, the numerical resolution and the form of the

initial perturbations, in such a way to focus our study on the propagation of a monochromatic

KAW.

While in linear regime the amplitude of the oscillations undergoes collisionless Landau

damping, whose effect is larger for smaller propagation angles θ, in the case of large initial

amplitude perturbations, the effects of damping is saturated. Then, the wave amplitude

starts oscillating around an almost constant level with a period τ , inversely proportional

to the initial perturbation amplitude. This phenomenology is clearly reminiscent of the

nonlinear saturation of Landau damping in the electrostatic case, due to particle trapping

[41]. In fact, also for the case of the KAW it is possible to show that resonant protons can

be trapped by a pseudo-potential and presumably trigger a physical process analogous to

the trapping of particles in an electrostatic potential well.

Thanks to the fact that the Eulerian HVM algorithm provides a clean noise-free de-

scription of the phase space plasma dynamics, we pointed out how the resonant interaction

between KAWs and protons can give rise to significant deformations of the proton distribu-

tion function, appearing as phase space vortices and complicated structures. In particular,

peculiar flat-top velocity profiles have been recovered in the velocity direction parallel to the

wavevector. Moreover, the three-dimensional iso-surface plots in velocity space have revealed

that the proton velocity distribution assumes the typical shape of a flat disk, remarkably

departing from the spherical isotropic Maxwellian configuration.

Finally, the numerical simulations presented in this paper suggest that when nonlin-

ear processes of resonant wave-particle interaction are at play, describing the entire three-

dimensional velocity domain is crucial, since it allows the particle velocity distribution to

freely model its shape, in response to its interaction with a large amplitude wave. The results

discussed in this paper are especially relevant in the field of space plasma physics, where

13



the KAWs have recently gained an important role in the study of solar-wind turbulence

dissipation and heating [9–20], at typical proton and electron kinetic scales.
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FIG. 1: (Color online) The reference frame chosen for the study of KAWs; the wavevector k is

along the x direction, while the background magnetic field B0 lies in the x-y plane, inclined at an

angle θ with respect to k.

FIG. 2: (Color online) The three roots of Eq. (1), i. e. FAST (black-solid curve), SLOW (red-solid

curve) and KAW (blue-solid curve) branches, for θ = 85◦, β = 1 and in the range of wavenumbers

around k = 1. The green-dashed curves represent the solutions of Eq. (1), in the case of cold

plasma (β ≪ 1), for which the SLOW branch disappears.

17



FIG. 3: (Color online) Time evolution of |δBz,k(m = 6, t)/δBz,k(m = 6, 0)|, for a = 10−5 and

for θ = 81◦, 83◦, 85◦ (blue-solid, red-solid and black-solid line, respectively). The blue-dashed,

red-dashed and black-dashed lines represent the best fits for the damping rates of the oscillations.
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FIG. 4: (Color online) Panel a): dependence of the wave frequency ω on the propagation angle

θ, obtained from the linear HVM simulations (blue diamonds), linear two-fluid theory (black-solid

curve) and linear kinetic Vlasov solver (red-solid curve). Panel b): dependence of the absolute

value of the damping rate |γ| on θ, obtained from the linear HVM simulations (blue diamonds)

and from the linear kinetic Vlasov solver (red-solid curve).
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FIG. 5: Time evolution of δBz,k(m = 6, t), for a = 0.15 [panel a)] and a = 0.25 [panel b)], and for

θ = 85◦.

FIG. 6: (Color online) Dependence of the logarithm of the wave envelope oscillation period on the

logarithm of the initial perturbation amplitude.

20



FIG. 7: (Color online) x−vx level lines of the proton distribution function f calculated at vy = vz =

0 at four different times t = 300, 500, 700, 1000 (from top to bottom), for the nonlinear simulation

with a = 0.25.
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FIG. 8: (Color online) vx profiles of the proton distribution function f calculated at vy = vz = 0

and at four different spatial positions x0 ≃ 2.5, 3.5, 8.5, 10 (red, black, blue and green, respectively)

for the nonlinear simulation with a = 0.25, at t = 300.
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FIG. 9: (Color online) Thee-dimensional iso-surface plots of the proton velocity distribution at

four different spatial positions x0 ≃ 2.5, 3.5, 8.5, 10 (top-left, top-right, bottom-left, bottom-right,

respectively), for the nonlinear simulation with a = 0.25, at t = 300.
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