
ABSTRACT
RESOURCE-BOUND CLASSES
P. van Emde Boas

ABSTRACT RESOURCE-BOUND CLASSES

STELLINGEN

BEHORENDE BIJ HET PROEFSCHRIFT

ABSTRACT RESOURCE-BOUND CLASSES

VAN

PETER VAN EMDE BOAS

18 SEPTEMBER 1974

1
In iedere complexiteitsmaat kan iedere totale functie worden
berekend met een programma met monotoon stijgende rekentijd.

Corollary 1.5.6, dit proefschrift.

De inbeddingsstelling, genoemd in 2.4.2, kan als volgt worden
verscherpt: voor iedere complexiteitsmaat bestaat er een totale
recursieve functie t met de eigenschap dat bij iedere recursie
ve partiele ordening < op JN een transformatie o bestaat zodat
aan de volgende voorwaarden is voldaan:
(i)
(ii)

a e C
voor

!t '
iedere i e IN geidt <pa(i)e Ft ,

(iii) voor iedere i e IN geidt C(pa(i)c Ct
(iv) voor iedere i/j € IN geldt i<j <=> C('(Pa(i)c CtPa(j)

P. VAN EMDE BOAS, Machine-independent complexity
theory. Part 23 Resource-bound classes. Math.
Centre Tracts MCT 61 (in voorbereiding), Amsterdam,
1974 .

3

De begrippen "opvraagbare rij" en "gelijkmatigheidsklasse"
zijn, mede gezien voorbeeld 2.1.6, minder gelijkwaardig dan
gesuggereerd wordt door de equivalentiestelling 2.1.5.

Hoofdstuk 2.1, dit proefschrift.

4

Een subbasis S voor een topologie heet minimaal indien iedere
echte deelcollectie van S een echt zwakkere topologie genereert.
Voor iedere metrizeerbare ruimte bestaat er een minimale sub-
basis voor de topologie.

P. VAN EMDE BOAS, Minimally generated topologies.
Proc. conf. on Topology and appl. Herceg Novi 1968.

5

De door BALTHASAR ELIAS LUB aangegeven constructie van een af
telbare gegeneralizeerde rij die geen minimale subbasis voor de
topologie toelaat, kan worden gebruikt om CW-complexen zonder
minimale subbases te construeren.

B.E. LUB, Sequences without minimal subbases.
Rapport ZW 26/74, Mathematisch Centrum, Amsterdam.

6

Voor een eindige Abelse groep G = 7Z / /m2x ... xzz /mk , met
l<m1 |m2 | ... |mR , definiëren we de grootheden A(G) en A(G)
door: A(G) = m^tti^t ... tm^-k+1 ; A(G) = de maximale lengte van
een rij elementen uit G met som nul die geen niet-triviale
deelrij met som nul bevat. De gelijkheid A(G) = \ (G) geldt o.m.
in de volgende gevallen:
k=3, m 1=m2=3, 6xm 3 ;
k=3, m.=3x2ni ;i
k=3, m^=3, m2=6xn»d, 6xn xe, waarbij n slechts factoren 2,

3,5, en 7 bevat en, hetzij d=l, hetzij d en e beiden een
macht van eenzelfde priemgetal zijn.

P. VAN EMDE BOAS & D. KRUYSWIJK, A combinatorial
problem on finite Abelian groups III.

Rapport ZW 08/69, Mathematisch Centrum, Amsterdam.

7

Bij de meeste behandelingen in de literatuur van de nergens
differentieerbare functie van CELERIER: f(X) =n|0a”n sin(anirX),
wordt het geval dat a=2 niet bewezen. Ook in dit speciale geval
is een elementair bewijs mogelijk.

P. VAN EMDE BOAS, Nowhere differentiable oontiuous
functions3 with an extended list of references.
Rapport ZW 12/69, Mathematisch Centrum, Amsterdam.

8

In een relationele calculus voor de semantiek van programma
schema's laat de eigenschap dat p een ondeelbaar predicaat is
zich karakterizeren door de axioma's p c E en p;U n U;p ■= p.

W.P. DE ROEVER, Operational, Mathematical and
Axiomatized Semantics for Recursive Procedures and
Data structures.

Rapport ID 01/74, Mathematisch Centrum, Amsterdam.

9

De axiomatizering van de KLEENE standaard algebra's die is
gegeven door J.H. CONWAY is onvolledig, tenzij bij impliciete
conventie wordt aangenomen dat E^ = E^ .

J.H. CONWAY, Regular algebra and finite machines.
Chapman & Hall, 1971.

10

De universele verzamelingenalgebra die is beschreven door
A. MOSTOWSKI is ook in constructieve zin universeel: men kan,
gegeven een recursieve partiele ordening, op effectieve wijze
een inbedding van deze ordening in de MOSTOWSKI algebra
construeren.

A. MOSTOWSKI, Vber Gewisse Vniverselle Relationen.
Ann. Soc. Polon. Math. 17_ (1938) 117-118 ;
P. VAN EMDE BOAS, Mostowski's universal set algebra.
Rapport ZW 14/73, Mathematisch Centrum, Amsterdam.

11

De door J. VAN DE LUNE ingevoerde Truncated-average limit en
de CESARO limiet zijn onafhankelijk.

P. VAN EMDE BOAS, The truncated-average limit and
the Cesa.ro limit are independent.

Rapport ZW 21/74, Mathematisch Centrum, Amsterdam.

12

ACHMED probeert er achter te komen of een gerichte graaf zonder
lussen op n >2 punten, genummerd 1 t.e.m. n, die BALTHASAR in
gedachte heeft, al dan niet een gerichte cykel bevat. Hiertoe
mag ACHMED aan BALTHASAR vragen of er al dan niet een kant van
i naar j loopt. Als ACHMED er niet uit komt alvorens alle n(n-l)
mogelijke kanten opgevraagd te hebben, wint BALTHASAR.
Indien BALTHASAR vals speelt, en zijn graaf opbouwt naar aan
leiding van de vragen van ACHMED, met de bedoeling het hem
moeilijk te maken, dan heeft BALTHASAR een gegarandeerde winst.

M.R. BEST, P. VAN EMDE BOAS & H.W. LENSTRA jr., A

sharpened version of the Aanderaa-Rosenherg

conjeoture.

Rapport ZW 30/74, Mathematisch Centrum, Amsterdam.

13

Het assignment-axioma van HOARE is onhanteerbaar in situaties
waarbij assignments aan herhaald geïndiceerde array elementen
optreden zoals in a[a[l]] := a[a[2]].

C.A.R. HOARE, An axiomatic base for computer

programming.

Comm. Assoc. Comput. Mach., V2 (1969) 576-583.

14

Twee rechthoeken heten onvergelijkbaar indien het onmogelijk is
door verschuiving en/of draaiing over 90° de ene rechthoek tot
deelfiguur van de andere te maken. Er bestaan rechthoeken met
gehele zijden die niet-triviale decomposities in onderling on
vergelijkbare deelrechthoeken met gehele zijden toelaten. De
kleinste oplossing bestaat uit zeven deelrechthoeken.

Elementary problems and Solutions E 2422 [1973,691].
Amer. math. Monthly, 81. (1974) 664-666.

15
In de uitgave van de Heidelberger Katechismus, verzorgd door
DAVID KNIBBE, treffen wij bij de katechizatie over de 102e
vraag (37e Zondag) het volgende betoog aan.

Vrag, 3©at té ban tt omöccïm ban / öic frpbe: <6 e»ef. 41:
tm:$ i f . Sao "waarlijk als Pharaoleeft 3 indien gy van bier fulc uyt-
naan, ’t en fy dan , wanneer uwe kleynfte broeder herwaart lal geko
men fijn.

Antw. I. en té geen eed, n m t afleen een fterke twüeflmg /
bat f)j; foo feeker, bie faaft wilde, até Öet ïf eben ban ftyatao. %. <Of foo
ïjft m i eeb \é / ïjffft 5$ofepï) aefqnbiflt. 3. IBcec moet men Iccben na
(0 oö6 3®oo?b / maat niet ua eremieten bet menflén. Csecï). ao: 19. Ik
ben de Heere uwe God, wandelt in mijne iniettingen, ende onderhouder
mijne regten , ende doet de felve.

Deze gedachtengang vertoont een niet te ontkennen overeen
komst met de welbekende redenering van de gebroken pot, die 1.
niet was geleend, 2. ten tijde van het uitlenen reeds was be
schadigd, en 3. in geheel goede toestand was teruggegeven. In
beide gevallen is er sprake van een bewijs op grond van niet
eenvoudige implicaties. Kennelijk is dit type argumenten niet
alleen voor beoefenaren van de kunstmatige intelligentie
problematisch.

DE LEERE DER GEREFORMEERDE KERK, Volgens de order
van de HEYDELBERGSE KATECHISMUS Verklaard,
bevestigt, en tot oeffening der Godsaligheyd
toegepast. Vermeerderd, verbeeterd, en voor yder
Sondag met een ontleedende TAFEL, EN Een kort
ONDERWIJS, om een PREDICATIE met order te hooren
en te herhaalen, verrijkt.
DOOR DAVID KNIBBE, Bedienaar van het Goddelijk
woord, tot LEYDEN.
DEN TWEEDEN DRUK. TOT LEYDEN, By JORDAAN LUGTMANS,
Boekverkooper, 1696. Met Privilegie.

16

De onoverzienbaarheid van de hedendaagse wiskunde blijkt onder
andere uit het ervaringsfeit dat de gemiddelde wiskundige niet
in staat is van alle rubrieken die voorkomen in het AMS MOS 70
classificatiesysteem, ook maar bij benadering te weten wat het
desbetreffende onderwerp inhoudt. Het is dan ook ondenkbaar dat
één persoon, zonder hulp van collega's van diverse richtingen,
een systematische catalogus voor een wiskundebibliotheek op
verantwoorde wijze kan opbouwen of bijhouden. Daarnaast is het
dringend gewenst dat de auteurs van geavanceerde boeken en
rapporten zelf voor een indeling volgens dit systeem zorg
dragen.

AMS (MOS) Subject clas sification scheme (1970).

Math. Reviews, 39. (1970) A1-A42.

17

Het is strijdig met de culturele functie van de Universiteit,
dat de Dienst Bouw en Huisvesting van de Universiteit van
Amsterdam zich bij herhaling schuldig maakt aan vormen van
actieve of passieve verwaarlozing en/of verwoesting van de haar
toevertrouwde historische monumenten in de stad Amsterdam, op
een wijze die men eerder verwacht van de dienaren van POENE
BEURSKRAKER of de HEILIGE BUREAUCRATIUS.

Folia Civitatis 18 Mei 1974 en 8 Juni 1974.

18
Het uit de kelder van het Stedelijk Museum afkomstige, niet
convexe kunstwerk van C. KORTLANG, dat de Universiteit van
Amsterdam heeft opgehangen in de voormalige consistoriekamer,
die zij tijdelijk in gebruik heeft als receptieruimte bij
oraties en promoties, is noch qua oppervlakte, noch qua uit
werking op diegenen die in deze ruimte vertoeven, in staat het
hiaat op te vullen dat ontstaan is na de verwijdering van het
voorheen aldaar aanwezige Meesterwerk van A. VAN PELT
(1815-1895), voorstellende MAARTEN LUTHER voor de Rijksdag te
Worms (1521). De voor het weghalen verantwoordelijke Lutherse
gemeente, die handelde op grond van een gerechtvaardigde vrees
voor het immer oproerige studentenvolkje, treft in dezen geen
blaam.

19

De Weg tot de Wetenschap voert langs een militair complex.

ABSTRACT RESOURCE-BOUND CLASSES

ACADEMISCH PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN
DOCTOR IN DE WISKUNDE EN NATUURWETENSCHAPPEN

AAN DE UNIVERSITEIT VAN AMSTERDAM
OP GEZAG VAN DE RECTOR MAGNIFICUS

DR. A. DE FROE
HOOGLERAAR IN DE FACULTEIT DER GENEESKUNDE

IN HET OPENBAAR TE VERDEDIGEN
IN DE AULA DER UNIVERSITEIT

(TIJDELIJK IN DE LUTHERSE KERK, INGANG SINGEL 411, HOEK SPUI)
OP WOENSDAG 18 SEPTEMBER 1974 DES NAMIDDAGS TE 1.30 UUR

DOOR

PETER VAN EMDE BOAS
GEBOREN TE AMSTERDAM

1974
MATHEMATISCH CENTRUM, AMSTERDAM

PROMOTOR : PROF.DR.IR. A. VAN WIJNGAARDEN
CO-PROMOTOR : PROF.DR. P.C. BAAYEN
COREFERENT : PROF.DR. J. HARTMANIS

CONTENTS

Abstract v
Voorwoord voor de leek vl1
Preface xiii
To this thesis edition xvii
Acknowledgements xlx
Colophon xx

PART 1. INTRODUCTION TO MACHINE-INDEPENDENT COMPLEXITY THEORY 1

].1 Algorithms and their representation in machine-independent
recursion theory

1.1.1 The problem of program representation in recursion theory 3
1.1.2 Description of a programming language for recursion

theory - the ALGOL 68 extension 6
1.1.3 Mathematical representations 16
1.1.4 Manipulation of unbounded arrays, summation and

linear lists 23
1.1.5 Mathematical notations 26

1.2 Recursive functions and effective enumerations

1.2.1 Mathematical conventions 30
1.2.2 The origin of machine-independent recursion theory 31
1.2.3 Abstract effective enumerations and the recursion theorem 34
1.2.4 The concept of an operator 37

1.3 Complexity measures 39

1.4 Some concepts from recursion theory 43

1.5 General properties of complexity measures 51

1.6 The speed-up phenomenon 58

PART 2. RESOURCE-BOUND CLASSES 61

2. 1 Definitions

2.1.1 Introduction 63
2.1.2 Types of resource-bound classes 64

2.2 Diagonalization techniques and compression theorems 69

2.3 Arithmetical complexity of resource-bound classes

2.3.1 Classes of programs 75
2.3.2 Classes of functions 77

2.4 Set theoretical properties of resource-bound classes

2.4.1 Closure properties of resource-bound classes 83
2.4.2 Embedding theorems 85

PART 3. ABSTRACT RESOURCE-BOUND CLASSES 87

3.1 Acceptance relations

3.1.1 Introduction 89
3.1.2 The honesty condition as a three-valued predicate 91
3.1 .3 Formal definitions and examples of abstract resource-bound

classes 95
3.1.4 Basic properties of acceptance relations 102

3.2 Gap and operator gap

3.2.1 Introduction 107
3.2.2 The operator-gap algorithm for strong classes, and

its modifications 1 1 1
3.2.3 The operator-gap algorithm for weak classes 118

123
124
127

133
136
144

149

150

159
168
178
184

197

199
199

201

203
207
212

217

223
229
233

The union theorem

Introduction
The classical union theorem
Modifications to the union algorithm
A stagewise union algorithm for weak classes with
partial names
Correctness of the union algorithm
Applications and remarks

The naming theorem and the Meyer-McCreight algorithm

Introduction
The Meyer-McCreight algorithm; an informal description
and correctness proof
The non-renameability of weak abstract resource-bound
classes
Alternative Meyer-McCreight algorithms for strong classes
The Meyer-McCreight algorithm as a closure operator
A Meyer-McCreight algorithm for weak classes

ALGORITHMS

Introduction
The Myhill isomorphism algorithm
Enumeration of a Z^-presentable class X using a
way-out strategy
The operator-gap algorithm for weak classes
The union algorithm
The Meyer-McCreight algorithm
The weak Meyer-McCreight algorithm

References
Summary
Samenvatting

V

ABSTRACT

We present a survey on the theory of Resource-bound Classes in Abstract
Complexity Theory. In particular the theory of Honesty Classes is developed
in full analogy with the existing theory of Complexity Classes. Honesty
Classes are defined by gathering (functions computable by) programs, whose
run-times are bound almost everywhere by a function depending on the
argument and the computed value. It is proved that several known theorems,
like the Gap-, Operator Gap- and Union Theorem can be generalized to
Honesty Classes, although the proofs need some non-trivial modifications.
The Naming Theorem, however, is invalid for Honesty Classes.

The concept of an Acceptance Relation is developed, to explain these
unexpected differences. In this framework a number of different types of
Resource-bound Classes can be described. Moreover, it is argued that there
exist two different ways in which a so called Abstract Resource-bound Class
is restricted by its name, called a weak and a strong restriction. Since
Complexity Classes are strong classes whereas Honesty Classes are weak,
this explains the difference in behaviour of the two types of classes.

We introduce a new formalism to represent algorithms in recursion
theory by mathematical expressions which do not differ much from the ones
traditionally used in an informal way. In this way a number of ambiguities
which are rooted in the lack of formalism are eliminated. In the appendix
some of the more complicated algorithms used in Abstract Complexity Theory
are represented in this formalism.

Keywords: Complexity Classes, Honesty Classes, Blum measure, Gap Theorem,
Union Theorem, Naming Theorem, Honesty Procedures, Meyer-McCreight Algorithm,
Acceptance Relation, measured set, Resource-bound Classes, Abstract Complexity
Theory.

AMS MOS 70 classification: primary 68 A 20, 02 F 35, (68 M 15)
secondary 68 A 10, (68 K 99), 02 F 43.

Computing reviews classification: 5.25, 4.29, 5.29.

V i l

VOORWOORD VOOR DE LEEK.

Gegeven de grote waarde die de samenleving in het algemeen, en de
subgroep van verwanten en vrienden van de promovendus in het bijzonder,
toekent aan de promotie en de daarmee verband houdende gebeurtenissen, is
het onvermijdelijk dat dit proefschrift ook onder ogen komt van niet wiskun
dig geschoolden. We moeten ernstig rekening houden met de mogelijkheid
dat deze lezers reeds na het lezen van een drietal zinnen geheel overdonderd
zijn. Tot overmaat van ramp is ook onder de bij gevoegde stellingen weinig
leuks voor hen te vinden. Ik wil daarom, en tegelijk om eens en vooral af te
rekenen met het fabeltje dat Wiskunde onbegrijpelijk is, in dit voorwoord
een van de centrale onderdelen van dit proefschrift verwoorden in de volks
taal en het op deze wijze geheel en al verklaren en ook voor de leek begrij
pelijk maken. Het betreft hier het stuk theorie, dat in paragraaf 3.4.4 op
een meer traditionele wijze is behandeld.

Het is mij bovendien een groot genoegen in een jaar, waarin zovele
gruwelverhalen de ronde doen over zekere prijsvormingsmechanismen in de
wereldeconomie en over de daarvoor verantwoordelijk geachte duistere
krachten, U op de hoogte te mogen brengen van een geheel nieuwe theorie over
het economisch gebeuren. De feitelijke informatie, die in dit voorwoord ver
werkt is, ontleen ik aan de verhandeling "Religious Principles and Oil Price
Mechanisms; a Study on Socioeconomic Behaviour in Harad" van BALTHASAR E . LUB,
werkzaam aan het Theologisch Seminarium van de Universiteit van Umbar. Voor
de goede orde dien ik hierbij te melden dat dit geschrift het proefschrift
is, waarop de auteur recentelijk summa cum laude de graad van doctor in de
godgeleerdheid verwierf.

Voordat ik kan ingaan op de theorie van de jonge doctor, eerst enkele
opmerkingen over Harad. Zoals U wellicht bekend zal zijn, telt dit land,
volgens de laatste schattingen, een 20.000 zielen; hierbij dient te worden
opgemerkt, dat er voorzover bekend, nog nooit een volkstelling is gehouden.
Het land wordt sinds mensenheugenis geregeerd door een Iman. Aangezien er
in het gehele land niets wil groeien, is de gehele bevolking werkzaam in de
handel. Het zal U dan ook niet verbazen, dat tot ver in de twintigste eeuw
Harad een straatarm land was; in deze toestand is pas wijziging gekomen na
het aanboren van enkele oliebronnen.

De langdurige periode van armoede heeft het volk gelouterd, en men
zal op deze wereld lang moeten zoeken om een volk te vinden, dat op verge
lijkbare wijze de religieuze wetten naleeft. Dit houdt onder meer in, dat

Vlll

vrouwen en kinderen in Harad niets in te brengen hebben en in het vervolg
van dit verhaal zullen we ons dan ook beperken tot de inwoners van het
mannelijk geslacht, die de leeftijd van 20 jaren gepasseerd zijn en die we
verder Haranen zullen noemen.

Een van de meest opvallende karakteristieken van Harad is de grote
invloed van de godsdienstige wetten op het economisch handelen van de
Haranen. Zo is het de Haraan verboden om tegelijkertijd als koper en als
verkoper op te treden. Aangezien er in de practijk slechts één artikel is
om in te handelen, te weten de reeds eerder genoemde olie, die iedere Haraan
in onbeperkte hoeveelheden uit zijn achtertuintje haalt, kunnen we de
Haranen gevoegelijk onderverdelen in kopers en verkopers. Andere bepalingen
verbieden het de Haraan om vaker dan eens per jaar zijn bied- of laatprijs
te herzien, of nog erger, uit de rangen van de verkopers toe te treden tot
de groep der kopers (of omgekeerd). Slechts één keer per jaar, te weten
op het feest van de Groote Verrekening, krijgt men de kans zijn prijs te
herzien, terwijl de beslissing of men gedurende het komende jaar koper dan
wel verkoper zal zijn, van geheel andere factoren afhangt, iets, waarop
wij in het verdere betoog nader zullen ingaan. Overtreders van deze in de
heilige boeken verankerde geboden, worden gestraft met verbanning naar een
niet nader genoemde, doch vermoedelijk hoogst onaangename verblijfplaats;
voorts worden hun bezittingen verdeeld onder het volk via de weg van
plundering. Dit gebruik is overigens de oorzaak van het feit, dat de
Internationale Concerns nooit enige invloed hebben weten te verwerven op de
Haraanse economie.

De overgang van een Haraan van koper tot verkoper komt als volgt tot
stand. Een koper die gewillig is de gedurende een jaar geldende olieprijs
te betalen, zal al snel ontdekken, dat zijn beurs eerder is uitgeput dan
de oliebron van zijn leveranciers. Na afloop van het jaar zal de man dan
ook geheel berooid zijn en om hem niet geheel buiten spel te zetten, mag
hij weer toetreden tot de rangen der verkopers.

Het is duidelijk, dat het niet erg aanlokkelijk is een jaar lang als
koper te moeten optreden, gegeven het feit, dat men of niet kan handelen,
of aan het eind van het jaar failliet is. De practijk leert dan ook, dat
er geen Haranen te vinden zijn, die zich vrijwillig aanbieden om koper te
worden. Om het economisch leven niet te verlammen, wordt daarom ieder jaar
een aantal Haranen, die tijdens het voorafgaande jaar de ergernis van de
Iman hebben opgewekt, tot koper gedegradeerd, met de verplichting koper
te blijven, tot het faillissement er op volgt.

Aangezien alleen die kopers, die bereid zijn de vastgestelde prijs te
betalen, failliet gaan, is het mogelijk door het hanteren van lage bied
prijzen, zich een aantal jaren als koper te handhaven.

De Haraan beschouwt het als een grove belediging wanneer een ander hem
rechtstreeks vraagt hoe hoog zijn bied- of laatprijs is; men mag slechts de
tegenpartij een prijs noemen en vragen of hij voor deze prijs al dan niet
bereid is te handelen. Aangezien reeds verscheidene toeristen hun onbekend
heid met deze lichtgeraaktheid moesten bekopen met een messteek of een ge
broken arm, moet ik de lezers - voorzover zij na het lezen van dit verhaal
nog steeds van zins zijn om op korte termijn een bezoek aan dit mooie land
te willen brengen - bezweren, toch vooral rekening te houden met dit ge
voelige punt. De geleerden zijn het overigens niet eens over de oorsprong
van dit gebruik. De vermaarde auteur ISMAEL B. MERODAK wijst op een passage
in de heilige boeken, die enige overeenkomst vertoont met Genesis 18
Vs 17-33. Zijn opvattingen worden bestreden door de minder bekende socioloog
HOSIA W. LABBERS jr., die zelf een theorie hanteert, uitgaande van een
vervelingssyndroom. Ik wil echter geen verdere tijd verdoen aan deze voor
ons niet ter zake doende kwestie en overgaan tot de bespreking van het
ritueel waarmede de olieprijs jaarlijks wordt vastgesteld.

De Iman, als absoluut despoot, is de vaststeller van de jaarlijkse
olieprijs. Hij is het immers die de handel in zijn land gaande moet houden.
Aangezien de Haranen zelf vrij zijn in het kiezen van hun privé bied
en laatprijzen en het dus zeer wel denkbaar is dat de laagste biedprijs
uitkomt beneden het niveau van de hoogste vraagprijs, is het de Iman niet
mogelijk de verlangens van al zijn onderdanen tegelijkertijd te honoreren.
De Iman is in de practijk reeds dan tevreden, als hij er in slaagt om één
enkele transactie mogelijk te maken. Daarnaast is de Iman Zeer Rechtvaardig.
Om te voorkomen dat slechts een deel van de Haranen bij de prijsvaststel
ling betrokken wordt, hanteert de Iman een hiërarchie, waarin alle
Haranen zijn opgenomen in volgorde van anciënniteit. Het is evenwel mogelijk
om een Haraan zijn anciënniteit te ontnemen en in de practijk gebeurt dat
zelfs regelmatig, n.1. iedere keer als de Haraan van status verandert. Het
is duidelijk, dat iemand, die de toorn van de Iman opwekt, bij zijn degra
datie tot koper tevens zijn anciënniteit kwijtraakt, maar ook op het
faillissement staat het verlies van anciënniteit. In de loop der jaren zullen

ix

X

daarom die Haranen die niet van status veranderen, oprukken in de hiërarchie.
Laat ik tenslotte opmerken dat jongeren, die juist de leeftijd van twintig
jaren gepasseerd zijn, onderaan in de hiërarchie worden opgenomen, meestal
als verkoper.

Ik wil bij de beschrijving van het feest der Groote Verrekening een
aantal saillante, maar voor ons doel irrelevante onderdelen, onvermeld laten.

Na het uitspreken van een reeks gebeden door de Hogepriester en een
rituele zuivering, volgt de inwijding der twintigjarigen die, zoals gezegd,
onderaan in de hiërarchie worden opgenomen. Hierna volgt de verbanning der
onstandvastigen (maar dit onderdeel is de laatste jaren bij gebrek aan
schuldigen niet meer opgevoerd).

Vervolgens houdt de Groot-discriminator een boetepreek, waarin hij
allen, die de Iman gedurende het voorafgaande jaar onrecht hebben gedaan
of anderszins hebben geergerd, aanklaagt. De boosdoeners worden naar voren
gesleurd, bespot en uitgejouwd; de kleren worden hun van het lijf getrokken
en ten overstaan van de massa worden zij tot koper gedegradeerd. Het enige
wat zij mogen behouden is hun beurs, want die zullen ze het jaar daarop
hard nodig hebben.

Meestal wordt tegenwoordig de ceremonie op dit punt onderbroken voor
het nuttigen van een bokaal wijn, maar dit is een verwatering van het oor
spronkelijke ceremoneel, dat geen pauze kende.

Na de onderbreking stellen de Haranen zich op in de voorhof der
tempel. De Iman betreedt het Heilige der Heiligen en zet zich op een daar
speciaal voor dit doel ingerichte troon. Eenmaal gezeten spreekt hij een
gebed uit waarin hij de Groote Rekenaar bidt om hem te inspireren tot het
kiezen van een getal dat als beginprijs moet gaan dienen. In de practijk
blijkt de keuze altijd het getal nul te zijn.

Vervolgens worden de Haranen een voor een tot de Iman toegelaten om
te worden gehoord. Dit gebeurt in de volgorde waarin zij in de hiërarchie
zijn opgenomen, maar de Iman zal niet meer mensen bij zich roepen dan hij
nodig heeft om de olieprijs vast te stellen.

Het doel van de Iman is een koper te vinden, die bereid is een prijs
te betalen, waarvoor alle verkopers, die vóór hem bij de Iman geweest zijn,
bereid zijn te handelen. Het is dan ook duidelijk dat de audiëntie snel is
afgelopen in het geval dat de eerste Haraan een koper blijkt te zijn,
want deze wordt uiteraard bereid geacht om te willen kopen voor de prijs
van nul pegels (de pegel is de plaatselijke munteenheid, waarvan de
waarde, tengevolge van het afwezig zijn van handelsverkeer met het buiten-

XI

land, moeilijk te bepalen is). We zullen dan ook maar aannemen, dat de
eerste Haraan een verkoper is en derhalve zal de Iman met zijn wensen
rekening moeten houden. De Iman gaat, gegeven de onmogelijkheid de ver
koper rechtstreeks om zijn prijs te vragen, net zolang de prijs die hem
voor ogen zweeft met een pegel verhogen, tot de verkoper ermee accoord
gaat. Na aldus zijn zin te hebben gekregen mag de verkoper vertrekken.

Het is van belang te vermelden, dat de uiteindelijk vastgestelde prijs
nooit lager zal zijn dan een tijdens het ritueel door de Iman uitgebracht
tussenbod.

Zolang de voorafgaande audiënties nog geen definitieve prijs hebben
opgeleverd, wordt een volgende Haraan binnengeroepen. Als dit opnieuw een
verkoper is wordt hij gelijk zijn voorganger-verkopers behandeld en tevreden
gesteld. Blijkt de eerstvolgende Haraan echter een koper te zijn, dan wordt
hem gevraagd of hij zich kan verenigen met de laatstgenoemde vraagprijs.
Zo nee, dan kan hij het vertrek direct weer verlaten. Is de koper echter
wel bereid om deze prijs te betalen, dan is hiermede de definitieve prijs
vastgelegd. De laatste koper wordt uitgeroepen tot koper van het jaar en
de prijs wordt onder paukengeroffel, bekkenslagen en het afsteken van
vuurwerk verkondigd aan het volk. Deze prijs zal gedurende het gehele jaar
gelden als de vaste olieprijs.

Er bestaan uiteraard diverse manieren om het ritueel te frustreren. Het
is erg gemakkelijk voor een verkoper te doen alsof men voor geen enkele
prijs bereid is te verkopen. De traditie leert, dat de Iman, door dit
soort simulanten getergd, wel eens uit zijn rol wil vallen en onder be
dreiging met een kromzwaard uiteindelijk toch nog een positieve reactie
weet los te peuteren.

Ernstiger is de situatie die optreedt als de Iman aan het einde der
hiërarchie gekomen, nog steeds geen koper heeft gevonden. De Heilige Boeken
-schrijven voor, dat de Iman in dat geval zelf koper wordt, voor de laatst
genoemde prijs; het is duidelijk dat in deze situatie de Iman moet aftreden
en de geschiedenis van Harad kent vele burgertwisten en opvolgingstroebelen
die op een dergelijk aftreden gevolgd zijn.

Het feest van de Groote Verrekening wordt afgesloten met een dankgebed
en een orgie, maar de details daarvan wil ik U besparen. Veel interessanter
is de evaluatie die B.E. LUB geeft van het hiervóór geschetste ritueel.

De zeergeleerde auteur maakt het aannemelijk, dat de Haranen er op uit
zijn om enerzijds in vrede te leven met hun Iman, om op deze wijze verkoper
te mogen blijven en aan de andere kant als verkoper graag zien gebeuren, dat

hun vraagprijs gerespecteerd wordt. De kopers proberen op hun beurt het
faillissement te ontlopen door een lage biedprijs te hanteren, maar meestal
blijken enkelen onder hen zich te willen opofferen om maar van het koper
zijn af te komen.

Vervolgens toont B.E. LUB aan, dat het gebruikte ritueel op optimale
wijze aan de verlangens der Haranen tegemoet komt.

Het bewijs berust op een splitsing van de Haranen in drie groepen,
afhankelijk van hun levenswandel (waarbij moet worden opgemerkt, dat
B.E. LUB er bij de vorming van zijn model kennelijk van uitgaat, dat de
Haranen onsterfelijk zijn). Allereerst zijn er die Haranen, die telkens
opnieuw ruzie met de Iman krijgen en zich kort daarop failliet kopen. Deze
Haranen slagen er kennelijk niet in hun doeleinden te realiseren.

In de tweede plaats zijn er de Haranen, die na enige lotswisselingen
hun verdere levensdagen als verkoper slijten. Doordat zij nooit meer ruzie
krijgen met de Iman, rukken zij zover op in de hiërarchie, dat op den duur
altijd met hun belangen rekening blijkt te worden gehouden.

De derde groep bestaat uit die Haranen, die uiteindelijk als koper
door het leven moeten gaan en er niet meer in slagen, of niet meer de
bereidheid opbrengen, nog een jaar de gevraagde olieprijs op te brengen.
Jaarlijks brengen zij hun bezoeken aan de Iman, want zij zijn wegens hun
standvastigheid opgerukt in de hiërarchie, maar iedere keer is hun prijs
te laag gekozen.

Het voorafgaande levert een verklaring voor de interne stabiliteit
der Haraanse economie. Het zijn de standvastigen die, op hoge leeftijd
gekomen, ver zijn opgerukt in de hiërarchie en die nooit meer van rol zul
len wisselen, die jaar na jaar de dienst uitmaken.

De oplettende lezer zal er na vergelijking met 3.4.4 en 3.4.1
misschien in slagen om de, in het betoog van B.E. LUB verpakte,
MEYER-McCREIGHT algoritme te herkennen. Ik wil hierbij niet nalaten te
vermelden, dat de gegeven beschrijving niet exact overeenstemt met de in
het proefschrift gebodene, maar op bepaalde details uitgebreider is dan de
in de literatuur bekende versies (vgl [HH 71] of [MMC 69]). Alhoewel
enige barokke versieringen niet ontbreken, vormt zij toch de weerslag van
het door mij gedurende de zomer van 1971 verkregen inzicht in deze als
lastig bekend staande algoritme - een inzicht, dat de basis heeft gevormd
voor het tot stand komen van dit proefschrift.

xii

X l l l

PREFACE

Abstract complexity theory is a subject in theoretical computer sci
ence, treating the mathematical properties of some universe of computabil
ity; more in particular it concentrates on the fact that the computations
in such a universe use irreversibly some resource, in absence of which
these computations are impossible.

The universe of computability is in general one of the formal systems
from recursion theory, like for example the Turing-machine formalism,
KLEENE's calculus of general recursive functions based on defining equa
tions, or more abstractly the concept of an effective enumeration, as de
fined by ROGERS.

For the TURING formalism a measure for the resource used by the com
putation is given by the number of basic cycles executed during the course
of the computation, or, alternatively, the number of tape squares "used".
For the KLEENE formalism one could count the number of times a left-hand
side is expanded by writing out a defining equation, but also the number z
for which the KLEENE predicate T(i,x,z) holds can be interpreted to be the
measure for the resource used by the i-th program at argument x.

Clearly for an abstractly defined effective enumeration the resource
should be treated abstractly also. Such a treatment was given for the first
time by M. BLUM, who in 1966 introduced the concept of a complexity mea
sure. A complexity measure consists of an effective enumeration, equipped
with a sequence of run-times, i.e. functions whose values represent the
amount of resource used by the corresponding programs in the effective enu
meration, provided that the programs terminate. This sequence must satisfy
two conditions, called the BLUM axioms. In the first place the run-time
has the same domain as the corresponding program; secondly the sequence of
run-times is a so-called measured set; i.e. it should be decidable whether
the run-time of program i at argument x equals y or not.

With this very general concept as a base, an impressive mathematical
theory has been developed by M. BLUM, A. BORODIN, R.L. CONSTABLE,
E.M. McCREIGHT, A. MEYER and several others whose contributions are dis
cussed in this treatise.

From a mathematical point of view, abstract complexity theory provides
us with a language which enables us to describe constructions in recursion
theory in a fully machine-independent way. A disadvantage of the usual ma
chine-independent treatment is the lack of formal rigidity used in the des

XIV

cription and representation of the sometimes quite complicated algorithms
and constructions used in the theory. The same criticism applies to the
machine dependent theory as well.

Our personal interest in the subject mainly did originate from an en
deavour to grasp the essential meaning of the MEYER-McCREIGHT algorithm,
from its erroneously informal description in the survey paper by J. HART-
MANIS and J.E. HOPCROFT [HH 71].

To substantiate our belief in the feasability of a more formal treat
ment, we present a formalism for the representation of algorithms in ma
chine-independent recursion theory, using this formalism throughout this
treatise. The formalism consists of a high level programming language, en
riched by primitives for a complexity measure.

During the development of this formalism we discovered that a formali
zation of this type needs a further primitive, which enables one to gener
ate, for a program represented by expressions in the programming language,
an index in the effective enumeration under consideration.

Traditionally, the corresponding step in argumentations is made from
outside the formal structure under discussion, by a reasoning like in
"look at this function which I have described; clearly it is a computable
and hence a recursive function (inessential use of CHURCH's thesis!) so
there exists an index for it; get me such an index...".

Special care is taken to preserve those mathematical expressions which
provide a single-line definition for a computable function. This is real
ized by extending the formalism with a mathematical representation style,
giving these traditional expressions an unambiguous meaning. (As a matter
of fact, nobody has ever worried about existing ambiguities in the usual
language of abstract complexity theory.)

In abstract complexity theory, one of the main subjects is the be
haviour of the different run-times of the distinct programs for a single
function; in particular, much attention is paid to the so-called speed
up phenomenon. The contents of this treatise mostly belong to a second sub
ject: the theory of resource-bound classes. These classes are defined by
collecting all programs or functions whose run-times are bounded almost
everywhere by some (recursive) function called the name of the correspond
ing resource-bound class.

To be more concrete, let (<I>̂)̂ denote the sequence of run-times of
the programs which are represented by the sequence (qn)^. The complexity
class Ft consists of all programs qn which for almost all arguments x in

XV

the domain of the name t satisfy the condition Gl (x) £ t(x). The class of
functions computed by programs in F is denoted Ct. Analogously, for a two
variable function R one defines the honesty class by collecting all pro
grams satisfying almost everywhere the condition <Iu(x) < R(x,qn(x)) when
ever the right-hand side is defined. The class of functions computed by
programs in GR is denoted

The main attention in complexity theory has been given to the complex
ity classes, whereas the honesty classes have been considered more or less
to be equivalent to the measured sets. This conception originates from a
well-known result by E.M. McCREIGHT which states that for total R the set
H is recursively presented by a measured set, and that conversely the
functions in a measured set all are R-honest for some total function R.

We have considered the honesty classes as an alternative type of
resource-bound classes, investigating their properties as compared to the
properties of the hierarchy of complexity classes. The result of this com
parison can be found in the scheme at the end of this treatise.

During the process of generalizing the known results for complexity
classes to honesty classes we discovered that, even in situations where
the result on complexity classes remains valid for honesty classes, the
classical proofs may break down and need repairing by non-trivial modifi
cations. Moreover, a central result like the naming theorem of
E.M. McCREIGHT becomes invalid for honesty classes. This suggests that
there is more involved than a "slight modification of definitions".

Our analysis shows that what is involved is an essential difference
in the appreciation of an infinite run-time; such a run-time is felt to be
a violation in the case of the complexity classes, but it contributes no
evidence against the honesty of the corresponding program. This analysis
leads to the new abstract framework of an acceptance relation and a cor
responding measured set of generalized run-times. Within this framework
we can discuss both types of resource-bound classes and several other
types at the same time.

Let (a.), be some measured set. For a partial function t we denote by
F^(t) (F^(t)) the set of all indices i which for almost all x in the do
main of t satisfy the condition a^(x) < t(x) (a^(x) < t(x) or oc(x) = ») .
Fg(t) (F^(t)) is called a strong (weak) abstract resource-bound class.

It will be argued that the strong classes generalize the complexity
classes, whereas the weak classes are a generalization of the honesty
classes. For a number of important results in abstract complexity theory,

XVI

such as for example the gap and operator-gap theorems, the union theorem
and the naming theorem, (for their formulation, see the scheme, mentioned
earlier) the known proofs for complexity classes yield proofs for the strong
abstract resource-bound classes by a straightforward translation. For weak
classes, however, the proofs of the operator-gap theorem and the union
theorem, need an essential repairing, and the naming theorem becomes in
valid.

The final sections of this treatise contain some results related to
the MEYER-McCREIGHT algorithm which is involved in the proof of the naming
theorem for strong classes. We present a further generalization of the
union theorem. Moreover, by concentrating on the renaming function of the
MEYER-McCREIGHT algorithm we are able to construct a closure operator which
maps arbitrary l2 ~sets of indices onto the smallest strong class contain
ing the given set. This latter theory is partially generalized for weak
classes, yielding some new results on the set theoretical closure proper
ties of honesty classes.

The treatise is completed by providing programs for some of the more
complicated algorithms, treated in the text. Several of these programs are
represented using the non-deterministic feature of parallelism, to indi
cate the amount of freedom which the user has in choosing a sequential
implementation.

TO THIS THESIS-EDITION

Since it was our intention to make this thesis self-contained, with
out, on the other hand, providing unnecessary details which may be found
elsewhere, the chapters 1-2 up to 2.4 have been reduced in size, and many
proofs have been omitted. These sections, including a number of minor new
results, will be restored to full length in the edition of this treatise
which will appear as a two-volume publication in the Mathematical Centre
Tract series.

ACKNOWLEDGEMENTS

I am deeply indebted to the late J. de GROOT for guiding me into re
search in pure Mathematics, giving me complete freedom in selecting my
subjects. Without this freedom the present thesis would not have been
written.

My research in Abstract Complexity Theory originated from a visit to
the Computer Science Department at Cornell University in April 1971. This
visit was made possible by an introduction provided by R.D. ANDERSON, and
a return ticket to the U.S.A. paid for by IBM Netherlands, at the occasion
of a two-months assignment of my wife in Endicott, N.Y.

I am grateful to J. HARTMANIS for introducing me to the field of
Abstract Complexity Theory, for not being scared away by my vague and er
roneous objections during the first half year, and for his guidance as
coreferee to this thesis during the subsequent period. Two of our meetings
took place at the GMD in Bonn, where he invited me during his sabatical
leave in 1971-1972, whereas another meeting occurred at Cornell in October
1973, made possible through the hospitality of the Computer Science Depart
ment .

My gratitude also concerns my thesis-supervisors A. van WIJNGAARDEN
for his interest in the different languages involved in this thesis, and
P.C. BAAYEN for his contributions to the internal consistency and the
clarity of this treatise, and his guidance during my ten years at the
Mathematical Centre.

I thank A. MEYER for his interest in the work and for his suggestions
which have improved the results in section 3.4.2, and L.G.L.T. MEERTENS
for valuable suggestions concerning the representation style for algorithms
used in the thesis, and for his general interest in the constructivistic
aspects of Abstract Complexity Theory.

People who influenced or contributed to my mathematical development
in general are (in alphabetical order) T.J. DEKKER, A. HEYTING,
F.E.J. KRUZEMAN ARETZ, H.W. LENSTRA jr.,F.OORT, A .B. PAALMAN-de MIRANDA,
W.P. de ROEVER, P.S. STOBBE, and A. TROELSTRA.

Finally I thank the people involved in the technical realization of
this thesis. These people are T.M.V. JANSSEN (for a multitude of XEROX
copies), J. HILLEBRAND (for editing the thesis), J.K. LENSTRA (for typo
graphical advice), A. SCHUYT-FASEN (for typing the extensive manuscript),
and D. ZWARST, J. SUIKER and J. SCHIPPER (for the printing).

XX

This thesis was typewritten on an IBM 89. For the mathematical text
Prestige Elite 12" was used, whereas the citations and programs were typed
in Light Italic 12". The mathematical symbols which were used are present
on the typing units Symbol 12", APL-Blanco, Script, Symbol Special, and the
Symbol Greek 10", for the IBM composer. The Orator 10" and the Courier 12"
were used for the title pages which were designed by J.K. LENSTRA.

The front cover was designed by T. BAANDERS, using an aerial photo
graph of the campus of Cornell University, taken by the author from a plane
flown by R.L. CONSTABLE. The lithograph for the cover was prepared by
D. ZWARST.

T. BAANDERS also designed the invitation for the reception after
the ceremony.

This thesis was printed at the Mathematical Centre on a Gestetner
Offset duplicator.

COLOPHON

Part 1

INTRODUCTION TO M A C H IN E-IN D EP EN D EN T C O M PLEXITY THEORY

{23 And Abraham drew near, and said, Wilt thou
also destroy the righteous with the wicked?
24 Peradventure there be fifty righteous
within the city: wilt thou also destroy and
not spare the place for the fifty righteous
that are therein?
25 That be far from thee to do after this
manner, to slay the righteous with the wicked:
and that the righteous should be as the
wicked, that be far from thee: Shall not the
Judge of all the earth do right?
26 And the Lord said, If I find in Sodom
fifty righteous within the city, then I will
spare all the place for their sakes.
27 And Abraham answered and said, Behold now,
I have taken upon me to speak unto the Lord,
which am but dust and ashes:
28 Peradventure there shall lack five of the
fifty righteous: wilt thou destroy all the
city for lack of five? And he said, If I find
there forty and five, I will not destroy it.
29 And he spake unto him yet again, and said,
Peradventure there shall be forty found there.
And he said, I will not do it for forty's
sake.
30 And he said unto him, Oh let not the Lord
be angry, and I will speak: Peradventure there
shall thirty be found there. And he said, I
will not do it, if I find thirty there.
31 And he said, Behold now, I have taken upon
me to speak unto the Lord: Peradventure there
shall be twenty found there. And he said, I
will not destroy it for twenty's sake.
32 And he said, Oh let not the Lord be angry,
and I will speak yet but this once: Peradven
ture ten shall be found there. And he said, I
will not destroy it for ten's sake.

Genesis, XVIII 23-32}

3

CHAPTER 1 . 1

ALGORITHMS AND THEIR REPRESENTATION IN MACHINE-INDEPENDENT RECURSION THEORY

1.1.1. THE PROBLEM OF PROGRAM REPRESENTATION IN RECURSION THEORY

Recursion theory is a branch of mathematics dealing with computable
functions. Although by now most mathematicians are accustomed to at least
one formal definition of "computable function", the word itself betrays an
inherent ambiguity of this concept: mathematicians are inclined to consider
functions as being static objects (a specific type of a relation) whereas
the word "computation" suggests some dynamical behaviour.

Both aspects are present in a formal definition. In the KLEENE formal
ism the functions are represented by defining sets of equations; stepwise
application of these definitions yields a computation for a function value.
In the TURING formalism the computation is mathematically defined and the
function is nothing but the input output relationship defined by a particu
lar interpretation of what is going on in the Turing machine.

Although the gap between the two aspects has been closed by rigorous
mathematical proofs, there is no traditional method to combine within a
single mathematical framework functions defined by describing some computa
tion method and functions defined by mathematical expressions. There are
several reasons why such a framework is not yet developed.

In the first place, mathematical formulas have been used much longer
than formally represented algorithms. The description of a function by an
expression is in general shorter and more transparent then a description by
an algorithm for the same function.

Finally, there exists no "programming language" yet which is generally
accepted by mathematicians.

Yet there exist functions, defined in recursion theory, which are only
definable by means of some algorithm for them, since a definition by means
of mathematical equations becomes uncomprehensible. The recursive permuta
tion constructed in the proof of the MYHILL isomorphism theorem (th. I.A.8)
(see also [Ro 67]) may be considered to be a typical example of such a
function.

This leads to the deplorable situation in actual (machine-dependent or

4

machine-independent) recursion theory that the larger part of the algo
rithms are described informally or even ambiguously. Excuse for this infor
mality is sought by invoking ("inessentially") the thesis of CHURCH whenever
needed.

To our opinion a great deal of formality and rigidity can be gained by
application of a well designed programming language. This language should
satisfy a number of more or less contradicting conditions which we formu
late below.

(i) The language should be directed to the subject under discussion. In
our situation, where we are dealing with Machine— Independent Complex
ity Theory, this means that the structure of a complexity measure
should be easily accessible.

(ii) In order to be readable, the description of functions in our lan
guage should not be unnecessarily distinct from the usual mathemati
cal denotation by expressions.

(i-ii) The language should be unambiguous. (This is clearly necessary but
difficult to combine with (ii).)

(iv) The language should be easy to read for mathematicians without any
programming experience (since many recursion theoreticians belong to
this category). The meaning of a program should be clear even without
knowing the language.

(v) It is not necessary that the language should be implemented.

In the sequel of this chapter a language designed to satisfy these condi
tions is proposed.

If we have been able to construct this language indeed in such a way
that (iv) is satisfied this should make it possible for those readers which
are not interested in the particularities of our language and the more com
plicated algorithms written in it, to skip the remainder of chapter 1.1 and
to proceed to where the mathematics is resumed (cf. chapter 1.2). These
readers should not be scared by the ALGOL-like formulas and instructions,
keeping in mind a few usable translations like:

int i = 6 ;

int i ;
i := 6 ;

"let i be six".
"let i be an integer variable",
"i becomes six".

5

proa f - (int x) int: x*x+2*x+l ;

if p then S else T fi ;

for J to_ 100 do_ ...

"if p holds then do S; otherwise do
T". (The same if-then-else-fi con
struction occurs also within expres
sions .)
"repeat for j = 0,1,2,...,100 ..."
"f is a function with an integral ar
gument denoted x and integral value;
f(x) = x2+2x+1".

After having lured this way part of our readership into believing that
the reading of our programs will be easy, we now turn to the technical
problems related to (i), (ii) and (iii).

In order to have a good accessibility to the structure of a complexity
measure we make the following proposals.

1) Our basic types are integers and booleans. By integers we mean the non
negative integers 0,1,2,3,... . Boolean values are true and false. Al
though usually the integers 0 and 1 are used to represent true and false
we have preferred not to do so in our language. Pairing and projection
functions will be implemented making it possible to interpret our inte
gers as being pairs, and multiplets or finite sequences of integers.

2) By a function we will understand a partial recursive function defined on
integers with integral values. Within our language we will at some
places also allow functions whose values may be either integral or
boolean, or even more general integral, boolean or one of the two error
conditions error or loop.

3) The effective enumeration on which our complexity measure is based is
explicitly available in our language; the value of the i-th program at
argument x is simply denoted by qn(x).

4) The run-times of the complexity measures are accessible by the decision
procedure given by the second Blum axiom. The instruction to compute
whether the i-th program terminates at argument x within y steps is
simply denoted by <E>̂ (x) < y.

5) The universal machine, and the s-n-m function corresponding to our ef
fective enumeration are explicitly implemented in our language. Moreover,
the language is introspective in the following sense: there exists an
operator index which transforms a function-routine, i.e. a piece of pro

6

gram text describing some function, into an index of this function in
the effective enumeration.

6) Structuring of data types, expressions, clauses and procedures is de
fined as is the case in ALGOL 68; in fact the description of our lan
guage consists of the description of an extension of ALGOL 68, with a
few modifications; this extension is then mapped onto our language by
a syntactical transformation which makes it satisfy our requirement (ii)
on readability.

In trying to satisfy the requirements (ii) and (iv) we should not for
get to keep our language unambiguous. A typical example of possible ambi
guities is the meaning of the inequality operator <. The algorithm used to
decide f(x) ^ $(x) is a quite different one, depending on whether f or g
are ordinary functions or run-times of programs in the enumeration; in the
second case the decision procedure given by the second Blum axiom is in
volved.

A more complete description of our language is given in the next two
sections. First we describe an extension of ALGOL 68 with some particular
ities, redefined according to our needs, in §1.1.2. Next we replace in
§1.1.3 a number of constructs by "mathematical representations" to make our
programs readable. This replacement should be considered to be another ex
tension.

In the sequel of chapter 1.1 the reader is supposed to know the con
cepts of an effective enumeration, complexity measure, transformation of
programs and measured set. If these concepts are still unknown the reader
should first read chapters 1.2 and 1.3.

1.1.2. DESCRIPTION OF A PROGRAMMING LANGUAGE FOR RECURSION THEORY - THE
ALGOL 68 EXTENSION

Before introducing any new construct we indicate the following modifi
cations to the definitions in the ALGOL 68 report:

(1) Representation alfabet

A certain number of Greek characters have become terminal production
of 'letter token'. Occurrence of these tokens is reserved for denoting the
programs and run-times of our Blum-measure (tp and 5>), transformations of

7

programs (a,T,p,K), measured sets (y,a), X- and u~expressions (A,p), opera
tors (P), projection operators (n), the elaboration operator (A), the empty
function (t).

(2) Integers

Integral values are restricted to be non-negative. The set of non-neg
ative integers is denoted by IN. The integer capacity is supposed to be in
finite.

(3) Defaults for arrays and loops

All counting starts at zero instead of one. Hence lower bounds of
arrays sliced from others are by default set to zero; from 0 can be omitted
and zero indicates the first case in a case-clause.

(4) Conditions

There exists a plain type "condition" (indicated by pond) consisting
of the two values error and loop', error represents the result of detection
of some error condition; loop represents the result of willfully executing
a statement like l:goto 1; whereas a result error can be used by subsequent
computations, loop cannot be input to any terminating computation. The con
ditions error and loop are used syntactical analogously to jumps.

(5) Boolean operators

The operators and and or are elaborated as should be the case when their
second operand had been of the mode prop bool instead of bool. Consequently
elaborating "true or q" or "false and q" the operand q is not elaborated.

This modification is motivated by the fact that we use many times the
expression p and q in a situation where termination of q is guaranteed only
if p holds, iff is an indication for equality between booleans.

(6) Indications

The symbols eq_,nq̂ , It, le ,gt_,qe_ are not used as alternative representa
tions for =,*,<,<,>,> (they are reserved to denote inequalities involving
functions from a measured set).

(7) Scope restrictions

The following example of an ALGOL 68 program is found to be illegal

8

because of scope restrictions:

begin proa increasor - (ref int ii) proa void: ii +:= 1;
int i := 0;

proa void ino = increasor(i);
inc; print(i) pr ? pr

end

Since it is clear that the above program is intended to print the num
ber 1 (ino is supposed to possess the routine i +:= 1 and not ii +:= 1), we
will forget the involved scope restrictions. (This modification is moti
vated by requirement (v).).

Next we indicate how the features promised in the introduction are re
presented .

(8) United types

The following united modes are introduced.

mode result = union (int,bool),

outcome = union (int,bool,cond)

(9) Operations on integral operands

Since there are no negative integers neither the monadic operator -
nor the diadic operator - is implemented. There exists however a diadic
operator - with priority 6 and "declaration":

P2_ ~ - (int x,y) int: if_ x>y then x-y else 0 fi_

(note that the body of this declaration is outside our language).
The following pairing function and projection operators are available:

£2_ - (int x) int: first coordinate of x

P2, - (int x) int: £ second coordinate of x
proa pair - (int x,y) int: integer representing the pair <x,y> (f;

We request that pair(x,y) is a bijection from the set IN onto IN. Moreover,
pair is monotonically increasing in both arguments. Consequently
pair(0,0) = 0. Ttl and itS are the coordinate mappings to pair. We have the
following equalities:

pair(ir 2 x, tt2 x) - x
7rl pair(x,~) = x
ir2 pair(~jX) = x

9

Build from the above two-dimensional pairing and projection functions
are sufficiently many higher dimensional ones. For example:

op tt3j 1 - (int x) int: w 1 x;
op ir3, 2 = (int x) int: tt7 tt2 x ;
op it3,3 = (int x) int: r2 tt2 x ;
prop triplet - finf x,y,z) int: pair (x,pair (y,z));

(10) Operations on boolean operands

Implication is implemented.

priority imp = 1;

op imp = (bool p,q) bool: if p then q else true fi;

Elaboration of p imp q proceeds however like when q had been of the mode
prop bool', q is not elaborated in false imp q.

The "assigning variants" of and and or_ are implemented:

priority - 1, w:- - 1;

op a :- =■ (ref bool pp, bool q) ref bool: p := p and q;

op v:= - (ref bool pp, bool q) ref bool: p := p or_ q;

Again q is not elaborated if not needed, like in bool p true, qj
p v:- q; p := not p; p a := q;

(11) Least-number operator, bounded quantifiers, maxima and minima

The following procedures are given:

proa least number = (proa (int) bool p) int:

(int z := 0; while not p(z) do_ z +:= 1 od; z);

proa bnd unv qua - (proa (int) bool p, int k) bool:

(bool b := true; for i to_ k while b do_ b a :- p(i) od; b);

proa bnd ext qua = (proa (int) bool p, int k) bool:

(bool b := false; for i to_k while not b do_b v:- p(i) od; b);

proa bnd least number = (proa (int) bool p, int k) int:

(int z := 0; while not p(z) and z<k do_ z +:= 1 od; z)

Note that (modulo side effects in p) one has

10

bnd least number (p,k) - if bnd ext qua (p,k) then least number (p,k)
else k+1 ft.

op max = ([] int r) int:

(int z := 0; for i from [r to \r do
if z < r[i] then z := r[i] fi_ od;
z);

proa max = (proa (int) int f, int l,u) int:

(if u<l then 0
else int m f(l);

for j from . 1+1 to u do
if (int n = f(j)) > m then m := n fi od;

m

fi);

op min - ([] int r) outcome:

int u - \r, l = [r;
if u<l then error
else (int z := r[l];

for i from 1+1 to u do

if z > r[i] then z :- r[i] fi_ od;
z)

fi);

proa min = (proc (int) int f, int_ l,u) outcome:

(if u<l then error
else int m := f(l);

for j from l+l to u do

if int n - f(j); n<m then m :- n fi_ od;
m

fi);

Maxima and minima can be computed both for linear arrays and for functions
defined over finite segments. Note that the minimum over an empty domain
leads to the condition error. Consequently whenever min or min are used the
definedness of the result must be checked using a conformity case clause.

For calls of the above procedure alternative "mathematical representa
tions" will be provided in the next section.

(12) Standard functions

The following special functions are used:

proa c = (int x) int: (l:goto l) ;
op zero - (int x) int: 0;
proa zero = (int x) int: 0;

These procedures exist also for more arguments

proa c2 - (int x,y) int: (l:goto l);
proa zero 2 = (int x,y) int: 0;
op even = (int x) bool: (x-x±2*2) = 0;

proa even = (int x) bool: even x;
op odd = (int x) bool: not even x;
proa odd = (int x) bool: odd x;

(13) Effective enumeration and complexity measure

The basic elements of the BLUM measure under consideration (programs
and run-times) are introduced by the definition of a couple of structured
modes "computations" and "run-times" and a number of operators defined on
values of these modes.

mode oomp = struct (int ind,arg),
rt = struct(int prog,arg);

aomp(ijX) represents the computation of (ft (x) as an intentional object.
Similarly, rt(i,x) represents the run-time of this computation as an in
tentional object. The value of a computation results from applying the
elaboration operator A.

op A = (comp a) int: jr the value of 'pdx) whenever defined
where i = ind of a and x - arg of a;
if <pAx) diverges so does the call Aa

This operator A replaces the universal machine.
For a run-time it is essential that the question <Xt(x) = y is decidable.

This is introduced into our language by defining the following operator = :

op - - (rt r, int y) bool: f the value of Ô .(x) = y, as computed using

the second Blum axiom where i = prog of r,
x - arg of r

The numerical value of a run-time results from applying the elaboration

12

operator A:

op A - (rt r) int: least number ((int y) bool: r=y);

The first BLUM axiom is implemented by requesting that A comp(i,x)
converges if and only if A rt_(i,x) converges.

We still need the s-n-m function for our effective enumeration. In
stead of providing this function by some fixed procedure declaration we
provide a much stronger instrument: the operator index. The reason for this
is the following. In general one uses the s-n-m axiom to provide a total
function x(k) which computes an index for the function S(-,k) which results
from replacing in some (very complicated) recursive function S(-,-) the
second argument by a fixed integer k. The s-n—m axiom provides this func
tion t , given some index for S. In general S itself is defined in our pro
gramming language itself, and since our effective enumeration contains all
recursive functions an index for S exists. Hence in order to be able to
apply the S-n-m function, we still need a way to go from a program for S to
an index for S; this translation is performed by the operator index. More
over, by introducing index the s-n-m function becomes definable.

Now a huge problem arises since in order to define index we must de
fine which function is possessed by a function routine f which is given by a
piece of program text during elaboration of our algorithm. Clearly this
meaning depends on the actual values of all non-local identifiers in f
which depend in their turn on the nest of active declarations. One might
try to replace all non-local identifiers in f by denotations for their
values (assuming sufficiently many denotations exist), but this replacement
may be non-terminating because of the presence of recursive procedures
which are referred to in f.

Still there is one type of non-local identifier which we want to be
replaced by a denotation of its value. Since we are particularly interested
to see how an index of the function S(-,k) depends on the numerical value
of k we replace k by its value.

Therefore we present the following description for index:

op index = (proa (int) int f) int:

an index for the function computed by the routine f which
results from the routine f by replacing all non-local integral
identifiers occurring in f by denotations for the values pos

sessed by these identifiers at the instance of the call index f jr

13

As an example we show how the s-n-m function is defined using index:

proo snm - (int i,j) int: index(int x) int: A comp(i,pair(j,x));

The operators A and index satisfy the following relation:

f(x) = A oomp (index f,x)

(disregarding side-effects in f)
The operator index may be considered to be an axiomatization of the

thesis of CHURCH: every function defined in our language is contained in
the effective enumeration.

The operator A acts as an inverse to index:

op A - (int i) proofint) int: (int x) int: A oomp(i,x);

Note that not necessarily index A i - i. It is true, however, that f and
A index f are extensionally equivalent, i.e. they compute the same function.

The following operators are introduced to have all possibilities of
compairing run-times with integers and/or run-times:

op s = (rt r, int y) bool: bnd ext qua ((int z) bool: r = z,y);

og_ < - (rt r, int y) bool: r<y and not r=y;

op * - (rt r, int y) boot: not (r=y);

o£ > - (rt r, int y) bool: not (r<y);

og_ > = (rt r, int y) bool: not (r<y);

og_ < = (rt r,s) bool:

(bool undecided := true, p; int z := 0;
white undeoided do_

if r=z then p := true; undeoided := false
elif s=z then p := false; undeoided := false
else z +:= 1

fi 2i.1
P

h

op - = (rt r,s) boot: r<s and s^r;
op < - (rt r,s) bool: r<s and not r=s;

In the next section we introduce the "mathematical representations"
for the above constructs.

14

The concept of a transformation of programs by definition is nothing
but a total recursive function which is supposed to transform the index of
a program into the index of another program. Intuitively one should think
the transformation to be some construction which modifies a program text in
a systematic way; this construction induces a total function mapping the
index of the original program onto the index of its image. The transforma
tion also modifies the computed function but since it is not certain that
extensional equality between programs is preserved it is not possible to
regard the transformation to be an operator.

Consider for example the transformation which maps a program ip. onto
a program computing mascfqr. (x) (x)). Using the s-n-m axiom one proves
mathematically the existence of a total function a such that for each x

~ max(<$Ax),Q>dx)). Within our programming language, however, we
want to be able to write a definition for a. This has strongly motivated
our definition of the operator index. In the above example we can write:

proe o - (int i) int: index(int x) int: max(A aompd,x) , A rt(i,x));

Remember that during a call of index i is replaced by a denotation of its
current value.

The example shows that it is possible to define transformations of
programs within our language without introducing any construct. Because of
the specific importance of the mathematical concept we provide in the next
section a mathematical representation for this type of a declaration of a
transformation of programs.

A transformation-declaration may be formally defined as follows: Let
E be a unitary integral clause and suppose that il,i2,...,ik and x repre
sent distinct integral mode identifiers whose scope contains E as a proper
subrange. Then the following procedure declaration

proa x = (int il,iZ,...,ik) int: index(int x) int: E;

is called a transformation declaration.
Note that (disregarding side effects) the following holds: Let

tl3...ttk denote integral primaries, and let E[tl/il,t2/i2,...,tk/ik,y/x]
denote the result from substitution of tl,...,tk,y for il,...,ik,x in E.
Then one has:

(14) Transformations of programs

A c o m p (T (t l , t 2.... tk),u) - E [t l / i l , t 2 / i 2 , . . . , t k / i k , y / x]

15

A measured set (Y-). is a sequence of functions for which a decision
procedure for Y^(x) = y is given. Consequently if a measured set is dealt
with in our language this decision procedure should be the data structure
to start with. All other operations and data structures are derived from
this structure.

mode ms - proofint,int,int) bool;

A value Y of the mode ras is called improper if there exists integral i, x,
y and z such that y * z and both Y(i,x,y) = true and y(i,x,z) = true.

mode mo = struotfms ga, int ind, arg);
mode mf = struotfms ga, int ind);

Whereas the ms value Y represents the decision procedure for Y^(x) = y, the
mo (measured computation) value (Y>i,x) represents the computation of Y-(x)
as an intentional object and the mf (measured function) value represents
the intentional function Y^•

For dealing with measured sets in an unambiguous way the indications
eg, nq, It, le, ge_, gt_ have been reserved. We give the necessary declara
tions below.

priority eq_ = 4, ng_ = 4, lt_ = 5, le_ = 5, ge - 5, gt - 5;

og_ e£ = (mo p, int z) bool: (ga of_ p)(ind of_ p, arg of_ p, z)

op A - fmo p) int: least number ((int x) bool: p=x)

A(Y,i,x) is the numerical value of Y^(x).

op A = (mf pp) proof int) int: (int x) int: A mc_(ga of_ pp, ind of pp,x);

A(Y,i) is the function Y^ considered to be an ordinary integral function.
The operations n£_, lt_, le_, ge_ and gt_ are derived from eg.

op le - (mo p, int y) bool: bnd ext qua ((int x) int: p ecp x,y);

og_ lt_ = (mo p, int y) bool: p le_y and not (p e£_ y);

og_ ng_ = (mo p, int y) bool: not (p eq_ y);

0£_ qt_ = (mo p, int y) bool: not (p lt_ y);

(15) Measured sets

16

og_ le_ = (mo p,q) bool:

(bool undecided true, b; int z := 0;
while undecided do_

if p eq_ z then b := true; undecided := false
elif q e£_ z then b := false; undecided := false
else z +:= 1
fi odj
b

);

og_ eq_ = (me p,q) bool: p le_ q and q le_ p;

£2_ lt_ = (me p,q) bool: p le_ q and not (p eq q);
A transformation of programs x is called measured if the sequence

(y>x (i) ̂ i :*'s a measurec* set. Within our language this means that there
exists a proper me value y such that

T (i,x,z) - A comp(x(i),x) = z

Now in general the right-hand side of this expression does not describe the
algorithm which makes the relation cp^^(x) = z decidable. Consequently
definition of the transformation x alone is not sufficient to describe the
corresponding ms value.

Therefore in defining a measured transformation one should have the
decision procedure available.

mode mt = structfms ga, proa(int) int tau)

Given a measured set y one may define a measured transformation as follows:

P2_ t£ - (ms_ y) mt: (y, (int i) int: index A mf_ (y, i))

1.1.3. MATHEMATICAL REPRESENTATIONS

The operators, structured values and other constructs defined in the
preceding section are not used in this form in the sequel. In order to in
crease the readability of the represented algorithms we introduce by means
of several extensions a number of mathematical representations. As a con

17

sequence many expressions will be looking like the ones mathematicians
traditionally are using. There are a few exceptions. The numerical value of
a run-time must be written explicitly using the operator A; a restriction
leading to overredundant occurrences of this operator in situations where
it is clear that the numerical value is needed (like in R(x,A3>^(x))). A
second unusual phenomenon is the occurrence of the indications le_, eq, nq,
It, ge and qt_ in the context of a measured set or measured transformation.

Finally we describe a quite radical extension for transformation-dec
larations which hides completely the use of the operator index; only the
occurrence of the symbol <= remembers the reader that in fact the transfor
mation t is the identifier declared in

ip ,.,(x) <= max(q>.(x),M>.(x)).

In the sequel of this section we let E , T , T . ,T^,U denote integral
unitary clauses. I,J,X,Y,Z,I. . . , denote integral identifiers.
P,Q,P^,...,P^ denote unitary boolean clauses. L denotes an integral unit
list, R(F) denotes a procedure-with-integral-parametei^boolean (integral)
unit. T denotes a measured set identifier and E denotes a procedure iden
tifier declared by a transformation declaration. 5 denotes a measured
transformation identifier.

(16) A-notation

The procedure-with-integral-parameter-integral denotation

(int X) int: E

may be replaced by

AX[£],

Similarly one may replace

(int X) bool: P by AX[P].

This extension is not permitted in the declaration of recursive procedures:
the declaration proa p - AXES’] is invalid if p occurs in E.

18

This extension generalizes for many-variable functions as well. For
example

(int x,y) int: x+y may be written \x,y[x+y].

(17) Pairing and projection functions

We provide for the projection operators the following (non-linear)
representations:

7T 1 TT

t t 2 TT

v 3, l TT

i t 3,2 TT

7T 3j 3 TT

Calls of the pairing functions pair, triplet etc. may be represented using
< and >

pair(Tj,Tg) may be written as <T^,Tg>

triplet (T ̂,T g,T may be written as <T^,Tg,T^>

(18) Least-number operator, bounded quantifiers, maxima and minima

least number (\X[P]) may be replaced by pXt?].

It was noted by L.G.L.T. MEERTENS that a separate extension of the type

least number (R) is replaced by \iX[R(X)]

is unnecessary and in fact ambiguous.
Using this latter extension both least number (R) and

least number (XX[R(X)]) are represented by vX[R(X)].
The effect of the above extension can be collected without using it

since clearly R and XX_R(X)] are equivalent routines.
The same observation holds for other extensions defined in section

(18).

19

This extension introduces the y-operator as usually written. For the
bounded quantifiers the usual mathematical representations are also legal.

bnd unv qua (XX[P],T) becomes VX < T[P]
bnd ext qua (XX[P],T) becomes 3X < T[P]

The analogous extension holds for the bounded least-number operation

bnd least number (XX[P~\,T) becomes yX < 7[P]

In applying these extensions the identifier X must be selected such
that no clash of identifiers results.

For bounded quantification with the bound T not belonging to the do
main over which is quantified we have the following extensions:

3X £ T[X*T and P] becomes 3X < T[P]
VX < T[X=T or P] becomes VX < T[P]

(Use of this extension is improper whenever evaluation of T has side-ef
fects.)

For the calls of max and min we use the following mathematical repre
sentations :

max(\I[E], T,U) becomes maxiE | T £ I - U}
min(\I[E],T,U) becomes nrin{E \ T < I ^ U}

Moreover, in the right-hand side representation

0 < I < U may be replaced by I < U.

In the mathematical text we allow, moreover, contraction of iterated maxi
malizations or minimalizations; for example

max{max{E \ I < T) \ J < T] becomes max{E \ J,I < T}.

(These extensions are only a compromise to mathematicians.)

20

In the preceding section we separated the intentional meaning of a
computation and a run-time from their numerical values by introducing spe
cific new modes for the intentional objects. Consequently in introducing
the mathematical representations tp̂ (x) or au(x) we must choose whether
these expressions denote the intentional or the extensional object. Our
choice is motivated by the practical use. Nobody ever uses in some expres
sion ip. (x) but for its numerical value, hence we let ip (x) denote the in-

1 i
tegral unit A comp (i., x). For a run-time it is however crucial that the de
cision procedure of the second Blum axiom may be invoked. Consequently we
let (x) denotedthe intentional object This means that whenever a
run-time is used as argument for some function like in R (x , (x)) this rep
resentation becomes illegal; we must write R(x jA® . (jr) J .

A similar problem exists for the distinction between a program and the
function computed by it. Mathematically a program is nothing but a function
in the effective enumeration. Most mathematicians consider tp. to be the
computed function and if for some reason one wants to consider the program
computing it one takes not the program itself but its index i. Since we are
dealing in part 3 with situations where we have a three-level distinction
between an index, a program encoded by it, and the function computed by
this program where, moreover, two indices may encode the same program we
must abstain from this convention.

Therefore we are obliged to use the following representations. If i is
some index then (ft denotes the program with index i and Aip. denotes the
function computed by ip. .

Note however, that the expression (p. will not occur in any program
without a parameter pack following it (there exists no mode "program").
Moreover, there is no ambiguity between cp^(x) and Aqu(x); the first expres
sion is not a phrase in the second but the values of the two integral
clauses are equal.

For the run-times <Xt the situation leads to an inessential ambiguity.
Since Cu is again an intentional representation of the step-counting func
tion, which is not referred to in any program, there is no ambiguity in
<Xu(x). The numerical-value-of-the-running-time function is represented by
A'lt . Consequently the clause AGu(x) is ambiguous since it may represent
both of the following clauses.

(19) Effective enumeration and complexity measure

21

A rt_(i,x) or ((int x) int: A rt(i,x)) (x).

Note however that the values of both clauses are equal.
We now give the formal definitions of our extensions:

The integral unit A corrrp(E,T) is replaced by v e (t)

The run-time unit rt_(E,T) is replaced by &JT)

The proa(int) int unit AE is replaced by

The proa(int) int unit (int x) int: A® (at) is replaced by A*E

Using the above extensions we are very often confronted in the mathe
matical text with an expression \x[S(x,h®Ax))] which sometimes is used as
a subscript. For typographical reasons we use therefore in the text the
following extension: Let S be a procedure with two integral parameters and
integral (or boolean) value. Then \X[S(X,F(X))] may be denoted by S a F.
Moreover, \X[S(X,N5>rj,(X))] may be denoted by S D <S>̂ (so the A may be omitted
in this context).

(20) Transformations of programs

The transformation declaration

proa E =■ (int I ... ,I^J int: index(int X) int E;

may be represented by

“’e (I13...tIk) (x) E;

This extension is motivated by the usual way to introduce transforma
tions by expressions like:

"Let a be a total function such that tp ... = max((p. (x) ,0. (x))".ct(i) — 1 1

The symbol may not be used in any other way; its use as operator indica
tion is strictly forbidden.

It should be noted that the above extension is used mostly within the
mathematical text.

22

(21) Measured sets

For measured sets we again have a distinction between the intentional
object of a measured computation and its numerical value.

The me unit ma_(Y,E,T) is represented by r„(T)
E

The unit mf_(Y,E) is represented by T .
Cj

Consequently expressions like T„(T) le U are defined.
£j -

Again the combination Ar^(T) is an ambiguous integral clause since it
is not clear whether the function Ar̂ , is called or the measured computation
Te (T) is enumerated. Both parsings, however, lead to the same value, dis
regarding side-effects. If side-effects are involved the extension is im
proper .

If S is a measured transformation then ga of - is a measured set and
tau of 5 is a transformation. Consequently me (ga of E,I,E) is an me unit
and A oomp((tau of E)(I)3E) is an integral unit. Since it is clear by the
operators in the context whether an integral clause or an me clause is
needed, we allow that both clauses are represented by tpl ^ j (E). Consequent
ly both (p̂ (q,)(E) le_ U and ip^^jfE) < U make sense but the computations in
volved are distinct.

If the programmer creates an ambiguity by the introduction of new
operators the above extension becomes improper.

(22) Convergence test

In the mathematical text the symbol °° is used to denote divergence
like for example in qh(x) = °° (tp^x)«”) for "<p.(x) diverges" ("cp^x) con
verges"). The use of these expressions is legalized by the following exten
sions :

(WF(T) ;true) becomes < <
(^„(T);false) becomes — c

(A®^(T);true) becomes <s>e (t) < C

(A<DJT); false) becomes qe (t) ~ c

(AT^iT);tvue) becomes Ye (T) It

(AY JT);,false) becomes r e (t)

Note that for a measured transformation 5 both (p_,..(x) It “ andr (z) — (i)
(i) < °° ma^e sense> the two expressions have the same value.

23

By definition our enumeration consists of one-variable functions. The
same holds for the functions in a measured set. Since by use of the pairing
functions many-variable functions can be represented by one-variable func
tions, the restriction to single-variable functions is not enforced
throughout this book. We assume to be given a sufficiently large collection
of extensions like the two written below permitting the use of super in
dices to indicate the number of variables. Examples:

(23) Many-variable programs

<pE (<r,u>)

<s>E (<r,u>)

is denoted <Jl(T,U) h

is denoted <t?(TjU)hi

1.1.4. MANIPULATION OF UNBOUNDED ARRAYS, SUMMATION AND LINEAR LISTS

The linear array of increasing size is a type of data structure which
is frequently used in algorithms within recursion theory. Instead of de
fining an extension to permit a declaration like [0:“] int a ; after elabo
ration of which each element of a is available, we use the construct of a
flexible array, which exists in ALGOL 68. A disadvantage of this construct
is that for each extension of the array the whole contents must be copied.

To facilitate the use of these flexible arrays we introduce a number
of procedures. Whenever some flexible array of a certain type is declared,
the corresponding manipulating routines are assumed to be delcared outside
the particular program under consideration.

All arrays are supposed to have zero as lower bound. For each type we
have three procedures available. The first procedure inserts a given value
at a given place, creating if necessary the needed space; other newly
created fields are initialized with a default value depending on the type;
the value of the call is the length of the extended array.

A second procedure looks for a certain item from the array; if the
wanted member is not yet present the array is extended and the default
value is delivered.

The third procedure simply extends the array.

In the description below M_ denotes a mode indication and V denotes the
default value corresponding to this mode. M is a sequence of symbols which
looks sufficiently like M to see which mode is involved in the declaration

24

(i.e. if M is vnf then M is int but if M is struct(int a,b) , M may become
something like str int a int b).

Proc insert M = (ref flex [] M ar, int ind, M val) int:

(int ub = [ar;
if ind < ub

then ar[ind] val; ub
else [:ind] M_ temp;

for j to_ ub do_ temp[j] :=■ ar[j] od;
for j from ub+1 to_ ind~l do_ temp[j"\ := D od;

temp [ind] := val;
ar temp;

ind

£i);

proa lookup M - (ref flex [] M ar, int_ ind) M:

if Tar > ind
then ar[ind]
else insert M(ar,ind,D);D

fid

proa extend M = (ref flex [] M ar, int ind) int:

(int ub - [ar;
if ub > ind

then ub

else insert M(ar,ind,D)

ff);

The default value for integers is 0 and for booleans the default value
equals false.

The procedure below computes the sum of the values of an integral
function over a finite interval:

proa sum = (proa(int) int f, int n) int;

(int s := 0;

for x to_ n do_ s +:= f(x);

a);

To please mathematicians we allow for the call sum(\X[E],T) the
linear representation IX<TE.

non-

25

Linear list manipulation

For a table of function values or an increasing sequence the flexible
array is a suitable data structure. For each item to be stored a fixed in
dex in the array is available. In chapter 3.3 on the union theorem we will
have growing collections of information where no preassigned mapping into
the integers is defined. In this case the linear list is a more appropriate
type of data structure.

Let M_, M and D have the meaning as before.

mode IIM = struct(M info, ref llM tail);

op head = (IIM list) M_: info of list;
op tail = (IIM list) ref IIM: tail of list;

proa clear M = (ref IIM list) void: list := (D,nil);

proc attach M = (ref IIM list, M_ item) ref IIM:

list : = (item, heap IIM ;= list);

proa lookup M - (llM list, M_ item) bool:

if head list = item then true
elif tail list :=: nil then false
else lookup M (tail list, item) fi;

proc delete M = (ref IIM list, M item) ref llM:

if list :=: nil then nil

elif head list xitem then list := (head list, delete M(tail list,item))
elif tail list :=: nil then list := (V,nil); nil
else ref IIM hulp - delete M(tail list, item);

if hulp :=: nil then list := (D,nil); nil
else list := hulp

£ y
fi.

The default value of a linear list of items of the mode M equals (D,nil).
The void clause

(M item; ref llM domain := list;
while ref IIM (domain) :*: nil do

item head domain; domain := tail domain;

(S) od);

26

may be represented by

for item over list do_ S od.

The void clause

(M_ item; ref U M domain := list;
while ref llM (domain) nil do

item head domain;

domain := if item = stop then nil else tail domain fi;
(S) od)

may be replaced by

for item over list upto stop do_ S od.

1.1.5. MATHEMATICAL NOTATIONS

The larger part of this treatise consists of mathematical text and
not of programs. The notations introduced in the preceding sections are
used however also within the text; whenever there is printed an expression
looking like a phrase in our programming language the corresponding mathe
matical object is meant.

There are however many concepts having no counterpart in the program
ming language, like sets, inequalities between functions etc. The present
section describes their notations.

The reader should keep in mind the following reserved (but not exclu
sive) use of some characters:

f ,g,h denote partial recursive functions in one variable
R, S denote partial recursive functions in many variables
i»j denote indices of programs
x,y,z denote arguments of functions or programs
a,p,t denote transformations of programs
A,B,E denote subsets of IN.

List of special symbols

symbol (page of meaning
definition}

□ end of proof
IN set of non-negative integers

27

symbol {page of
definition}

meaning

Z set of positive and negative integers
Vt ,R£ 30 domain (range) of the function f
P 30 class of all partial recursive func

tions (programs)
R 30 class of all total recursive functions

(programs)
P ^ R 11 class of partial (total) recursive

functions in n variables
x < y 30 inequality

VX 30 strict inequality

f s g 30 inequality between functions

f < g 30 strict inequality between functions

f E. g 30 inclusion between functions
f = g 30 "almost everywhere" inequality between

functions
f <r g(A) 30 idem, relativized to a set A c IN
f | A, <p. I A restriction of a function (program) to

A c IN

f aheap g 85 "f is cheaper than g"
f aheapv g 86 "f is cheaper than the values of g"
f noomp g 69 "g cannot be computed within time f"
f ncompv g 69 "the values of g cannot be computed

within time f"
These four relations again may be relativized to a subset A c K.

V,3 unbounded quantifiers

V 30 for all x except finitely many
00
3 30 there exists infinitely many x

c there exists no x

“m ,”l 43 many-one (one-one) reducibility

43 recursive isomorphism

A 31 number of elements in set A

[k,l],[k,l) segment k f i x f i l (k £ x < l)

e»4 is element of (is no element of)

28

symbol {page of meaning

0

definition}

empty set
I ,TT ,A n n n 45 degrees in the arithmetical hierarchy
Ct.Ft 64 complexity classes,w w
t’* t 65 weak complexity classes

Hr.Gr 65 honesty classes
Ct’Ft 68 complexity classes modulo sets of ex-

ha,gar r 66
ceptional points
modified honesty classes

SCt,SClt,CT̂ 100 other types of resource bound classes
(xi)i,(fi).,(Ei)i 35 sequence of integers, functions, sets
(T-). 1 1 35 measured set
*i 34 i-th program in effective enumeration
<S>.1 39 run-time of i-th program

35 idem, for n-variable programs
E 67 class of sets of exceptional points
A 95 general acceptance relation
Cpl, Hon, Cp lex, 97-100
Honex,f_ ,Sopl,

Sopll,Topl specific acceptance relations
F^(t),FA(t),F(t) 95 strong abstract resource-bound class

95 weak abstract resource-bound class
Gj(t),Gj(t),6(t) 96 abstract resource-bound class of pro-

96
grams
abstract resource-bound class of func-

(ai}i 104
tions
measured set of run-times derived from

halts, non-empty , finite, 43-47
acceptance relation
standard reference sets in the arith-

bound, cofinite,empty metic hierarchy
Q c 49 index set for a class of functionsf(k), .f (x) f(0)(x) = x; f(k+1)(x) = f(f(k)(x)).

29

Within descriptions of algorithms designated "informal" we use (among
others) the following deviations of our own formalism:

(i) If S denotes some sequence of symbols which describes informally some
computation or computable value then f S denotes a closed clause
within our programming language whose elaboration yields the computa
tion or value intended.

For example if A is a recursive set then #{x e A I S it) clearly
is a computable integer; consequently t #{x e A | cc < n} ̂ denotes a
closed integral clause yielding the number of elements in A whose
values are less than or equal to n.

(ii) If B(x) denotes some predicate then the expression

max {if B(X) then F(X) else 0 fi_ \ A < X < B}

can be represented also by

max{F(X) \ A < X < B and B(X)}

or even

max {F(X) \ B(X)}.
A<X<B

Finally if B(X) = Ax[true] we replace

max {F(X) \ B(X)} by max {F(X)}.
A<X<B A<X<B

Analogous representations are used for minima.

30

CHAPTER 1 .2

RECURSIVE FUNCTIONS AND EFFECTIVE ENUMERATIONS

1.2.1. MATHEMATICAL CONVENTIONS

By a function we mean (unless stated otherwise) a partial recursive
function from the set M of non-negative integers (including zero) into
itself. Functions which are defined for all arguments are called total.
P(R) denotes the collection of all (total) functions. The set of all argu
ments x for which f(x) is defined, the domain of f, is denoted Vf . We write
f(x) < <*> (f(x)=“>) for x e Pf (x i V f) . Equality of functions f = g denotes
extensional equality (Vf = V g and Vx[x e V f => f(x) = g(x)]).

The inequality f < g means V f = V g and g(x) > f(x) for all x e Vg.
Strict inequality f < g means V f o V g and g(x) > f(x) for all x e Vg. If
V f ̂ V g and g(x) = f(x) for x e V g then we write g c f.

The range of a function f is denoted Rf. For finite k the inequality
k < » is taken true whereas « < k is taken false. The inequality <» < °° is
also considered true.

If P is some predicate then we write Vx[P(x)] for "P(x) holds for all
except finitely many x" and 3x[P(x)J for "there exist infinitely many x
such that P(x)". Using these notations we define the following "almost
everywhere" inequality between functions:

f 1 g iff Vx[f(x) < g(x)].

This inequality may be relativized to a subset A c]N; f «_ g (A) means
Vxtx e A =* f(x) S g(x)]. Note that f g whenever V g is finite. pz[P(z)]
denotes "the least z such that P(z)".

We use a fixed recursive pairing function <x,y> with coordinate pro
jections TTj and TT̂ » TTj<x,y> = x; Ti2<x,y> = y; <TT|X,TT2X> = x. Moreover,
<x,y> is increasing in both arguments and consequently <0,0> = 0. Using

The conventions introduced in this section cover a few notations not in
troduced in chapter 1.1, although not all notations are new. Some nota
tions, introduced already in chapter 1.1, are repeated for the sake of
the readers who have skipped chapter 1.1.

31

this pairing function many-variable functions are introduced in a formalism
consisting of one-variable functions.

We let £ (zero) denote the function which is everywhere undefined
(zero).

If R is a two-variable function and t a single variable function then
the function Ax[R(x,t(x))] is denoted Rot.

It is a practice in recursion theory to identify (recursive) sets,
predicates and total 0-1 valued functions using the interpretation of char
acteristic functions and the interpretation 0 = tvue_, 1 = false or vice
versa. We abstain from these identifications. If a Boolean function is in
tended the truth values true and false are used explicitly, and for recur
sive sets the notations from set theory are used.

If A is some set then #A denotes the number of elements in A. #A = °°
if A is not finite.

In the sequel "increasing" will always mean "strictly monotonically
increasing" and "non-decreasing" will stand for "monotonically non-decreasing".

1.2.2. THE ORIGIN OF MACHINE-INDEPENDENT RECURSION THEORY

The concept of a recursive function is one of the important results of
20-th century mathematics. During the years 1930-5 a number of distinct
formalized definitions of "computability" were given. Afterwards these dif
ferent formalisms were proved to be equivalent; i.e. each formalism yields
the same class of computable functions.

The best known formalisms are those given by KLEENE and TURING.
KLEENE considers functions determined by defining systems of equations.

In his formalism the recursive functions form the smallest class of func
tions containing a few base functions (zero, successor and projections)
which is closed under the schemes of substitution, primitive recursion and
minimalization. If the scheme of minimalization is excluded one defines
this way the class of primitive recursive functions. Reading the defining
equations from left to right yields a method to evaluate a given function
at a given argument; consequently all functions in the KLEENE formalism are
indeed computable.

The formalism introduced by TURING is based on the description of an
abstract machine (Turing machine) which performs a computation. Although
the computation is described in terms of physical entities (a machine oper-

32

ating on a two-way, potentially infinite tape, consisting of squares upon
which symbols are printed and erased) the input-output relationship deter
mined by this machine can be interpreted to be a function from W into M.
Again the origin of the function indicates that it is in fact computable.

For neither of the two formalisms it is clear that each function which
is felt to be computable is computable in the sense of the formalism. An
impression of the power of the two formalisms results from trying to prove
their equivalence. Such proofs can be found in KLEENE, Introduction to
Meta-mathematics [K152] or DAVIS, Computability and Vnsolvability [Da58].

The proof of the equivalence of the formalism yields some very impor
tant corollaries. In both formalisms there exists a "canonical" method to
enumerate the programs c.q. systems of defining equations, this way enumer
ating the collection of computable functions. This makes it possible to in
troduce the universal function u which is defined by

u(i,x) = "the value of the i-th program in the list
at argument x".

This universal function u itself can be shown to be recursive. Consequently
one may replace the collection of all Turing machines by a single one (the
universal machine) which operates on encodings of all other machines.

A second important corollary is the definition of the so-called Kleene
predicate T. This is a primitive recursive (and hence total) boolean func
tion which satisfies

T(i,x,z) = "z is an encoding of the complete computation
of the i-th machine at argument x".

By use of this predicate it is possible to describe formally some construc
tions which interfere with computable functions at the level of the compu
tations determining the function values.

A third result which is easily derived from the technical tools devel
oped for the preceding results is the so-called s-n-m-theorem. If R is a
recursive function in two variables then for each fixed k, R(k,-) is a
single-variable function which is computable. Now both R and R(k,-) have an
index in the canonical enumeration. The s-n-m-theorem expresses that an in
dex for R(k,-) can be computed recursively from an index for R and k.

After having worked through the proofs of the preceding results the

33

reader may be convinced that each function which he feels to be computable,
is formally computable within the formalisms. Still this is a mathematical
ly unprovable assertion which is known under the name of "Thesis of CHURCH":
Each computable function is recursive.

The two formalisms described above are not usable to represent compli
cated algorithms. This has led to the use of informal descriptions of al
gorithms which are "clearly" recursive. This practice is justified by in
voking the thesis of CHURCH. However, using this thesis this way is called
"inessential use" since one believes that a formalized description could be
written down, given the time and the paper.

Each of the formalisms for the recursive functions mentioned above
leads to a so-called machine-dependent theory. It is hardly possible to
separate between the mathematical content of an algorithm and its "physical"
implementation.

The base for a machine-independent approach was given by ROGERS [Ro58]
who introduced the concept of an effective enumeration. In this formalism
the basic structure is given by the universal machine and the s-n-m-func-
tion. There exists however no equivalent to the KLEENE predicate. Still it
is possible to derive the so-called recursion theorem within this frame
work.

The concept of an effective enumeration was extended by BLUM [B167]
to the concept of a complexity measure. In this formalism an analogue for
the KLEENE predicate is given. In the resulting mathematical system it is
fairly good possible to discuss computable functions at the level of their
computations; for example the construction of a "dovetailed" computation
can be formalized. Still it is felt by the author that in defining the so-
called transformations of programs the formal discussion is interrupted by
an argumentation like: "look at this function; clearly it is computable and
consequently there exists an index for it in the enumeration; let i be such
an index ...". In order to formalize this argumentation the operator index
was introduced in the preceding chapter.

In the sequel of this treatise we present a survey of machine-indepen
dent recursion theory.

34

1.2.3. ABSTRACT EFFECTIVE ENUMERATIONS AND THE RECURSION THEOREM

{... and, lo, a great multitude, which no man oould
number, of all nations, and kindreds, and people,
and tongues, stood before the throne, ...

Revelation VII,9}.

DEFINITION 1.2.1. An effective enumeration (qu). is a sequence of partial
recursive functions (in one variable) called programs, which satisfies the
following properties:

(0) Each partial recursive function f: IN -+■ IN occurs somewhere in the se
quence (qL) . .

(1) [Universal machine]. There exists an index u such that
Vx,y[tpu (<x,y>) = tp (y)] .

(2) [s-n-m axiom]. There exists a total recursive function snm such that

Vi,x,y[q> . (y)snm(i,x) ip.(<x,y>)].

Although our programs q>. are single-variable functions by definition
we introduce many-variable functions in our enumeration by using the pair
ing function. An occasional super-index indicates use of this interpreta-

2tion: for example qx(x,y) equals qn(<x,y>).
By definition the programs qn are nothing but functions. We want to

be able to separate the intentional object of an abstract computing process
from its extensional meaning which is the computed function. Therefore we
denote the function computed by the program qu by Aip . This symbol A may be
omitted in many circumstances where it is clear that the numerical value is
intended. In particular qh(x) denotes always the numerical result. Also in
equalities between programs and/or functions the A is omitted. Note that
equality between programs means extensional equality; there is no concept
like "program equivalence" in our theory.

The above interpretation of the symbol qu occurs in papers by
J. HARTMANIS and A. BORODIN. An alternative interpretation which is used by
M. BLUM, A. MEYER, P. YOUNG and others where q>. denotes the function com-l
puted by program i and where no distinction is made between index and pro
gram, is less suitable for this treatise. In part 3 we have situations
where an index encodes more information than just a program, and in this

35

situation a three-leveled approach (index, program and function) is needed.
The fact that qA computes f is also expressed by saying "i is an index

for f".

DEFINITION 1,2.2. A transformation of programs is a total recursive func
tion (working on indices of programs).

In chapter 1.1 the background of this concept was fully explained.
Transformations of programs are defined by implicit use of the s-n-m axiom.

2For example the function q\(y,x) being recursive in i, x and y there exists
by the s-n-m axiom a total function a for which

2 2 <Pa(i)(x»y) = ̂ (i) (<x>y>) = <Pi(<y»x>) = <P.(y,x).

Using the formalism of section 1.1.2 a formal definition of o becomes

prop a = (int i) int: index(int x) int: A comp (i,pair (ti2x 3ti lx))

or using the mathematical representation of 1.1.3

cp ,..(x) <= (p.(<n0m,n,a:>).O ("Z-) 2- t-i 1

DEFINITION 1.2.3. By a sequence of programs (functions) we understand a
sequence of programs (functions) which is enumerated by a transformation of
programs. Hence if a is a transformation of programs then is a
sequence of programs and (Aip^^)^ is a sequence of functions.

For the concept of a measured set we have two equivalent definitions:

DEFINITION 1.2.4. A measured set y is a recursive ternary predicate such
that for each i and x there exists at most one value y for which
Y(i,x,y) = true.

DEFINITION 1.2.5. A measured set Y is a sequence of functions (y ^)^ with
the property that the ternary predicate Y^(x) = y is recursive in i, x
and y.

*) In order to be consistent with chapter 1.1 we should write Y-(x) y
instead of Y^(x) = y.

36

Clearly the two definitions describe the same concept. From the ternary
predicate y one derives the sequence (y^) by taking y^ = tp^^ , the trans
formation a being defined by

tPCT(i) (x) •*= pz[y(i,x,z)].

Conversely the ternary predicate y is implicitly present in the second
definition, and it is clear that y^(x) = y for at most one value y.

DEFINITION 1.2.6. The transformation of programs a is called a measured
transformation if the sequence (tp ...). is a measured set.a(i) 1

There exist sequences of functions which are not a measured set. For
example the sequence (tpp ̂ is not measured since the predicate tp. (x) = y is
not recursive (cf. chapter 1.4).

The recursion theorem of KLEE.NE states that every transformation of
programs has a fixed point, i.e. a program extensionally equivalent with
its image. Moreover, the index of the fixed point depends uniformly on
further parameters.

THEOREM 1.2.7. [Recursion theorem]. Let a be a transformation of programs.
Then there exists an index j such that tp. = tp ,...

J a(j)

PROOF. Let p be defined by:

% (j) (x) <- ‘p«Pj(j)(x)

and let k be an index for the function Ai[o(p(i))]. Then j = p(k) is the
requested fixed point since for every x

V x) = W x) = \ (k) (x) = V p (k)) (x) - V j) (x)- D

Note that the above proof seems to have no intuitive meaning at all.
(The reader may convince himself of this fact by closing the book and try
ing to repeat the argumentation).

THEOREM 1.2.8. [Uniform recursion theorem]. Let a : IN“ -»•
mation of programs. Then there exists a transformation x
each j tp

0(T(j),j) ' V T(j)-

IN be a transfor-
satisfying for

37

PROOF. Let p: M + B be defined by

<P ,• -, (x) «= ip , (x).

Take for k an index such that

2
<Pk (i, j) = a(p (i, j), j) .

Then the transformation t = Aj[p(k,j)] satisfies the fixed point conditions.
For each j and x we have

tp ,..(x) = cp , x) = ip , (x) = cp , ,, ., (x) =
t (J) P(k,j) ^2(k ^(P(k,j), j;

cp , (x). □

1.2.4. THE CONCEPT OF AN OPERATOR

DEFINITION 1.2.9. A total effective operator T is a transformation of pro
grams a with the following properties (writing T(ip̂) for cp^^):

(1) [operator] T preserves functional equality: cp̂ = qL => r(qh) = r (q).) ,
(2) [totality] qr total =»r(qj^) total,
(3) [continuity] if r(cp^)(x) = y then there exists a finite set F c Dqn so

that r(ip |F)(x) = y and, moreover, for any index j such
that tp. IF = tp. I F one has T(cp. IF) (x) = y also.

J i J

If F is a finite set such that tp̂ |F completely determines the value of
r((p)(x) then we say that the support of (the computation of) F(qt) on x is
contained within F. If a total effective operator r and a total function qt
are given one can effectively compute a finite set F containing the support
of r(qh) on x.

One should visualize a total effective operator as a "procedure" which
computes T(t) using a program for t as a subroutine; in computing T(t)(x)
(which computation always terminates if t is total) the values of t at a
finite set of arguments of t (the support of T(t) on x) are used; the re
sult only depends on these values and not on the way these values are com
puted. (In fact this way the support of r(qh) on x is determined.)

38

The procedure may be based on paralellism; if the procedure is purely
sequential one gets a smaller subclass of the total effective operators
(the so-called subroutine operators [Sy 71]).

By dovetailing a procedure using paralellism can be translated into a
sequential procedure; however, the computations of t(x) should be dove
tailed also. Another problem is that in general one cannot compute a mini
mal support of a computation of such an operator. To illustrate this con
sider the example below:

Example 1.2.10. Let o^ be defined

Clearly satisfies for each k the conditions (1), (2) and (3) thus de
fining a total effective operator However, to decide whether the mini
mal support of r (t) on x is {0} or {0,1} one must first solve the halting
problem which is unsolvable (cf. chapter 1.4).

The more general concepts of an operator, such as recursive operator,
partial recursive operator, and general recursive operator [Ro 67] are not
used in this treatise.

(x) <= (par begin if_^(0) < °° and ip̂ (k) < °° then goto found fi.,
i f q A O) < “ and wfl) < " then goto found fi

end;

found: 0);

39

CHAPTER 1 .3

COMPLEXITY MEASURES

As indicated in the preceding chapter the concept of an effective enu
meration is not powerful enough to treat computable functions at the level
of their computations. There is no analogue for the KLEENE predicate.

To create a more powerful formalism M. BLUM has introduced for each
program qL a step-counting function (or run-time) <Il . One should think of
4c (x) to be the "amount of resource used by the computation of ip^(x)". The
behaviour of the functions (<Xl)^ is regulated by the two so-called Blum
axioms. The pair <X> = ((qt)^, (<Xl) is called a complexity measure or Blum
measure.

A complexity measure may be considered to be an abstract universe of
computation. The working of the machinery is unknown; moreover, programs
cannot be freely combined although alternative programs for the intended
combinations exist in the enumeration. However the formalism allows the in
terruption of computations taking to much resource.

DEFINITION 1,3.1. A complexity measure 5> is a pair ((qL)^, (4l)^) consisting
of two sequences of (partial recursive) functions satisfying the following
axioms:

(0) The sequence (qt)^ is an effective enumeration of partial recursive
functions.

(1) For each i PqL = Pit .
(2) The sequence (<Xl)^ is a measured set (i.e. 4l (x) = y is decidable).

As before with the programs we should separate the intentional run
times from the numerical functions which they are by definition. Again
the later objects are denoted A4c . Contrasting to the preceding section it
is not permitted to suppress occurrence of the symbol A freely. For example
in determining the validity of 4c (x) = y one wants to use the decision pro
cedure given by the second Blum axiom, which terminates, whereas computa
tion of 4l (x) may diverge. For this reason we reserved in chapter 1.1 the
notation 4l (x) for the intentional object; the numerical value is denoted
A4l (x). This convention leads to many occurrences of the symbol A in cir
cumstances where the numerical value of the run-time is used as argument

40

for some computation. The denotation Ro<El from Ax [R(x ,A<Il (x))] is an ex
ception to this rule, which is motivated by the frequent occurrences of
such functions as index in some other expression. Within our text we omit in
fact many occurrences of A in circumstances where the intentionality of the
run-time is irrelevant.

Note that the decision procedure for <X>. (x) = y is an analogue for the
Kleene predicate T(i,x,y) if we consider "the encoding of the computation
of the i-th program of argument x" to be the run-time of the i-th program
at x. For the effective enumeration of all Turing machines there exist two
well-known examples of complexity measures. In the so-called Turing time-
measure, ^(x) equals "the number of steps" taken by machine i at argument
x, a "step" denoting the reading and/or printing of a single symbol fol
lowed by an internal transition and a possible replacement of the reading-
head over one tape square. In the Turing space measure (x) equals the
number of tape squares used during the computation. In the latter case this
number may be finite also for a divergent computation and in order to
satisfy axiom (1) the function O^(x) must be set in diverge if this (decid
able) phenomenon occurs.

Consider some more or less concrete instruction code for some computer
model, which is strong enough to allow computation of all recursive func
tions. One should like to have in these circumstances a natural complexity
measure, with qr being the i-th program written in the instruction code
(using some encoding of programs by integers) and with Cu(x) being the
number of elementary instructions executed during computation of the i-th
program at argument x. In practice there are almost always hidden snags in
this definition. Many instruction codes permit situations leading to diver
gent computations. As an example one might consider the divergent ALGOL 60
program

begin switch S := S[1]; goto S[1] end

in which occurs a non-terminating but (at the level of the ALGOL 60 seman
tics) indecomposable statement. At a more machine-oriented level instruc
tions using indirect addressing (a la KNUTH [Kn 68 - 2.2.2, Ex.3]) or in
directly executed instructions (like the DO-instruction in the EL X8 ma
chine code [EL 66]) are examples of instructions which may fail to termi
nate. This situation becomes worse if by the use of microprogramming the

41

power of the instruction code is increased. Consider a computer equipped
with an instruction which computes a zero with integral coordinates for a
many-variable polynomial with integral coefficients. As is indicated by the
unsolvability of HILBERT's tenth problem [Da 73] this instruction has an
unsolvable halting problem.

Although the reader will look in vain for a formal proof in this trea
tise the following assertion is crucial at this place.

ASSERTION 1.3.2. There exists a complexity measure.

In fact the Turing machine measures mentioned above are well-defined
Moreover, computer-model inspired measures without non-terminating instruc
tions in their instruction codes exist also; for an example of a formally
defined type of "register machines" we refer to [SS 63] or [Hm 71]. In a
recent textbook E. ENGELER [En 73] uses such a model of computation as a
foundation for recursion theory.

We conclude this section with some remarks one the strength of the two
Blum axioms.

In the first place the two Blum axioms are independent. Taking <Xu = ip̂
the first axiom is satisfied but the second is not since is not a
measured set (cf. chap. 1.4). If we take 4>. = zero for each i then ($.). is
measured but the first axiom fails.

The existence of a single complexity measure <£ shows that it is pos
sible to extend each effective enumeration (qy to a complexity measure by
"borrowing" the run-times from the measure C>. Let u be the universal pro
gram for (ip.). i.e. u(i,x) = ip.(x). Since u is recursive there exists an
■ . 1 1 , 1 2index j for u in the enumeration (cp.) . . Hence ip. (x) = q>.(i,x). Now define 2 t l i j
f . (x) = $j(i,x). It is not difficult to prove that ((< | ^) ^ .) is indeed
a complexity measure.

From the fact that the sequence (4\)^ is a measured set one finds a
transformation p such that 4y = cp̂ ̂ . One defines p by

tPp (i)(x) <= yzta^Cx) = z].

Moreover, the following predicates are seen to be recursive: C>. (x) * z,
<Ey(x) < z, Ct(x) £ z, <Xy(x) > z and <D̂ (x) 2 z. For the predicates
®.(x) ^ ®.(y), 4u(x) < O. (y) and 4y(x) = Cu (y) the second Blum axiom sug
gests a computation method consisting of "running the two machines in par

42

allel to find out which one terminates first"; see chapter 1.1 for a formal
definition.

If 3> = ((tp.) . , (3>.) .) and <5' = ((tp.) . , (<X>!) .) are two measures on the 1 1 1 1 1 1 1 1
same effective enumeration then the following combinations yield complexity
measures also:

(i) Ax[A<$^(x) + A<E^(x)]
(ii) Ax[g (A3>̂ (x))] provided g is a total function such that there exists a

total h satisfying g(x) = y =* x < h(y).
(iii) \x[if <i,x> e A then AG>Ax) else tsti>\(x) fi]

supposed A c IN is recursive.
(iv) \x[i£_ <i,x> s B then 0 else A&Ax) fi]

supposed B c IN is recursive and (p̂ (x) < “ for <i,x> e B.

These constructions show how measures may be combined, compressed, ex
panded, and conditionally selected, or even set to zero at a recursive set
of converging computations. Application of these and similar constructions
may lead to "pathological" examples for complexity measures. For example it
is not difficult to design a measure where zero and Ax[x+1] both are com
puted free of charge, whereas their composition Ax[1] cannot be computed
within polynomially bounded time.

One of the important unsolved problems in abstract complexity theory
consists of the characterization of "naturalness" of measures. Several pro
posed extensions of the Blum axioms have been found to fail in this respect.
The reader is referred to [Hm 73].

43

CHAPTER 1.4

SOME CONCEPTS FROM RECURSION THEORY

In this chapter we discuss the concepts of unsolvability, and many-one
(one-one) reducibility. Furthermore we mention the arithmetical hierarchy,
indicating some standard reference sets in this hierarchy. Finally the re
cursive enumerable sets are defined.

As was suggested several times before, not all sets and functions are
recursive. The best known example of an unsolvable problem is the so-called
halting problem. Let the set halts be defined by

halts = {i | ip̂ (i) < “>}.

Then halts is not recursive:

PROPOSITION 1.4.1. For no index n one has

(p = Xx[if u) (■x) < " then 0 else 1 fi].

PROOF. Suppose n exists, then the following function is total recursive:

ƒ - \x[if ip (x) - 0 then ip (x)+l else 0 fi]
n --- x ---

However, if j is an index for f then f(j) = f(j) + 1. Contradiction. □

The fact that not all problems are recursive has lead to a number of
reducibility concepts. One says that problem 1 is reduced to problem 2 if
a solution of problem 2 yields a solution to problem 1. We describe two
reducibility concepts.

DEFINITION 1.4.2. Let A and B be two (not necessarily recursive) subsets of
IN. We say that the total recursive function s m-reduces A to B if for all x
s(x) e B iff x e A; notation A <m B (by s). If s is, moreover, a 1-1
function we say that s 1-reduces A to B; notation A B. If s is a bisec
tion (recursive permutation) then A and B are called recursively isomorphic;
notation A = B.

44

It is not difficult to show that <m and <j are pre-orderings on the power-
set P(M). Defining A = B (A = B) by A 1 B and B < A (A < B and1 m I —— - 1 in ---
B < A) =, =, and = become equivalence relations. The equivalence classes m 1 m
modulo =| (=) are called 1-degrees (m-degrees).

The relation between = and follows from the following theorem:

THEOREM 1 .4.3. [MYHILL isomorphism principle]. A = B iff A = ̂ B.

For a proof the reader may consult ROGERS [Ro 67], or the appendix.
The proof involves a method to construct from two injective functions f and
g such that A £j B (by f) and B <j A (by g) a recursive permutation s such
that A = B (by s). The algorithm for s is a nice example of an essentially
non-terminating algorithm, which can hardly be represented adequately by
the usual mathematical expressions. (The reader should compare the repre
sentation in the appendix with the one given by ROGERS.)

EXAMPLE 1.4.4. Let total be defined by

total = {i l ftjL = IN] .

then halts < total by a when a is defined by m

V i) 00 " ‘Pi(i)-

Note that A < B and B recursive implies that A is recursive, m

PROPOSITION 1.4.5. The sequence (qu)^ is not a measured set.

PROOF. Let C = {<i,x,y> | ip̂ (x) = y}. Then halts < C by s if s is defined
from a as follows:

ip ,. ,(x) «= if ip.(i) < <» then 0 else 00 fi a(i) -jL v ---- ----

(note that the else part is never executed) and

s = Xi[<a(i),0,0>].

Consequently if C is recursive then so is halts. Contradiction. □

45

The arithmetical hierarchy classifies sets by the structure of their
descriptions by defining formulas. By a defining formula we understand an
expression of the form

f = Q 1y 1,Q2y2,...,Qkyk[E]

where E is some total recursive predicate with free variables
••.,yk and Q ,...,Q are (unbounded) existential or universal quantifiers.
Consequently all free variables in E except x are bounded in F. The set de
fined by F is the set {x | F} = {x | Qjy, >Q2y2 > • • • . Q ^ f E] }.

EXAMPLES: halts = {x | 3y[<X> (x) = y]},

total = {x | Vy32[4>x (y) = z]}.

Expressions like F are called expressions in prenex normal form. The quan

tifier block Q1y]>Q2y2," ' ,Qkyk cal-led the Prefix °f F - it is not diffi
cult to prove that without loss of generality we may assume that the quan
tifiers are alternating: if Q. = 3 then Q. , = V and vice versa. Otherwise

l 1+1
two equal quantifiers may be contracted into a single one: e.g.
...,3yj,3y2>...[P(...,yj,y2>...)] is replaced by
.. . ,3y, .. . [P (. . . .ILjy.T̂ y, . . .)] etc.

We say that F is of type IT if the prefix of x consists of k alter
nating quantifier blocks starting with V; similarly F is of type X^ if the
prefix of k consists of k alternating quantifier blocks starting with 3.

A set defined by a (TT̂) expression is called a X^ (FI)-set. Sets
which are both X^ and FÎ are called A^-sets.

It is clear that a X, -set or a IT, -set is a A -set for n > k; this is
k k n

proved by the use of "dummy" variables.
If E denotes one of the types 17̂ , X^ or A^ then _E denotes the class of

all E-sets. We have the following inclusions.

46

FACT 1.4.6. [Hierarchy theorem]. All inclusions in the above diagram are
proper inclusions.

For a formal treatment of the arithmetical hierarchy and a proof of
the hierarchy theorem the reader is referred to ROGERS [Ro 67].

It is not difficult to show that the complement of a Z,-set is a
TT, -set and vice versa. Moreover if B is a E-set and A < B then A is E also, k m

DEFINITION 1.4.7. A E-set is called S-complete if every E-set B can be in-
reduced to A.

Clearly the complement of a complete set is again complete.

PROPOSITION 1.4.8. A A^-set is recursive.

PROOF. Let A = {x | Vy[P(x,y)]} = {x | 3z[Q(x,z)]}, P and Q total recur
sive. Now H \ A = {x] 3y[not P(x,y)]}. Since I = A u M \ A we have

Vx3y[not P(x,y) or Q(x,y)].

Hence the following function g is total

g = Ax[yz[not P(x,z) or Q(x,z)]].

Now we can define A by

A = {x | Q(x,g(x))}.

which shows A to be recursive. □

The sets in Ij are called recursively enumerable sets. This name is
explained by the following proposition:

PROPOSITION 1.4.9. The following assertions are equivalent:

(i) A is recursively enumerable
(ii) A = Of for some f e P
(iii) A = Rf for some f e R or A = 0
(iv) A = Rf for some f c P.

PROOF: (i) =* (ii). Let A = {x | 3y[E(x,y)]}, E total recursive, then for
f = Ax[yy[E(x,y)]], A = Vf.

47

(ii) => (iii). Trivial for A = 0. Otherwise let A = Vf then Vf is not empty.
Let i be an index for f; the following expression yields a "first" element
of Vf:

Xq = TTj yz (nj z) = TT̂ Z] .

Now define g by

g - \x[if_ Qd^jx) - tt̂ x then else x^ fi].

Then g is total and Rg = Vf.

(iii) =» (iv). Trivial since 0 = Re.

(iv) => (i). Let A = Rf and let j be an index for f. Then
A = {x | 3y[®. (Hjy) = n2y a n d (tt̂ y) = x]}. □

We should emphasize that totality of the recursive predicate
"3>j(iT|y) = n2y and ^.(i^y) = x" is based on our specific interpretation of
the operator and; in false and q the value of q is not elaborated.

We introduce some further standard reference sets in the arithmetical
hierarchy:

non-empty = U | Dqt * 0}

empty = (i | ftp. = 0}

finite = {i | #Dift < °°}

hound = {i 1 Dip. =]N and #Rip. < «>}1 i — — i
ao finite = (i | #(1N \ Dip.) < °°}.

We have non-empty halts, both sets being I^-complete. Consequently empty
is Ilj-complete. finite is a Z2-set, since
x c finite iff 3yVz[ntz < y or ^ (tTjZ) * n2z]. This latter condition may
also be written like

0°
V z [(X > (T T . z) * T T 0 z] .

X I l

48

This suggests a relation between X^-sets and sets defined by V ex
pressions. In fact the two classes of sets are equal as follows from the
following lemma:

LEMMA 1 .4 ■ 10. Let A be a l 2 _set- Then there exists a total recursive pre
dicate B such that

i € A i££_ Vx[B(i,x)] .

PROOF. Let A = (i | 3yVx[P(i,x,y)]}. We define B by:

B(i,x) = 3y<x[Vz<x[P(i,z,y)] and

not 3w<y[Vz<x[P(i, z,w)] and not P(i,x,w)]].

To understand this horrible definition the reader should consider the
diagram below:

y t

* * * *

*

* * * *

* *******
* ** * *__ * * *__________

X o

Diagram 1.4.11

The asterisks denote the pairs <x,y> for which P(i,x,y) = true (i is fixed
for this diagram).

The value of BCi.Xp) depends on the configuration of asterisks within
the square 0 < x,y < x^.

The clause "Vz<Xq [P(i,z,y)]" means that the y-th row in the diagram is
filled with asterisks upto x^.

49

The clause "not 3w<y[Vz<xQ[P(i,z,w)] and not P(i,x0,w)]" means that
there is no row in the diagram below the y-th row which is filled with as
terisks upto Xq-1.

Now i e A whenever there exists a y such that the y-th row consists
of asterisks completely. A row containing asterisks upto x^ may be a candi
date for such a row. The first clause detects the presence of such a candi
date. However, in order to be sure that our candidate is "good" upto in
finity we should not freely replace it by another if we have detected a
mistake by our candidate. The second clause ensures that B(i,x) is false
for x = Xq if some former candidate is found to perform its first mistake
at xQ .

Therefore if a good row exists after finitely many rejections of wrong
candidates the lowest good row becomes the current candidate and remains
so forever. Consequently i e A implies Vx[B(i,x)]. Conversely if no good
row exists each possible candidate will be rejected or there will be at x
no candidate at all. Hence i i A implies 3x[B(i,x) = false]. This completes
the proof.

It is not difficult to prove using this lemma that finite is Z^-com-
plete.

total can be proved to be and even f^-complete by reducing
IN \ finite to it. bound is a A^-set which is not complete; this is not
very amazing since there exist no A^-complete sets (cf. [Ro 67]).

Finally the set oofinite is Z^. One can prove it to be Z^-complete
using the lemma below:

LEMMA 1.4.12. Let A be a Z^-set. Then there exists a total predicate B such
that

i e A iff Vx3z[B(i,x,z)].

The proof of this lemma, which is more or less analogous to the proof
of the preceding lemma, will appear in [EB 74].

All the standard reference sets are so-called index sets. If F is some
collection of functions then flF = {i | e F] is called the index set
corresponding to F. Except for the trivial cases F = 0 or P e F the index
sets HF are never recursive. This fact is known as RICE's theorem:

50

THEOREM 1.4.13. [RICE]. If F * 0,P then HF is not recursive.

PROOF. Replacing if necessary I2F by W \ f2F = HF where F is the complement
of F in F we may assume that E J F. Let f be some member of F. Then V f * 0.
Define the transformation a by

<= if_ tpAi) < °° then f(x) else 00 fi.

Then halts < F2F by a. □----— m

DEFINITION 1.4.14. If A is a H-set and if a is a transformation of programs
then the class of functions | i e A} is called H-presentable (by a).
In particular if A = IN the class of functions {Aip I i e IN] is a re-CJ (1)
ours'ively presentable class. Note that a -presentable class is also re
cursively presentable.

51

CHAPTER 1.5

GENERAL PROPERTIES OF COMPLEXITY MEASURES

{parturiunt monies, naseetur ridieulus mus. Horatius}

In order that a complexity measure is a reasonable concept it should
be useful to have some facts from every day experience which could be for
mulated and formally proved within the language of this concept. This chap
ter is dedicated to this kind of translations of intuitive ideas like in
efficient computations and algorithms constructed by combination of other
algorithms.

Daily life experience learns that it is difficult to design an effi
cient algorithm but that it is very easy to spoil a good program by in
cluding inessential, time wasting instructions. This inefficiency is useful
insofar that it proves the existence of infinitely many programs for each
recursive function, a fact known as the ROGERS' padding lemma. The proof
of this lemma presented below was first given in McCREIGHT's unpublished
thesis [MC 69].

LEMMA] . 5 ■ 1 ■ [inefficiency lemma - BLUM]. There exists a transformation of
programs o satisfying

(i) ftp ,. .. = ftp. n ftp.o(i,j) i J
(ii) Vx[x e ftp / * • \ tJU.j) zmp tpo(i,j) (x) = ip. (x) and $a(i,j) (x) > cp. (x)].

In particular for total qu the transformation qh <p ,. ., replaces the
program qr by a program for the same function having a run-time which ex
ceeds qu (x) for all arguments x.

PROOF■ Let t be defined by

<P_,, _• 7. t(x) «= if <&,_(x) < ty,(x) then tp,/x)+l else ty.(x) fi.Tl'Z'jJ.j/w K J ^ 'l'

Let x be the fixed-point transformation such that cp = cp ,.
ct(i ,j) t (i ,j ,a(i,j))

Existence of a is proved by the recursion theorem. Then tp ,. satisfies
o(i,j)

the equation

*o(itj)(x) = & %(i,j)(x) -*Ô(X) Sise vJx) fi.

52

It is clear from this equation that ip (x) is not computed by selectingn \ i > J /
the then part at any argument x; hence ^(x) = whenever defined.
Moreover q) .. .,(x) diverges if either the condition does not converge

^ V 1 » J)
(i.e. x i ftp.) or if the subsequent computation of qL(x) fails to terminate
(x i Pip.). Therefore Pip ,. ., = Pip. n Pq). . □ i a(i,j) i j

By replacing q>. by (or better q>̂ ̂ where p is the transformation
satisfying = <p ^^) we conclude that each program qu can be replaced by
a more expensive one, except When q>̂ happens to be a program for the
empty function. Iterating this construction one finds a sequence of dis
tinct indices for the function Aq>„

More formally let P(j,0) = j and P(j,k+I) = a(P(j ,k) ,p (P(j ,k))) . Then
for each k «p. = ipp(j>k) and >*p(j>k+I) > A®P(j >k) •

If ip. * E it is clear that P(j ,k) * P(j,n) if k * n. For indices j for
the empty functions either the sequence (P(j,k))k is again infinite or it
becomes periodic (P(j,k) = P(j,k+m) for k sufficiently large). Now the
second development cannot occur for all indices j for c since otherwise the
test "does (P(j,k))^ becomes periodic?" yields a method to enumerate the
TTj-complete set empty.

Moreover it is not difficult to construct an index j for £ such that
(P(j,k))^ becomes not periodic:

Define the transformation ip by:

ip ^.j(x) <= i£ * Tîa; and P(j, = P(j,i\2x) then 1 else loop fi.

If jQ is the fixed point under <|i: ipj = then the then-part becomes
contradictory; consequently ipJO £ and moreover P(jp,k) * PCj^.n) when
ever k * n.

A slight modification of the function P consisting of the replacement
of values P(j,k) which have become periodic by values from the sequence
(PCj^jk))^ which still are "unused", yields a real "padding function" as
claimed by the ROGERS' Padding lemma.

LEMMA 1.5.2. [ROGERS' Padding lemma]. There exists a transformation of pro
grams tt such that for each index j the sequence (ir(j,k))k is a sequence
of distinct indices for Atp̂ .

By further modifications the transformation tt can be made increasing

in both arguments and moreover a 1-1 function. Use of the padding lemma
leads to the following corollaries.

53

COROLLARY 1.5.3. Let a be a transformation of programs. Then there exists
an increasing transformation t functionally equivalent to a; formally
<Pff(i) = (Px(i) and r(i+l) > r(i).

COROLLARY 1.5.4. [ROGERS - Isomorphism between effective enumerations]. Let
(^i)i anc* ^i^i effective enumerations then there exists a recursive
permutation k such that Atp. = Aili k (i)

In the proof of the second corollary we use the extension of (i(k)^ to
a complexity measure from chapter 1.3 and the MYHILL Isomorphism principle.

Finally the standard reference sets of the preceding chapters, which
by definitions are index sets all can be shown to be complete in their cor
responding 1-degree; if A B by f and B is an index set then there exists
a 1-1 function f' such that A B by f '.

A problem frequently considered in abstract complexity theory is the
existence of sufficiently many increasing run-times (cf. M. BLUM [B1 67]
and N. LYNCH [Ly 72]). A complete solution is given by the following

LEMMA 1.5.5. [Monotonicity lemma]. There exists a transformation x such
that:

(i)

(ii) A4>

ftp^^ is the largest segment [0,x) contained within ftp̂ (hence
PUL = t*PT(i)

x(i)

IN for total qL) .

x (i) ‘is increasing on ftp
(iii) CPT(i) cep..

PROOF. Let a be the transformation described in the inefficiency lemma.
Define the transformation p by

V. r.• *= if x = 0 then Aib.(O)
P » I'sC ' 7*

else max(®.(x),A®(x-1)) fi.

Consequently 0 e ftp . .. iff 0 e ftp. and for x > 0
x e ftPp ̂ £ j ̂ iff x-1 e Dqt n ftp̂ and x e .

Let tc be the fixed-point transformation such that cp ... = <p ,.k (i) p (i ,k (i))
Hence:

54

'i>K(i)(X) = i£.x = 0 then A® JO) else_max(̂(x-1)) fi.

Consequently 0 e Pip ... iff 0 e Pip. and for x > 0 K \1 i 1
x e Pip ,.. ■£ƒƒ x-1 e Pip ... and x-1 ,x e Pip.. k (i) k (i) --- ’
This shows that Pip^^ is the largest segment [0,x) contained in PqL.

Let t = Xi[o(i,k (i))] = a ° k . Since Pip ... = Pip. n Pip ... = Pipt (l) 1 Kl.ll k
(i) is satisfied, (iii) follows from the definition of a whereas (ii)
derived from:

(i)'
is

A® ,..(x) > AE ,...(x) > ip , ..(x)
t (i) o (i , k (i)) v k (i) v

= i f x = 0 then A®. (0) else maxi A®, (x) ,A® ...(x-1)) fi,— 1 ------ -----------------1 T (1) 1 —

Consequently A ® ^ ^ (x) > A®^^(x-I) for x > 0. □

COROLLARY 1.5.6. Each total function is computed by a program with in
creasing run-time.

Intuitively functions which are expensive in one measure should be ex
pensive for other measures also. This is not completely true since measures
can be constructed were a decidable set of total functions can be computed
"for nothing" as was seen in chapter 1.3. However, "at large" the run-times
of a function in different measures are related.

PROPOSITION 1.5.7. [Recursive relatedness between measures]. Let
((̂ Pi) i » (®i) i) anc* (> (®?) be two complexity measures on a single enu
meration. Then there exists a total recursive function R satisfying:

ViVx[A®^(x) s Rd ®?(x) and A®t(x) < Rd ®^(x)].

PROOF. Let P be defined by

P - \i3x,z[max(if ®..(x) - z then M>*.(x) else 0 fi}7s 7s

if Q>Ax) - z then t&Ax) else 0 fi)]

and define R by

R - \x,z[max{P(i,x,z) | i < m}].

55

Then for x > i R satisfies

Rp4l (x) > A<Xt(x) and Rp<It(x) > A4>. (x) . □

A similar result holds for complexity measures on different enumera
tions. This shows that (abstractly) compilers introduce a recursively
bounded "overhead".

A similar recursive "overhead-function" is involved in the combining
of several algorithms to a single one. This fact is known as the "combining
lemma".

LEMMA 1.5.8. [Combining 1 emma]. Let a be a transformation of programs
satisfying ftp 1 ,. .. £ ftp. n ftp.. Then there exists a total function R sat- U \ 1 » J 7 1 J
isfying:

CO
Vi, jVx[A<S ..(x) < R(x,A<X>. (x) ,A<J>. (x))].

o(t.J) t 1

PROOF. The domain condition ftp ,. .. c ftp. n ftp. shows that the function P ----- a(i,j) ~ i j
defined below is total:

P - H,j,x3y3z[if ®.(xj -y and <b.(x) -z then A<&(x) else 0 fCJ.
'I' c G (7* j C)

The function R is defined by

R - \x3y,z[max{P(i3j,x3y,z) | < m}].

Hence for x > i,j one has R(x,A<X>. (x) ,A<X>. (x)) > A<5 (x) . □
1 J au .j)

The combining lemma as formulated above was given by HARTMANIS &
HOPCROFT [HH 71]. For a "metamathematical" generalization of this lemma the
reader is referred to G. AUSIELLO [Au 70].

In any measure the run-time of a program recursively bounds the size
of this program, whereas no bounding the other way around exists.

PROPOSITION 1.5.9. There exists a total function R such that for each i
ip. = Ro<X>. but for no total function R one has A3>. Row. .l — i l — i

PROOF■ If P = Ai,x,z[if Cb (x) = z then tp̂ (x) else 0 fi} and
R = \x3 z [max{P(i,x, z) | i < x}], then clearly cp̂ RoGt .

56

To prove the second assertion we use a diagonalization argument. Let R
be total and define f by

ƒ - \x[if <5 (x) < R(x,0) then 1 - ip (x) else 0 fi],
— KjX ---- ---- *—

Note that the then-part converges whenever it is selected; hence f is
a total function. If k is an index and Hjy = k the definition of f leads
to:

f(y) = if <C>k (y) ^ R(y,0) then 1 A f(y) else 0 fi.

So the then-part becomes contradictory. Consequently f(y) = 0 and
4>k (y) > R(y,f(y)). This shows that

3x[A® (x) > Rotp, (x)]. k k

Hence not only for a given index i the assertion RQcp. is false
but there exist functions f such that this assertion fails for each index
k for f. □

For specific programs it may be possible that A®^ Rpip̂ ; such pro
grams are called R-honest.

DEFINITION 1.5.10. Let R be a (total) function. A program qL is called
R-honest whenever A®. “ Rpcp. . A function f is R-honest whenever it is com- i — l
puted by some R-honest program.

Our last proposition shows that for a given total R not all recursive
functions are R-honest.

A specific method to combine programs is to let two programs run in
parallel, terminating the computation, the moment the fastest computation
terminates. Intuitively such a computation should have a run-time which
equals the minimum of the run-times of the two simulated computations.

The -parallel-computation axiom, which is one of the axioms which have
been proposed to separate between natural and pathological measures, for
malizes this intuition. This axiom reads:

AXIOM 1.5.11. [Parallel computation axiom - [LR 72]]. There exists a trans
formation k satisfying:

57

(i) <Pk(£ j^(x) = iJL ®£(x) s ®-(x) then e^8e 'Pj(x) ££
(ii) A®k(£ j)(x) = m£n(A©.(x),A®j(x)).

This axiom is satisfied for the model of many-tape, many-heads Turing
machines, with a read-only head on their input tape. Clearly the axiom is
not satisfied in all measures. However each complexity measure can be ex
tended to a measure for which the axiom holds by introducing sufficiently
many new programs. Cf. [EB 74].

58

CHAPTER 1.6

THE SPEED-UP PHENOMENON

The speed-up phenomenon is one of the central results in abstract
complexity theory. Although the remaining parts of this treatise - which
deal with resource-bound classes and their generalizations - have almost
no relations to the speed-up phenomenon a short explanation is felt to be
appropriate at this time.

Consider the Turing machine model of computation. By combining two
squares into one and by processing this way two symbols in a single step
such a machine can be replaced by a new one operating about twice as fast.
This shows that all functions may be speeded-up linearly. It might be that
this is the best one can hope for; up to a linear factor each function has
an optimal program computing this function. In fact the above assertion is
false. Regardless the amount of relativity in the definition of "optimal
ity", there exist always functions having no "optimal" program at all.

This fact is formalized by the so-called speed-up theorem, first given
by M. BLUM [B1 67].

THEOREM 1.6.1. [Speed-up theorem]. Let R be a total function. Then there
exists a (0-1 valued) total function f with the following property:

For every index i for f there exists an index j for f such that
RP®. = A®. .

J - i

It has been shown by MEYER and FISHER [MF 72] that the theorem remains
valid if the function R is replaced by a total effective operator T; in
this case still functions f exist such that for each index i for f an index
j for f exists such that TA<X>. « ®. .

J - 1
This theorem eliminates at once the hope of uniformly optimizing all

programs at once. Thinking R to be a function like 2X+y, the theorem shows
that each program for f may be replaced by another which is exponentially
faster (which again on its turn is surpassed by a still more efficient one,
etc.).

The theory has learned moreover that although the faster programs are
proved to exist it is not in general possible to find them. In fact it can
be shown that for non-trivial speed-ups the faster programs have indices

59

which do not depend recursively on the indices for the slower ones (cf.
[B1 71], [HY 71] or [MF 72]).

A central concept in the theory of the speed-up phenomenon is the con
cept of a complexity sequence. This is a sequence of functions cofinal in
the ^-order with the collection of run-times for a given function f.

DEFINITION 1,6.2. A sequence of functions (p^)^ is called a complexity se
quence for the function f, provided that

(i) Vi[PqL = Pf]
(ii) Vj [f = cp. =» 3i[p£ * AipJ]
(iii) Vi3j[f = ip. and A®^ “ p^].

From this definition one sees that a function f with a complexity se
quence (p^)^ satisfying: Vi3j[Rppj p^] is an R-speed-up able function. In
fact the speed-up theorem is proved by constructing a function with such a
complexity sequence.

A more complete survey on the speed-up theory will be included in
[EB 74].

Part 2

RESOURCE-BOUND CLASSES

{27 So the servants of the householder came and
said unto him, Sir, didst not thou sow good
seed in thy field? from whence then hath it
tares?
28 He said unto them, An enemy hath done this.
The servants said unto him, Wilt thou then
that we go and gather them up?
29 But he said, Hay; lest while ye gather up
the tares, ye root up also the wheat with them.
30 Let both grow together until the harvest:
and in the time of harvest I wilt say to the
reapers, Gather ye together first the tares,
and bind them in bundles to burn them: but
gather the wheat into my bam.

St. Matthew, XIII 27-30}

63

CHAPTER 2. 1

DEFINITIONS

2.1.1. INTRODUCTION

Resource-bound classes are a particular type of subrecursive classes
of functions. The arithmetical hierarchy discussed in part 1, classifies
non-recursive functions and sets by the complexity of their definitions,
and the class of recursive functions is a non-structured class at the base
of this hierarchy. Subrecursive classes are subsets of the class of recur
sive functions itself. Mostly they are defined in terms of some hierarchy.
Examples of such hierarchies are among others:

the hierarchy defined by R. PETER [Pe 50] based on multiple recursion,
the GRZEGORCZYCK hierarchy defined in terms of bounded primitive re

cursive functions, which is the base class of the PETER hierarchy [Gz 53],
the hierarchy of predicatably computable functions defined by

R.W. RITCHIE [Rr 63].
The first two hierarchies are defined in terms of program structure

whereas the last hierarchy is defined in terms of the Turing tape measure.
For an extensive survey on the classical examples of subrecursive

hierarchies the reader is referred to the first part of the thesis of
R. MOLL [Mo 73].

Given the concept of a complexity measure one can define several types
of resource-bound classes in terms of this measure. The most investigated
ones are the complexity classes, which consist of all functions which may
be computed by some program whose run-time is bounded almost everywhere by
some (partial) recursive function. If the maximal run-time may depend on
both the argument and the computed value one gets the so-called honesty
classes (cf. chapter 1.5).

The approach to subrecursive classes by the way of resource-bound
classes has several advantages over the classical approach.

Parts of the theory (like for example diagonalization techniques) are
measure independent; using resource-bound classes they can be treated this
way.

64

The classical examples can be defined in terms of resource-bound
classes for some suitable complexity measure; we have therefore a good gen
eralization.

The hierarchy of resource-bound classes which is indexed by the system of
partial recursive functions is much richer than hierarchies indexed by nat
ural numbers or ordinal notations. Moreover hierarchies indexed by ordinal
notations can be defined, and the properties of these hierarchies (like
degeneration and non-uniqueness) can be analyzed [Ba 70, BY 73].

During the sequel we take for <J> = ((tp̂)^, (3^)^) a fixed complexity
measure.

2.1.2. TYPES OF RESOURCE-BOUND CLASSES

DEFINITION 2.1. Let t be a partial (recursive) function. The complexity
class of programs F^ is the set of programs qk satisfying:

Vx[x e V t =* 3k (x) S t(x)]

The complexity class of functions C is the set of all functions computed
by some program in Ft. The function t is called a name for C respectively

V
It should be mentioned that this definition differs from definitions

given by other authors. In the first place F is a class of programs and
not of indices, a distinction motivated by the theory developed in Part 3.
Furthermore there are no domain conditions enforced like Pip. = V t (cf.
[LR 72]).

By the "almost everywhere" condition in the definition, programs are
included in F even if they behave extravagantly on the first lo'^'^ argu
ments only becoming nice at still larger arguments. The "almost everywhere"
condition is exploited heavily in the proofs. Moreover, for "natural" mea
sures "almost everywhere" should become "everywhere" by modifying the pro
gram in such a way that an initial segment of the function is computed by
table look-up, thus eliminating the bad behaviour at small arguments.

Clearly we have t “ u => C c C and F cF . Moreover, functions t and u — t _ u t ~ u
satisfying Vx[t(x) = u(x)] clearly are names for the same classes. As we
shall see the converse of this assertion is false. The same class may be

65

named by highly different functions.
The class named by a function with finite domain contains all recur

sive functions or programs. The smallest class consists of all functions
which can be computed without charge; zero (or any other function which is
almost everywhere equal to zero) is a name for this class.

Note that a class containing a function with finite domain must have a
name with finite domain as well, consequently a class, which contains a
single function with finite domain contains every other function also.

From the definition of it is easy to see that the set (i | cp. e F^}
is a l2~set- fact it is a l2~complete set provided t is sufficiently
large (see chapter 2.3). Consequently C is Z 2 _Presentable. In chapter 2.3
it will be shown that C is in fact recursively presentable, provided t is
large enough.•

DEFINITION 2.1.2. Let R be a function with two arguments. The honesty class
of programs G consists of all programs ip. satisfying:K 1

CO
Vx[<x,qL(x)> e PR =» ®^(x) < R(x,ip^(x))]

(where by convention <x,qL(x)> 4 PR for all x 4 Ptp.).
The honesty class of functions consists of all functions computed

by programs in G .R

The "honesty" of a function suggests that its run-time is bounded re
cursively by the size of the function. For larger values a larger run-time
is permitted and for divergent computations there is no restriction on the
run-time at all. Consequently each honesty class contains all functions
c.q. programs with finite domain.

Several other types of resource-bound classes are defined by consider
ing honesty classes with a special type of names.

DEFINITION 2.1.3. Let t be a recursive function. The weak complexity class
W

of programs F^ consists of all programs ip. satisfying:

Vx[qL(x) = » or (x £ Pt =* ®^(x) < t(x))].

The weak complexity class of functions CW consists of all functions com-
w c y

puted by programs in F . If we write T = Xx,y[t(x)] then clearly C = H
W t T

and Ft = G^.

66

The weak complexity classes behave like honesty classes. Note however
Wthat Cj. and C contain the same total functions. Consequently the weak com

plexity classes are a generalization of the ordinary complexity classes
consisting of total functions, which are frequently considered in the lit
erature.

DEFINITION 2.1.4. Let r be a recursive function and let
R = Xx,y[r(mam(x,y))]. The modified honesty classes HA and GA are defined by

HA = 1L and GA = G„. r H r R

These modified honesty classes are introduced to solve a (for general
honesty classes still unsolved) problem in chapter 3.4.

As before we have 1L for T « U. H . resp. zero 2 H is the smallestT - ^
resp. largest honesty class. Again {i

An important result concerning honesty classes is the so-called
"equivalence" between honest set and measured sets.

qt e H^} is a Z^-class of indices.

THEOREM 2.1.5. Let R be a total function. Then there exists a measured set
(Y-). such that (Y- | i e IN} = 1L. Conversity, if (Y-). is a measured set,1 1 1 K 1 1
then there exists a total function R such that (y ̂ | i e IN} ç h^.

This theorem, due to E.M. McCREIGHT, is very frequently mentioned in
the literature, but mostly the proof is omitted. Moreover, from the formu
lation in [MCM 69] the present author was lured into believing that the set
G itself is a measured set. In general this is not true. The example below
(which is derived from the "counterexample" in [EB 71]) shows how the hon
est set is "scrambled" non-recursively; given an index of an honest program
it is impossible to generate recursively an index for the corresponding
program in the measured set.

A proof of the theorem is found in the unpublished thesis of
E.M. McCREIGHT [MC 69] and also in the thesis of R. MOLL [Mo 73]. We give
the proof in chapter 2.3 (th. 2.3.8).

EXAMPLE 2.1.6. Let a be a transformation increasing in both arguments sat
isfying q>^^ . ̂ (x) = if x > j then 0 else qh(x) fi. Since a is non-de
creasing it is decidable whether k e Ra and, if so, the indices i and j such
that k = o(i,j) are computable. Hence we define a new measure 3> by:

67

C>̂ (x) + x for k <t Ro

<tt(x) for k = a(i,j) and x < j

0 for k = a(i,j) and x > j.

Clearly <5* = { (qt) (®. } is a complexity measure.
Now G „ consists of all programs with finite domain and all programs zero 2
W ... Let (y.). be a measured set enumerating H „. Suppose that t is a(i,j) i t zero 2
a recursive function such that Ay = Atp for those k such thatt (k) k
ip, e G .. Then a contradiction arises as follows: We havek zero 2

<p.(x) = y iff ̂ (i,x)(x) = y-

The latter relation by assumption is equivalent to

Yr(a(i,x))(x) = y

which relation is decidable by the definition of a measured set. Hence
(ft(x) = y is decidable, quod non. □

REMARK 2.1.7: In the theorem it is essential that the function R is total.
For example let R be the partial function Xx_,y[i£_ y - 0 then loop else 0 fi].
Now H contains among others the function R

k = Xx[i£ (p̂ fx7 < 00 then 0 else °° fi]

which is a member of no measured set (k(x) =0 being equivalent to the
halting problem).

The "almost everywhere" condition in the definition of a complexity
class has been replaced by an even more general condition by L.J. BASS
[Ba 70]. His conclusion was that the complexity classes "modulo sets of ex
ceptional points" defined this way behave not much better than ordinary
complexity classes.

DEFINITION 2.1.8. A class E consisting of subsets of IN is called a class
of sets of exceptional points provided

(i) each member of E is recursive

®*(x) = <

68

(ii) E contains all finite sets
(iii) E is closed under finite union: E,F e E = > E u F e E
(iv) I i E.

The class E is called recursively presentable if there exists a transforma
tion n satisfying

(i) Vi[n(i) e total and Rtp ... £ {0,1}]ri C i)
(ii) E e E iff 3i [E = {x | tp ,.. (x) = 0}].ri(i)

Note that by the padding lemma we may assume that n is an increasing
function.

DEFINITION 2.1.9. Let E be a class of sets of exceptional points. Then the
complexity classes (mod E) F^ and are defined by:

(p. e F^ iff 3„ nVx[x £ E or (x £ Vt =» (x) £ t(x)]l t ■ J'*L- Eet — l

f e iff 3.[f = Aip. and tp. e F^] . t —>L*L- l i --- i t

The behaviour of the classes and F^ depends essentially on whether E is
recursively presentable or not. In the first case the classes are in fact
a special type of complexity classes with partial names, as we shall prove
in part 3. Moreover one may use in this case the following lemma:

LEMMA 2.1.10. Let E be a recursively presentable class of sets of excep
tional points. Then there exists an infinite recursive set A such that
A n E is finite for each E £ E.

PROOF. Let A be the range of a recursive function f such that f(x) = 0 and
f(x+l) is the least number greater than f(x) which is not contained in

E^. By the definition of a class of sets of exceptional points f is
total. □

If, however, E is not assumed to be recursively presentable several
important theorems on complexity classes become invalid. Examples are men
tioned in the chapters 2-4.

The other types of resource-bound classes like honestly classes and
weak complexity classes may be relativized to a class E analogously.

69

CHAPTER 2.2

DIAGONALIZATION TECHNIQUES AND COMPRESSION THEOREMS

The inefficiency lemma of chapter 1.5 shows that a given function f is
computed by arbitrarily expensive programs. This construction does not
yield however an "expensive" function, as is given by the diagonalization
construction in the proof that the run-time of a function cannot be bounded
recursively by its size.

There are several ways in which a function can be expensive:

Let f be a (recursive) function. The simplest way for F to be expen
sive is that f i Ct; i.e. one has:

A more essential way of being expensive is that each program for f has
almost everywhere a run-time larger than t:

This relation is denoted by t naomp f (f cannot be computed within time t).
Finally it is possible that the individual values of f are expensive:

i.e. if (Pj computes the same value at x as f does its run-time <Xu (x) is
large (except at finitely many arguments)

This last relation is denoted by t ncompv f (the values of f cannot be
computed within time t).

Expensive functions are constructed by diagonalization procedures. As
sume for the moment that t is a total function.

Define the functions f and g by:

Atp. = f =» Vx [<J>. (x) > t (x)] .
J J

VjVx[qA(x) = f(x) =* <Jh (x) > t(x)].

f = V * (x) i t(x) then 1 - ip (x) else 0 fi], ---- n^x — ■—

q = \x[\xz[Vi. i x[<S>.(x) > t(x) or ip.(x) * s]]].^ — i

70

Then f I C and t ncompv g (hence also t ncomp g). A more general assertion
is proved below.

Note that f is a zero-one-valued function whereas g(x) < x+1. It is
clear that for sufficiently large t no zero-one-valued function h satisfies
t ncompv h since the values 0 and 1 are "cheaply" computed by programs for
the constant functions Ax[0] and Ax[l].

M. BLUM describes in his proof of the so-called compression theorem
[B1 67] a diagonalization procedure which yields for total t a 0-1 valued
total function h satisfying t ncomp h.

The diagonalization constructions involved in the definition of the
above f and g are more or less uniform in a program for t. For partial t
however the above definitions may run astray and one must use some more so
phisticated techniques. One uses the fact that the domain of a function is
recursively enumerable, and the characterization of the recursively enumer
able sets in chapter 1-4.

Uniforming the proofs given at that place one concludes the existence
of a pair of transformations a and g such that for i such that Pep. is in-

l
finite

(i) ,... is a 1-1 function such that Rip ... = Pip.,
“ (r; a(i) l

(ii) tp.,.is a monotonically increasing function such that Rip <= Vw .
BU) B(i) - i

Since Rip^^ is recursive we can define a total result valued function

^y(i) suc'rl t'iat ^y(i)^X ̂ = fa ^se if x ̂ RiPg(i) and (p (x) = k whenever
tP(w ■ \ (k) = x. For ip ... we can find a partial inverse tp ... such that
p UJ a(i) r n(i)

^n(i) = % i) and cpn(i)(x) = y V i) (y) = x -
Next consider the following transformations:

ip*,.. (x) <= case ip ,. ,(x) in (intn): i f ® (x)np.(x) o ---- y(v) — — — — iT̂ n z

then 1 - ip (x) else 0 fi ---- Tt̂ n ---- *—
out 0 esac; t)

^&'(i)(x) ** ̂ nt n ~ \ (j) (x); > 'f’i(x) o p *z]]).

This case conformity clause should be read like: "If tp . (x) takes the
integral values n t h e n ___ otherwise 0. "

71

PROPOSITION 2.2.1.

(i) tp.,.. is total and for i such that Pep. is infinite ip.... <t C,n . 6 (1) i 6 (i)
(ii) Ptp^,^.^ = Ptp̂ and for i with PqL is infinite tp̂ ncompv ' (i) ‘ FinaH y

there exists a total function R such that Ai> . ,.. “ Rp ®. .6 (i) - i

PROOF.

(i) Let = ip̂ , and let tp̂ be infinite. Assume TTjn = k. Then for
x = ipg^(n) one has ip̂ (x) = ep^^^Cx) =
= ££ $k (x) ~ th-en 1 i ip̂ (x) else 0 fi_ and consequently

> <p._(:

6 (i) 4 (V,-
om
Pip. . If Pip. is infinite then ip

® (x) > ip. (x). Since ip ... is total this argument shows thatk. l p v. l ̂
<P<

(ii) From the definition of 6' it is clear that Pip,.... = Pip ...6 (i) n(i)
i

n = tp
v ... is total. For x e Pip ...
n(i) n(r)

Rip , ■■>
a (i)

with

n(i) (x) S k one has

ip6,(i)(x) = yztVj<n[0>j (x) > tp̂ x) or tp. (x) * z]]

consequently

®k(x) > ipi(x) or iPk (x) * (pfii(i)^x).

This proves qL ncompv ip^.,^^. Existence of R follows from Pip^,^^ =Pip^
by using the combining lemma (1.5.8). □

We say that a function f is compressed between two functions t and u
provided t ncomp f and f e C^. The compression theorem [B1 67] states that
there exists a total function R such that for all indices i with Pip̂ infi
nite, a function exists which is compresses inbetween tp̂ and Ro<Xh. Without
further restrictions on the large behaviour of f this is a corollary to the
above proposition. In fact one can construct a zero-one valued function
satisfying the conditions. The proof uses a diagonalization method given by
BLUM, which we mentioned before.

One might ask whether the upper bound RdGl may be replaced by an upper
bound of the form RoqL. The answer is negative as shown by the Gap theorem.

THEOREM 2.2.2. [Gap theorem] [Bo 72]. For every total R such that R(x,y) iy
there exist (arbitrarily large) total functions t such that C = C .L KP t

72

The situation is even worse, as indicated by the much stronger result:

THEOREM 2.2.3: [Operator-gap theorem] [Co 72]. For every total effective
operator T satisfying T(t) > t there exist total functions t such that

ct = W

These theorems are proved in chapter 3.2.
The gap-theorems show that uniform extension of all complexity classes

is not possible. However:

THEOREM 2.2.4. Let (y^)^ be a measured set. Then there exists a total func
tion R such that for each i such that Vy^ is infinite, there exists a func
tion f which is compressed inbetween y. and Ray..

This result follows from the fact that measured sets are honest; con
sequently there exists a transformation 6 and a total function S such that

= Y^ and A4>^^ =_ Soy^. The compression theorem now yields the re
sult.

The gap-phenomenon may be escaped by restricting oneself to names se
lected from a measured set. The naming theorem shows that measured sets
exist, which contain names for all complexity classes.

THEOREM 2.2.5. [Naming theorem] [MC 69].
mation of programs v such that for each

There exists a measured transfor-
i Cep. = Qpv(i).

The naming theorem is proved in part 3.
Combining the two results we see that a uniform procedure to extend

complexity classes exists. The larger class however depends on a given in
dex for a name of the class and not on the name itself.

We have considered up to now only the problem of diagonalizing over
complexity classes. For the other types of resource-bound classes analogous
diagonalization constructions can be defined; moreover the constructions
for ordinary complexity classes are good for some other types too.

For complexity classes modulo sets of exceptional points diagonaliza
tion is possible unless the domain of the name of the class is included in
some exceptional set. This follows as a corollary to the compression theo
rem.

For honesty classes the situation is more interesting. We can show
that the class H^ can be extended provided HR contains the graph of a re

73

cursive function with infinite domain. This later condition is fulfilled
whenever tt̂ PR is infinite.

LEMMA 2.2.6. There exist transformations p, x and 0, satisfying the follow-
2ing condition: If tt] is infinite then

2(i) ip ,.. is total and 1-1, Rip ... c Pip..PU) PU) - i
(ii) XxtHjip^ (x)] is increasing
(iii) n2ipp(i)(x) = <PT(i)< V P p(i)(*))

(iv) iPT(i) is total, ip6(i) £ iPT(i) and Pip0(i) = n)Ripp(.).

PROOF. There exists a transformation k such that tp .. . is a 1-1 enumeration
— —2 < (1)
of PqL. p, x and 0 are constructed from k by:

ip ... (x) = if x=0 then ip ,.. (0) else P\1y K ̂ l,/

(P<(i)(UZ[niiPK(i)(Z) > <PP(i)(X_1)])

(In this "definition" we have implicitly used the recursion theorem, hence
ip ... (x) «= . . . would have been illegal.)

P U)

V ; / Xj -

*T(i)(x) "2% a) (v2l^ P(i)(z) ~ x])• D

An example of a diagonalizing procedure is the transformation 6 below:

(x) «= (int k = yatn^ip ,..(z) s x];-- 1 p (t)
int xx = n,ip , . ,(k);--- 1 Pit)
if xx > x then ip ,., (x)->L ---- x(v)

else int y - n„ip ,.Jk);6 p (Ts) 2
‘f henee <x,y> e Pip. 4

2 ^int z - ip̂.('x,y);
if <I>_ t,(x) s z and ip_ i.(x) - y then y+1 else y fiU j K. --- TT̂ K ---- ---- *—

fi

Informally: to evaluate ip „ ̂ for x see whether some pair <x,y> is
enumerated by ipp(i) ‘ If tt ip .. becomes too large take ip ,..(x); otherwise 1 p(i) t(i)

74

let k be the rank of <x,y> in the enumeration by ip , and let z be the2 p(i)
value of cp^(x,y) (which by now is known to be finite). If the k-th program
at x terminates within z steps and computes the value y then is set
to compute a different function by setting tp^-^(x) = y+1 , otherwise the
value y is safe.

The above diagonalization procedure yields for T̂ ftp̂ infinite a total
function Atp....(x) which is not included in H

°U) <pf
An interesting variant of 6 is the following transformation:

c p <= (int k = yzCn^cPp^fe; - x];

ini y - ^2^p(i)(k)^
int z = i(l(x,y);
i£_ ĵ (x) < 3 then loop else y fi);

2For indices i such that n.Dip. is infinite we have tp.. ,.. c <p ... andl i 6 (l) - 0 (1)

“V(i) 4 H(p?-
It should be noted that for honesty classes we have only looked at the

simplest "expensiveness" relation "f 4 H^". One m tght consider also the re
lation "for each program <p. for f the relation <I>j(x) 51 R(x,f(x)) holds al
most everywhere". We shall not consider this topic any further.

Because of the technicalities involved in lemma 2.2.6 there is no nice
analogue of the compression theorem for arbitrary honesty classes. For hon
esty classes with total names such an analogue is a straightforward corol
lary to the ordinary compression theorem.

Finally it should be noted that the two gap-theorems can be general
ized for honesty classes. This subject is treated in chapter 3.2. We will
also show that the assertion of the naming theorem becomes invalid for hon
esty classes: there exists no uniform method to rename honesty classes by a
measured set of names (cf. chapter 3.4).

75

ARITHMETICAL COMPLEXITY OF RESOURCE-BOUND CLASSES

2.3.1. CLASSES OF PROGRAMS

By their definitions the classes of programs are J^-sets. This can be
seen as follows:

€ Ftp. iff 3yVx]Vx2Vx3[®j (Xj) *x 2 £T tPj (Xj) * x3 or_ x] < y or ^(x,) < x3],

£ GJ iff 3yvx1vx2vx3vx4vx5
j 2 2[®j (Xj ,x2> * x3 or ipj (Xj ,x2) * xf< or x] <y or

(x j) * x^ or x^ < x^ or ipj (x j) * x2].

For the class F^ where E = (E.). is recursively presentable one must vi ̂i
replace "x S y" by "x e E " in the above expression to provide a X„-defi-1 g 1 y 2
nition for F^ .

rWe first consider the classes Ffc. In [B1 66] M. BLUM shows that for
the Turing time measure the class F with t = Ax[x+l] is not recursively
enumerable. F.D. LEWIS shows in [Ee 70] that for sufficiently large total t
the set of indices {i | cp̂ e F } n total is X2~complete; for small t this
set may be of any recursive enumerable degree. His proof is based upon di
agonal izat ion.

Below we prove the same result using the recursion theorem.

LEMMA 2.3.1. For sufficiently large total t there exists a transformation
x satisfying:

(i) cp is total.T (.17
(ii) cpx^ e Ffc iff i e finite.

COROLLARY 2.3.2. For sufficiently large total t, F is l^-complete.

CHAPTER 2.3.

PROOF. Define the transformation a by:

76

\ u , i , k) - ̂ V V ; 58 V 0
gi-zif <5) Ax) < tp̂ fx) tfoen tp̂.(a:J +1
else 1

ft

By the recursion theorem there exists a transformation p such that

^a(p(j k) j k) = % (j k)' RePeatinS the argumentation from the inefficiency
lemma one verifies that

'PpCj k)(<x,y>) = i£ (x) * y then 0
etif tpk (<x,y>) < » then 1 else => fi

and

®p(j)k)(<x»y>> > \ (<x»y>) whenever tpp ̂ k^(<x,y>) = 1.

Since tp ,. , ..(x) = 0 iff <5. (ti x) = n x we can define a total function tp P \J > k ; j i Z i

W„(x) - maxi if Q.(n^x) - t\„x then <X> . . 7 Ax) else 0 fi I j3k<x}. n -aL- q 1 2 --- pfjjAj ---- 1

Now we have

VjVkVx[tp .p(j.k) <D ,. , (x)p(j ,k) < tp (x)]. n

Let t = cp be a total function such that cp « t, and define t by k n
t(j) = p(j,k). Then t is the transformation requested by the lemma, tp
is total (since tp is total), and for almost all x we have <X> , ..(x) <
< tp (x) < t(x) if <3>.(n x) * n x whereas <D ...(x) > tp, (x) = t(x) if n j 1 2 t (j) k
<M l l]x) = n^x.
Clearly j e finite iff c F{. □

t(j)

If E is a recursively presentable class of sets of exceptional points
the following modification shows that C is ^ “Complete for sufficiently
large t. Construct an infinite recursive set A with # A n E finite for each
E e E (see lemma 2.1.10). Now tp .. . (x) is going to be a program computingP\J >
an "expensive” value 1 only if x is the k-th element of A (in some enumera
tion of A) and if <X>j(TTjk) = TT̂ k. The remainder of the construction is un
changed.

77

For honesty classes we can do without the "sufficiently large" assump
tion on the name.

PROPOSITION 2.3.3. Let R be a total function. Then G„ is I„-complete.R z

PROOF. By the inefficiency lemma we can define a transformation t such that
ip ... = w. and 3> ,.. > Rocp.. Now ip ... e G„ iff i e finite. 0

One should beware not to confuse our classes of programs with the in
dex sets for the corresponding classes of functions (cf. chapter 1.4). For
example we consider the classes Let a be defined by:

ip ,. .(x) <= if ip.(x) < <=° then 0 else <*> fi.v ---- ---- *—

It is not difficult to construct a measured set of 0-°° valued functions
containing all 0-°° functions with cofinite domain. From this one concludes
the existence of some function t„ such that C,. contains all those func-0 tQ
tions. Now for total t > t^, a reduces the l2 -comPlete set eofinite to f2Ct.
This shows that SlĈ is I^-complete for sufficiently large total t.

By the absense of domain conditions this result differs from corres
ponding results by E.L. ROBERTSON [Rb 71].

2.3.2. CLASSES OF FUNCTIONS

It is a well-known result that a complexity class C is recursively
presentable provided this class contains all finite modifications of one of
its members. See [Le 70], [LR 72], [Bo 72], [HH 71]. This can be derived
from a general enumerability criterium which we describe below.

The non-enumerability results on resource-bound classes are more in
teresting. F.D. LEWIS and E.L. ROBERTSON constructed independently a non-
enumerable complexity class for some specific measure. (It has been pro
posed as one of the "naturalness"-criteria that such classes do not exist.)

The other result states the non-enumerability of the class n R,
where E is a recursively presentable class of sets of exceptional points
containing an infinite set. This result holds only because of domain con
ditions, for by our general enumerability principle we can prove that the
classes Ct are recursively presentable for sufficiently large t.

78

DEFINITION 2.3.4. Let X be a class of functions. A way-out strategy for X
is a recursive transformation which maps (indices of) finite functions onto
programs for members of X extending these finite functions.

The index of a finite function is understood to be the index of a se
quence whose elements are the points in the graph of this function.

Note that if a is a way-out strategy for X and if X e V then a is also
a way-out strategy for V.

LEMMA 2 . 3 . 5 . Let X be a I^-presentable class of functions and let a be a
way-out strategy for X , then X is recursively presentable.

PROOF. Our proof is a straightforward translation of the earlier proof of
enumerability of (cf, [Bo 72]).

Let A be a I„-set such that X = {Aip. | i e A}. There exists a total2 l
recursive Boolean function B such that:

CO _
i e A ^ƒƒ Vx[B(i,x)].

We define a transformation t (i, j) such that tp simulates a dove-t v r, j)
tailed computation of ip. . Simultaneously the values of B(i,y) for y > j are
computed. Upon finding an argument y > j with B(i,y) = false the way-out
strategy is invoked and the program qt is replaced by an extension in X of
the finite segment of qh which was enumerated already. The function computed
by ip ,. . . is the function whose graph is enumerated in this way. (A formal-

t (i ,j)
ized definition of x is given in the appendix.)

To see that (ip ,. ..). . is indeed a recursive presentation of X we
t(i,j) t.J

consider two cases.

(i) i i A. In this case the way-out strategy is invoked regardless the
value of i. Consequently <p is a member of X.t(i,j)

(ii) i e A. Now there exists a value j such that for all y £ j B(i,y)
holds. Consequently the way-out strategy is never invoked and there
fore tp ,. .. = tp. which function happens to be a member of X. Moreoverx(i,j) 1
each member of X is included in this way in the sequence tp □t \ t > J /

The next lemma provides us with classes for which a way-out strategy
exists.

79

LEMMA 2.3.6. Let (tpi), be a sequence of total functions, then there exists ----------- Jk k
a total function t such that for each k, tp- e F .

PROOF. Take t max{Aa>- (x) Jk k < x}. □

It is not hard to see that for the class of functions which are total
and almost everywhere zero, a way-out strategy can be given. Moreover, this
class is entirely included in C,_ for some total t„. From this we conclude:

t0 0

COROLLARY 2.3.7. For sufficiently large t the classes are recursively
£ t

presentable. The same holds for the classes provided E is recursively
presentable.

(The second part follows since C s c[; hence a way-out strategy for C is
E t t t

one for C also.)
For honesty classes the enumerability construction yields in fact the

so-called "equivalence between honest and measured sets" (cf. chapter 2.1).

THEOREM 2.3.8. (=2.1.5). Let R be total. Then is presented by a measured
set of programs. Conversely each measured set is subset of an honesty class
with total name.

PROOF. Let (y\)^ be a measured set, and let a be a transformation such that
Y- = <p If we define the total function R by i a(i)
7? - \x3y[max{if Ys(x) -R then <5>o^3 Jx) else 0 fi | i <x)] then clearly
(Y -) ̂ £ Hĵ . This proves the second assertion.

To prove the first assumption we use a way-out strategy into the class
of functions with finite domain which are known to be R-honest regardless
the size of R. This way is recursively presented. The problem is to pro
duce a measured transformation which presents H^.

Define K by:

K = \i3j,k3x3y[if x <j then(if ®^(x) <k and tyAx) =y then 0 else 1 fi)

elif 3z<j[Q^(z) >k andO^(z) <x] or_
3z<xU <z and 3>.(z) <x and 4>.(s) > R(z,ip.(z))] then 1 --- x --- x x ----

elif <S>̂ (x) ^R(x,y) and tyAx) =y then 0
else 1 fi].

K is a total 0-1-valued function. Since K(i,j,k,x,y) = 0 implies qt(x) = y

80

for given i,j,k,x, there exists at most a single y such that K(i,j,k,x,y)=0.
Consequently we may interpretate K to be the decision procedure for some
measured transformation t defined by

<PT(i j k)00 Uz[K(i,j ,k,x,z)] .

Clearly tp c tp.. Now the definition of tp ,. . , . (x) depends onx(i,j,k) - i vT(i,j,k)v F
whether x < j or not.

If x < j we have tp (x) = tp. (x) provided <E>. (x) < k; otherwiset I 1 > J , X/ 1 1
<P • • ,, (x) = "• For x < j we have tp .. . , (x) = tp. (x) provided the fol-
lowing three conditions are satisfied.

(i) <lL(x) S R(x,tp^(x)) i.e. qt is R-honest at x.
(ii) It is impossible to detect a violation k < O^(y) < x for 0 S y < j.
(iii) It is impossible to detect a violation R(y,tp^(y)) < $u(y) ^ x for

j < y < x.

If one of the conditions is violated, tp , . . . (x) = ». Clearly theUi,J
conditions (ii) and (iii) once violated for x^ remain violated for all
larger x. Consequently tp ,. ... is a finite function unlessi v i, J , X;
(*) for x < j, <$̂ (x) = “> or 3h(x) < k and
(**) for j < x, Ch(x) < R(x,qL(x)).

Validity of (*) and (**) implies that qb is R-honest. Conversely for R-
honest tp̂ , parameters j and k can be selected such that (*) and (**) are
satisfied. In this case tp , . . , . = tp. . This shows that indeed H„ is recur-

t (i ,J,k) i R
sively presented by t . □

Next we consider non-enumerable classes.

DEFINITION 2.3.9. Let a be a transformation. If the sequence (ip.) . defined
by iJk = . j is an effective enumeration then the pair of sequences
((tp .) . , (T .) .) = T with f. = <!>.. . is called a sub-measure of the measure 1 1 1 1 l o(i)
((tp.) . , (4>.) .) = 3>. Notation Ÿ c (by o) . l i i i ~ J

THEOREM 2.3.10. Let ® be some measure. Then for sufficiently large t, a sub-
. Tmeasure T £ <$ can be defined such that C^ is not recursively presentable.

T(The super-index T in C refers to the measure relative to which the class
is defined.)

81

PROOF. The set IN \ halts is a standard example of a FIj -complete set. We
define a transformation p by

cPp̂)(x) <= if - x then loop else i fi.

Consequently ipp^ ^ is total if tp̂ (i) diverges; otherwise is finite.
Since x e ftp iff (i) >x, there exists a total function t^ satisfying:

ViVx[x e ftp ... =» $...(x) < t (x)]. P U) p(i) 0

Assume that t is a total function, t 2 t^.
By the inefficiency lemma one constructs a transformation T such that

cp ... = cp. and A® ... > t. We now define our sub-measure 'P by defining a. t (i) i t (i)
Let a = \i[if even i then t (i?2) else p(ii2) fi]• then (cp con-— — — ---- ---- ‘— * t (i) i

sists of all programs cp ... and cpp(i) t (i)
It is not difficult to prove that the sequence (cp ..,). is indeed ana (i) i

effective enumeration. However, by the choice of x the class F only con'
tains programs cp in particular one has:

F1)1 = {cp ... I i e IN \ halts}.t p(i)

Consequently C = {Ax[k] | k e I \ halts}.
Assume that C ts recursively presented by q :

{ Acpn(i) i e IN} = Ct.

Then also

{cp ,..(0) I i e IN} = IN \ halts. n(i)

This is a contradiction since IN \ halts is known not to be recursively
enumerable. □

In his thesis [Ba 70] L. BASS proves that for sufficiently large total
t the classes C^ are not recursively presentable provided E contains an in
finite set. Seemingly this contradicts our earlier result for recursively
presentable E. However there is no contradiction since the classes consi
dered by L. BASS consist of total functions only.

82

PROPOSITION 2.3.11. If the recursively presentable class of sets of excep
tional points E contains an infinite set E then there exists for suffi
ciently large t no recursive presentation for C n R.

PROOF. Writing "x e E" for "g(x) = 0" where g is the characteristic func
tion for E, we define the transformation t by:

<= i£_ x e E then ty^(x) else 0 fi.

Let t^ be defined by:

tg - Xx[if x e E then 0 else maxi
(i)

(x) | i < x} H) .

Now for t S t„ one has cp e F . Let n be a recursive presentation g 0 t (i) t
of n R. Define a function n so that

n(x) = if_ x i E then 0
elif x = 0 then 1
else \iz s x[Wy<x[n(y) < 2]]
fi-

So for x e E , n(x) = # [0,x] n E.
Define f = cp by f = Ax[f/ x e E then cp

\ = V k) ’ f e C . Moreover, f is total. However by considering the
m-th element of E one finds that f * cp
This completes the proof. □

n(m)'

V i(n (x)) ^ +1 e ^Se 0 S in c e
However
Consequently f

{V i) 1 ielN}-

Clearly this proof collapses if we try to diagonalize over a presen-
Rtation for the complete set Ct.

An analogous contradiction for ordinary classes does not arise. The
classes Ct n R are recursively presentable for sufficiently large total t.
The proof is based on our enumeration technique, using a way-out strategy
into the set of total functions which are almost everywhere zero, using
moreover an extra test against divergence on an initial segment.

83

CHAPTER 2.4.

SET THEORETICAL PROPERTIES OF RESOURCE-BOUND CLASSES

2.4.1. CLOSURE PROPERTIES OF RESOURCE-BOUND CLASSES

Resource-bound classes are sets of programs or functions, and conse
quently their behaviour under set theoretical operations and relations has
received the attention of several investigators.

To conclude our survey on the known theory of resource-bound classes
we mention a number of results relating these set theoretical properties of
resource-bound classes. Proofs in this chapter are omitted. They can be
found in the literature referenced to, and also in the more extended ver
sion of this chapter in [EB 74]. We restrict outself to complexity and hon
esty classes.

FINITE INTERSECTION

It is clear from the definition that resource-bound classes of pro
grams are closed under finite intersection, provided the names are total.
For example the set Ft n = Fv where v = Ax[wire(t(x),u(x))]. If t and u
are partial functions v still is a "name" for F n F . However v need nott u
be recursive.

This problem is solved by replacing t and u by names from a fixed
measured set (this is possible by the naming theorem). The minimum of two
measured functions is again measured and hence a recursive function.

For honesty classes we have the same problem. However, we no longer
can apply the naming theorem since this theorem is invalid for honesty
classes (cf. 3.4.2). Still the intersection of two honesty classes having
partial names can be shown to be an honesty class. We will give the proof
in 3.4.5.

The theory on classes of functions is uninteresting. By specific exam
ples one shows that for specific measures the intersection of certain spe
cific complexity or honesty classes is not again such a class.

There are no known results indicating whether this is a pathological
behaviour at the bottom of the hierarchy or whether this behaviour occurs
"generically".

84

FINITE UNION

Neither the classes of programs nor the classes of functions are
closed under finite union. A theorem by E.M. McCREIGHT [MC 69] shows that
for sufficiently large total t a total function t' can be constructed such
that C u C^, is not a complexity class. The same result then follows for
the classes F .t

By a non-trivial modification an analogous result can be proved for
honesty classes. The difficulty is to find total R and R' such that
H^ u H^, is not an honesty class. If R and R' are partial an easy example
is given by R = lx,y[if x=0 then loop else 0 and
R' = Xx,y[i^ x=l then loop else 0 fi]. Under this assumption (H^,) con
tains arbitrary expensive 0-“ (l-“) valued functions, but no non-trivial
0-1-°° valued function is included in their union. Proofs are given in
[EB 74].

INTERSECTION OF A DECREASING CHAIN

For both classes of functions and programs the results are negative.
For complexity classes of programs an example of a decreasing chain of
classes such that the intersection is not a class has been given by
E.L. ROBERTSON [Eb 71]. His example can be translated to give an example
for honesty classes as well.

The result for classes of functions which is based upon the speed-up
theorem is due to L.J. BASS [Ba 70]. His proof can be generalized for hon
esty classes, but one uses essentially the presence of partial functions
in a honesty class. (See [EB 74]).

UNION OF AN INCREASING CHAIN

This is the only set theoretical closure property for which the re
sults are positive.

By the union theorem of E.M. McCREIGHT [MC 69], the union of a se
quence C.. (F..) with total names t. such that t. St. , is again a com-Li l l l+l
plexity class.

In part 3 this theorem is proved together with a number of general
izations. First we show that the names (t^)^ may be partial as well,
supposed the relation t. < t. , includes the domain condition Vt. => Vt.l i + l l - i + l

85

Moreover the condition on the names may be replaced by the condition
"F,. £ F,. " on the classes F,. themselves. (This latter generalization

Li ci+l ci
does not hold for the classes of functions.)

For honesty classes we have some weaker results. The union theorem
holds, provided (R^)^ is an increasing sequence. The theorem holds also if
(R^) ̂ is a total sequence such that GR . £ GR .+]. It is unknown whether this
last assertion holds also for partial (R^)^. An implicit connection between
the union theorem and the naming theorem is responsible for these weaker results.

Investigation whether the union theorem holds also for the classes
shows that this depends on whether the class E is recursively presentable
or not. If E is recursively presentable the theorem holds, as will be de
rived from our abstract approach in Part 2. For non-recursively presentable
E there exists a counterexample. Cf. [Ba 70].

2.4.2. EMBEDDING THEOREMS

A partial order R on IN is an antisymmetric and transitive relation on
IN. It is called recursive provided the relation xffy is recursive.

Let S be a partial order on some set X and let f be a (partial) func
tion from IN into X. We say that a partial order R on IN is embedded in

(X,S,f) by g provided Rg £ Vf and f(g(x)) Sf(g(y)) iff xfly. The embedding
is called effective if g is a recursive function.

The triple (X,S,f) is called a universal partial order provided any
recursive partial order R on IN can be embedded effectively into it.

Abstract complexity theory has yielded several universal partial or
ders.

The simplest example is described as follows:
Let X be the system of all complexity classes, ordered by inclusion, f maps
the integer j onto the class with name . Then (X.c^) is universal.

This result is essentially due to E.M. McCREIGHT [MC 69]. He describes
the construction in a context where he proves the existence of uncountably
many different complexity classes (with non-recursive names).

A more interesting universal partial order is the following. For X we
take the set R of total recursive functions, and for f we take the map A.
A partial order on R is defined as follows. We say that f is cheaper than
g provided some program for f is faster almost everywhere than each program
for g. Notation f cheap g.

86

More formally:

f aheap g iff 3i[f = Aqt and. A naomp g].

An analogous relation aheapv is defined by

f aheapv g iff 3i[f = Aq>̂ and A4>̂ noompv g].

The embedding theorem by E.M. McCREIGHT [MC 69] states that 01,aheapv,A) is
universal (from this the universality of (X.Cjf) becomes a corollary.)

This result has been strengthened by D. ALTON [A1 73] and R. MOLL
[Mo 73] who have shown that the "representing functions" may be separated by
large gaps". For a total effective operator T one defines a relation 7?p
by:

f g iff 3i[f = A ^ and r(A(lt) naomp g].

The generalized embedding theorem states that the triple (R,/?r ,A)
still is universal in the sense that each partial order can be embedded in
to it.

For honesty classes only the order by inclusion makes sense. It is al
most trivial that this yields a universal partial order.

At this place we should mention an interesting degeneracy of the com
plexity classes modulo sets of exceptional points. The definition of a
class of sets of exceptional points is more or less dual to the definition
°f a free filter in set theory. Following this idea we may consider a free
ultrafilter F on IN. For E we take the class of all recursive complements
of members of F. It is not hard to prove that E is a class of sets of ex
ceptional points, which has the property that for each covering of IN by
two disjoint recursive sets A and B, either A e E or B e E.

This has the strange consequence that each pair of classes and CEt u
is inclusion-comparable, provided their names are total. Consequently the
complexity classes mod E with total names are linearly ordered by inclu
sion!

Part 3

ABSTRACT RESOURCE-BOUND CLASSES

{If We opened for the unbelievers a gate in
heaven and they ascended through it higher and
higher, still they would say: "Our eyes were
dazzled: truly, we must have been bewitched".

Koran 15, ed. N.J. Dawood}

89

CHAPTER 3.1.

ACCEPTANCE RELATIONS

3.1.1. INTRODUCTION

The concept of a complexity class of recursive functions has proved
to be a useful tool in the theory of recursive functions. It has been used
to define new hierarchies of classes of recursive functions and it has
given a new understanding of other hierarchies which were defined previously
by other means.

Furthermore the system of complexity classes has interesting properties
on its own. The most important of these were formulated in Part 2 of this
treatise. In particular, the compression theorems, gap theorems as well as
the union and naming theorem should be mentioned.

The above theorems can be divided into two classes. In the first place
we have those theorems which use in their proof a diagonalization construc
tion. The compression theorems are examples of this type of result. Also
the speed-up theorems (which are not theorems on complexity classes) can be
considered to be of this type. We always use the finiteness of a run-time
<X>̂ (x) in the construction of some function f to make f and qt different by
defining f(x) = ip̂ (x) + 1. This means that we use the first Blum axiom.

In the second place we have theorems which only use the system of run
times (GhK as well as the fact that these run-times form a measured set.
The gap theorems and the union and naming theorems are theorems of this
second type. The proofs do not use the first Blum axiom, and consequently
no program ip̂ is ever computed. What is used is the fact that the relation
<Il (x) < z is decidable.

In Part 2 of this treatise we discussed the honesty classes as an al
ternative way to define subrecursive hierarchies. We stated that the gap
theorems and the union theorem were true for honesty classes, but the
proofs were not given.

Our motivation is that these theorems should be proved in an abstract
formulation from which one derives them for complexity classes, honesty
classes and lots of other types of similar classes at the same time.

The present part of this treatise discusses the above mentioned ab
straction. The concept of an acceptance relation which is formally intro

90

duced in 3.1.3 is an abstraction from the fact that for the run-times (40^
the relation 4>̂ (x) < y is decidable (i.e. the property of a measured set).

As we shall see in 3.1.4 this acceptance relation remains equivalent
to some measured set of generalized "run-times". However the two-valued
logic of the relation 4>̂ (x) S y is replaced by a "three-valued logic" of
the acceptance relation as result of the introduction of the "truth-value"
void, which represents the answer "does not apply".

Although for both complexity classes and honesty classes an underlying
acceptance relation can be defined, there remains a difference in the way
the acceptance relation "bounds" the classes. In 3.1.2 we analyze the con
cept of an honesty class and we arive at the conclusion that honesty
classes need some "alternative way of bounding" which we shall call weak
restriction constrasting the strong restriction used in the definition of a
complexity class.

This notion of weak restriction forms the justification for intro
ducing the acceptance relation. In the case of strong restriction, false
and void are identified, but for weak restriction their difference is cru
cial .

In general the proof of a theorem on strongly restricted classes is a
straightforward translation of the proof given for the corresponding theo
rem on complexity classes in the literature. For the weakly restricted
classes we use some tricks, varying from a "one-stage look-ahead" in the
proof of the operator-gap theorem to a "two-phased test on violations" in
the proof of the union theorem.

A surprising difference between strong and weak classes is the non
existence of a naming theorem for weak classes. This negative result is the
main theorem of this treatise.

The remaining sections of chapter 3.1 contain the definitions of ab
stract resource-bound classes, and a number of examples. Furthermore chap
ter 3.2 gives the proofs of the gap theorems. In chapter 3.3 we present two
independent generalizations of the union theorem. Chapter 3.4 contains the
discussion of the naming theorem, the negative result announced above and
some related topics.

Throughout this part of the present treatise programs and algorithms
are defined informally. In the appendix the reader will find a number of
formalized descriptions, using the programming language introduced in Part
1, of some of the more complicated algorithms discussed in the text. This

91

way the author hopes to separate the essential features of the designs of
these algorithms from the inessential particularities of some implementa
tion.

3.1.2. THE HONESTY CONDITION AS A THREE-VALUED PREDICATE

The definition of a complexity class of programs F can be given as

e Ft i£L Vx[®i(x) < t(x>]

where we use the following interpretation in case one or two sides of the
inequality diverge.

The value t(x) should be considered to be a test-value. If the compu
tation of t(x) diverges we have no testvalue and hence no test. This means
that in testing the program qt no test is performed for the argument x.
The formula given above should therefore read:

cp. e Ft iff Vx[x e V t imp <Iu(x) S t(x)].

If t(x) converges and yields a value z we recall that <X^(x) S z stands
for the finite disjunction:

4>. (x) = 0 or Q>. (x) = 1 or ... or O. (x) = zl — l — — l

which can be tested componentwise. In this interpretation <Xb(x) 5 z is
false whenever <X>̂ (x) diverges.

There is a difference with the case where <Xc(x) is finite but greater
than z. If z < <Xt(x) < <® then <Xu(x) £ z' will become true for a suffi
ciently large z'. If, however, <Ib(x) diverges then Cu(x) S z' will never be
true no matter how large z' is chosen.

The reader should keep this artifical distinction in mind while read
ing the sequel of this section.

In Part 2 we used a definition of an honesty class which can be for
mulated to read:

qL is R-honest if it satisfies the R-honesty condition <Ib(x) < R(x,qu (x))
for almost all x

92

and

the honesty class is the set of all recursive functions computed by an
R-honest program.

The honesty condition Gb (x) < R(x,qb(x)) is an implicit condition.
Since qb(x) occurs at the right-hand side, one must first compute qb(x) to
see whether qb is honest at x or not.

In trying to "localise" the honesty condition we can consider the fol
lowing equivalent interpretations:

(i) [Global]. Enumerate the graph of qb and for each pair <x,qb(x)> enu
merated, compute R(x,qb(x)). If this converges (R is not assumed to
be total) test whether Gb(x) < R(x,qb(x)). If the answer is no we
have found a violation. The number of violations detected has to be
finite.

(ii) [Argumentwise]. Compute qb(x) and if this converges compute
R(x,qh (x)). If this also converges, test whether Gb(x) < R(x,qb(x)).
If the answer is no then qb is not R-honest at x. The number of ar
guments x at which qb is not R-honest should be finite.

Both interpretations have the disadvantage that they invite us to exe
cute infinite computations, which do not contribute any negative evidence.
Furthermore we cannot isolate the bound function R from the honesty condi
tion. Therefore, we still localize further; this obviates the second dis
advantage mentioned above, but does not solve the first disadvantage.

(iii) [Local]. We say that qb satisfies the honesty condition with value a
at the argument-pair <x,y> if Gb (x) < z and qb(x) = y.
We say that qb violates the honesty condition with value a at the ar
gument-pair <x,y> if Gb(x) > z and qb(x) = y.
In all other cases (qb(x) = » or qb(x) * y) we say that the honesty
condition with value a at the argument pair <x,y> does not apply to
qb.
qb should violate the honesty condition with value R(x,y) at the ar
gument-pair <x,y> for at most finitely many pairs <x,y>.

In this local interpretation we have isolated the function R from the
honesty condition. The price we have to pay is the introduction of a third
answer "the honesty condition does not apply". This, however, is not un
reasonable.

93

The happenstance that R(x,y) = 0 has no influence on R-honesty of ip.
at x if qt(x) happens to be distinct from y. Also, if ip̂ (x) diverges then
cp̂ is R-honest at x, regardless the values of R(x,y).

The computational situation is more complicated. We can test recur
sively whether qh satisfies an honesty condition with value z at <x,y>. To
do so, we first test whether <Î (x) < z; if this is not the case then ip̂
violates the honesty condition at <x,y>, or the honesty condition does not
apply. If 3>^(x) < z we compute cp̂ (x) and if the answer is y then ip. satis
fies the honesty condition; otherwise the honesty condition does not apply.

After having decided that qb does not satisfy the honesty condition
with value z at <x,y>, the situation is more complicated. Now we must com
pute qh(x) to decide whether the condition was violated, or whether the
condition did not apply. Again the danger of an infinite computation arises.

To give an overview of the formal properties of the three
valued predicate which is suggested above, we write Hon(i,x,y,z) for "the
honesty condition with value z applied to qx at the argument-pair <x,y>".
The possible outcomes are: "is satisfied", "is violated" and "does not ap
ply".

We have the following properties:

(a) If z' > z and Hon(i,x,y,z) is satisfied then Hon(i,x,y,z') is also sat
isfied.

(b) If Hon(i,x,y,z) does not apply then Hon(i,x,y,z1) does not apply for
all z'.

(c) If Hon(i,x,y,z) is violated then there exists a z' > z so that
Hon(i,x,y,z1) is satisfied.

(d) The quadruples <i,x,y,z> for which Hon(i,x,y,z) is satisfied form a re
cursive set.

(e) The quadruples <i,x,y,z> for which Hon(i,x,y,z) is violated form a re
recur sively enumerable set.

The properties (a) to (e) represent in fact everything we use about
the honesty relation in the proofs of the union and gap theorems. They play
a role similar to that of the fact that the run-times of programs form a
measured set in the theory of complexity classes. Furthermore (e) can be
derived from (a) to (d), and (b) and (c) can be formulated in a weaker way.
In such a weaker formulation the properties described above will be used
as axioms for the concept of an acceptance relation in 3.1.3.

94

Below, we give an interpretation which shows that a similar three
valued predicate can be defined to represent a complexity condition.

Let Cpl be defined by:

Cpl(i,x,z)

'is satisfied if <$. (x) < z

is violated if z < 3>.(x) <
1

-does not apply if <X>̂ (x) diverges.

Now Cpl has the same formal properties (a) ... (e) as Hon had before.
However, in our interpretation of complexity classes at the beginning of
this section, we have treated the two cases "is violated" and "does not ap
ply" as being the same.

This identification is in fact the crucial difference between the defi
nition of a complexity class and the definition of an honesty class. The
difference is not the three-valuedness of the underlying relation but the
way the classes are defined in terms of this three-valued predicate.

In order to be a member of the complexity class of programs F the pro
gram (p̂ should satisfy for almost all x e Vt the condition Cpl (i ,x, t (x)).
This type of restriction could be called strong restriction.

In order to be an R-honest program, the program cp̂ should violate the
condition Hon(i,x,y,R(x,y)) for at most finitely many pairs <x,y> in VR.
This type of restriction could be called weak restriction.

The notions suggested above will be defined formally in the next sec
tion.

Although we give lots of other examples, the complexity classes and
the honesty classes can be considered to be the "categorical" examples. The
honesty classes however have the disadvantage of having two-dimensional
names. We have available however another example of weakly restricted
classes; the weak complexity classes. These classes were defined by taking
the relation Cpl defined above and applying weak restriction.

The strongly restricted classes behave in many aspects similarly to
the complexity classes. The whole theory would become uninteresting if this
were the same for weakly restricted classes too. There are however a num
ber of differences, the most remarkable being the absence of a naming theo
rem for weakly restricted classes.

95

3.1.3. FORMAL DEFINITIONS AND EXAMPLES OF ABSTRACT RESOURCE-BOUND CLASSES

DEFINITION 3.1.1. An acceptance relation A is a set-theoretical total func
tion with three number arguments (say i, x, and z) and values in the three-
element set {true,false,void} which satisfies the following axioms:

A1. Monotonicity: If z < z' then

(Ala) A(i,x,z) = true imp A(i,x,z') = true
(Alb) A(i,x,z) = void imp A(i,x,z') = void
furthermore
(Ale) A(i,x,z) = false imp 3z'[A(i,x,z') = true]

A2. Computability

(A2) The predicate A(i,x,z) = true is recursive in i, x, and z.

REMARK 3.1 .2. One should visualize the arguments i, x and z as playing the
role of "index", "argument" and "testvalue". We shall have examples where i
or x encode more information than does the index of a program or some argu
ment of a computation.

REMARK 3.1.3. In the next section we shall prove that the concept of an ac
ceptance relation is recursively equivalent to the concept of a measured
set, which is in fact the content of the second Blum axiom. For future use
one could think of a third axiom, expressing the fact that A(i,x,z) is true
forces a computation to terminate. Up to now we have no reasonable candi
date for this axiom, and since we don't need it we omit it.

DEFINITION 3.1.4. Let A be an acceptance relation, and let t be a partial
recursive function. The set of indices strongly A-restricted by t, denoted
F^(t) is defined by

F^(t) = {i | Vx [t (x) < °° imp A(i,x,t(x)) = true]}.

The set of indices weakly K-restricted by t, denoted FjJ(t) is defined by

F^(t) = {i | Vx[t(x) < °° imp A(i,x,t(x)) * false]}.

CONVENTION 3.1.5. The notations introduced above are subjected to the fol
lowing rules of simplification:

96

If the acceptance relation intended is clear from the context or if
this relation is otherwise irrelevant we write Fc(t) (F,.(t)) instead of A A - > "
Fj(t) (Fj(t)).

If it is clear from the context that we have a strongly restricted
class we write F(t) (F^(t)) instead of F^(t) (F^(t)).

The index as such in general has no "physical meaning". However, in
most of the examples i encodes some program and this program again computes
some function. This means that the sets of indices defined above represent
sets of programs and functions as well.

This encoding is formalized in our next convention.

CONVENTION 3.1.6. If the index i of an acceptance relation encodes a pro
gram then this program is denoted by prog i. If the index represents a
function this function is denoted by fun i. If prog is defined we have al
ways fun i = A(prog i).

<p. or prop_ i = <pn]i.In our examples we either have prog i
first case we usually use the word program instead of index.

The sets of programs and functions corresponding to the sets
dices defined above are the following:

In the

of in-

DEFINITION 3.1.7. Let A be an acceptance relation for which prog and/or fun
are defined. Then we have the following sets of programs (functions)

G^(t) = {prog i

H^(t) = {fun i

6|J(t) = {prog i

H^(t) = {fun i

i e (t)} set of programs strongly A-restricted by t

i e F^(t)} set of functions strongly A-restricted by t
Ai e F^(t)} set of programs weakly A-restricted by t
Ai £ F^(t)} set of functions weakly A-restricted by t.

Convention 3.1.5 extends to these classes as well:

CONVENTION 3.1.8. If the acceptance relation A is clear from the context we
suppress the occurrence of the symbol A in the above notations. Furthermore,
the symbol S can be deleted if it is clear from the context that the classes
are strongly restricted.

All the classes defined in 3.1.4 and 3.1.7 together are called
Abstract Resource-Bound. Classes. We use the abbreviation ARBC for abstract

97

resource-bound class. We also speak of strong classes (weak classes) in
stead of strongly restricted classes (weakly restricted classes).

The following definition introduces a technical term which is used
frequently in our discussions.

DEFINITION 3.1.9. Let A be an acceptance relation and let t be a function.
Let i be an index and let x be an argument. A strong violation by i at x
against t occurs if A(i,x,t(x)) is defined and A(i,x,t(x)) * true. A weak
violation by i at x against t occurs if A(i,x,t(x)) is defined and
A(i,x,t(x)) = false.

The violations introduced above can be grouped together to form the
violations by a given index, c.q. the violations at a certain argument etc..
The words "weak" and "strong" are used in an unnatural way. A weak viola
tion is also a strong violation but conversely a strong violation is not
necessarily also a weak violation. This peculiar use of the words "strong"
and "weak" is motivated by the fact that an index i is contained in a
strong (weak) class provided that there exist only finitely many strong
(weak) violations by i against t.

We now give a number of examples of old and new classes which are ab
stract resource-bound classes.

EXAMPLE 3.1.10. Let Cpl be defined by

true iff Gb (x) < z
Cpl(i,x,z) - false iff z < Gl (x) < °°

void iff Gl (x) = °°.

This acceptance relation can be called the complexity condition. We have
prog i = qt. We recognize the following complexity classes

Ct = and Ft = G^P ^(t).

Furthermore, there are the weakly CpZ-restricted classes, which were de
fined in part 2 as a particular type of honesty classes;

,„d F » - G ^ < t >

98

These weak complexity classes form an unnatural alternative for the
usual complexity classes. To be in a weak complexity class a program must
either be cheap to compute or otherwise the program must diverge. This
could be the interpretation of "bounding" from someone who only has to pay
for terminating computations. If the program loops forever (and is termi
nated abnormally by the operator) the computing centre pays. It is clear
that this is not a realistic interpretation.

EXAMPLE 3.1.11. Let Hon be defined by

Hon(i,x,z)

true iff (TTjX) < z and ip^C^x) = t̂ x

false iff (TTjX) > z and 4l (tTjX) = n^x
void iff ijl (iTjX) * tt2x or ip̂ Cir̂ x) = <».

This acceptance relation is the honesty condition which was discussed in
section 3.1.2. The honesty classes are now given by KL = H?0W(r) and

Hon K- W/
= Gy (r) where r(<x,y>) = R(x,y). We have again prog i = ip„

EXAMPLE 3.1.12. Let (Y^) ̂be a measured set of functions. We define a cor
responding acceptance relation T by:

r(i,x,z)

true iff y^(x) < z
■ false iff z < y^(x) < »
void iff y^(x) = °°

In this example prog is not defined. One can define fun by putting
fun i = Y^> but this does not correspond to the special case that (y^)^ is
the measured set of the run-times of the programs (<Xt)̂ , in which case T
and Cpl become the same acceptance relation.

The example of a measured set can be used in several situations to
construct examples without having to extend the measured set to a complete
system of run-times (by making all other programs much more expensive).

EXAMPLE 3.1.13. Let E = (E^)^ be a recursive presentable class of sets of
exceptional points (cf. [Ba 70],[BY 71] and also Part 2). The acceptance
relation Cplex is defined by:

99

true -iff x e E„ • or <X>_ • (x) < z ------ «-*- tt2i — TTi1
CpZ.ex(i,x,z) = <j false iff x t E, ; and z < ©n ^(x) <

void iff x i En • and On ^(x) = °°.
2 1

In this example prog is defined by prog i = (pn^.
The definition of the complexity classes modulo the class of sets of excep
tional points E can be given as

Ct = CpleX(t) and ptE = GCpleX(t).

In this example we have encoded the sets of exceptional points in the
index of the program. In his thesis [Ba 70] BASS uses a similar trick in
the proofs of the union and naming theorem for the classes with recur
sively presentable E. He encodes the sets of exceptional points in the pri
ority numbers featuring in the algorithms used in these proofs.

The honesty condition may be relativized modulo sets of exceptional
points in the same way.

EXAMPLE 3.1.14. Let E be as above. We define Honex by:

Honex{i,x,z)

iff e or (®nii(TT]X) < z and i p ^ C ^ x) = t̂ x)

false iff rijX 4 En ̂• and ®1T̂ ̂ (nfx) > z andiPu \ (t̂ x) = n2x

void otherwise.

Again define prog by prog i = i p ^ and let r(<x,y>) = R(x,y). Now we can
introduce the honesty classes modulo sets of exceptional points

4
uHonex. . Hw (r) and ,E „Honex. s

'R = GU (r)

EXAMPLE 3,1.15. Let Sopl be the acceptance relation defined by:

Sopl(i,x,z)

true iff X <D. (y) < z------ .U- y<x p-"

false iff z < X <E>.(x) < °° ‘------ 'UL- y<x 1
void otherwise.

100

Define prog i = ip̂ . The strong classes corresponding to this acceptance re
lation may be called the summed complexity classes.

SCt = H^apl(t).

Note that the members of SC^ are total functions, whenever Vt is in
finite. In this way, the condition of totality which is enforced by many
authors, holds automatically.

There is an element of arbitrariness in this definition. If a program
has long run-times in its initial segment it can be thrown out of the sum
med complexity class, although its asymptotic behaviour is excellent. This
imperfection is eliminated in our next alternative definition of a summed
complexity class.

EXAMPLE 3.1.16. Let Scpll be defined by:

Scpll(i,x,z)

‘ true iff y|x ®nji(y) s z + n 2i

- false iff z + n2i < ^ ®n i(y) <

void otherwise.

We define prog by prog i = (p Now the summed complexity class
SCI = t) no longer carries the disadvantage mentioned above.

EXAMPLE 3.1.17. A type of classes which goes still further in the direction
of the total complexity introduced by J.A. FELDMAN and P.C. SHIELDS [FS 72]
can be defined if we replace the initial segments of IN by the system of
finite sets.
Let (D) be a fixed enumeration of all finite subsets of IN. Then define x x
the acceptance relation Tapi by:

Tcpl(i,x,z)

true iff yfu ^(y) 5 z

fatse iff z < V| D M y)' “x i
< oo

void otherwise.

Again prog i = (p̂ . For each function i: P^(IN) •* IN we define CT m)
where m(x) = i(D^). CT^ can be called a total complexity class. Again, a
modification like example 3.1.16 is possible.

101

After this list of examples (which could easily be extended) we con
sider the totality of the functions and programs in our classes. In almost
all examples the classes defined above contain partial functions or pro
grams, even if the names are total. Many authors have restricted themselves
in the study of complexity classes to total functions and programs, and
have enforced different types of domain conditions in the definitions of
classes with partial names.

We have not considered such extra domain conditions since it is clear
that the classes defined using these conditions become more complex in the
sense of the arithmetical hierarchy. Furthermore, for a number of theorems
the restriction to total programs and functions does not influence the re
sults. If a theorem states two classes to be equal, then these classes will
also contain the same total functions.

If we restrict ourselves to total functions and programs the differ
ence between strong and weak complexity classes disappears: For each par
tial function t we have:

Ct n R = Ct n R

and a similar equality holds for the classes of programs.

It is useful to consider at several occasions abstract resource-bound
classes consisting of functions having more than one argument. The number
of arguments (if greater than one) appears as an extra index in the nota
tions. For example:
2 .C is the complexity class of all two-variable functions computed almost K

everywhere (i.e. for all pairs <x,y> with finitely many exceptions) within
R(x,y) steps.

Using these extended notations we can formulate a relation between honest
sets and weak complexity classes of semicharacteristic functions.

If f is a (partial) function then the semicharacteristic function of
the graph of f, denoted sag f, is the function defined by:

sag f - Xx3y[if_ f(x) - y then 0 else °° fi].

2Let t be a transformation of programs satisfying tp ■
sume (after modification of the measure) that we also have

tfL. We may as-

102

a
(^)(x*y) = i£_ V^(x) - y then <5>̂ (x) else °° fi.

2WASSERTION 3.1.18. Under the above assumptions G,, < F by t . ----------------- R m R

PROOF. We have

pi e g r iff ̂ <x»y> [(P^(x) * y or «t^x) < R(x,y)]

co 9 2f£L V<x,y>[tpT(.i ̂(x,y) = « or (x,y) <R(x,y)]

2 2W
^ r (i) £ FR • D

In general there only exists a total function K so that

ViV<x,y>[ipi(x) = y ® (x,y) < K(x,y ,<X>i (x))]

This only yields the implication

(Jh € Gr img_ £ FAx,y[K(x,y,R(x,y))]

the converse implication not being generally true.
For the classes of programs we derive from Ass. 3.1.18:

f e H imp sag f e C2W

The converse implication may be spoiled by cheap programs for sag f which
2

are not contained in the list of special programs

3.1.4. BASIC PROPERTIES OF ACCEPTANCE RELATIONS.

The following lemma lists the essential properties of an acceptance
relation.

LEMMA 3.1.19. Let A be an acceptance relation. Then we have:

(a) A(i,x,z) = false and z' < z imp A(i,x,z') = false
(b) A(i,x,z) = void and z' < z imp A(i,x,z') = void
(c) A(i,x,z) = void imp Vw[A(i,x,w) = void\
(d) A(i,x,z) = false and A (i ,x,z') = true imp z < z'

103

(e) n ot(A(i,x,z) = fa ls e and A(i,x,z') = void)

n ot{A(i,x,z) = trMe and A(i,x,z') = void)

(f) A(i,x,0) = void or yz[A(i,x,z) = tru e] < 00

(g) the triplets <i,x,z> with A(i,x,z) = fa ls e form a recursively enumera
ble set.

PROOF, (a) to (e) are evident from the definitions.

(f) If A(i,x,0) = true then the y-operator yields 0. If A(i,x,0) = fa ls e

then there exists a w for which A(i,x,w) becomes true and consequent
ly the y-operator yields a finite value.

(g) By (Ale) and (c) we have

A(i,x,z) = fa ls e i f f A(i,x,z) * true and 3w[A(i,x,w) = true].

The right-hand side clearly is a recursively enumerable predicate. □

PROPOSITION 3.1.20. Let A be an acceptance relation. Define the functions
(«i)i by:

c l (x) = yz[A(i,x,z) = true].

Then (o l)^ is a measured set.

PROOF. The following equivalence is true:

a^(x) = y i f f A(i,x,y) = true and (y = 0 or_ A(i,x,y-1) *■ tru e).

The right-hand side clearly is recursive in i, x and y. □

In example 3.1.12 we have constructed an acceptance relation from a
measured set. Now we have given a converse construction. It is intuitively
clear that the two constructions are inverses of each other. We shall prove
in fact that this correspondence is a recursive equivalence between the
concepts of an acceptance relation and a measured set.

In the case of the acceptance relation Cpl the measured set defined
above is again the set of the run-times of the programs in the underlying
complexity measure. This fact inspires the following definition:

104

DEFINITION 3.1.21. Let A be an acceptance relation. Let the sequence (a^).
> A A ̂^be defined by a.(x) = pz[A(i,x,z) = true]. Then a.(x) is called the k-run-

, . . A 1
time of index i at argument x. The function ol is called the k-run-time of
index i and the measured set (o l)^ is called the set of k-run-times.

By convention the symbol A is not written if the acceptance relation
intended is clear from the context or otherwise irrelevant. If prog i = ip.
the run-time of index i is also called the run-time of the program cp.. This
definition allows us to discuss abstract resource-bound classes within the
language of complexity classes. One should however be careful:

The flow-run-time of cp̂ at <x,y> equals <Xb(x) iff qb(x) = y, otherwise the
flow-run-time of qb at <x,y> is infinite. This example shows that the flow-
run—time of qb is not the same as the "physical” run-time of qb .

To describe the recursive equivalence between measured sets and accep
tance relations we first must define which are the "indices" of an accep
tance relation or a measured set.

A measured set (Y^)^ is given by the recursive predicate P(i,x,y)
which is true if Y^(x) equals y and false otherwise. The index for a pro
gram computing P can be considered to be an index for the measured set.*^

The acceptance relation A(i,x,z) as a three-valued function is in gen
eral not recursive. However, the relation is determined completely by the
set of triples <i,x,z> for which A(i,x,z) = true. An index for an accep
tance relation can be considered to be the index of a program computing the
characteristic function of this set. If (a.), is the measured set of thel l
A-run-times, this is precisely an index for the recursive predicate
Cb(x) < z.

The recursive isomorphism between measured sets and acceptance rela
tions is in fact nothing but the "equivalence" between the predicates
0b(x) < z and 0b(x) = z.

In the sequel, let N be the set of indices of acceptance relations and
let M be the set of indices of measured sets, both as defined below. We
prove that W = M using the well-known MYHILL isomorphism principle (cf.
1.4.3). By this principle it is sufficient to show N M and N <j M. In

*) This choice is consistent with our representation of measured sets in
our algorithmic language in chapter 1- 1 .

105

fact it is even sufficient to prove that N s M and M S M, since both Nm m
and M are index sets, defined in terms of the functions computed by these
programs, and therefore we may apply the padding lemma to transform many-
one reductions into one-one reductions (cf. chapter 1.5).

DEFINITION 3.1.22. An -index of an acceptance relation j is an index of a
3program ip. so that:

3 3
(a) ip. (i,x,z) = 0 or_ ip. (i,x,z) = 1 .

J 3 J
(i.e. A(<p.) is a total characteristic function).

J 3 . 3
(b) if z < z' then ip.(i,x,z) = 0 imp ip.(i,x,z') = 0 .

3 * 3By (b) we have also for z < z' ip.(i,x,z') = 1 imp cp. (i,x,z) = 1.
The set of indices of acceptance relations is denoted by N.

DEFINITION 3.1.23. An index of a measured set j is an index of a program
3ip. so that:

3 3(a) ip.(i,x,z) = 0 or ip. (i,x,z) = 1 .J 3 J
(i.e. A((p.) is a total characteristic function)
3 J 3

(b) ipj(i,x,z) = 0 and ip.(i,x,z') = 0 imp z = z'.

The set of indices of measured sets is denoted by M.

PROPOSITION 3.1.24. N = M.

PROOF. As explained above, it is sufficient to prove N S M and M s M. ----- m m
M s N: Define the transformation a by: m

3 . 3(p x,z) «= if 3y<z[<$,(i,x,y) > 1] then 2
G \ J J 3 ^

else int y = gvsz[ip.(i,x,v) = 0]j
3

if y > z then 1
3

else int w = \iv<z[v > y and <$.(i,x,v) - 0]j
3

if w > z then 0 else 1 fi_

£L

£L

The first clause tests both whether ip. (i,x,y) is defined for O S y S z
and whether no forbidden values occur in this interval; consequently ip"a(j)
is a total characteristic function iff ip. is one.

J 3In the second clause it is computed whether q>.(i,x,y) = 0 holds for

106

none, one or more than one value z < y. Only if there exists precisely a
3 3single value z < y such that cp.(i,x,y) = 0 one has tp^j ̂ (i,x,y) = 0. From

this, one concludes that a(j) is the index of an acceptance relation iff j
is the index of a measured set. Hence M s SI by a .m
SI < M: Define the transformation t by: m

3 . . 3ip ,. ,(i,x,z) <= if 3y<z[y> .(i,x,y) > 1] then 2
T \ J / 2 06 . 3

elif ip.(i,x,z) = 0 and (z=0 or ip.(i,x,z-l) - 1) then 0
elif ip ,(i,x,z)

c
else 1 fi_

Cl1 and z > 0 and (p ,(i,x,z~l) =0 then 0
0

3 . 3 .Again it is clear that (p ... is a total characteristic function iff tp. is
T (l) 3 J

one. Moreover, a necessary and sufficient condition for ipT ̂(i,x,z) to be
zero is (z = 0 and cp?(i,x,z)=0) or (z > 0 and ip?(i,x,z) ^(p?(i,x,z-l)).

3 J J J
If ip^j^(i,x,z) has to be zero for at most one value of z (i and x

being fixed), there should be at most a single change of value for
3<Pj(i,x,z); moreover this should be a change from 1 to 0 since otherwise

tp ... (i,x,0) = 0 .
t C j)

From this one derives that x(j) is the index of a measured set iff j
is the index of an acceptance relation, proving N M by t.

This completes the proof of 3.1.24. □

The conclusion of 3.1.24 could be that the concept of an acceptance
relation can be eliminated from the theory. If we were to consider only
strong classes, this is indeed the case; for strong classes false and void
are identified, and the measured set of the A-run-times is sufficient to
formulate everything we need. For weak classes, however, the three-valued-
ness of the acceptance relation becomes crucial, as this three-valuedness
visualizes the difference between the finite-but-to-large run-time and the
infinite run-time. This provides a motivation to preserve the concept of an
acceptance relation.

Another motivation may arise by giving a third axiom as suggested in
3.1.3.

107

CHAPTER 3.2.

GAP AND OPERATOR GAP

3.2.1. INTRODUCTION

In this chapter we prove the generalizations of the gap theorem of
A. BORODIN [Bo 72] and the operator-gap theorem of R.L. CONSTABLE [Co 72]
for abstract resource-bound classes. These theorems can be formulated in
the following way:

THEOREM 3.2.1. [Gap and operator gap]. Let A be an acceptance relation and
let T be a total effective operator, satisfying T(t) > t. Let R be a total
function in two variables satisfying R(x,y) 2 y. Then there exist arbitrar
ily large total functions tj and t ̂ so that the following equalities hold:

The main subject in this chapter is the operator-gap theorem for weak
classes. This theorem is proved by construction of a function t which sat
isfies the conditions formulated in the lemma below:

LEMMA 3.2.2. Let A be an acceptance relation, let T be a total effective
operator with T(t) s t and let f be a fixed total recursive function. Then
there exists a total recursive function t £ f so that for each index j the
following implication holds:

This is a stronger condition than the condition enforced in the proof
of the operator-gap theorem for complexity classes, where we have:

FS (t2) = FS<r <t2)); FJ(t2> =

3x[A(j ,x,t(x)) * true and A(j ,x,r(t) (x)) = true]

implies

3x[A(j,x,r(t)(x)) = false].

108

3x[A(j,x,t(x)) * true]
0°

implies

3x[A(j,x,T(t)(x)) * true].

The function t which is constructed in the proof of lemma 3.3.2 yields
an operator-gap for both strong and weak classes. By considering the compo
sition-gap theorem to be a special case of the operator-gap theorem, we can
derive the four possible gap theorems from the most difficult one, the
proof of which is given in this chapter. However, the old proofs of the
composition-gap theorem remain valid for weak classes.

First we prove that the gap theorems can be derived from lemma 3.2.2.

PROOF of 3.2.1 (a). [Operator-gap], Let A be an acceptance relation, and
let T be a total effective operator and let f be a total function. If
T(t) 2 t for each total recursive t then there exists a function t 2 f so
that both:

f j j (t) = F | } (r (t)) and F ^ (t) = F * (r (t)) .

By lemma 3.2.2 there exists a function t 2 f so that for each index i the
following implication holds:

3x[A(i,x,t(x)) * true and A (i,x,T(t)(x)) = true]

implies

003x[A(i,x,r(t) (x)) = fa ls e] ,

A ANow suppose that i e F^(r(t)) and i i F^(t), then we have by defini
tion:

Vx[A(i,x,r(t)(x)) * f a l s e] and 3x[A(i,x,t(x)) = f a l s e]

and consequently, since A(i,x,t(x)) = fa ls e and A(i,x,T(t)(x)) = Void is
impossible

3x[A C i,x,t(x)) = fa ls e and A (i,x,r(t)(x)) = true].

109

By the choice of t we conclude

3x[A(i,x,r(t)(x)) = false]

A Awhich is a contradiction. Therefore F̂ (r(t)) <= F̂ (t). The converse inclusion
is trivial since T(t) 2 t.

For strong classes F̂ (t) c F̂ (r(t)) again is trivial. If i e F (̂r(t))
A o o b

and i i F^(t) then we conclude

3x[A(i,x,t(x)) * true] and Vx[A(i,x,r(t)(x)) = true]

hence we have again

3x[A(i,x,t(x)) * true and A(i,x,r(t)(x)) = true]

which implies by the choice of t

3x[A(i,x,r(t)(x)) = false].

This is a contradiction, therefore F̂ (r(t)) <= F̂ (t). This completes
the proof. □

PROOF of 3.2.1 (b). [Composition-gap theorem]. Let A be an acceptance rela
tion and let R be a total function satisfying R(x,y) 2 y. Then there exist
arbitrarily large total functions t so that both F^(t) = F^(Rnt) and
F|J(t) = Fj(Rot).

As indicated below, the old proof for the composition-gap theorem
yields a function t which satisfies the condition of lemma 3.2.2. We need
no modifications since the composition-gap algorithm is based on extension
by "local gap-sections of length one" which are automatically closed.

LEMMA 3.2.3. Let A be an acceptance relation and let R be a total recursive
function with R(x,y) 2 y. Let f be a total function. Then there exists a
total function t 2 f so that for each index i the following assertion holds:

Vx>i[A(i,x,R(x,t(x))) = true imp A(i,x,t(x)) = true].

110

PROOF. First we remark that this assertion implies the condition in lemma
3.2.2. Suppose that

3x[A(i,x,R(x,t(x))) = true and A(i,x,t(x)) * true]

then also

ix>i[A(i,x,R(x,t(x))) = true and A(i,x,t(x)) * true]

which contradicts the above assertion. Hence in order to prove 3.2.1(b) it
is sufficient to prove 3.2.3.

The function t is constructed the following way:

Define T by the recursive definition:

T(x,k) = if k = 0 then f(x) else R(x,T(x,k-l)) + 1 fi.

Now T is a total function and for each k and x one has
T(x,k) < T(x,k+1). Next we define the function n by:

n - \x[\ik<x[Vi<x[A(i,x,T(x,k)) = true or A(i,x,T(x,k+l)) * true]]].

Thus n(x) is the lowest value of k so that none of the x run-times ou(x)
with i < x is contained within the interval (T(x,k),T(x,k+l)]. Since these
intervals are disjoint for different k there exists a number n(x) 2 x with
this property.

Now t = Tnn is a total function with the property asked for by the
1emma. □ □

Although our gap theorems are formulated in terms of classes of indices
it is clear that they hold also for classes of programs or functions when
ever prog and fun are defined for a given acceptance relation. Most general
izations thus generated are well-known; only the operator-gap theorem for
honesty classes needs the full strength of the operator-gap theorem for
weak classes.

111

COROLLARY 3.2.A. Let T be a total effective operator from R to R satisfy
ing r(T) > T. Then there exist arbitrarily large total functions T so that

^ = ^(T)*

{lam aliquantum spatii ex eo loco
ubi pugnatum est aufugerat, aum
respiaiens videt magnis intervallis
sequentes.

Livius, ab Urbe Condita 1.25.8}

2 2

3.2.2. THE OPERATOR-GAP ALGORITHM FOR STRONG CLASSES, AND ITS MODIFICATIONS

The proof of lemma 3.2.2 is based on an algorithm which is defined in
§3.2.3 in an informal way. A program for this algorithm is given in the ap
pendix. The algorithm is a modification of the algorithm constructed for
the proof of the operator-gap theorem by P. YOUNG [Yo 73].

In this section a description is given of the algorithm originally
given by P. YOUNG (formulated within the language of acceptance relations).
Next it is explained why this algorithm itself does not yield the result
for weak classes.

In the following T is a total effective operator which satisfies
T(t) > t; f is a fixed total recursive function and A is a fixed acceptance
relation.

The algorithm of P. YOUNG is a stagewise algorithm which computes at
each stage x the values of t for all arguments z within a segment [y +l,y].
At the beginning of stage x the values of t are known on the initial seg
ment [O.Yq]. The value of y t is also computed during stage x.

The computation during stage x can be described as follows:

(1) generate x+1 programs for functions t^ extending t [0 ,yQ] so that
tj + 1 > T(tj) on [yQ+i ,»)•

(2) generate x+1 integers ẑ > y^ so that for each v e [y^.z.^] the value
of r(tj)(v) can be computed using only values of t̂ on arguments in the
segment [0,Zj]. (The Zj are computed downward, for j = x,x-l.... 0.)
Make sure that z. > z. t. is replaced by its restriction t. I [0,z.].J 1+1 J v J 1 J

(3) For each i < x , O ^ j S x w e test whether there exists an argument

z £ ^o+',Zj"̂ where A(i,z,t.(z)) * true. If such an argument z exists we
say that i violates the extension t.. No i < x violates the non-exis-

J
x+1 'tent extension t

112

(4) If i violates the extension t. and does not violate the extension t. .
J J+l

then we declare the gap-section <tj,tj+ j> unsafe for i.

Note that each index i has at most one gap-section which is declared
unsafe for it. Since we have x indices and x+1 gap-sections we safely may
execute (5).

(5) Select a gap-section <tj,tj+j> which is not declared unsafe for any in
dex. Extend t by t̂ over the segment [y^+1,z^]; put y^ = ẑ , and pro
ceed to the next stage.

It is not difficult to verify that the function t constructed in this
way satisfies the condition:

implies

3x[A(i,x,t(x)) * true]

3x[A(i,x,r(t)(x)) * true].

Now the operator gap theorem for strong classes is a straightforward
corollary.

To illustrate the above algorithm we represent in diagram 3.2.5 the
behaviour of a single index i with respect to the local gap-sections
<t^,t^+ j> created in (2). The vertical lines represent A-run-times of index
i. If Oî (x) is finite this is indicated by a bounded vertical line termi
nating at but not including the point <x,a^(x)>. An unbounded line corres
ponds to an infinite value for o l (x). Consequently at intersections of the
graph of tj with a bounded line one has A(i,x,t.(x)) = false, where for un
bounded lines one has A(i,x,tj(x)) = void.

The local gap-section <t.,t. .> may be visualized as the area in be-j J + *
tween the curves t. and t..,. Since z. , < z, it is an open local gap-sec-j j + 1 j +1 ’ v 6 v
tion.

In the situation described by the diagram the gap-section <tj+ 2 »tj+2 >
is unsafe for i since there is an A-run-time of i which violates cj+ 2
whereas i respects tj+^ on the interval [y^.z^j].

The concepts of a gap-section <t^,tj+ j> which is unsafe for an index i,
upon which one algorithm is based, is defined in terms of strong violations;
the gap-section <tj,t^+ j> is unsafe for i, provided i strongly violates t̂
over the interval [y^+ljZj] without strongly violating t.+j over the inter-
va! [y0+l,zj+,].

113

To get an algorithm which works correctly for weak classes we must
consider weak violations instead of strong ones. Consequently we will need
a new unsafety concept. This new unsafety concept is defined as follows:

DEFINITION 3.2.6. The gap-section <tj,t^+ j> is called weakly unsafe fop i
provided i weakly violates t^ over the interval [yg+l,Zj] without weakly
violating t. + | over the interval [y^+l.z^j].

The reader may convince himself that, given this concept of "weakly
unsafe", the earlier argumentations remain valid. In particular one can
prove that each index has at most one gap-section which is weakly unsafe
for it. Hence using the pigeon-hole principle as before one proves the ex
istence of an extension t. such that the gap-section <t.,t. ,> is not

J J J + l
weakly unsafe for any index i < x.

There is however a hidden snag in this argumentation. In the algorithm
as given by P. YOUNG it is not possible to determine whether a gap-section
is weakly unsafe for an index i or not. To understand this we should remem
ber that the tests are executed along the graphs of the functions t.. The
tests moreover only yield answers of the type A(i,x,tj(x)) = true or
A(i,x,tj(x)) * true.

We consider the situation in more detail in diagram 3.2.7 below. The
diagram represents all possible behaviours at an argument x of the run-time
OL with respect to the open local gap-section <tj,tj+ j>. Situations
(Xj),...,(x^) are discussed separately.

114

Diagram 3.2.7

(x=x j)

(x=x2)

(x=x3)

A(i,x,tj(x)) = A(i,x,t^+] (x) = true; no problem.

A(i,x,tj(x)) * true; A(i ,x, t. +j (x)) = true; in this situation we

positively know that i weakly violates t. at x^.

or (x=x4) A(i,x,tj (x)) / true-, A(i,x,tj+](x)) * true.

In this situation we only know that if i weakly violates t. at x
it also weakly violates t.+] at x, but it is not possible, without
execution of further tests to determine whether there are weak vio-
tations or not.

(x=x5) A(i,x,tj(x)) = true. Although the value of tj+)(x) is undefined
there is no problem since whenever t. is selected to extend t, we

still have T(t) > t and therefore A(i,x,r(t)(x)) = true will be
valid also.

(x = x 6) or (x-x^). A(i,x,tj(x)) * true and t^+ j(x) is undefined. Again it
is impossible to determine whether there is a weak violation or not.

Our conclusion is that the information which we have gathered is es
sentially incomplete. There may exist run-times o l(x) which are larger than
all values t.(x) for which x e Vt.. Let us call such a run-time an unehealced

J J
large run-time. The other run-times cr(x) are called checked run-times.

The problem is that we cannot say whether or not an unchecked large
run-time a.(x) at x weakly violates the extensions t. for which x e Vt..1 . . . J JNow we return to the definition of "weakly unsafe". The gap-section
<tj,tj+ j> is weakly unsafe for i provided there exists a weak violation by
i against t̂ and there exists no weak violation by i against t.+ j. Since it

1 15

is not possible to determine whether or not weak violations are perpetrated
by unchecked large run-times, we look for a more general concept of
"unsafety", such that all weakly unsafe gap-sections are also unsafe in
this more general sense.

DEFINITION 3.2.8. We say that the gap-section <t.,t.+ j> is potentially
weakly unsafe for i if the following situation occurs;
(a) tj is weakly violated by a checked run-time, or there exists an un

checked large run-time oo(x) with x e Vt. \ Vt. + ̂ ,

(3) t.+| is not weakly violated by a checked run-time.

Note that it is decidable whether <tj,tj+ j> is potentially weakly un
safe for i.

LEMMA 3.2,9. If the gap-section <t^,tj+|> is weakly unsafe for i then it is
also potentially weakly unsafe.

PROOF. Clearly condition (3) holds since otherwise i weakly violates t^+ j.
Let a^(x) be a run-time weakly violating t^. If Ol (x) is a checked run-time
we must have a situation like at x = x^ in diagram 3.2.9. If Ol (x) is un
checked then the situation is like at x = x, or at x = x,. In the firstJ D
case however, cj+| is weakly violated and consequently <t^,tj+j> is weakly
safe for i, contradicting our assumption. Hence we have a situation like at
x
fied. □

Xg. Now the situations x = x^ and x = x^ both make for (a) to be satis-

The solution therefore should be to replace the concept "weakly un
safe" by "potentially weakly unsafe". But this leads to new complications
since it is possible that more than one gap-section is declared potentially
weakly unsafe by a single index i. This situation is illustrated in diagram
3.2.10.

Diagram 3.2.10 shows that many gap-sections are spoiled by unchecked
large run-times of or.

116

Diagram 3.2.10

From the definition of "potentially weakly unsafe" one reads that only
the unchecked large run-times C^(x) with x e V t ̂ \ Ut ̂+ ̂ are dangerous.
These run-times could be eliminated if, by some trick, we would be able to
extend t. , over Vt. in such a way that the relation "t. , 2 T(t) if t is j+1 J J+l
an extension of t." remains valid.

J
Suppose that such a trick is found. Then we can reformulate the defi

nition of potentially weakly unsafe, which now becomes:

DEFINITION 3.2.11. The gap section <t^,t^+]> is potentially weakly unsafe'
for i if the following situation occurs:

(a') tj is weakly violated by a checked run-time,
(6) tj +] is not weakly violated by a checked run-time.

Note that in this formulation the unchecked large run-times no longer
figure. Moreover, if Vt^ = ^tj+] there is no longer a difference between
"weakly unsafe" and "potentially weakly unsafe". To see this assume that
Vt ̂ = Pt. + |. We know already that "weakly unsafe" implies "potentially
weakly unsafe"; the latter is equivalent with "potentially weakly unsafe'"
since Vt ̂ = Ptj+]. Conversely from (a1) and (B) it is clear that <tj,t^+]>
is weakly unsafe for i.

This situation is illustrated in diagram 3.2.12.

117

In the situation represented in diagram 3.2.12 the gap-section
<tj+j,tj+2 > is weakly unsafe for i and the other two gap-sections are safe
for i. Without use of the extension of the t. all gap-sections are poten
tially weakly unsafe for i.

The trick used to extend the t. , over Vt. is a one-staee look-ahead
J + l J

in the algorithm. The reason that t. , is not defined over Vt. is that t. ,
J+l J J+l

must be an upperbound for T(t) assuming that t is an extension of t.. To
compute T(t)(x) for x e Vt. we may need values t(x) for x 4 Vt., which are
not yet fixed.

However, by selecting t to be an extension of t. we restrict the pos
sible values of t on a larger domain, because t is going to be an extension
of one of the x+2 extensions u^ . generated during stage x+1. Without loss
of generality we may enforce that all extensions u. . are defined over a

V, j
domain sufficiently large such that T(u. .)(z) is defined for all z e Vt..

t , j j
Therefore, in order to generate an upperbound for T(t) on Vt. based on

the assumption that t is an extension of t^, the x+ 2 next stage-extensions
u. . and the values of T(u. .)(z) for z e Vt. only need to be computed one
■•■»J tiJ J

stage in advance. This way we compute closed local gap-sections.
This one-stage look-ahead is illustrated in diagram 3.2.13.

118

Diagram 3.2,13

The informal discussion above contains all essential ideas behind the
operator gap algorithm for weak classes. The next section contains an in
formal description of a program executing the one-stage look-ahead. Next it
will be that the function computed by this algorithm satisfies the condi
tions of lemma 3.2.2.

3.2.3. THE OPERATOR-GAP ALGORITHM FOR WEAK CLASSES

The algorithm described in this section computes the function t which
is claimed by lemma 3.2.2. This lemma is repeated below:

LEMMA 3.2.2. Let A be an acceptance relation, let T be a total effective
operator with T(t) S t and let f be a total function. Then there exists a
function t > f such that for every index j the following holds:

3x[A(j ,x, t(x)) * tr<ue and A(j ,x,r (t) (x)) = true]

implies

3x[A(j ,x,r(t) (x)) = false].

The algorithm is executed stage-wise. We describe stage k. Assume that
at the beginning of stage k t(x) is defined over the interval [0 ,y^];

119

furthermore there are k+1 programs of functions t^, i = 0 ,...,k which
satisfy:

(1) t^(x) = t(x) for x £ y , 0 £ i £ k.
(2) ci+1(x) È r(ti)(x) for x > yQ , 0 < i < k.
(3) t^(x) 2 f(x) for all x, 0 £ i £ k.
(4) t^(x) is non-decreasing in x (by T(t) 2 t and by (2) t^(x) is non-de

creasing in i as well).

Finally there exist k+1 pointers z^ (0£i£k) which satisfy:

(5) z 2 y +1; z. 2 z. +1 for 0 £ i < k.k 0 l l+l
(6) The support of r^t^) on [0,yQ+l] is contained in [0,z^].
(7) The support of F(t^) on [0,z^+]] is contained in [0,z^] for 0 £ i < k.

Remark that the above conditions are satisfied after execution of (1)
and (2) in the algorithm of P. YOUNG which is described in the preceding
section.

The computations of stage k can be described as follows:

(1) For 0 £ j £ k we construct k+2 programs for the next stage-extensions
u. , which are defined by:J »1

u. q = \x [i f x < z . t h e n t A x) e l s e max(f(x),Uj q (x - 1)) f i] ,

u. , = \x[ifxiz. then t .(x)J»1 -,L 3 ---- 3
else max(f(x),u. ,(x-l),u. , , (a:),T(u. , ,)(x)) fi]-------- 3 , 1 3,1 -1 3,1-1

for 0 < 1 < k+ 1 .

(2) For 0 < j < k, k+1 2 1 2 0 we construct a pointer v. . which satisfies:
J >

the support of T(u^ k+]) on [0,Zj + l] is contained within

[0 ,Vj,k+l] for 0 £ J s k >
the support of P(u. 1) on [0 ,v.] is contained within
[0 ,v. ,] for 0 £ j.l £ k, moreover v. , > v. ,J »1 J , 1 J » 1+1

t the pointers v. ̂ are computed downwards for 1 = k+l,k , . . . , 0 t J »
•f these computations correspond to (1) and (2) in the algorithm of

P. YOUNG <f

(3) For 0 £ j £ k we compute a function segment g. on the interval
[yQ+l,Zj] which is defined by:

120

gj = Xz[if z 4 [y^+l,zf\ then loop
elif z < z . , then t . , (zj
else max{V(u. ,J(zj \ l < k+1} fi]

3 s t
'r By (2) the support of T(u. .) on [y +l,z.] is contained withinJ > 1 0 j

[0 ,v.]; furthermore by assumption r(t.)(z) = P(u.)(z) < t. (z)
J > f J J > i J + !

for z £ z. ,. t
J + l

(4) For 0 S j < k and 0 S i < k-1 we check whether there exists a
z e [yQ+l>zj] with A(i,z,tj(z)) * true and A(i,z,g.(z)) = true. If such
a z exists we say that i enters the j-th local gap-section.

(5) For i = 0,...,k-l select the largest j such that the index i enters the
j-th local gap-section. If such a j exists (say j^) then we declare the
j^-th local gap-section weakly unsafe for i.

(6) Select a (the lowest) j such that the j-th local gap-section is not de
clared unsafe for any index i, with 0 S i < k-1. Denote this j by j^.
i Such an index j exists by the pigeon-hole principle, f

(7) Extend t by t- over [y +l,z-]; put y := z^ , for 0 < j < k+1, JQ U JQ U JQJo
put t. := u • ■, z .J J0>J J Jo>J '

(8) Proceed to stage k+1.
t Remark that by execution of (7) the assumptions (1),...,(7) become

correct before entering the next stage, t

To initialize the program one executes onece (1) and (2) using k=0
and a function t which is defined over the empty segment [0,-1]. This
yields two programs t and tj S f and two pointers z^ and z^. We put
y^ = -1. Now the assumptions (1),..., (7) as assumed to hold before entering
stage 1 are correct.

Next we start stage 1.

We should emphasize that the algorithm manipulates on programs for the
functions t^ and that during elaboration of the algorithm these programs
are executed at several arguments. The programming environment in which the
above algorithm can be formally described must include therefore facilities
which permit to create procedures at run-time.

To prove lemma 3.2.2 we present an informal and intuitive correctness
proof for the above algorithm.

The reader should convince himself that each stage in the algorithm
terminates. One uses the fact that for each total effective operator r and

121

each total function t and each argument x, an integer y can be found effec
tively so that the support of T(t)(x) is contained within the interval
[0 ,y] (although the y found this way is in general not minimal, cf. §1 .2 .4).

It is clear from the description that after a finite number of stages
t is defined over a finite segment; moreover t(x) is defined before or at
stage x+1 since each stage properly extends the defined part of t.

Now let i be an index with the property:

3x[A(i,x,t(x)) * true and A(i,x,r(t)(x)) = true],

we prove that this implies:

oo _ .
3x[A(i,x,r(t)(x)) = false].

First we discard those arguments and values of t which are defined
before or at stage i.

Let x be an argument so that t(x) is defined at stage k with k > i and
so that

A(i,x,t(x)) * true and A(i,x,r(t) (x)) = true.

By abuse of notation we give y^, Z y t ̂ , u^ ^, v. ^, g^ and the
meaning they have during execution of stage k (6).
Hence t | [0,Zj^] = tj^ | [0,Zj^] for a so that x e [y^+1 ,ZJo^ an<* S°
that the j -th gap-section is not declared weakly unsafe for any index i'
with 0 S i' < k-1 ; in particular the j -th gap-section is not declared
weakly unsafe for i.

Now by assumption i enters the j -th gap-section, for let t be extended
during stage k+1 by the next stage-extension u; n . Then the support of

Jo^or(t)(x) = 1 q) contained within [0 ,vj^ ̂] and by definition of
gj^ we have

gj0(x) " r (uj0 ,l0)(x) -r(t)Cx).

Therefore A(i,x,tjQ (x)) * true and A(i,x,gj (x)) = true. Since the
jg-th gap-section is not declared weakly unsafe for i we conclude that i
enters also a j-th gap-section with j > j . This implies that for some

122

z e [y^+l.Zj] we have

A(i,z,tj (z)) * true and A(i,z,ĝ. (z)) = true

hence A(i,z,tj(z)) = false.
Since j > j_ one has t.(z) > t- . ,(z) > r(t;)(z) = T(t)(z) and there- U j J0+i J0

for A(i,z,tj(z)) = A(i,z,r(t)(z)) = false.
Our conclusion is that for each stage k where values t(x) are defined

so that A(i,x,t(x)) = false and A(i,x,r(t)(x)) = true at least one new
value t(z) is defined with A(i,z,T(t)(z)) = false.

Using the fact that only finitely many values of t are defined during
a single stage we conclude that

3x[A(i,x,r(t) (x)) = false]. □

123

CHAPTER 3.3

THE UNION THEOREM

3.3.0. INTRODUCTION

This chapter contains a discussion on the union theorem of
E.M. McCREIGHT and A. MEYER [MCM 69]. This theorem states that the union of
a sequence of complexity classes named by a non-decreasing sequence of
total names is again a complexity class. This complexity class is named by
a total function, which is computable from programs for the names in the
sequence. The theorem is a typical example of a theorem which can be
translated straightforward to yield a union theorem for strong abstract
resource-bound classes.

There are however further generalizations, which state that the theo
rem holds also for weak classes and partial names. The condition of mono
tonicity of the names includes in this case also the condition that the
sequence of domains of the names is a non-increasing sequence of sets.

In this chapter we concentrate on the most complicated case (weak
classes with partial names). The other cases are left to the reader for
verification.

In 3.4.3 and 3.4.5 we will meet another type of generalized union
theorems where the condition of monotonicity of names is replaced by the
condition that the classes of indices themselves form an increasing sequence.

An application of the union theorem is the translation of complexity
classes modulo sets of exceptional points into complexity classes with par
tial names.

In section 1 we give the proof of the classical union theorem; next in
section 2 the modifications needed for the generalization are explained. In
section 3 we present the design of our union algorithm, followed by a cor
rectness proof in section 4. (A formal program can be found in the appen
dix.) Section 5 contains applications of the union theorem.

REMARK. The terminology "j respects t" which is used frequently in this
chapter is equivalent to j e F^(t) (j e F^(t)) depending on the type of re
striction considered.

124

3.3.1. THE CLASSICAL UNION THEOREM

In the context of strong abstract resource-bound classes the formula
tion of the union theorem reads:

THEOREM 3.3.1. [Union]. Let (t^)^ be a sequence of total functions so that
ViVx[t.(x) ^ t. .(x)]. Then there exists a total function t. so that: t i+l inf

V ■ ❖'!„£>•
PROOF. The function t^ ^ is computed by a stagewise algorithm. We present
the description of stage x below.

stage x: (1) guess[x] := x;

(2) for k <■ x do_ compute (t^(x)) odj

(3) vat := t (x);x
(4) for k ^ x do

if not (A(k,x, (x)) = true) then

vat := minfvat, t ggs (x));
guess[k] := x+1

fi od;

(5) t. Jx) := vat;vnf
(6) go to stage x+1

The algorithm is started at stage 0.
This algorithm is called the standard algorithm during the next sec

tions of this chapter.
It is clear from the totality of the t^ that t^^(x) is computed at

the end of staqe x. Hence t. ̂ is total.
lnf a A

To prove the equality II F0(t.) = Fc(t.) we look for a fixed j ati o i o inr
the two possible behaviours of the value of guesstj].

Case 1) guesstj] is unstable (i.e. guess[j] grows unboundedly):

This means that the run-time a.(x) is larger than t.(x) for arbitrar
ily large x and i; hence j] U F(t.). Furthermore for each stage x where

i 1
guesstj] is redefined a violation by j at x against t.
j 4 F(tinf).

inf is created. Hence

125

Case 2) guess[j] stabilizes at i.

This implies that j does not violate t^ at arguments x with x larger
than the stagenumber of the stage during which guess[j] := i is executed.
Hence j e F(t.) c y F(t.).t x t

For each x the value of t^^Cx) is defined during stage x; moreover,
this value euqals tfc(x) for some k < x. However, if k < x then a value
guess[j], which equalled k at the beginning of stage x, equals x+1 at the
end of stage x. Hence a "low" value of t^^(x) implies the disappearance of
a low guessvalue. At each moment during the computation only a finite num
ber of guess—values less then 1 are alive in the algorithm; moreover after
termination of stage 1 this number only decreases.

One concludes from this that tinf(x) > t^x) for almost all x. Since
cij (x) < t^(x) almost everywhere we derive the relation

Vx[a.(x) < t. (x)] j int

which implies j e F(t. ^).
In both case we have found

j e y F*(t.) ill j e F^(tinf).

This equivalence proves the theorem. □

Readers familiar with the proof of the naming theorem should recognize
the similarity between this proof and the above argument. In fact, the
above reasoning is a simplification of the original proof of the union
theorem, which was more related to the naming theorem. We return to this
subject in 3.A.3.

The arguments in the foregoing proof represent the essential ideas of
the generalization. The value guess[j] specifies simultaneously the bound
index which index j is supposed to respect, and a priority number. The
value of t^^(x) could be defined as the value of t^(x) where k is "the
lowest bound-index violated against at x". In future this k shall be called
the bound-index used at x.

The correctness of the program (or some generalization of it) can be
expressed by means of the following four correctness claims:

126

Claim 1 :

Claim 2:

Claim 3:

Claim 4:

If guesstj] is unstable, then j violates t ^ ^ infinitely many
times.

If j violates t^ infinitely often, then guesstj] does not stabi
lize at a value £ k.

If j respects a bound t^ then guesstj] stabilizes.

If guesstj] stabilizes then j respects t^^.

We formulate two more assertions, which seem rather complicated for
the present case, but which are designed for the generalizations:

Assertion 1. Let t^n^(x) defined (at stage z) using bound-index k. Let j
be an index and let i be the value of guesstj] at the moment t^n^(x) is de-
fined. Then we have:

i > k or ACj.x.t^x)) = A(j ,x,tinf(x)).

For the standard algorithm Assertion 1 is valid. We know that z = x.
Assume that i £ k. Clearly it is impossible that guesstj] has been rede
fined during stage x, for in this case i > x 5 k. Consequently we must have
A(j,x,t^(x)) = true, but now i £ k implies A(j,x,t^(x)) = A(j ,x, t ^ ^ (x)) =
= true, which proves the assertion.

Assertion 1 becomes interesting when we treat the case of weak re
striction.

Assertion 2. For each n the bound-index used at x, denoted by k(x), satis
fies

00 _ _Vx[k(x) > n].

By this assertion (which was used explicitly in the above proof)
t. .(x) 2 t (x) almost everywhere. The correctness of the assertion is inf n
based on an exhaustion of low guess-values, which are mortal when they are
used as bound-index at x.

{Dieses war der erste Streich
Doch der Zweite folgt sogleich.

Max und Moritz Wilhelm Busch}

127

3.3.2. MODIFICATIONS TO THE UNION ALGORITHM

The modifications needed to construct a union algorithm which applies
to weak classes with partial names, are of different types. To tackle the
partiality of the names, we replace the computation of the bounds t^ by an
enumeration of their graphs. To deal with the weak restriction we replace
the one-phased test on strong violations by a two-phased test on weak vio
lations. Finally there are modifications to the synchronization of the al
gorithm.

These types are discussed separately; application of a well-chosen
selection yields the union algorithms for the two generalizations which are
not treated explicitly in this treatise.

MODIFICATIONS TO DEAL WITH PARTIAL BOUNDS

The idea is simple. Instead of computing the values of t^(x) which are
needed at a certain moment, a dovetailed computation is used to enumerate
all values of t^(x) (i,xelN) simultaneously.

In the standard algorithm the tests on violations at x are executed
when the values of t^(x) are known for i = 0,1,...,x. The example below
shows however that these tests should not be delayed upto this moment in
our new algorithm.

EXAMPLE 3.3.2. [Do not wait until t^(x),...,tx (x) are known]. Let

t^ = Xxlif x S, i then loop else 0 fi]

For each i we have F(t.) = F(zero). However for each x t„(x) is undefined;
if we have to wait until all values t^(x) with i :£ x are computed, we have
to wait forever. Hence an algorithm, based on this principle computes the
empty function e. However

U F(t.) = F(zero) * F(e).
i 1

Our policy is therefore to use each value t^(x) which is enumerated at
once for the testing of the indices j with guesstj] = i. It is however pos
sible that other indices j' with guesstj'] = i' < i are not yet tested at x
(as t^,(x) was not yet enumerated).

128

In general these indices j' might force the value of t^^(x) to become
smaller. In this respect the value of guess[j] acts as a priority number.
The indices with lower guess-value should be tested first.

At this point the condition of non-increasing domains can be applied.
If t^(x) converges, then t^(x) converges also for i < k. Therefore we can
compute all t^(x) for i < k if we know that t^(x) has been enumerated.
This allows us to "fill-in" the "holes" in the table of known values of
t.(x).

Alternative solutions to this problem are:

(i) Replace the programs computing t^(x) by a single program T(i,x) which
has a run-time monotonically increasing in i. (This is possible by a
variant of the monotonicity lemma 1.5.5.)

(ii) Use the table of known values only as far as it is complete.

Each of these modifications allows us to generate the values of t^(x)
in an usable order.

In the standard algorithm the value of tx(x) is used also as an escape
definition if the situation arises that none of the indices introduced so
far violates at x. This escape definition is used to enforce totality of
t. £. If partial bounds are used, these escape definitions are not needed.
It is however possible to apply the definition t^ ^(x) = tx (x) whenever
t (x) is enumerated and execution of all tests induced by this appearance
does not yield a value for t^^(x). The proof, however, becomes more com
plex.

A complication which is unconceivable in the standard algorithm is the
fact that tests at x are performed at widely different stages in the compu
tation. This opens the possibility that a single index j is tested several
times at the same argument x. This situation may arise in the following
way:

Index j has guess[j] = i at a certain stage.
t^(x) is enumerated.
A test shows that i violates t. at x.J 1
guess[j] is redefined (guesstj] := i' where i' is chosen large enough that

no value of t^,(x) has yet been enumerated).
At the time t^,(x) is enumerated we are invited to perform another test on

j at x.

This multiple testing at a single argument could easely lead to in

129

finite testing at a single argument. Then guesstj] could become unstable
because of a violation of j at a single argument x against all bounds t^,
and this way Claim 3 collapses. It is therefore clear that infinite testing
must be prevented. Two solutions which can be given are:

(1) Each test on j at x is registered to prevent multiple testing.
(2) No values t^(x) with i > x are enumerated. This does not necessarily

prevent multiple testing (depending on the way guess[j] is redefined)
but prevents infinite testing.

In our program in 3.3.3 we use the second technique as this is easier
for implementation. We need no extra data structure to store all tests
which are executed. As we will see our method of redefining guesstj] pre
vents in fact multiple testing as well.

MODIFICATIONS NEEDED TO DEAL WITH WEAK RESTRICTION

From the definition of weak restriction one can derive that weak vio
lations by an index j against a bound t^ cannot be found by a single test;
they have to be enumerated.

Given a value t̂ (x) we can test whether A(j,x,t̂ (x)) = true or not.
If this is not the case we have to search for a value z > t.(x) withl
A(j,x,z) = true to discriminate between A(j,x,t̂ (x)) = void and
A(j,x,t̂ (x)) = false. In our program such an index j is called suspect at a:
and a so-called suspect report (SR) is placed on the suspect list (SL). The
suspect report contains the following information:
(1) the suspect index j
(2) the argument x
(3) the bound-index i
(4) the value t̂ (x)
It is called a suspect report on j at x against i with value tdx).

In our algorithm i always equals the value of guess[j] at the time
the SR is created.

We will consider at returning occasions in the course of the computa
tion all items on the suspect list, to see whether some of them represent
weak violations. To do so we use an ever increasing test value z to test
A(j,x,z) = true, whenever an SR on j at x is present. If for a certain SR

130

this test yields a positive answer, a weak violation is detected. The sus
pect report <j,x,i,t^(x)> is transformed into a violation report (VR)
having the same format and values. Violations reports are placed in a vio
lation queue (VQ) to be used in the computation of t^nf(x).

In order for Claim 2 to be valid, it is necessary that guesstj] is re
defined if a violation by j against some bound index i > guess[j] is dis
covered (only a finite number of violations may be overlooked). At the same
time it is not permitted to redefine guess[j] before it is certain that a
corresponding violation of j against t^ ^ is (°r has been) created, since
otherwise Claim 1 becomes invalid.

This problem is solved by giving a correct method to select the bound-
index used at x. In the standard algorithm this bound index k equals "the
lowest bound-index violated against at x". If we should be able to use a
similar definition of k as function of x in our modified algorithm, i.e.
something like "the lowest bound-index weakly violated against at x", our
problem would have been solved. However, the above description represents
a non-computable function.

In the situation where t^, has been violated against at x there may
exist suspect reports at x on the suspect list against bounds t^ with
i < i', which might be (or might not be) transformed into violation reports
at much later stages, and this question is undecidable.

The correctness assertion Assertion 1 formulated in the preceding sec
tion now becomes relevant. Let j be an index having an SR <j,x,i,t^(x)> on
the suspect list. If, at the time where it is discovered that j violates t^
at x, the value of t. ,(x) is not yet defined then we still have the free-
dom to select the bound-index k used at x in such a way that k S i. It is
not a good policy to postpone the definition of the value t^n^(x), until
all SR's at x against bound indices i' s i have become VR's, for it is im
probable that all of them will do so.

Consequently it is thinkable that the violation by j at x against t^
is discovered at a time where t. _(x) already is defined, using a bound-m t
index k > i.

Now assume that the bound-index k used at x was selected in such a way
that Assertion 1 holds. If guess j was redefined during the period start
ing at the time where the SR <j,x,i,t^(x)> was created and the current
time, we may assume that at the occasion of this redefinition a violation
by j against t. was created (or was recognized to have been created at a

131

still earlier time). Consequently we are free to consider, in this case
the new detected violation as having been punished "in advance". (In our
final algorithm, a "clean-up" of the suspect list at the occasion of the
redefinition of guesstj], makes this reasoning unnecessary.)

However, if guess j was not redefined we must redefine it at the cur
rent stage in the algorithm. At the same time we no longer have the freedom
to create a violation by j against t. ^ at x since the bound-index k used
at x has already been selected, and this may have resulted into the problem
that k > i. But in this situation we may apply Assertion 1, which yields
the relation

A(j,x,ti(x)) = A(j ,x,tk(x)) .

This equality shows that is is irrelevant, for the case that j actually
violates t^ at x, whether this violation is "punished" by setting t^n^(x) =
= t.(x) or t.nf(x) = tk(x).

It is therefore sufficient to select the bound-index used at x in such
a way that Assertion 1 holds. This selection proceeds as follows:

The first time an SR at x is transformed into a VR (by finding an SR
<j,x,i,t^(x)> and a testvalue z with A(j,x,z) = true) this testvalue z is
used to test all SRs at x on the suspect list. These tests lead to a number
of violation reports. The bound-index used at x is the lowest bound-index
violated against at this first occasion.

The above method is consistent with Assertion 1■ Let <j 1 ,x,k,tk(x)>
be the VR used to define t^n^(x). If an index j has guesstj] £ k then there
is no problem. If guesstj] = i < k and if there is an SR <j,x,i,t^(x)> on
the suspect list, then we know that for the test value z A(j ,x,z) * true.
However, we know also that for the index j' A(j',x,tk (x)) * true whereas
A(j',x,z) = true. Hence we have the inequalities: z > tk (x) > t.(x) which
implies

Atj.x.t^x)) = A(j,x,tk(x)) = A(j,x,z) * true.

If i < k and if there is no SR on j at x on the suspect list then we
use the fact that j was tested at x against t̂ and was accepted. (This fact
does not yet result from the design explained so far; we will have to en
force it.) In this case we have therefore A(j,x,ti(x)) = true = A(j ,x,tk(x)).

132

MODIFICATIONS TO THE SYNCHRONIZATION

In the preceding argumentation some other correctness conditions are
hinted at, which still have to be enforced. These conditions are related to
the global synchronization of the algorithm. In the standard algorithm this
synchronization is performed by the stagenumber x. This stagenumber repre
sents concurrently:

(a) the maximal argument x for which the bounds t^(x) are computed
(b) the maximal bound-index i for which the t^(x) are computed
(c) the largest index j introduced in the computation
(d) the largest guess-value created by introduction at or redefinition be

fore stage x; (at redefinition during stage x a guess-value is set
equal to x+1 in order to make it larger than all guess-values existing
before).

This accumulation of functions seems irrelevant. For reasons of modu
larity we introduce four different indicators for these maximal values
named maxarg, maxbnd, maxind and maxguess.

In our modified union algorithm two more functions of the stagenumber
will be visible; these are represented by the variables maxaomp and maxtest.
The variable maxaomp represents the number of steps used in the enumeration
of the t^(x) and maxtest is the ever increasing testvalue used to detect
weak violations.

To enforce that no index j misses a test against a guessed bound t^
when t^(x) is already known before guess[j] gets the value i, it is suffi
cient to keep maxguess 2 maxbnd.

The indicators maxarg, maxbnd and maxind control the values t^(x)
which are enumerated and which tests are executed.

It is not possible to enforce in this way that all SRs on j presents
on the suspect list are SRs against the bound t^ where i equals the current
value of guess[j]. To enforce this relation one should remove from the sus
pect list all SRs on j whenever one of these SRs is transformed in a VR.
This modification smoothes the argumentation, but is is not necessary in
order to prove the correctness of the algorithm.

Using the strategy that no value of t^(x) is enumerated for i > x the
phenomenon of multiple testing of an index j at a single argument x is pre
vented by keeping maxguess > maxarg. If guesstj] is then redefined, its
value is larger than all arguments x for which values of t^(x) were enumer

133

ated, and therefore also larger than all arguments at which j was tested
before. These arguments x are never used again to test j since the corres
ponding values of t r. (x) are never enumerated. guessLjJ

To be able to use the value t (x) as an escape definition for t. (x)x inr
one should keep maxtest â the largest value of t^(x) enumerated so far;
this is needed to keep Assertion 1 correct.

3.3.3. A STAGEWISE UNION ALGORITHM FOR WEAK CLASSES WITH PARTIAL NAMES

In this section a stagewise algorithm is presented which computes t ^ ^
in this case of weak classes with partial names. The description is an in
formal one; it is the skeleton of the program which can be found in the ap
pendix. For example all declarations are deleted.

It is assumed that the following options are active:

(a) no escape definitions are used.
(b) no t^(x) with i > x is enumerated.
(c) if a violation by j is detected all suspect reports on j are deleted.
(d) multiple testing is prevented by having maxguess = maxarg.

These options are not essential, but they simplify the argumentation
in the next section.

2The sequence of names t. is computed by the single program cp (i,x)
2 2 1 *" with run-time $ t(i,x); tp (i,x) = t.(x).

^ 1The guess-values are stored in the infinite array guess. We need
also an infinite array to keep track on the values t^(x) which already have
been enumerated. This array is called taomp. The element tcomp[x] is the
first bound-index i such that t^(x) is still unknown.

The values of t^ ^ are stored in the infinite array tinf. The operator
undefined tests whether a certain variable has been given a value by the
program or not.

The program uses the ALGOL 6 8 semantics of a loop: to execute a loop
the values of the bounds on the controlled variable are elaborated and
copied and afterwards the loop is executed, using these static values.

*) .In the formal representations these infinite arrays are represented by
flexible arrays. Insertion and inspection of values is performed by the
procedures described in section 1.1.5.

134

Therefore a loop terminates if the bounds determine a finite domain, and if
for each value in this domain the embraced clause terminates.

Suspect reports and violation reports are structured values of the
mode struct(int ind,arg,bnd,val).

Each stage consists of 6 sections, called the blocks of the algorithm.
stage x is described below.
<f 0 t synchronization: maxcomp := maxtest maxguess maxarg :=

maxind := maxbnd x;

$ 1 f introduction: guesslmaxind] maxguess; tcomplmaxarg]:= 0;

f 2 $ enumeration and test on suspectness:

for z to_ maxarg do

begin newcomp := taomplz]-l f largest known i for which tAx) is known
for i from tcomplz] to mintz,maxbnd) do $ min(z,maxbnd) = z ‘f

if^>^(i,z) £ maxcomp then newcomp := i fi_ od;
f which new values come out at this stage? f

*)
ti

for i from tcomplz] to_ newcomp do_
begin val := if>̂ (i,z) $ compute value t;

for j to_ maxind do_

if guesslj] = i and not (k(j,z,val) = true)
then attach (suspect list, (g,zsi,val)) fi od

t and use this value to test all indices introduced so far $
end od;

tcomplz] := newcomp+1

t these values are enumerated and used for tests $
end t 2 $ od;

<f 3 <f working through the suspect list:

for item over suspect list do_

if M i n d of item, arg of item, maxtest) = true

then attach (violation queue, item) fi_ t violation detected t od;

Since the dyadic operator " - " is not implemented this trick to detect
whether new values are enumerated is illegal in our formalized algorithm.

135

for item over violation queue do
begin

for iteml over suspect list do
if ind of item = ind of iteml
then delete (iteml, suspect list) fi_

t delete all suspect reports on violator f od;

guesslind of item] := maxguess + 1
end ̂ 3 "r od;

$ 4 f definition of tinf:

for z to_ maxarg do_

if undefined tinflz] then

begin violbnd := maxbnd + 1 f lowest bound violated against at z i;
val 0 f eventual value of tinf[z] $;

for item over violation queue do_

if arg of item - z and bnd of item < violbnd
then begin violbnd := bnd of item;

val := val of item

end

fi od;

if violbnd s maxbnd t serious violation at z detected $
then tinflz] := val fi

end

fi_ $ 4 t od;

t 5 f cleanup: clear (violation queue);

goto stage x+1

The program is initiated by starting stage 0 with all values undefined.
Note that the following non-interference relations hold:

(1).... (5) leave the variables maxguess, maxarg, maxbnd, maxind, and
maxcomp invariant.
(0),(3),(4) and (5) leave guess invariant.
(0),(1),(4) and (5) leave the suspect list invariant; (2) only extends this
list and (3) only deletes from this list.
(0),(1),(2) and (4) leave the violation queue invariant; (3) loads this
queue and (5) clears this queue completely.
(0),(1),(2),(3) and (5) leave tinf invariant.
tcorrrp is only used in (2).

136

3.3.4. CORRECTNESS OF THE UNION ALGORITHM

By lack of appropriate tools, it is not possible to present a rigid
correctness proof of the union algorithm. The assertions formulated in this
section mostly consist of a close inspection of the algorithm during its
execution. In a few cases an assertion is shown to be invariant under the
execution of the algorithm, by showing it to be preserved under the indi
vidual parts of some modular decomposition; this is in essence an inductive
assertion method.

Readers who are already convinced of the correctness of the union
theorem by the explanation in section 3.3.2 and who are willing to believe
that the algorithm is designed according to our objectives, do better to
skip this section.

In this section the computation of the program in the preceding sec
tion is analyzed. A number of assertions are now formulated, yielding
Assertion 1 and Assertion 2 and the four correctness claims. These four
claims together prove that the function tinf computed by the program indeed
satisfies:

i FW(ti} = Fw(tinf)-

By assumption the functions t^(x) satisfy:

Vi,i' ,x[t^, (x) < °° and i < i' imp t^(x) < ti,(x)].

In the discussion the folloqing abbreviations are used:

(1) The status of the computation is mostly considered when its execution
is in between two blocks of a stage. This moment is denoted as:
•tn,(l)4- for stage n, beginning of block (1) and
{n,[l]^ for stage n, end of block (1).

(2) A suspect or violation report is denoted as a quadruple <j,x,i,t^(x)>;
we write <j,x,i,t^(x)> e SL or <j .x.i.t-^x)» e VQ to denote that this
suspect (violation)-report is present on the suspect list (violation
queue).

(3) Any identifier which is used in the program denotes in the discussion
its current value (at the moment considered).

137

FACT 3.3.3. [Termination]. Each stage terminates.

PROOF. It is sufficient to show that each block terminates. For the blocks
(0), (1) and (5) this is trivial. Block (2) consists of a for-loop embracing
two disjoint for-loops, which contain only elementary actions and elementary

. . 2 tests, with exception of the assignment val := ip^(i,z). This latter assign
ment is executed only if newcomp 2 i > tcomp[z], indicating that for a cer-

2tain i' > i we have <3> (i' ,z) S maxcomp. Now t.,(z) < 00 and therefore
t 2 1

t^(z) < “> also. Hence the computation of ipt(i,z) terminates.
Block (3) consists of a for-loop over the SL followed by a nested for-

loop over the VQ and the SL; these loops contain only elementary actions
and tests. Since the number of items on the SL and the VQ is bounded by
maxind x maxarg x maxbnd, both the SL and the VQ are finite.

Block (4) consists of a for-loop embracing a foor-loop over the VQ
which contains only elementary actions.

This completes the proof. □

COROLLARY 3.3.4. Each stage is executed. □

2 2FACT 3.3.5. Let 4>t(i,x) = y < ", i S x. Then cpt(i,x) = t^(x) is enumerated
during precisely one stage n with x s n S max(x,y). Moreover the predicate
"t^(x) is enumerated before or at stage z" is equivalent to the predicate P
defined by

2P(i,x,z) = z 2 x ccnd 3j[i < j < x and $ (j ,x) s z].

Hence n = pz[P(i,x,z)].

PROOF. In order to have t^(x) enumerated at stage z it is necessary that
during execution of the second loop in block (2) of stage z the relation
tcomp[x] S i < newcomp holds. Afterwards but before ■tx,[2]3' the assignment
tcomp[x] := newcomp + 1 is executed. Consequently if t^(x) is enumerated
during stage z one has tcomp[x] S i at -tz,(2)4- and tcomp[x] > i at -tz,[2]i-.
Since the value of tcomp[x] does not decrease during the elaboration of the
algorithm this shows that t^(x) is enumerated at most once.

The converse implication is easily seen to be true also: if
tcomptx] S i at -tz,(2)i- and tcomp[x] > i at ■tz,[2]3- then t^(x) must be enu
merated at stage z.

138

Next assume that t^(x) is enumerated at Stage z, i.e. tcomptx] 5 i at
•fcz,(2):K In order that newcomp is raised above i during the execution of
the first loop of block (2) of stage z one needs an index j with i s j S x
and <Ih (x) S z. Since moreover, z ^ x we conclude that P(i,x,z) holds. It is
clear that P(i,x,z) implies that P(i,x,z') holds also for z' > z. This
shows that P(i,x,z) holds whenever t^(x) is enumerated before or at stage z.

Conversely, assuming that tcomptx] S i at *z,(2)^ (so t^(x) is not
enumerated before stage z) and that P(i,x,z) holds, we read from the pro
gram that newcomp is increased and becomes indeed larger than i, and that
t^ indeed is enumerated. Hence P(i,x,z) implies that t^(x) is enumerated
before or at stage z.

The proof is completed by observing that P(i,x,z) is invalid for z < x
whereas P(i,x,maa;(x,y)) holds true. □

From the fact that the predicate P satisfies the relation

P(i,x,z) and j < i imp P(j,x,z)

we derive:

COROLLARY 3.3.6. [Correctness of enumeration]. If i S x and if t^(x) < °°
then t^(x) is enumerated at precisely one stage z. If moreover j < i then
tj(x) is enumerated before or at stage z.

FACT 3.3.7. If guesstj] is (re-)defined and gets value i then no value of
t^(x) is yet enumerated.

PROOF, guesstj] is defined for the first time at ^,(1)^. In this situation
guess[j] := maxguess S maxbnd = j. At this stage no values of t^(x) are yet
enumerated hence we should look at values enumerated before stage j . At
that time however maxbnd < j, so no values of t^(x) are yet enumerated.

If guesstj] is redefined during (3) of stage n the new value becomes
maxguess + 1 > maxbnd. Therefore no values of t ,(x) are yet known. □maxguess+1

COROLLARY 3.3.8. [Correctness of testing]. If at {n,(3)£ guess[j] = i and
if there exists a value t^,(x) with i £ i' < x which is enumerated before
•tn,(3)£ then j is tested at x against i during execution of (2) of a stage
before -in, (3)*.

139

PROOF. Using the predicate P from 3.3.5 we conclude that P(i',x,n) holds.
Now i S i' implies that P(i,x,n) holds also, hence t^(x) is enumerated
during execution of stage m (2) with m S n. From 3.3.7 it follows that
<m,(2)3- does not preceed the moment that guess[j] = i becomes valid. Now we
can conclude that the test A(j,x,t^(x)) = true ? is executed during execu
tion of stage m (2).

FACT 3.3.9. [Correctness of manipulation with reports]. Let A1(j) be the
assertion:
There exists a number (possibly zero) of SRs on j on the SL, all against
the same bound t^ where the bound-index i equals the current value of
guess[j], and the VQ contains no VR on j.

Let A2(j) be the assertion:
There exists a non-zero number of VRs on j in the VQ, all against the same
bound t^ where the boundindex i is less then the current value of guesstj]
and the SL contains no SRs on j.

Then for each j and at each moment in between two blocks during the compu
tation the disjunction Al(j) or A2 (j) holds.

Remark that A 1(j) and A2(j) are never simultaneously true.

PROOF. A 1 (j) is trivial before -tj , (2)S-. By studying the effect of execu
tion of the blocks (0),...,(5) one proves that each of these blocks leaves
the correctness of A1 (j) or A2(j) invariant.

(0) and (1) both leave the SL and the VQ unchanged. Furthermore with
exception of (1) of stage j, the value of guess[j] is not changed either.
Hence after -fcj,(2)> the blocks (0) and (1) leave both A1 (j) and A2(j) un
altered.

At ■tn,(2)i' the VQ is still empty and therefore correctness of Al(j)
or A2(j) implies that Al(j) holds. During execution of (2) the SL is left
unaltered or extended by some further SRs; those of these SRs which are
SRs on i are SRs against t r .. For this reason A1 (j) holds also afterguesstj]
completion of (2).

The effect of execution of block (3) depends on whether a violation
by j is detected at the current stage or not. At -tn,(3)3- the VQ is empty
and consequently A2(j) is not true. We may assume therefore that Al(j)
holds at •fcn,(3):l.

If no violation by j is detected then guesstj] remains unchanged; no

140

VR on j is placed in the VQ and all SRs on j remain undisturbed on the SL.
Therefore A 1 (j) is still valid at 4:n,[3]i.

If a violation by j is detected, then at least one SR on j is trans
formed intoaVR on j which is placed in the VQ; the value of guess[j] is
redefined and therefore increased, and all remaining SRs on j are deleted
from the SL. Now Al(j) is no longer true but A2(j) is correct at •tn,[3]}-.

Execution of (4) leaves the SL, VQ, and the value of guesstj] unchanged.
If at i:n,(5)^ the assertion Al(j) holds the VQ contains no VRs on j either
at i:n,(5)}- or at i:n,[5]^, whereas the SL and guess[j] are invariant under
(5). If at +h, (5)+- the assertion A2(j) holds then by the clearing of the VQ
A2(j) becomes false but A 1(j) becomes trivially true. Hence (5) leaves
Al(j) or A2(j) invariant in this case too. This completes the proof. □

FACT 3.3.10. If guesstj] = i at a certain stage and if A(j,x,t^(x)) = false
for an x 2 i then guesstj] is redefined at a future stage (and consequently
guesstj] > i will become true).

PROOF. Assume by hypothesis to be shown contradictory that guesstj] stabi
lizes at i. Since t.(x) < °° and i - x the value t^(x) will be enumerated at
a moment when guesstj] = i is already valid. Now the test A(j,x,t^(x)) =
= true ? is executed, and by hypothesis the answer is negative. This leads
to the creation of an SR on j ; <j,x,i,t^(x)> e SL becomes true.

Since SRs are only deleted from the SL during execution of (3) at
which occasion the guess-values of the corresponding indices are redefined,
one derives from the fact that guesstj] has stabilized at i that
<j,x,i,ti(x)> e SL forever.

Atj.x.t^Cx)) = false implies that there exists a z so that for all
w > z one has A(j,x,w) = true. Consequently execution of stage w (3) where
maxtest = w > z would result in the transfer of the SR <j,x,i,t^(x)> to the
VQ and to the redefinition of guesstj]. This is a contradiction.

This shows that guesstj] is indeed redefined. □

COROLLARY 3.3.11. [Claim 2]. If j violates t^ infinitely often then
guesstj] does not stabilize at a value k £ i.

PROOF. First consider the case k = i. As follows from 3.3.10, the assump
tion guesstj] = i at a certain moment implies guesstj] > i in some future.
If k < i then the fact that j violates t^ infinitely often implies that j
violates t, infinitely often also. □ k

141

ASSERTION 3.3.12. [Assertion 1]. If tinf[x] is defined during stage n (4)
and if guesstj] = i at ta,(4)^ and if k is the bound-index used at x then
either i > k or A(j,x,ti(x)) = A (j,x,tk(x)).

PROOF. If guess[j] is redefined during execution of stage n (3) then
k £ maxbnd < maxguess+ 1 = guesstj] and the assertion is proved. The case
i £ k is also trivial, therefore we restrict ourselves to the case that
i < k and (consequently) guesstj] not redefined during stage n (3).

When t^(x) is enumerated, k £ x and consequently i £ x also. t^(x) is
enumerated after guesstj] = i has become valid and A(j,x,t^(x)) = time ?
has been tested at this occasion (3.4.8). Depending on the outcome of this
test there are two possibilities:

(i) A(j,x,t̂ (x)) = time. Now t̂ (x) £ t̂ (x) implies A(j,x,t̂ (x)) = true as
well and we are ready.

(ii) A(j,x,t̂ (x)) * true. This results in the creation of the SR
<j ,x, i, t^ (x)> and since guesstj] = i is still valid at -tn,(4)J- we
still have <j ,x, i, t^ (x)> e SL at -tn,(4)J-.
The absense of the VR <j ,x, i,t . (x)> in the VQ at -in, (4)}, implies that
A(j,x,maxtest) * true; for the index j' which violates against t^ at
x, and which is used to define tinftx] one has A (j ',x,maxtest) = true.
Therefore: t^(x) £ t^(x) < maxtest which implies:
A(j ,x,ti(x)) = A(j ,x,tk(x)) = A(j ,x,maxtest) * true.

This completes the proof. □

COROLLARY 3.3.13. If during stage n (3) a VR on j at x is created then j
violates tinf at x.

PROOF. Let <j,x,i,t^(x)> be the VR on j at x and let this VR be produced
at stage n (3). Let tinftx] be defined at stage m (4). Let i' be the value
of guesstj] at <n,(4)£.

Since stage m is the first stage during which VRs at x are produced
(this follows directly from the program text of block (4)) one concludes
both that m exists and that m £ n.

We consider several possibilities:

(i) n = m.
By our choice of the bound-index used at x we conclude that i 2 k. If
A(j,x,t̂ (x)) = false then A (j ,x, tinf [x]) = A(j,x,tk(x)) = false also.

142

(ii) n > m and i' = i.
From Assertion 1 we now conclude that either i' £ k in which case
A(j ,x, t^, (x)) = false which implies that A(j,x,tinf[x]) =
= A(j,x,t̂ (x)) = false also or otherwise A(j ,x,t^, (x)) = A(j,x,t̂ (x))
which also implies A(j,x,tinf[x]) = false.

(iii) n > m and i' * i.
In this case i > i' since i is a more recent value of guesstj] then
i', When the redefinition guesstj] = i was executed t^(x) was already
enumerated, hence i > k. Combining this with the fact that
A(j,x,t^(x)) = false one derives that A(j ,x, tinf [x]) = A(j,x,t^(x)) =
= false. □

Note that case (iii) is actually made impossible by the fact that
maxguess = maxarg. The assumed redefinition of guesstj] implies i > x and
consequently t^(x) is never enumerated, and the assumed VR <j,x,i,t^(x)> is
never created.

Case (iii) is included in the proof to show that the correctness does
not depend on the option maxguess 5 maxarg.

The next assertion is again based on the choice maxguess £ maxarg.
This assertion is inessential for the remainder of the proof.

FACT 3.3.14. [Prevention of multiple testing]. If <j,x,i,t .(x)> e VQ at
■fcn,(4):l and if <j ,x',i',t^(x')> e VQ at -tn',(4)i- then x * x' or the two VRs
are equal and n = n'.

PROOF. If n = n' then the two VRs are derived from two SRs which were si
multaneously on the SL at -tn, [2]S-. Then i = i' and consequently x * x'
since otherwise the two SRs were equal.

If n and n' are distinct we may assume that n < n'. At -tn,[5]^ there
is no SR on j present on the SL and the VQ is empty. Moreover guesstj] =
= maxguess + 1 > maxarg S x. Because i' is at least this value of guess j
at -tn,[5]^ and i' < x' we conclude that x' > x.

This completes the proof. 0

COROLLARY 3.3.15. [Claim 1], If guesstj] is unstable then j violates tinf
infinitely often.

PROOF. If guesstj] is redefined at stage n. (3) then at l:n ,(4)3- a VRSL SL

143

<j ,x ,i ,t^ (x)> e VQ where i equals the value of guesstj] at -fcn ,(3)}.
Consequently as follows from 3.3.13 j violates tinf at x^. Moreover,

n < n, implies i < i, and by our enumeration technique we have x > i . a b ̂ a b 7 H a a
If there exists an infinite sequence of stage numbers n^ with this

property then the sequence of corresponding arguments x^ contains infinitely
many elements as well, and consequently j violates tinf infinitely often. □

Note that from 3.3.14 we derive straightforward n^ * n^ imp x^ * x^.

FACT 3.4.16. [Assertion 2], For each k the number of arguments where the
bound-index used at x (denoted by k(x)) satisfies k(x) < k is finite.

PROOF. After stage k+1 we have maxguess > k. From that moment on each value
guesstj] which is redefined will be made larger than k. The set defined
by = (j | guesstj] S k) is a finite set which decreases after -fck+1 ,[0]:K

We prove that for each argument x where tinftx] is defined and where
k(x) S k an index j is deleted from G^. Assertion 2 is now a consequence of
the exhaustion of the finite set G, .k

Let tinftx] be defined at stage n, (4) with n > k. Then the following
implications hold (x and n being constant):
k(x) < k

imp

there exists a VR <j,x,1,t^(x)> e VQ at ta,(4)^ with 1 :£ k
imp

there is an SR <j ,x, 1, t^ (x)> e SL at ■tn,(3)^ with guesstj] = 1 S k at
■in, (3)i and during execution of stage n (3) this SR becomes a VR and
guesstj] is redefined to be equal maxguess + 1 > k

imp

there exists a j with j e at tn,(3)i- and j] G^ at <n,(4)J.
If k(x) S k for infinitely many x, then for infinitely many of these

arguments tinftx] is defined after -tk+l,[0]J-. At each stage tinftx] is de
fined for at most a finite number of arguments x. Consequently infinitely
many elements are deleted from the finite set formed by the members of G^
at -fck+l,[0]̂ . This is a contradiction. □

COROLLARY 3.3.17. [Claim 4]. If guesstj] stabilizes then j respects tinf.

PROOF. As follows from Claim 2 guesstj] does not stabilize unless j re
spects some t^. However the fact that k(x) S k almost everywhere implies

144

that tinf[x] > t^(x) for almost all x. Therefore j respects tinf as well. □

ASSERTION 3.3.18. [Claim 3]. If j respects some bound t then guess[j] sta
bilizes .

PROOF. Suppose that guess[j] does not stabilize. Then guess[j] is redefined
during stage n for infinitely many n . Then redefinitions correspond to an
infinite sequence of VRs <j,x ,i ,t-; (x)> where i strictly increases and3 3■ cL 3 3
where x^ > i^. Therefore there exist arbitrary large x and i with
A(j,x,t^(x)) = false.

If j respects t^ then there exists a z so that for all x 2 z where
t^(x) is defined A(j,x,t^(x)) * false. The monotonicity of the sequence
(t^)^ implies:

3zVx>zVi>k[t^ (x) < =o imp A(j,x,t^(x)) * false].

This contradicts the existence of arbitrarily large x and i with
A(j,x,t^(x)) = false. □

THEOREM 3.3.19. [Union theorem]. The function tinf computed by the program
in 3.4.3 satisfies:

v Fw (ti} = Fw (tinf)-

A APROOF. Let j e U F,,,(t.). Then there exists a k so that i e F,.,(t,); now byi w l ^ lv k
Claim 3 guess[]] stabilizes and by Claim 4] e F,.,(tinf).A W AIf j i U F^(t^) then there exists no k so that j e F^(t^). Theref°re
guess j does not stabilize at a value < k for each k by Claim 1. This

A
shows that guesstj] is instable, and consequently, by Claim 2, j fc F^(tinf).

This completes the proof. □

3.3.5. APPLICATIONS AND REMARKS

The union theorem can directly be applied to classes consisting of
total functions or programs. The reason is that equality of two sets of
programs (functions) remains valid if both sides are intersected with a
fixed third class (in this case the class of total programs (functions))

145

For the complexity classes with partial names as defined by
E.L. ROBERTSON [Rb 71] a union theorem makes no sense. If the domain condi
tion

iPj e F^ iff ip. e Ft and PqL => Pt

is enforced, then the sequence of names defined in example 3.3.2 yields a
"counterexample" to a union theorem for the classes F h

EXAMPLE 3.3.20: [The union theorem does not hold if domain conditions are
enforced]. Let

Let

F' = [ip. I ip. e F and Pip. => Vt}.t l l t --- l

tj. = \x[if x £ i then loop else 0 ££].

Suppose moreover that t. = ip . ., with Alp . = A® , and suppose that alli o (i) a (i) a (i)
other programs have run-times larger than zero for almost all their argu
ments. Then for no function tinf the equality U F] = F'. „ is correct.i tinf

PROOF. One has F!

Ï = {(Pa(i) I
Ftinf “ P * ÿ Fti
nOW Vo<») * Fanf

i = {(Pa(0)>tpa(l).... V i) } 3nd therefore
i e IN}. Suppose now that U Fi = F'. _. If Ptinf = 0 theni Lx tint
. If Ptinf * 0 then let z be the least element of Ptinf;
so again II F' * F' . □6 i ci tinf

The general union theorem on abstract resource-bound classes yields
several other union theorems by selecting as acceptance relation one of
the specific examples given in 3.1.3.

It should be noted that the union theorem for complexity classes
modulo sets of exceptional points can be found already in the thesis of
L. BASS [Ba 70]. He uses the trick to encode the set of exceptional points
in the guess-value of the program and not, as is done in our proof, in the
the index of the program.

If the class E of sets of exceptional points is not assumed to be re
cursively presentable the union theorem becomes invalid. L. BASS [Ba 70]
describes a sequence of classes with (t.). non-decreasing and total,

ti 1 1 E E
and E not recursively presentable, such that U Ct, * ^tinf For eack total
function tinf.

146

If the class E is recursively presentable then we can eliminate this
class E completely by replacing the names of the classes by other names
(which in general are partial); moreover this renaming can be done uniformly.

THEOREM 3.3.21. Let E = (E^)^ be a recursively presentable class of sets of
exceptional points. Then there exists a transformation of programs a so
that for each index i.

’l v°(i)
PROOF. Since E is recursively presentable there exists a recursive function
e such that e(i,x) = if x e E^ then °° else 1 fi.

We define the transformation of programs t by:

ip .. . ,(x) <= ip.(m) * max{e(k,x) I k < V).

Hence

ip ,. . ,(x) = if x e U E, then » else ip.(x) fi.k<i k - --- ---- J

Although we have not stated this explicitly in the formulation of the union
theorem one derives easily, using the algorithm given to compute tinf, that
the program for tinf depends uniformly on the program for the sequence
(t.).. We consider the sequence (ip). to 6 e a sequence of programs 1 1 *■ \ 1- > J /
which depends uniformly on the index j. Since this sequence satisfies for
each value of j the monotonicity condition cp,. .v - <P,. . .x there existsT V. 1 y J / 1 l " 1" 1 y J /
a sequence of names (tinfj)^ which satisfy:

= F

T(i» j)
tinf.'

J

Moreover tinf. depends uniformly on j; there exists a transformation of
programs a so that (ip^.^) = tinf^. We claim that a is the transformation
we need.

From the union theorem it follows that:

\ eF(p ... H I 3iK £ Fip ,.
3iVx[<PT(.(j)(x) < - im^ ®fc(x) < (PT(ijj)(x)]

iff 3iVx[x i U E. and (p.(x) < » imp ® (x) < ip.(x)]
-jLjL- l<i 1 --- J — k j
iff 3i3F[#F <» and Vx[x | U E, u F and <p. (x) < °° imp ® (x) < ip. (x)]]

------ 1< 1 J- J K J

iff 31Vx[x 4 E and ip. (x) < » imp ® (x) < (p. (x)]
—*-*“ 1 J ^ J

ill \ e •

147

These equivalences follow from the fact that E is closed under finite unions
and contains all finite sets. One concludes that F,n = Ftr) .

^a(j) ‘Pj
This completes the proof. □

An application of the union theorem for weak classes with partial
names is the proof given below that the family of all programs with bounded
range is an honesty class (provided that no computation terminates in zero
steps).

DEFINITION 3.3.22. A program qr is a program with bounded range, if there
exists a number k so that Vx[qh(x) < °° imp qh(x) < k] .

ASSERTION 3.3.23. Suppose that <th(x) > 0 for each i and x. Then the set of
programs with bounded range is an honesty class of programs.

PROOF. Let

R^ = Xx,y [i£_ y s k then loop else 0 £i].

Now is the set of all programs qu so that

Vx[qb(x) < “ imp qx(x) s k] .

Hence the programs in GRk have a bounded range. Conversely, suppose that qL
has a bounded range. Then there exists a k so that q>. (x) < “> implies
qn(x) s k and consequently qq e Gr^-

The conclusion is that U is precisely the class of all programs
with bounded range. However, this union is also an honesty class, as follows
from our union theorem. □

Considering the name Rinf for U G^^
gorithm in section 3.3.3 we can make the

which is computed by our union al-
following observations:

(i) Vx,y[Rinf(x,y) = » or_ Rinf(x,y) = 0]

since a value of Rinf is also a value of one of the R, .k
(ii) VyVx[Rinf(x,y) = “].

Otherwise a program with bounded range, which is not contained within
G . f could be constructed by diagonalization.

148

(iii) If f has infinite range then PRinf contains infinitely many elements
from the graph of f.
Otherwise f would be contained in H . .Rinf

These peculiar properties of the domain of Rinf can also be expressed
as follows:

(iv) If the (non-recursive) function k is defined by:

k(x) = yy[3z>x[Rinf(z,y) = 0]]

then k has unbounded range, but k increases slower than any partial
recursive function with unbounded range.

A set with analogous properties can also be constructed straightfor
wardly; for example one might enumerate the graphs of all (p̂ simultaneously,
accepting from the graph of ip at most k points <x„,y„>, . . . ,<x ,y > so thatk 0 0 n n
y0 " y i " ••• " v

At the same time this example shows that the concept of an honesty class
with a partial name has little to do with the original concept of a function
whose complexity is bounded by its size.

149

CHAPTER 3.4

THE NAMING THEOREM AND THE MEYER-McCREIGHT ALGORITHM

3.4.0. INTRODUCTION

This chapter discusses the MEYER-McCREIGHT naming theorem [MMC 69] and
some related topics. This theorem states the existence of a transformation
of programs o so that the sequence (ip^^)^ is a measured set, and so that
for each index i, the function ip. and ip ... are names of the same complex-t a(i)
ity class. The transformation a is also called an honesty procedure on P,
since the members of the measured set form a honest family of functions.

Although in the original proof only the restriction of a to R is con
sidered, and a is defined in such a way that cp , .. is total whenever (p. isa(i) i
total, (a so-called honesty procedure on R), the proof yields the result
for P as well. The first Blum axiom is not used, and therefore a straight
forward translation for strong abstract resource-bound classes can be
proved. See section 1 of this chapter.

Section 2 contains the proof that an analogous uniform honesty proce
dure for weak abstract resource-bound classes is impossible. More specifi
cally, we show that for every transformation of programs a such that
(ipa(j^)i is a measured set, an index e can be found so that
H^P^((Pe) *). A similar result is given for honesty classes and
finally the construction of a total ip̂ with the property that the above in
equality holds proves the non-existence of honesty proceudres on R for weak
classes as well.

The observations made in an informal correctness proof in section 1
are used in section 3 to construct a number of modified MEYER-McCREIGHT al
gorithms which prove some properties of the system of names of strong
classes. We show that it is possible to rename a class Fg(cp^) by two names
q>a and ip0 (j) having disjoint domains. We next prove a generalization
of the union theorem where the condition of monotonicity of the sequence of
names is repalced by the condition that the corresponding classes of in
dices themselves form a monotonic sequence of classes.

In section 4 we consider the problem whether a given set of indices can
be represented as a strong abstract resource-bound class in a given accep
tance relation. We prove that a suitable modification of the MEYER-McCREIGHT

150

algorithm acts as a closure operator; it computes a name t so that a given
class X is entirely contained within F(t) and so that the class F(t) is
minimal with this property. If X is already a strong abstract resource-
bound class named by some unknown name then the two classes are equal.

Section 5 contains a further analysis of the possibilities to save
something of the MEYER-McCREIGHT algorithm for weak classes. By equipping
the algorithm with a so-called "wizard" we loose measuredness but the re
naming properties are preserved. As applications we find a generalized
union theorem for weak classes with total names, and an intersection theo

3.4.1. THE MEYER-McCREIGHT ALGORITHM; AN INFORMAL DESCRIPTION AND CORRECT
NESS PROOF

A formulation of the naming theorem in the context of abstract re-
source-bound classes reads:

THEOREM 3.4.1. For every acceptance relation A there exists a measured
transformation of programs a such that for each index i the equality

A straightforward corollary is a naming theorem for the classes Ĝ ,(t)
and tf^(t).

DEFINITION 3.4.2. A transformation a satisfying the condition of theorem
3.4.1 is called an honesty procedure on P. If a maps R into R, a is called
an honesty procedure on R.

All honesty procedures which are known up to now are variants of the
original MEYER-McCREIGHT algorithm [MCM 69] or the simplification of this
algorithm as given by R. MOLL [Mo 72]. We call these algorithms therefore
MEYER-McCREIGHT algorithms, which is abbreviated to MMC-algorithms.

In the sequel of this section we explain the design of the MMC-algo-
rithm which is formally defined in the appendix. The essential ideas needed
to prove the correctness are derivable from the design alone, and hence we
disregard all implementation problems which might disturb our argumentation.

Our MMC-algorithm is described as a program to compute = t' by
enumeration of the graph of t'; since this program depends uniformly on the

rem

holds

,A

151

index i, this implicitly defines the transformation a.

To enforce that the sequence (ip , is a measured set we design this
enumeration in such a way that for increasing y pairs <x,y> are tested to
see whether they belong to the graph of t' or not; moreover, we prevent a
pair <x,y> being accepted as member of the graph of t' in case it was re
jected at an earlier occasion. In other words: t' is computed by a least
number operator application on a certain total but dynamically changing
condition uniformly depending on i, j, x, and y.

Since it is never certain that the computation of t'(x) converges, the
algorithm executes a dovetailed computation of t'. Traditionally one uses a
stagewise description, where, at each stage, for one or more pairs <x,y>
the equality t'(x) = y is tested (and in most cases rejected). This implies
that in the case where t'(x) diverges in the course of time an infinite
number of attempts to compute t'(x) will be elaborated, none of which is
going to succeed.

From the point of view of the user of the algorithm, a description,
where all values t'(x) are enumerated in parallel, using a least number
operator on some continuously changing condition, gives a better impression
on what the algorithm is intended to do.

The difficult part of the design of an MMC-algorithm is to make the
equality F(t) = F(t') true. This is done by enforcing the following equiv
alence:

j violates infinitely often against t iff
j violates infinitely often against t'

To enforce this relation one tries to create a violation by j against
t' (by taking a "low" value for t'(x)) when a violation by j against t(x)
has been discovered. However, t' should be larger than the run-times of
the indices which either have committed no violations yet, or have been
punished already for all the violations committed by them up to the current
momen t.

It is not hard to see that these requests on the indices currently
under consideration may contradict each other. To resolve this problem we
introduce a priority system. Each index j is given a priority status con
sisting of a Boolean b(j) and a priority number p(j). The Boolean b(j) re
presents whether j has still an "unpunished violation" on its "crime record"
(this is encoded by b(j) = false). We say j is "on the black list" or

152

shortly "j is black" to describe b(j) = false. The remaining indices form
the "white list". The number p(j) places j in the so-called "priority
queue". This priority queue consists of the indices introduced up to the
current moment, ordered by increasing priority number. A higher value of
p(j) means a lower priority.

Except for the introduction of an index in the algorithm, at which
occasion this index is placed at the tail of the priority queue (with a
value for b(j) which is irrelevant at this occasion), the indices are sub
mitted to the following acts of "social regulation":

a) if a white index is detected to violate a newly enumerated value of t(x)
it is moved as a black index to the tail of the priority queue.

b) If a black index is detected to violate a newly created value of t'(x)
it is moved as a white index to the tail of the priority queue.

The values of t'(x) are defined in such a way that "justice" as described
above is served in the most effective way. We want to "punish" a black in
dex jg by creating a violation by j against t'(x) but at the same time we
should respect the demands of the white indices j, having higher priority
than jg (the requests of indices which are white and have lower priority
may be refuted; our algorithm is an implementation of corruption). More
formally, t'(x) is defined to be:

"the least z such that there exists a black index j. for whichJ 0
A(j0,x,z) * true whereas for all white indices j having higher priority
A(j ,x,z) = time".

(The priority of) this index j above is called (if present) the index
(priority) used at x.

Since it is quite possible that such a value z does not exist we pro
tect ourselves against the resulting infinite computations by "dovetailing"
the algorithm which computes this minimal z and the corresponding index j^.

The diagram below explains the problem and the algorithm used to solve
it. Horizontally we draw the successive indices in the priority queue, the
priority decreasing from let to right. In the vertical direction we draw
the run-times of these indices at x whereas the "colour" of each index is
indicated by halflines going up for white indices (meaning that z should be
at least as large as the corresponding run-time) and going down for black
indices (meaning that z should be less than this run-time).

153

In the situation represented z = a- (x) and i. = i, is a solution toJ4 0 7
the problem.

If at some point in time index should be moved to the tail of the
priority queue, the solution would become z = (x) and jg = j,-.
This solution yields a lower value of z.

■>

Uj....>
* A-

J 1 j 4 h j 1 0 j 1 1 j 1 2

Diagram 3.4.3

As the example shows, care must be taken that by dovetailing no "revi
sions" occur in the sense that solutions which are rejected, are accepted
at subsequent consideration. We will return to this problem in a moment.

The dotted line in the diagram represents the algorithm which we will
use in the sequel to solve the problem.

Starting at the first index with the value z = 0 (or at a second try
z = low, where low is the first value not yet tried) we walk through the
diagram guided by the following instructions:

if we are considering a white index j for which A(j,x,z) * true then
we increase z by one and we try again

otherwise
if we are considering an index j with A(j,x,z) = true then we proceed

to the next index in the priority queue if such an index is present (other
wise report failure)

154

otherwise
if we have a (black) index with A(j,x,z) * true then we have found the

solution.

The algorithm is implemented below in the subroutine searchtime which
is used in our informal description of the MMC-algorithm. The meaning of
the parameters is the following:

x is the argument we are trying to compute t'(x) for;
low is the first value not yet tried as t'(x);
high is the largest value which will be tried as t ’ (jc) at this run (to pre
vent infinite computations);
prior is a parameter which represents the priority queue ̂ used in the
computation.

If the computation of searchtime terminates succesfully it has as out
put the value of z in the variable val and the index used at x in the vari
able candidate.

proa searchtime = (int x, low, high, f prior queue prior) void:
begin int val : = low, candidate := first index in prior

while val £ high do_
if $ b(candidate) and k(candidate,x, val) * true

then val + : = 1

elif k(candiate,x,val) = true

then $_i£_ still candidate available

then candidate := next candidate in prior
else goto failure

££ 1
else t'(x) val; index used at x := candidate; report success
fi od;

failure: report falure to calling program £
end t searchtime t;

In the actual program the expressions are replaced by
ments and expressions formally computing the values suggested by the clause
in between the underlined comment symbols.

In an actual implementation it is handy if searchtime has access to
prior as a linear list, whereas the rest of the program treates prior
as an increasing array of priority-status values. We postpone the dis
cussion on this interface till the appendix.

155

It is not hard to verify that in this algorithm at each occasion where
candidate gets a new value, val equals the maximum of low and the maximal
run-time of a white index with a higher priority than the index which is
the new value of candidate. Moreover val is at least as large as the maxi
mal run-time of a black index with higher priority.

If the new candidate happens to be a black index with run-time larger
than the current value of val then the algorithm terminates successfully.
In other words, the algorithm will not proceed in the priority queue beyond
the first black index having a run-time at x larger than low and larger
than the run-times of all the (white) indices having higher priority.

In the description of searchtime we gave already the beginning of an
implementation of an MMC-algorithm. Our motivation is that the absense of
this or a similar implementation of the "definition" of t'(x) as given be
fore is the main reason why the known MMC-algorithms in the literature are
hard to understand [MCM 69] [HH 71].

To complete the design we should explain how to prevent the accep
tance of solutions being rejected at an earlier occasion. Two strategies
are known in the literature.

The first strategy, which is used in the original MMC-algorithm of
MEYER and McCREIGHT [MCM 69], uses for each computational try for t'(x) as
priority queue status the historical contents of the priority queue at the
end of stage n, where n in fact equals the value of the argument x. There
fore the problem which searchtime must solve, depends only on x and not on
the stage during which searchtime is called.

The second strategy is used in the simplified MMC-algorithm of R. MOLL
[Mo 73]. In this algorithm prior represents the current state of the prior
ity queue; however, by using a non-zero value for low each value z is tried
at at most one occasion, and therefore no revisions occur (in fact low =
= high is used and at each call of searchtime only one value z is tried).

Having explained the design globally, we can now give an informal des
cription of a complete MMC-algorithm. A stagewise description is used,
without being to explicit on the amount of work executed during the dif
ferent sections of a stage. This is motivated by our opinion that this
choice should be made for an actual implementation. We must however be sure
that (1), (2) and (4) are organized in such a way that:

(i) all indices j are introduced,
(ii) all converging values of t(x) are actually enumerated,

156

(iii) computations of t'(x) are tried until t'(x) has converged; moreover
the value of high used in these computations grows to infinity where
as at no moment low is larger (or, if no protection against revisions
is used, smaller) than the first value z not yet tried at x,

(iv) the priority queue status used for the computation of t'(x) should
represent the actual status of the priority queue in the computation
at some stage in between stage x and the current stage.

(These conditions are needed to make the argumentation in our "correctness-
proof" valid.)

The MMC-algorithm is initialized by clearing the lists of enumerated
values of t and t' and the priority queue. Next stage 1 is executed.

stage k consists of the following 6 sections:

(1) Introduction of a finite number of indices j by placing them at the
tail of the priority queue (their colours b(j) are irrelevant).

(2) Using a universal enumerator universal(i,x,z) we search for some time
whether we can find one or more new values of t(x).

(3) If we have generated in (2) new values of t(x), we use them to test for
all currently white indices j whether A(j,x,t(x)) = true or not. The
indices which are detected to violate t are moved to the tail of the
priority queue and become black indices.

(4) Using a devise against unwanted revisions of earlier rejections we exe
cute a number of calls of searchtime, hoping to find new values of t'.

(5) If in (4) new values of t'(x) have been created, we use them to test
for all currently black indices whether A(j,x,t'(x)) = true or not. The
indices which are detected to violate t' are moved to the tail of the
priority queue and become white indices.

(6) Proceed to stage k+1.

Before giving a "correctness-proof" we like to isolate sections (2)
and (3) from their surroundings. In these two sections the tests are per
formed which discriminate between the indices which are contained in F(t)
and those indices which are not. This discrimination should be understood
in the following way: if an index j is a member of F(j) then it will be
moved on the black list by (2) and (3) only a finite number of times; if
however, j i F(t) then (2) and (3) will remove j from the white list at a
future stage, each time j happens to become white.

157

The sections (2) and (3) together are called the discriminator of the
MMC-algorithm.

A further important observation concerns the index j and the priority
used at x. From the definition it is clear that this priority is the prior
ity of a black index. Moreover by definition A(j^,x, t'(x)) * true. Hence,
if the index j still is a black index at the moment t'(x) is defined, it
will be removed from the black list and its black priority will be deleted.
It is however also possible (by the fact that the priority-queue status
used to compute t'(x) was a "historical snapshot") that the black priority
of j was deleted already a long time ago. In both cases, however, the
black priority of is a "mortal" one. From this we conclude that a cer
tain priority cannot be used at infinitely many arguments x and that conse
quently for each k the number of arguments x at which a priority S k is
used is finite.

We now turn to our correctness proof for the MMC-algorithm. We devide
the set of all indices in three classes, depending on the behaviour of
their priority status <p(j),b(j)>.

Case 1 . p(j) does not stabilize.

In this case j is transferred infinitely many times from the white
list to the black list (for violating t) and transferred back afterwards
(for violating t'). In our design we test each index j only once for each
argument against t respectively t'. Hence the number of violations by j
against both t and t' is infinite: j 4 F(t) and j 4 F(t').

Case 2. p(j) stabilizes with b(j) = true (j is white-stable).

In this case j violates t at at most finitely many arguments, and
therefore j e F(t). Let k be the value at which p(j) stabilizes. For almost
all x the priority used at x is larger than k, and this means that for al
most all x, by definition of t'(x), we have A(j,x,t'(x)) = true. Therefore
j e F(t') also.

Case 3. p(j) stabilizes with b(j) = false (j is black-stable).

In this case it is almost trivial that j e F(t'). The tricky part is
to show that j e. F(t). We derive this from the following assertion.

158

ASSERTION 3.4.4. If p(j) becomes stable with b(j) = false and with p(j) = k,
then the run-time of j is bounded almost everywhere by the maximum of the
run-times of those indices i which are white-stable and stabilize at prior
ities p(i) S k.

This assertion can be derived by considering the computations of
searchtime as represented by diagrams like diagram 3.4.3 for x going to in
finity.

For sufficiently large x the priority queue status used to compute
t'(x) will represent a situation where p(j) together with all priorities
p(i) < p(j) have become stable priorities. This means that the head of the
priority queue upto j has become stable. For each x and at each occasion
the priority queue used to compute t'(x) starts with the same sequence of
indices having the same colours.

Now suppose that for such an x the run-time of j is larger than the
(finite!) maximum of the run-times of the white stable indices with higher
priorities. Then our search algorithm cannot move in the priority queue
beyond j without finding j to be a solution. It can however not terminate
before reaching j since this would mean that a priority p(i) ^ p(j) is
used (which contradicts the fact that p(i) is stable). It is also not pos
sible that our search algorithm diverges with val going to infinity on the
initial segment of the priority queue since we assumed that the maximum of
the white run-times on this segment is a finite value. Hence we must accept
that index j is accepted as solution, and this contradicts the fact that j
has a black stable priority. This proves assertion 3.4.4. □

From assertion 3.4.4 one easily derives that j e F(t). Let { j j ^ }
be the finite set of white indices which stabilize with p(jn) - p (j)• Now
by assertion 3.4.4 one has:

Vx[a.(x) < max (a. (x).... a. (x))].
J J, Jq

Since j is a white-stable index we have j e F(t); hence n n

Vx[a. (x) < t(x)] (l<n£l).
-'n

Therefore:

159

Vx[max{a. (x),. ,a. (x)) s t(x)]
J 1

and consequently

Vx [cl (x) < t(x)] .

Hence j e F(t); this completes the proof. □

To complete this section we emphasize that assertion 3.4.4 does not
depend on the actual structure of the discriminator in the MMC-algorithm,
but represents a property of this algorithm in a much more general shape.
This observation will be a crucial argument in section 3 and 4 of this
chapter.

A final observation is that the argumentation given above is highly
non-constructive. Given a concrete MMC-algorithm it is possible to give
constructive proofs as well (see for example [EB 71] and the proof of the
BASS-YOUNG irregularity theorem [Ba 70] [BY 73]).

3.4.2. THE NON-RENAMEABILITY OF WEAK ABSTRACT RESOURCE-BOUND CLASSES

{The Lieutenant of the Tower of Barad-dur he was,
and his name is remembered in no tale; for he
himself had forgotten it, ...

J.R.R. Tolkien. The Lord of the Rings}

To prove the negative result that no naming theorem for weak abstract
resource-bound classes exists, we cannot simply show that the MEYER-
McCREIGHT algorithm we sketched in section 1 fails to rename these classes,
because we could imagine that some weird but still unknown construction
could be correct. We must show that each construction which does part of
the job, fails in some other part.

In this section we prove assertions of the following type:

Let o be a measured transformation of programs. Then there exists an index
so that ip and tp , . are names of different classes, e o(e)
The so-called honesty procedures o which are constructed in the proof of
the naming theorem are known to show irregularities of the following type:

160

If qx is a program with an extremely large run-time <S. then <p . becomes
a function with unreasonable large values at infinitely many arguments.

This phenomenon was first described by L. BASS [Ba 70, BY 73] for
the original honesty procedure described in [MCM 69]. More recently A. MEYER
and R. MOLL [MMo 72] have shown that these irregularities occur for each
measured transformation of programs which maps the set of functions with
finite domain into itself, a property shared by all honesty procedures,
since these functions are precisely the names of the class = P. Their
proof is a simple application of the recursion theorem. Their much stronger
result reads:

FACT 3.4.5. Let a be a measured transformation of programs which is a hon
esty procedure on P. Then there exists for each total f and each total t an
index e of a program computing f so that:

liminf (#{y < x | tp ,.(y) < t(y)})/x = 0 .
x-*»

These irregularities can be explained intuitively as follows. Consider
a machine into which is fed the graph of the program qx and which computes
the relation ip^^^(x) = y. If Dqx is finite, then the answer onto the ques
tion "is ip^.^(x) = y?" will be almost always negative. Moreover, since a is
measured these answers must be produced in a finite amount of time regard
less of the speed at which the graph of qx is introduced into the machine.
Consequently, if we make qx so expensive that the machine is lured into
believing that we are feeding it a function with finite domain it will have
decided that ̂(x) * y for the small values of y before receiving a new
input.

Essential in this argumentation and also in the formal proofs is the
assumption that a should work correctly both for total and partial qx . If
this assumption is weakened in the sense that the honesty procedure may run
astray on partial functions the irregularities may be suppressed; cf.
[Mo 73].

Our negative results are based on a similar pathology which is formu
lated in the lemma below:

LEMMA 3.4.6. [Mirror lemma]. Let a be a measured transformation of programs.
Let t be a total function and let u be a partial function satisfying u > t.
Then there exists a program q>̂ so that

161

Vx[ip (x) = 0 or ip (x) = u(x)] and Vx[ip (x) = 0 iff ip , . (x) > t(x)]. e — e --- e *■* o(e)

The program ip̂ is "reflected in t" by a; 0 = ip̂ Cx) < t(x) implies
ip . . (x) > t(x) and u(x) = ip (x) > t(x) implies ip , . (x) < t(x). cKej e 0 (e)

Moreover, since (Po ^ (x) le_ t(x) is a decidable relation, one can de
cide also whether tPg(x) = 0. Consequently if u is the empty function then
ftp is a recursive set. e

PROOF. Let x be the transformation defined by

<= if gt_ t(x) then 0 else u(x) fi.

Since a is a measured transformation this is a well-defined transfor
mation of programs. As a consequence from the recursion theorem there exists
a fixed point ip such that ip = ip . , ; therefore e e t (e)

ip (x) - if ip , . (x) at t(x) then 0 else u(x) fi.0 —*— q ̂ e) — ---- ---- -—

This program ip̂ has the properties claimed by the lemma. □

Our proofs are based upon the diagonalization constructions for honesty
classes which we mentioned in chapter 2 .2 .

In particular we use the following lemmas:

LEMMA 3.A.7. There exist transformations k and 0 satisfying the following
2conditions: Let TTjftp̂ be infinite, then:

(i) ip . .. is a total 1 - 1 function with Rip ... <= Pip.
k U) k (i) ~ 1

(ii) V K (i)(x)*= v W **0
(iii) ftpe(i)(x) = nlRipK(i)

(iv) V W)00 = ^e(i)(nitp, (i) (x))-
This lemma (which is included in lemma 2.2.6 in chapter 2.2) shows

2 2that from an index for a program ip̂ with n^P^L infinite one gets uniformly
both a program and a graph-enumerator for a partial function, with infinite

2domain whose graph is contained within PqL.

LEMMA 3.4.8. Define the transformation & by

P$(i j d n t s-pw[ip^(u) =x]j if x) <<$Ax) then loop e Ise <$dx) fi).

162

Then for indices i, j, and k such that ip, is a total 1-1 function enumer-
**■ ^

ating a subset of Pip. n Pip. we have ip. ,. . . <t C.n , ip. .. . , , c ip,,5 r J S(i,J>k) 6 (i,j.k) J
Pip,,. . . . c Rip6 (i,j,k) k

The proof of these lemmas is left to the reader.

Our first negative result is the non-existence of a honesty procedure
on P for weak complexity classes.

THEOREM 3.4.9. Let a be a measured transformation of programs. Then there
W Wexists an index e such that C * C

V e)
PROOF. Let t be a total function such that C * ^zeT0' Take u = £. Applica
tion of the mirror lemma yields an index e such that

ip (x) = if ip , . (x) at t(x) then 0 else loop f-i.e —— o(e) *— ---- ----------- *—

W WWe claim that C„ * C„ .We consider three cases:
^e %(e)

(1) Pip is finite. Now CW = C^ = P, whereas c * P.e ipe e ' ip0(e) t
W W W W W(2) IN \ Pip is finite. In this case C,„ = C , whereas C § c £ Cy,v / e iPe zero’ zero t vo(e)

Again the classes are distinct.

(3) Both Pip and IN \ Pip are infinite. Since Pip is recursive, there existse e e
a total 1-1 ip, such that Rip, = IN \ Pip . Let i be an index for t and let k k e
ip. be some arbitrary total function. Consider the function f = ip.,. . , , j °(i>J >k)
as given by lemma 3.4.8. Since Pf £ IN \ Pipg one has trivially
f e C? ; at the same time for x e Pf one has t(x) > ip , . (x). Conse-

«Pe W w W a(e) W Wquently f 4 C = C implies f t C . This proves C * C . □
'Pi t ^o(e) ^e ^a(e)

Our second negative result treats the case of honesty classes. The
proof is similar but the diagonalization is more complicated.

2
THEOREM 3.4.10. Let a be a measured transformation of programs from P into
2P . Then there exists an index e so that H o * H o

<05 «05(e)
PROOF. Using the two dimensional analogue of the mirror lemma with u the

2empty function e = lx,y[Zoop] and for t a total function R so that
H * H , we find an index e for which we have:
R zero2

2 2ip^Cx.y) = vf (x,y) <£fc R(x,y) then 0 else loop

163

2 2Let S = tp , S' = ip . s. We consider two cases: e’ a(e)
(1) VxVy [S(x,y) = 0] . This leads to H_ = H „ § H_, <= H . .S aero2 R ~ S

00
(2) 3x3y[S(x,y) = «].

2
Since V s is recursive we can enumerate IN \DS. Consequently the

function T defined by:

T - \x,y[i£_ <x,y> e Vs then loop else R(x,y) fi3

is a partial recursive function. By application of lemma 3.A.7 we find a
function ip enumerating the graph of a partial function (p. whose graph is K]
contained within Vj. Moreover if tp, , = Ax [tt ip (x)] then <p, , is total andk I k k

,. . . ,. . Since fctp. °(i,J ,k) - J

increasing.
Let ip. = Ttup. . We consider the function f

1 J 2and the graph of <P. is contained in IN W s we know that f e H . At the
J w ^

same time by construction f 4 C^.. This implies that for each index n for
f we have

3x[tp.(x) = R(x,f(x))< «l1 (x) < °°] l n

and since for these arguments x we have also S'(x,f(x)) £ R(x,f(x)) this
proves f 4 Hg.

This shows that the classes Hg and Hg, are distinct. □

The preceding results are based on the use of partial funcitons. It
is a reasonable question to ask whether partial functions are essential.
More particularly one may ask the following questions:

(1) Is it essential that a is a honesty procedure on P? '

(2) Do the negative results remain valid if only the total functions in the
• *)classes are considered?

(3) Does there exist a non-uniform renaming procedure, i.e. does there
exist a measured set containing names for all honesty classes?

The first question can be settled completely. We can "uniformize" our
proofs in such way that the negative results extend to total honesty proce
dures as well.

*)
Questions (1) and (2) were suggested by A. MEYER.

164

The second question makes no sense for weak complexity classes since
WCt n R = n R. Consequently, the naming theorem itself yields a positive

result for the classes Ĉ_ n R. Although we have no answer to this problem
for general honesty classes we can prove that for the modified honesty
classes the negative result remains valid: the classes H* cannot be renamed
uniformly by a measured set of names.

The third problem is still unsolved.
The results on total honesty procedures are based on a uniformized

version of the mirror lemma:

EXERCISE 3.4.11. Let a be a measured transformation of programs; let t be
total. Then there exists a transformation p such that

lPp(j)(x) = ^aCpCj))^ — t(-x ̂ then +(pj + 1 elae 0 ££

Moreover, the relation ip ...(x) * 0 is recursive in i and x.
P (j) J

THEOREM 3.4.12. Let a be a measured transformation of programs. Then there
exists an index e of a total function such that C^ *

<Pe ‘Pa(e)

PROOF. Take a total function t such that CW * CW. Let n he the transfnr------ zero t
mation from lemma 3.4.11. Since ip ,..(x) x 0 is decidable the function kp(j)
defined by:

k = Aj.xt'? #{z < x | tp ... * 0 } <f]
— P (J) -

is a total recursive function.
We define a transformation of programs t by:

(x) <Pp (jj (x) - 0 then loop

^ i £ \ lk(j1x)(x)- t(x) & Z L \ k (i , x)(x)+1 Zl*e° £ t

Since Ptp̂ ̂ ̂ = {x | ip^^(x) * 0} is recursive the following function m is
total:

- \x[max{if_ =0 then 0 else <5>^^^(x) £i \ j < a:}]

The definition of t ensures that whenever Pip ... is infinite ip ,. , 1 CW. Bv
. . . W t (j) t (j) t y

the definition of m,ip^^^ e for each j. Let j^ be an index of m and let

165

e = p(j J. If we take u = ip , u' = cp , . then we have e o(e)

u(x) = i£_ u'(x) le t(x) then t(x) + m(x) + else 0 fi

and

Dip ,. . = {x | u'(x) le_ t(x)}.
n j 0

Since m is total, so is u. If u(x) = 0 almost everywhere, then
u'(x) > t(x) almost everywhere and then

cw= c w § c w c c wt .u zero t ~ u

If u(x) * 0 infinitely often then ip .. , J C* and hence cp , . . 4 C^. ,
W . x(V 1 T(Vwhereas ip ,. . e C by construction.
u W WThis proves that C * C . □

^e ^o(e)

THEOREM 3.4.13. Let a be a measured transformation of programs. Then there
exists an index e of a total function such that H 9 = H 9qr ipz , . e a(e)
PROOF. The proof combines ideas from the preceding proofs.

Let H „ 5 H„, R total. By 3.4.11 there exists a transformation pzero2 R
satisfying:

2 2 2 «Pp(j)(x,y) = cpa(p(.))(x,y) le_ R(x,y) then R(x,y) + yL(x,y) + 1 else 0

2 2 . . 2Now for total ip., ip̂ ̂ ^ is total and moreover the relation <Pp^^(x,y) = 0
is recursive.

Using lemma 3.4.7 we can find transformations k and 8 such that tp ...
K(j)

enumerates the graph of a partial function ip ..., which graph is entirely2 9 \J /
contained in the set L^ = {<x,y> | iPp^^(x,y) * 0}. Given that it̂ L̂ is in
finite ip ... will be a total increasing function. In this case we derive <(j)
from the recursiveness of L. that it is decidable whether <x,y> e Rip ...

J <(j)
(or equivalently whether iPg^^(x) = y); consequently both k and 9 are
measured transformations.

We define the transformations n and 6 ' by:

ip ,..(x) •= (Rap , . J (x) and S' - [& (n (j), 6 (j), k (j))].9 I J / 8 1J /

166

where 6 is defined as in lemma 3.A.8 . Consequently cp ,6
ip., ,.. k whenever cp . is total,
o (J) R k (j)

The following equivalence can be derived:

c <P,e(j)
and

^5 • (j) y ïff ^W“X ^ K(j) (w) ££ <x,y> and w (x) > R(x,y)] .

This equivalence shows that 6 ' is a measured transformation as well.
By the equivalence of measured and honest sets (th. 2.3.8) there exists a
total function S such that (cp. ...) . c Hc. Let j. be an index for S, and6 (j) J § Jo
let e = p(j). Writing T resp. T' for cpz resp. qr , , we conclude that T is u e a (e)
total. Moreover the case that cp ,. . is a finite function leads to the in-

<(j o)
equality H = H .T aero2 H £ H ,, whereas in the alternative case the con- K I
struction of 6 ' implies <43.,.. . e H \ H ,. Hence e satisfies the condition

o U o -1 1 T
of the theorem. □

These theorems yield a satisfying answer to question (1): there exist
no honesty procedures on R for weak complexity classes or honesty classes.
We next consider the second question.

All our diagonalization procedures used upto this point constructed
expensive functions by deleting values from some given function. This way
we produce partial diagonalization functions. If we want a total function
we must provide also finite "escape values". Our aim was to define <p . in

<5 (j)
such a way that q3^^^(x) = y only when <p^_.^(x,y) was large (and consequent
ly cp̂ (p(j))(x,y) was small). Therefore we need for each x at least two
values of y such that cp^.^(x,y) * 0 .

Up to now we are unable to solve this difficulty for ordinary honesty
classes. Using modified honesty classes the problem however disappears; if
r(x) * 0 for infinitely many x and if R(x,y) = r(max(x,y)) then R(x,y) * 0
whenever x < y and r(y) * 0 .

THEOREM 3.4.1A. For each measured transformation a there exists an index e
(of a total function) such that H,A n R * HA n R.

^e 'Pa(e)

PROOF. We describe the diagonalization procedure for tha case that ip ise
obtained by application of the mirror lemma using u = c, leaving the mod
ification yielding a total cp to the reader.

Suppose HA HA and let <p satisfy the relationzero t e 1

167

cp (x) = if tp . . (x) le t(x) then loop else 0 fi. e — o(e) — ---------c----- *—

Let R(x,y) = ip̂ (max(x,y)), R'(x,y) = cp̂ ̂ (max(x,y)). The case that tp̂ is
cofinite leads to the inclusions H.̂ = HA i HA c HATPe zero t - »P (e)

Otherwise there exist infinitely many x such that <P£(x) * 0; these x
form a recursive set. Let y^ and y^ be defined by

y| = A.x[yz[z 2 x and <Pg(z) * 0]]
and

y2 = Ax[yz[z > yj(x) and ipg(z) * 0]].

Then yj and y 2 are total and for each x, R(x,yj(x)) = R(x,y2 (x)) = “ .
Define f by:

f = \x[i£ (pn x (x) < t(yj (x)) and ip̂ x (x) = yj (x)TIjX

then y 2 (x) else y.(x) fi].

Then as before f i H^, and f e H^; moreover, f is total. This proves that
1AHa n R * n R. □
pe a (e)

The third question on the existence of non-uniform honesty procedures
remains unsolved. An idea which is used as a short cut in the proof of
theorem 3.4.13 suggests a way to approach the solution. Let (R^)^ be a
measured set of names of honesty classes. Then there exists a transforma
tion 6 such that tp^^ 4 HR _ (unless HR = P). It is not very difficult to
construct such a transformation.

However, if we are able to define 6 in such a way that 6 becomes a
measured transformation of programs then we are done. In this case (ip. ...).
is a measured set which is contained in H for some total R. This honestyK
class clearly has no name in the sequence (R^)„ We therefore specialize
our third problem to:

UNSOLVED PROBLEM 3.4.15. Let (R^K be a measured sequence of functions in
two variables. Does there exist a measured transformation 6 such that, for

R- * P, (P6 (i) i h .V
One may weaken the condition by asking ip. ,.. i Hp only for totalo(i) Ki

functions R^. A positive answer to this question should show the non-exis-

168

tence of a measured set containing total names for all honesty classes
named by a total function.

3.4.3. ALTERNATIVE MEYER-McCREIGHT ALGORITHMS FOR STRONG CLASSES

This section contains two modifications of the MEYER-McCREIGHT algo
rithm. The first modification is designed to produce two names for a single
class which have disjoint domains. The second modification proves a gener
alized union theorem for strong classes. Finally we discuss the problem
whether this generalization allows us to name classes which are not already
named by the original union theorem.

A result of R. MOLL [MMo 72] states that for each strong class F(t) a
name t' can be constructed with a domain having asymptotical density zero.
His proof uses a modified MMC algorithm which manipulates the priorities in
such a way that t'(x) is seldom defined. It is not very amazing that there
are arguments enough in the complement of Vt’ to define a second name t"
for F(t). In order to prevent that t' uses all the "good" arguments for its
own we define t' and t" simultaneously.

We shall see afterwards that we even may assume that Vt' and Vt" are
subsets of Vt - this however for the price of loosing the property of mea
suredness. We indicate further how one may prove a generalization where a
single name is splitted into an infinite number of names with disjoint do
mains, each naming the original class.

THEOREM 3 . 4 . 1 5 . There exists a measured transformation of programs from P

into P x P mapping each index i onto a pair of indices <a(i),t(i)> so that

(i) Vi[F(<p.) = F(«po(i)) = F«pT(i))]
(ii) Vi[P<Po(i) u tVpT(i) = 0] .
By measuredness of this transformation we mean that both sequences (i))i
and (tp ...). are measured sets.T (l) 1

PROOF. We construct a modified MMC-algorithm which enumerates and
ip simultaneously, using an enumerator for as input.

Let t = <p., t' = <Px(i) and t" = <PT(i)-
The indices j are manipulated as before. If a violation by j against t

is discovered j is placed on the black list. To be transferred back to the
white list a violation by j against both t' and t" must be created, and

169

these violations will have to occur at two distinct arguments.
To represent the intermediate situation where a violation by j against

t is halfway being punished we introduce two more colours red and blue. The
procedure searchtime works as before, but identifies all non-white indices
as black ones. If it yields a positive solution the index used at x choosen
whether the value found by searchtime is going to be a value for t' or for
t". This way any index which is used twice becomes white again. □

The algorithm below is a modification of the MMC-algorithm by R. MOLL;
next is a subroutine which computes the next free priority number, as sug
gested by the program:

proa next = int: p +;- 1;

which operates on a global variable p which is initialized at zero, defined.
is a boolean operator testing whether some variable is initialized or not.
The algorithm is a stagewise algorithm; below we describe stage n.

stage n:

1. Introduce index n: pin] := next; bin] := white;

2. Computation of t: x := v.̂ n; y n^n;

if ®Ax) *■ y then goto 4 else z := i[x] := <$dx) fi_

Z. Discriminator against t:

for j < n do_ if b[j] = white and A(j,x,z) * true
then (big] := black; pij] := next) fi od;

4. if defined t'ix] or defined t"ix] then goto stage n+1 fi;

5. searchtime(x,y,y,prior); if failure then goto stage n+1 fi;

*r if success occurred in searchtime cand is the index used at x and val
is the value found; we now choose which bound is going to collect this
value t

6. if blcand] = black or blcand] = blue
then (choice := 1; t ’[x] := y)
else (choice 2; t"[x] := y) fi;

170

7. Discriminator against t' and t":

for j i n do_ if blj] * white and A(j,x,z) * true then
if b[j] = black then b[j] if choice = 1 then red else blue fi
elif b[j\ = red and choice - 2 then (b[j\ := white; p[j] next)
elif b[j\ = blue and choice = 1 then (b[j] := white; p[j] next)

£i
fi od;

8. goto stage n+1;

It is clear from the description that t' and t" have disjoint domains.
To prove that t, t' and t" all name the same class we consider the possible
behaviours of p[j] and b[j].

Case 1. p[j] is unstable.

Moving back and forwards j violates t, t' and t" all at infinitely
many arguments. Hence j 4 F(t), j 4 F(t') and j 4 F(t").

Case 2. p[j] is white-stable.

In this case j £ F(t) is trivial like before. To show that j e F(t')
and j e F(t") we must prove that the priority used at x is almost every
where larger than lim p[j]. In the original MMC-algorithm this is clear
since a priority used at x is a mortal priority, but this assertion is no
longer true for our modification. However, an index which is used twice
liberates himself by choosing the right bound to violate against, and with
this liberation its priority dies. Hence each priority is used at most
twice. (Since we have implemented an R. MOLL MMC-algorithm there is no his
torical backlog between the priority status used by searchtime and the ac
tual priority status.)

Therefore the assertion that the priority used at x is almost every
where larger then lim p [j] remains valid. Consequently j £ F(t') and
j e F(t").

Case 3. p[j] is black-stable.

Now j £ F(t') and j £ F(t") are trivial. Moreover by assertion 3.4.4
the run-time a. is bounded almost everywhere by the maximum of the run-
runtimes of a finite set of white-stable indices which run-times are
bounded in their turn by t almost everywhere. Hence j £ F(t).

171

Case 4. ptj] is blue-stable.

This situation arises only if the index j , after having reached its
stable priority value k on the black list is used at most once, for if it
is used at a moment where its colour is already blue then we take choice = 1
and b[j] becomes again white and the blue priority is deleted. Furthermore
no violation against t' is created after b[j] has become blue for the last
time. Hence j e F(t').

Because searchtime makes no difference between black and blue indices
j e F(t) can be derived from assertion 3.4.4.

To prove that j e F(t") we need a stronger assertion about the working
of searchtime than assertion 3.4.4. We use that val is not only larger than
all white run-times left of candidate, but larger than the non-white run
times left of candidate also, since otherwise such a run-time should have
yielded a solution. Since the priority used at x is almost everywhere larger
than lim ptj] one derives cr (x) < t'(x) and op. (x) < t"(x) almost everywhere.
This shows that j e F(t").

Case 5. ptj] is red-stable.

This case is analogous to case 4.

In each of the five case we have j e F(t) iff j J F(t') iff j e F(t").
This proves that the three classes are equal.

Finally the measuredness follows straightforward from the program. □

Using Theorem 3.4.15 we may split a single name into an infinite se
quence of names by defining t = tp .. . = ip (k),.... To derive thatk. P (. i, k; t (o (i))
these names have disjoint domains we need an inclusion of the type
ftp ... c ftp. and ftp ... c ftp., but these inclusions are not derivable froma(i) ~ i t(i) ~ i
the above algorithm.

In order to enforce such inclusions we modify the program so that calls
of searchtime are suppressed until t[x] is enumerated, but by doing so the
condition of measuredness is lost. Then we may also withdraw all precautions
against unwanted revisions.

PROPOSITION 3.4.16. There exists a transformation of programs from P into
P xP which maps each index i onto a pair of indices <a(i),r(i)> so that:
(i) Vi [F(cp̂) = F(cpa^)
(ii) Vi[ftpa(i) n ftpx(i) =

= F<^(i))
0 , ftpa(i) u ftpT(i) c ftp.].

172

PROOF. Replace in the above algorithm the instructions after 5 by

5'; if defined t[x] then searchtime (x,0,y,prior) else goto stage n+1 fi;
if failure then goto stage n+1 fi;

The correctness proof above must be relativized to the domain of t;
for cases 1 and 2 this makes no difference, whereas for cases 3, 4 and 5
the following relativization of assertion 3.4.4 may be used:

FACT 3.4. 17. If an index j has a stable non-white priority, then its run
time c<j is bounded for almost all x in the domain of t by the maximum of
the run-times of (white) stable indices with higher priority.

The remainder of the proof is left to the reader. □

COROLLARY 3.4.18. For each t there exists an infinite sequence of names t.
for F(t) with disjoint domains.

A nicer way to prove this corollary is the construction of an MMC-
algorithm which enumerates infinitely many names for F(t) instead of two.
In this algorithm a black index j on its way back to the white list must
violate the first p[j] names being constructed (at p[j] distinct arguments)
before it becomes white again. We need an infinite collection of interme
diate colours. The choice which name is going to collect a fresh value at
x found by searchtime is made by the index used at x, which selects the
lowest bound which he must violate and which he has not yet violated. The
details are left to the reader.

In contrast to the sequence found in 3.4.18 the sequence constructed
by an algorithm as suggested above will be a measured set.

Our next subject is the generalized union theorem. This theorem states
that the union of an increasing sequence of strong classes of indices is
again a strong class with a name which is computable from programs for the
sequence of names. In contrast to the situation of the classical union
theorem, which was discussed in chapter 3.3, this union theorem does not
hold for classes of functions. The reason is that many indices with far
distinct run-times may be mapped by fun onto the same functions. Conse
quently we cannot derive from the fact that the sequence of classes of
functions is an increasing sequence that these classes correspond to an in
creasing sequence of classes of programs. A counterexample is given below.

173

EXAMPLE 3.4.19. [The union of an increasing sequence of complexity classes
is not in general again a complexity class].

Let IN be written as the disjoint union of an infinite sequence of in
finite recursive sets A.. JN = U A., A. n A. = 0 for i * i.

t i l ’ l J
Let

g^(x) = x e A^ then 1 else 0 fi.

We construct a complexity measure which contains among others the following
programs tp.. with corresponding run-times Y . . :

♦ij
= 7x[j], T. .

tj = 8i for 0 < j < i,

♦ij

II >-* X E f. .
tj = 8i + 8j for 0 < i < j »

♦ij
= Xx[°°], V. . ij = Xx[°°] for 0 = i < j ,

Ip.. IJ = Xx[i], H1. .
tj

II >-* X 7 for 0 = j < i.

Ip..IJ
= Xx[x], T . . tj

= Xx[x] for 0 = i = j •

All other programs have run-times larger than Xx[x+l] at all arguments.
, whereas C = U C is not a complexity class.We claim that CSi Sii+1

PROOF. From the definitions one concludes that F„ consists of the programs°i
ip., with 0 < j £ i. Therefore C consists of the constant functions with tj &i
values l,2,...,i. This shows that C S C . Note however, that

si gi+l
F„ n F = 0.Si 8 i+l

Now suppose that C = C = U C . If t(x) £ x almost everywhere then F c i Si t
contains the program 'I'q q » and Ĉ. contains therefore the non-constant func
tion Xx[x] which is not contained in C. Hence t(x)£x for infinitely many x.

We conclude that F^ consists of programs from the sequence (tJj ..)..).
Let A be the set of arguments x with t(x) > 0.

If A contains (modulo a finite set) none of the sets A. then Ft is
j t-

empty and consequently C = 0 * C. If A contains (modulo a finite set)
precisely one of the sets A^ (lets say A^) then Ft = F^ and again C^ and
C are distinct.

If A however contains (modulo a finite set) two of the sets A. (say
A^ and A^ with i < 1) then Ffc contains among others the program which
computes the non-constant function Xx[x]. Therefore in this case the
classes C and C are also different.

This completes our proof. □

174

THEOREM 3.4.20. Let A be an acceptance relation and let (t.). be a sequence
A A ̂ ^of (partial) functions, so that F„(t.) c F-(t.). Then there exists a

function tinf so that U F0(t.) = F^(tinf).2̂ o 1 o

If prog is defined for A and if prog i = ip. then the theorem holds
also for the classes G^(t^).

PROOF. The function tinf is computed by a modified MMC-algorithm. The items
manipulated are not the indices j themselves, but pairs consisting of an
index j and a bound-index i of a bound t^ which j want to respect. The item
<j,i> is placed on the black list if it is discovered that j violates t.
and <j,i> is placed back on the white list after creation of a violation by
j against tinf.

It may happen that a pair <j,i> becomes white-stable whereas the same
index, combined with a "wrong" bound i' violates its bound infinitely often.
In this situation the pair <j,i'> is doomed to become black-stable.

2We assume that the functions t^ are computed by the program <P
The algorithm is a stagewise algorithm; we describe stage n.

stage n:

7. Introduce item n: p[n] :~ next; bln] true;

2. Computation of the t^: discriminator: x := n^n; y := n^n;
2

for k < x do_ if 0^_(k,x) = y then
begin z ip*j_(k,x);

for m < n do_ if b[m] = true and n^m = k and
k(v.fn,x,z) * true

then (p[m] := next; b[m] := false) fi od
end fi od;

3. if defined tinflx] then goto stage n+1 fi;

4. searchtime (x,y,y,prior); t the run-time of an item as considered by

searchtime is the run-time of its index t
if failure then goto stage n+1 fi;

5. Discriminator against tinf: tinflx] := y;

for m < n do_ if blm] = false and A(tt̂ m,x3y) * true
then (blm] := true; plm] := next) fi_ od;

S. goto stage n+1;

175

To prove that F(tinf) = I) F(t.) we consider the possible behaviours of
i 1

the items. Let j = n^n, and i = TT̂ n.

Case 1■ p[n] is unstable.

From the unstability of p[n] one derives that j violates both t^ and
tinf at infinitely many arguments. Hence j i F(t^) and j F(tinf).

Case 2. p[n] is white-stable.

The white stability of n implies j e F(t^). Moreover by the usual ar
gument that the priority used at x is almost everywhere larger than
lim p[n] one derives that j e F(tinf) also.

Case 3. p[n] is black-stable.

In this case j e F(tinf) by the black stability of n. Assertion 3.4.4
can be applied and yields that the run-time of item n i.e. a. is bounded
almost everywhere by the run-times of finitely many white-stable items. Let
these finitely many white stable items bounding the run-times of item n be
denoted by nn. . Let l = n,n and let i = n„n .I k Jm 1 m m 2 m

Since the n are white-stable we have i e F(t-) for 1 < m < k. Now
m . “

the condition of monotonicity of classes is applied. Let i^ be the maximum
of i ,...,i . Then j e F(t-) for 1 S m < k and consequently: l k m io

CO _
Vx[a. (x) < t. (x)].

Jm 10

This implies

a.(x) < max (a. (x),...,a. (x)) < t. (x) for almost all x
J J 1 Jk x 0

Consequently j e F(t-) c y F(t.).
L0 i 1

If j e F(tinf) and i e IN then we have for item n = <j,i> either
case 2 or case 3 and consequently j e U F(t.). Conversely if j e F(t.) thenl r r
we have for n = <j,i> also either case 2 or case 3 and therefore j e F(tinf).

This completes the proof. □

Although 3.4.20 as a theorem looks stronger than the union theorem in
chapter 3.2 for strong classes, it is not clear whether it is an essential
generalization or not. It could be that each sequence of strong classes

176

(F(t.)). satisfying F(t^) c F(t^+ j) can be renamed by a sequence of names
which is monotonic in the sense of chapter 3.3.

Upto now this is an open question. We can show by an example that it
is not generally possible to rename a class F(t) => F(u) by a name t' with
t' > u. If t and u both are total we can rename u by u' = min(t,u) but this
construction does not work for infinite sequences.

EXAMPLE 3.4.21. [F(t) u F(u) cannot generally be renamed by a name t' > u] .
Let (Y.). be the measured set defined by: l i J

Y^ - Xx[if even x then 2 else 1 fi]

Y^ - Xx[if even x then 3 else 0 fi]

Y^ - Ax[4] for k > 2.

If T is the corresponding acceptance relation, and if t and u are defined
by:

u(x) = 1; t = Ax[if even x then 3 else 0 fi],

then F^ (u) = 0 and F^(t) = {1}, hence F^ (u) c F^Ct).
r r rSuppose that F (t) = F (t') with t' > u. Since 1 e F (t) we have

t'(x) > 3 for almost all even x, whereas t' > u implies t'(x) > 1 for all
rodd x. But now 0 e F (t') also which is a contradiction. □

The transformation of sequences (t^)^ =» (u^)^ below is an in
finite version of the operation of taking the minimum to rename the smallest
class.

u.(x) = if x < i then max{t.(x)} else min {t .(x)} fi.
1 j<x •* i<k<x ^

This transformation maps a sequence of total functions onto a non-decreasing
sequence of total functions. It does not yield however

VitFCtJ c F(ti+J)] imp Vi[F(t^) = F(ui>].

The reason for this failure is shown in the example below; it is not
possible to prevent the addition of infinitely many meaningless restrictions
forming together an unwanted serious restriction.

177

EXAMPLE 3.4.22. Let be a total run-time and suppose F(zero) = 0. Let

t^(x) = if x * i then c<q (x) else 0 fi.

Now the transformed sequence u. becomes:

u^(x) = if x < i then a^Cx) else 0 fi.

Hence 0 e F(t^) = F(t^) whereas F(u^) = F(zero) = 0.

An approach which looks more fruitful is to rename the complete se
quence of classes by an increasing sequence of names, not necessarily pre
serving the individual classes but preserving the union of the classes.
Such a construction is possible for total t..

PROPOSITION 3.4.23. Let (t^)^ be a sequence of total functions so that
F(t^) c F(t^+ |). Then there exists a sequence of total functions (u.). so
that:

(i) ViVx[ui+](x) > u^(x)],
(ii) U F(u.) = U F(t.).

l 1 i t

PROOF. Define

u^(x) = maa;{cc(x) | i <k and

3n<k[or (x) le_ t^Cx) and Vy [(k < y and y < x) imp cc (y) _7e t (y)]]}

For x < k this definition simply yields

u (x) = max{a.(x) | i < k and a.(x) le max{t.(x)}}.K 1 ---- 1 --- . , I
j< k J

For x > k the extra condition that a fixed t^ bounds a. over the complete
interval [k,x] starts its influence.

First suppose that j e F(t). Then there exists an argument b so that
x > b implies a.(x) < t (x). If k > max(j,n,b) then u (x) > a. (x) for x > k,J u k j
since j ,n < k and (x) le_ t^(x) f°r x e [k,x]. Consequently j e F(u^).

Conversely, suppose that j e F(u) then a. is bounded almost every-
J

where by the maximum of the run-times of a finite set of indices, which are
all contained within .U F(t.) = F(t); for if a is bounded over arbitrary i<k x k m J

178

long intervals [k,x] by a function t^ with i < k then is bounded also by
a fixed t. with i < k over the infinite interval [k,<»). But now one con-

1
eludes that j e F(t^) by the same argumentation we used before.

This shows that

U F(t.) = U F(u.).
i 1 i 1

The monotonicity of the sequence (uO^ is derived from the fact that
the conditions on the run-times cu (x) used in the maximalization for u^+ j(x)
are weaker than the corresponding conditions for u^(x); therefore the maxi
mum does not become smaller. □

3.4.4. THE MEYER-McCREIGHT ALGORITHM AS A CLOSURE OPERATOR

In this section we consider the MMC-algorithm with a "general" dis
criminator. Although we do not intend to present a discussion on relativised
complexity theory, it should be noted that the results in this section do
not assume computability of this discriminator. If it is a non-recursive
discriminator, then the function computed by our MMC-algorithm is non-re
cursive also.

In section 1 we considered the MMC-algorithm which computes a new name
for a strong class, given by an old name. Forgetting the fact that our in
tention was that the new name should be measured, the MMC-algorithm is an
inefficient procedure. In fact we use the old name t to generate an infinite
sequence of "boolean procedures" b^(x) (the tests on violations perpetrated
by the indices) so that j e F(t) iff b^(x) = true for almost all x. Using
these test-results the priority statusses are manipulated in such a way
that the equivalence j e F(t') iff b ̂ (x) = true for almost all x holds also.

Now suppose that the class F(t) is not given by the name t but by an
oracle for the indices contained in F(t). One may ask whether it is still
possible to compute a name t' so that F(t) = F(t'). The answer is positive
To compute t' one simply replaces the test-results reporting on the viola
tions by the answers given by the oracle; it is not difficult to verify
that the modified MMC-algorithm indeed computes a function t' satisfying
F(t) = F(t').

The same modification is possible if not an oracle for F(t) is given
but a so-called general discriminator for F(t), a concept which is defined
below:

179

DEFINITION 3.A.24. Let X be an arbitrary set of indices. A general discri
minator for X, is a total boolean function B(i,x) so that the following
equivalence holds:

i e X iff Vx[B(i,x) = true].

Using this terminology we can reformulate a technical result in
Chapter 1.4 (lemma 1.4.10) by the following proposition:

PROPOSITION 3.4.25. Let X be a I^-class of indices, then there exists a re
cursive general discriminator for X.

PROOF. Let P be a total recursive predicate so that

j e X i f f 3bVa[P(j,a,b)].

We define B(j,x) by:

B(j,x) = 3y<x[Vz<x[P(j,z,y)] and not 3w<y[Vz<x[P(j,z,w)] and not P(j,x,w)]].

Then j e X iff Vx[B(j,x)] (see chapter 1.4). □

The converse implication holds also: if B is a general discriminator
for X and if B is a recursive function, then X is a Z 2 _c^ass•

Let X be a class of indices and let B be a general discriminator for
X. Then we construct the following stagewise algorithm, called the MEYER-
McCREIGHT algorithm based on B.

stage n:

1. Introduce index n: pin] next; bln] := true;

2. Discriminator:

for y ^ n do_ if bly] and not B(y,n) then
(ply] next; bly] := false) fi od;

3. x ttfi; y := nfi; if defined t'lx] then goto stage n+1 fi;

4. searchtime (x,y,y,prior); if failure then goto stage n+1 fi;

180

5. Discriminator against t': t'lx] := y;

for z < n do_ if not b [3] and K(z,x,y) * true then
(p[z] := next; b[z\ := true) fi od;

6. goto stage n+1;

Dropping the prime which is superfluous since there is no danger for

confusion we denote the function computed by this program by t. The rela

tion between X and F(t) is expressed by the following theorem:

THEOREM 3.4.26: Let B be a general discriminator for a class of indices
and let t be the function computed by the MMC-algorithm based on B. Then:

(i) X c F(t).
(ii) X c F(u) imp F(t) <= F(u).
(iii) X = F(t) iff there exists a function u (not necessary recursive)

so that X = F(u).

PROOF.

(i) Consider the behaviour of the priorities during execution of the MMC-
algorithm based on B.

Case 1■ p[j] is unstable.

In this case j | X since B(j,x) = false for infinitely many x; j i F(t)
by the same argumentation as before.

Case 2. p[j] is white-stable.

In this case j e X since at the moment that p[j] gets its ultimate
value, only finitely many values of B(j,x) are computed; for all x for
which B(j,x) is computed afterwards this value is true. The proof that
j e F(t) remains unchanged.

Case 3. p [j] is black-stable.

Now j e F(t) as before but we cannot prove that j € X.

In each case we have j £ X imp j e F(t) which proves X c F(t).

181

(ii) From assertion 3.4.4 we conclude that the run-time of a black-stable
index j is bounded almost everywhere by the maximum of finitely many run
times of white indices having stable priorities larger than the stable
priority of j.

Denote this set of white-stable indices with higher priority by
{jI>•••>jk?• Then we have:

{j i. • • • ,Jk} c X c F(u) im£_
00

VlVx[a. (x) < u(x)] %mp
Ji

Vx[max {a. (x)} < u(x)].
1<l<k J 1

Combining this with Vx[oc(x) 2 max {a: (x)}]
1 <l<k Jl

(assertion 3.4.4) we find

Vx [c k (x) < u(x)]

hence j e F(u).

Note that u does not need to be recursive in order to make the proof
correct.

(iii) The only if side is trivial since X = F(t) implies the existence of a
name u so that X = F(u). Conversely suppose that X = F(u) for some unknown
name u. Then F(t) c F(u) by (ii). Combining (i) and (ii) this yields
F(t) = X. □

The MMC-algorithm based on B computes a name of a strong ARBC which
contains X, and the equality holds if and only if X is already a strong
ARBC with an unknown, not necessarily recursive, name. The above proof how
ever yields further information on the indices contained in F(t) \ X.

COROLLARY 3.4.27. j e F(t) iff there exist finitely many indices jj,...,jk
which are contained in X so that

Vx[a.(x) < max {a. (x)}].
. J 1<l<k J 1

PROOF. If j e X then the assertion is trivial whereas for indices
j e F(t) \ X the assertion is nothing else but assertion 3.4.4, using the
fact that j must be a black-stable index.

182

Conversely assuming that the run-time CC is bounded almost everywhere
by the maximum of finitely many run-times of indices which are contained in
X and therefore also are contained in F(t) we derive that j e F(t) by the
same argumentation as before. □

The preceding results yield also the following corollary:

COROLLARY 3.4.28. F(t) = n{F(u) | X ç F(u)}.

PROOF. Since X ç F(t) the inclusion fl{F(u) | X c F(u)} ç F(t) is trivial.
The converse inclusion follows directly from 3.4.26 (ii). G

Note that the preceding results show that the class F(t) does not
depend on the discriminator B used for X. The results show moreover that
every l^-class of indices is contained in a minimal strong class (without
minimality one has always X ç F(e)).

COROLLARY 3.4.29. Let X be some I2-class of indices. Then there exists a
function t such that X ç F(t) and such that F(t) £ F(u) for each u with
X ç F(u).

PROOF. By 3.4.25 there exists a recursive general discriminator for X, and
therefore the MMC-algorithm based on this discriminator yields a recursive
name for a class F(t) which has the claimed properties by 3.4.26. □

As a fourth corollary we prove that the inclusion X c F(t) preserves
monotonicity:

COROLLARY 3.4.30. If Xj and X 2 are two sets of indices determined by dis
criminators Bj and B2 and if the functions computed by the MMC-algorithms
based on Bj respectively B2 are denoted by tj and t2 then Xj c X 2 implies
Fît,) c F(t2).

PROOF. Xj c X 2 implies Vu[F(u) => X 2 imp F(u) => X^]. Hence

F(t,) = n{F(u) I F(u) o Xj} c n{F(u) I F(u) 3 x2) = F(t2). □

Writing X for F(t) we conclude that the transformation X + X is a
closure operator (the MMC-closure operator):

183

X c X by 3.4.26,

X = X by 3.4.26,

Xj c X2 imp Xj c X2 by 3.4.30.

This closure operator is however no Kuratowski closure operator for a
topology, since u ^ is not in general equal to X^ u X^. Take for exam
ple two complexity classes whose union is not a complexity class [MC 69].

Another application yields the following result:

PROPOSITION 3.4.31. The intersection of two strong classes is again a
strong class.

PROOF. In fact this is nothing but a trivial property of closure operators.
Strong classes are l^-classes which are identical to their MMC-closure. The
intersection of two I^-classes X and V is again a I2-class. Moreover if
X = X and V = V we have:

X n / = X n / c X n V c X n V

hence X n V = X n V
This shows that X n V is a Z^-class which is identical to its MMC-closure. □

Note that for total t and u one trivially has F(t) nF(u) = F (min (t, u)) .
The function min{t,\i) is computable also in the case where t and u are
selected from a measured set. Consequently 3.4.31 follows directly from the
naming theorem.

To complete this section we consider the intersection of a sequence of
strong classes. It is known that there exist examples of decreasing se
quences (t.) of total recursive functions, so that 0 F(t.) * F(t) for each 1 1 1
recursive t [Ba 70]. Using 3.4.28 we can prove that this intersection is a
class F(t) for a A^ function t. The non-existence of an intersection theo
rem means therefore only that the intersection is not named by a recursive
name, and not (as is sometimes the case with the union of two classes) that
the intersection is not nameable.

PROPOSITION 3.4.32. Let (t.)̂ , be a sequence of partial recursive functions.
Then there exists a A, function t so that H F(t.) = F(t).4 i t

184

PROOF. Let X = Q F(t.) and let B be a discriminator for X. By 3.4.28 the
i 1

function t computed by the MMC-algorithm based on B is a name for the set
X = 0{F(u) | X c F(u)}.

Since X c F(t.) for each i we conclude that F(t) c n F(t.) = X. The 1 i 1
converse inclusion follows straightforwards from 3.4.26. This proves that
X = F(t) = n F(t.).1 1

By repeating the original proof one shows that the function t computed
by the MMC-algorithm based on B is "measured modulo B" i.e. the graph of t
is a set which is recursive relative B. To determine the arithmetical com
plexity of B we remark that the set X is a fl^-set: we have
j t X iff Vk[j e F(t^)]; since j e F(t^) is a ^2_re^at:'-on we conclude that
X is a n^-set. Furthermore it is trivial that any Tl^-set possesses a n^-
discriminator B. Since t is A, relative B we conclude that t is a A,-func-1 4
tion. □

The above bounds are not sharp; it is not difficult to construct a Z~~
discriminator B for X. The existence of non-recursive names for infinite
intersections is proved also in the thesis of E.L. ROBERTSON [Rb 70].

3.4.5. A MEYER-McCREIGHT ALGORITHM FOR WEAK CLASSES

{A magician uses deception, deceit and fakery
to hoodwink the people, while a wizard is a
master of the secrets of the universe.

Parker & Hart. The wizard of ID}

In section 3.4.2 we proved that weak classes cannot be uniformly re
named, so the title of this section announces a non-existent algorithm. The
reader should expect therefore not to much.

The proofs in section 3.4.2 are all based on the assumption that we
are considering a measured transformation of programs. In order to escape
the prohibiting effect of these results we may drop this condition of mea
suredness. One should beware however for trivialities like "The identity
transformation renames both weak and strong classes".

In the preceding section the MMC-algorithm has been considered as a
method to compute a name for a set X defined by means of a general discrim
inator, provided that the set X can be represented as an ARBC.

185

Now our weak classes are l^-classes of indices also, and hence recur
sive discriminators for a weak class exist. Moreover we will construct in
the sequel of this section a modification of the routine searchtime which
creates weak violations instead of strong ones. So the subroutines for a
weak MMC-algorithm are available, and it seems that we only have to wait
for a clever programmer to combine these parts into a complete algorithm.

To the opinion of the author it is precisely this combination which is
forbidden by the negative results in section 2. In synchronizing the dis
criminator with the modified searchtime we must prevent someway that
searchtime starts looking for solutions at extremely high values, because
of the discriminator being unable to determine which white indices i at x
are "good" bound-respecting ones, which ones are the "bad" violators at x,
and which ones are the "ugly" bystanders (with A(i,x,z) = void for each z).

To eliminate this uncertainty we must teach the algorithm to separate
the violators from the bystanders, something which can only be done on the
base of prejudice.

To be more precise, we use in our modified routine which plays the
role fulfilled by searchtime in the ordinary MMC-algorithm, and which will
be called Weak searchtime hereafter, a subroutine called bias. The
subroutine bias predicts whether some white index in the priority queue
is well-behaved, and should be respected, or whether the index is a by
stander and should be disregarded. The routine bias is called the wizard
of the resulting weak MEYER-McCREIGHT algorithm.

First we describe the routine weak searehtime. In the ordinary MMC-
algorithm the routine searchtime terminates successfully if it has located
a black index, whose run-time at x exceeds the run-times of the white in
dices with higher priority. However, in order to be sure that we will
create a weak violation, we must be certain that this black index has in
deed a finite run-time at x. Therefore weak searchtime marks all possible
candidates (black indices j which are encountered at a moment where
val < otj(x)), and we continue by increasing val, and pushing cand through
the priority queue, until one of our marked candidates is found to have a
run-time o g (x) = val + 1. At this moment weak searchtime termiantes success
fully, and nominates this index j to be the index used at x.

To prevent abnormal termination of weak searchtime because of exhaus
tion of the priority queue, we insert at the tail of the priority queue a
white index with infinite run-time.

186

If the current candidate is a white index, weak searchtime uses its
subroutine bias to determine whether it should increase val in order to
respect this index, or whether it should forget about this index and pro
ceed to the next candidate. If val has to be increased we must look for a
possible marked black candidate which might have run-time equal to val+ 1.
These black candidates are stored in a linear list earlier aand; the task
involved in increasing val is performed by the local subroutine increase
val.

The routine weak searchtime is described by the following program.
proc weak searchtime = (int x, low, high, priorqueue prior,

procdnt, int) bool bias) void:

begin proc increaseval = (ref int val, Hint earlier cand) void:
begin val +:- 1;

for j over earlier cand do_
if A(j,x,val+1) = true then cand :=j; goto success fi

od

end;

<r .. . remaining declarations etc. ...

start weak searchtime: val low; cand :- Jr first index of prior t_;
$ initialize earlier cand to be an empty list, insert the closing

item "eps" with a^^fx) = «>, b[eps] = true, and bias(eps,x) = true
at the tail of the priority queue ^

steps: while val s high do_
if b[cand] then

if bias(cand,x) and <f A(cand,x,val) * true t
then increaseval (val, earlier cand)
else aand :- ‘f next item in prior

£L
elif t A(cand,x,val) = true Jr then cand := next item in prior ̂

elif ‘r A(oand,x,val+l) = true j then goto success
else attach int(earlier cand, cand); cand := $next item in prior jr_
fi od;

failure: $ report failure to calling program jf.
success: $ report success to calling program with t(x) = val and

index cand to become the index used at x ‘f

end t weak searchtime $;

187

The computation of weaksearchtime is illustrated in diagram 3.4.33. At
the moment of successful termination as represented in this diagram the
list earlier cand contains the indices and jg.

bias (j ,x) + ~ ~ ~ + ~ - - ~ + ~ + +

Diagram 3.4.33.

Note that not all the properties of seachtime are preserved. For
example it is no longer true that val is larger than all white run-times
left of cand; this holds only for the white indices j satisfying
bias(j,x) = true. Moreover val is not larger than all black run-times left
of candidate; this holds only for the black indices which are not contained
in the list earlier cand.

As before the routine weak searchtime will be used in a dovetailed
manner by our weak MMC-algorithm. One could ask for whether the list
earlier cand must be saved from one call of weak searchtime at the argu
ment x to the subsequent call at the same argument. This is unnecessary,
since the candidates on earlier cand are precisely the black indices with
run-time greater than val. One should beware for "hidden" increases of val
in between two calls of weak searchtime at the same argument. Moreover,
since we are not interested in computing a measured function, we may forget
the precautions against revisions of earlier rejections; hence we can take
low = 0 throughout our weak MMC-algorithm.

188

The weak MMC-algorithm based on the general discriminator B and the
wizard bias is decribed by the following program:

stage n:

1. Introduction: b[n] := true; p[n] next;

2. Discriminator:

for m i n do_

if b[m] and not B(m,x)

then p[m] := next; b[m] false

fi od;

3. x := rr̂ n; y := rj n;
if defined tUc] then goto 5 fi;

4. weak searchtime (x,0,y ,prior, bias);
if success then tlx] := y fi;

5. Discriminator against t:

for m < n do

if not b [m] then
for x < n do

if defined tlx'] and not test against output [m,x]
then if h(m,x,t\.x]) - true

then test against output [myx] := true;
elif <r_ K(m,x,n) - true
then test against output [m,x] := true;

p[m] := next; b[m] := true

£i
fi od

fi od 4 discriminator against t (f;

6. goto stage n+1;

Note that a major part of the algorithm consists of section 5:
discriminator against t; we must look for weak violations against t,
which violations have to be enumerated. Consequently we must beware for
multiple tests at a single argument; the bookkeeping array test against
output is introduced for this purpose.

Before investigating what the computed function t stands for, we allow

189

ourselves one more generalization. Upto now we have tacitly assumed that
the wizard bias used by searchtime is a total function. In our applica
tions we need a wizard which is partial; however, if for a given argument
x, bias(i,x) converges for some index i, then bias(i,x) should converge
for all indices i; i.e. Pbias = tt9'a for some recursively enumerable subset
A c ® .

To prevent that bias(i,x) is called for at arguments outside Dbias,
the calls of weak searchtime are executed conditionally; section 4 is re
placed by:

4’: if f bias(0,x) converges within n steps ‘r then
begin weak searchtime(x,0,y,prior,bias);

if success then t[x] := y ff end

£ b

It is clear that by this modification only terminating calls of bias
are issued, and that the domain of the computed function t satisfies
Vt c A.

In order to investigate the relation between the Î -class X discrim
inated by B and the weak class F̂ (t), we consider (as usual) the behaviour
of the priorities of the indices.

If p[j] is instable then j <J X and j & F̂ (t).
If p[j] is white-stable then j e X. In order that j e F̂ (t) it

necessary that the finite run-times or (x) for x e A are almost everywhere
respected. Since the priority used at x grows unboundedly (this property of
the MMC-algorithm is not lost by our modifications) the only possible cause
of not respecting a finite run-time or (x) with x e A and x sufficiently
large, can be an incorrect prediction by the wizard: bias(j,x) = false for
an argument x where or (x) < ".

Therefore, in order to deal correctly with white-stable indices j the
wizard should not overlook more than finitely many finite run-times or (x)
with x e A.

If p[j] is black-stable then j e F̂ (t). Inspired by the result on
strong classes we should not expect anything more than that j e F̂ (u) for
each u such that X c F̂ (u). In order to be able to derive such a relation
we need an assertion like assertion 3.4.4. This assertion is formulated
below:

190

ASSERTION 3.4.34. If p[j] becomes black-stable, then for almost all x e A
either a.(x) = » or otherwise (x) is bounded by the maximum of the finite
set of run-times oc(x) of those white-stable indices with higher priority
which satisfy at x the condition bias(i,x) = true.

If at a certain argument x one of the run-times a^(x) included in this
finite collection actually diverges the assertion becomes trivial for this x.
Consequently this indicates a second condition which the wizard must satisfy
in order to deal correctly with black-stable indices; for white-stable in
dices j the wizard should not declare to be finite more than a finite num
ber of runtimes cu (x) with x e A which are actually diverging.

We now have found two conditions on the wizard, in order that the weak
MMC-algorithm behaves correctly. Clearly the property of an index to be
white-stable is algorithm dependent; however, white-stable indices are
always members of X. Combining these observations we arrive at the following
definition:

DEFINITION 3.A.35. The wizard bias is called justified for the class X on A
if Dbias = tt̂ 'a and the following condition holds:

ViVx[i e X and x e A imp(a^(x) < °° iff bias(i,x))].

THEOREM 3.4.36. Let B be a general discriminator for the I^-class X. Let
bias be a wizard which is justified for X on A c IN. Then the function t
computed by the weak MEYER-McCREIGHT algorithm based on B and bias satisfies
the following conditions:

(i) X c Fw (t)
(ii) if Du c A and X c F^(u) then F^(t) c F^(u).

PROOF■ The condition that bias is justified for X on A includes both con
ditions which we recognized to be necessary in order that the MMC-algorithm
behaves correctly.

The instable indices present no problem at all. White-stable indices j
are member of X and, because of the fact that bias is justified, their finite
run-times a.(x) with x e A are respected.

Since black-stable indices are contained automatically in F^(t) the
first assertion X c pw (t) is proved.

191

To derive the second assertion we use assertion 3.4.34. Let Vu c A and
X c F^(u). Assume that j e F^(t). Then j is a stable index. If j is white-
stable then j e X and we are done. If j is black-stable then for almost all
x e A the run-time ol (x) either diverges, or CL (x) is bounded by the maximum
of the finite set of run-times 0l (x) of the white-stable indices with higher
priority, satisfying the condition bias(i,x) = true. Since bias is justified
for X on A and since white-stable indices are contained in X
bias(i,x) = true is almost everywhere equivalent to a.(x) < ■». Since
X £ Fw (u) this implies also o l (x) < u(x) (for almost all x). From this we
derive:

Vx [x e A and a . (x) imp o l(x) < u(x)]

and since Vu £ A this implies j e F^(u). □

We complete this section by presenting some applications of the weak
MMC-algorithm. The first application is a triviality.

TRIVIALITY 3.4.37. There exists a transformation a such that for each index
i, ftp. = ftPa(i); <Pa(i) £ cp. and Fw«p.) =

PROOF. For B we take the natural discriminator for F (̂ip.) whereas bias is
defined by:

bias = \j ,x[A(j ,x,qt(x)) = true].

To enforce the domain condition and the inequality we include in our
weak MMC-algorithm an escape-value mechanism: whenever ip. (x) = y has con
verged and weak searchtime(x,0 ,z,prior,bias) fails to provide a solution
when called with z > y, we set t[x] =y. It is left to the reader to show
that this escape-value mechanism does not disturbe the correctness of our
preceding arguments.

It is clear that bias as defined above is justified for F,. (tp.) on ftp,.
W l l

The result now follows by 3.4.36. □

The transformation a from 3.4.37 may be used to eliminate unnecessarily
large values from qr.

Our next application yields a generalized union theorem for weak
classes:

192

THEOREM 3.4.38. Let (tj)^ be a sequence of total functions such that
(ti) c F^(t^+ j). Then there exists a function tinf such that

y = Fw (tinf)-

PROOF. Similarly to the proof of 3.4.20 we design a weak MMC-algorithm
which operates on items consisting of an index and a bound-index. The dis
criminator B tests for the pair <i,k> whether index i respects the bound t

The run-time of an item <i,k> is the run-time a. of its constituentl
index.

The wizard bias is defined by

bias(<i,k>,x) iff A(i,x,t^(x)) = true.

Note that by the assumption that the t^ are total, bias is a total function
Let tinf be the function computed by the weak-MMC-algorithm.
The class of pairs X discriminated by B contains all pairs <i,k> with

i e F^(t^). Moreover "<i,k> e F^(tinf)" provided i e F^(tinf). Clearly bias
is justified for X on IN.

By 3.4.36(i) we conclude "X c F^(tinf)" which implies

i w c Fw (tinf)-
To prove the converse inclusion 3.4.36(ii) is not strong enough but by

using assertion 3.4.34 and by repeating the argumentation from the proof of
з. 4.20 this inclusion is easily derived. This completes the proof. □

Looking backwards one may ask whether this theorem could be proven
also by renaming the sequence of classes by a non-decreasing sequence of
names. For total t^ such a renaming leads to the same problems as was the
case with the strong classes. A weak analogue of proposition 3.4.23 is
valid.

PROPOSITION 3.4.39. Let (t^)^ be a sequence of total functions so that for
all i, F^(t^) <= F^(t^+ j). Then there exists a non-decreasing sequence of
total functions (u.). so that F,,(t.) = U F,.(u.).11 1 U/ 1 Iv 1

PROOF. Define ufc by:

и, - Am [if x < k then max{ a.(x) I J < k and a.(x) le max{t .(x)}}
k ---- 3 --- 3 — i<k *

else max{ a.(x) \ j < j and a.(x) le max{t .(x)} and
3 3 i<k 'l

3i<k[Vye lk,x~\ [a .(y) le_ t .(y) or_ a . (y) gt x\] } fi].
0 c

193

The proof that U F^(t^) = U F^(u^) is analogous to the proof of propo
sition 3.4.23. If j e F^(t) then there exists an m > j ,n so that for all
x > m, a.(x) = “ or a.(x) < t (x). From this one derives that for all x > m J J ^
the run-time a.(x) is used in the maximalization to compute u (x) whenever J ma.(x) is finite, and therefore j e F,,.(u).J J W m

Conversely the run-times a^(x) which are used in the maximalization to
compute u (x) are the run-times of precisely those indices 1 < m which do ra
not violate weakly at least one of the bounds t. with i < m over arbitrary
long intervals [m,x]. Hence for sufficiently large x only indices 1 con
tained in U F,.(t.) = F,,.(t) contribute to the maximalization. Since only i —in U/ l lv in
finite run-times contribute to the value of u (x) we conclude that for suf-m
ficiently large x, u (x) < t (x) and consequently F,,(u) c F,.(t).m m U / m U / m

Finally the fact that u (x) < u ,(x) is derived from the fact thatm m+ 1
more run-times a (x) are used in the maximalization for u (x) than for 1 m+ 1
u (x). m

This completes the proof. □

Proposition 3.4.39 reduces 3.4.38 to the union theorem for weak classes
(3.3.19).

There remains an open question whether a generalized union theorem for
weak classes with partial names exists or not. Starting with the original
union theorem, we have investigated generalizations in three independent
directions (partial names, weak classes, and monotonicity of classes in
stead of monotonicity of names). These generalizations and their pairwise
combinations now are proved, but the triple combination remains unsolved.
It should be quite amazing if this combination should be false.

Our final application concerns the intersection of two weak classes.
If min(t,u) is a computable function then one has F^(min(t ,u)) = F̂ (t) nF̂ (u).
Consequently the intersection of two weak classes with total (or measured)
names is again a weak class. Since the weak classes cannot be renamed by a
measured set of names we cannot reduce the general case to this special
case.

PROPOSITION 3.4.40. Let t and u be partial functions then there exists a
partial function v such that F̂ (t) n F̂ (u) = F̂ (v).

PROOF. Take for B a discriminator for the I^class X = F̂ (t) n F̂ (u). A
wizard for X is constructed as follows: Let i and j be indices for t and u.

194

Define the function w by:

w - x) < <!>.(x) then t(x) else u(x) ƒ£].

Clearly V w = V t u Du. We define bias by:

bias = \i,x[h(i3x,w(x)) - true].

Now bias is justified for X on Vw. Let v be the function computed by
the weak MMC-algorithm based on B and bias. By 3.4.36 we have:

(i) X c Fw(v) and
(ii) if Df c V w and X c F„(f) then F̂ Cv) c F̂ (f).
Taking f = u and f = t in (ii) proves F̂ (v) c X. 0

The following generalization of 3.4.40 is left to the reader:

EXERCISE 3.4.41. Let (t^). be a sequence of functions then there exists a
(non-recursive) function tint such that Q = F^(tint).

APPENDIX

ALGORITHMS

{Wahre Worte sind nicht wohlklingend.
Wohlklingende Worte sind nicht wahr.

Ein guter Mensch streitet nicht mit Worten.

Wer mit Worten streitet, ist kein guter Mensch.
Der Weise weiss nicht vieles;

Wer vieles weiss, ist nicht weise.

Lao Tse, das Buch vom Tao, VII 81,
ed. Lin Xutang}

199

AO. INTRODUCTION

This appendix contains some algorithms which were described more or
less formally in the preceding parts of this treatise. We use the language
defined in §1.1.2, the extensions defined in §1.1.3 and the procedures
given in §1.1.4.

In order to get some useful programs we have to disregard several
scope restrictions in the definition of ALGOL 6 8 .

Consider the following program:

begin

mode fun = proofint) int;
mode operator - proof fun) fun;

fun f Ax[0];
operator gamma = (fun h) fun: (int x) int: h(x)+l;

fun g := gammaff);

pr illegal sinoe the environ of "gammaff)" is newer than that of

9 EL
f := gammaff)

pr illegal as above; moreover what is happening to the relation
g - gamma(f)? pr

end

In the above example our interpretation is that g posesses after the
assignation g := gammaff) the routine Xx[l], and so does f after the as
signation ƒ := gammaf f). Hence g = gamma(f) is no longer true.

Al. THE MYHILL ISOMORPHISM ALGORITHM (chapter 1.4)

If f and g are two injective total recursive functions, and if A and
B are two subsets of W such that A <j B by f and B <j A by g then
myhill (f,g) yields a recursive permutation s such that A = B by s.

200

proa myhill - (proa(int) int f,g) proofint) int:

(int x) int:

(flex [0:0] int x list, y list;
flex [0:0] bool x def, y def;

x def[0] := y def[0] := false;

while not look up boolfx def,x) do

int i \ik[not look up boolfx def,k)];
int j := ffi);

while look up boolfy def,j) do_ j ;= ffy list[j]) od;
insert intfx list,i,j); insert intfy list,j,i);
insert boolfx def, i, true); insert boolfy def, j, true);

j :- \ik[not look up boolfy def,k)];

i := g(o);

while look up boolfx def,i) do_ i := gfx list[i]) od;
insert intfx list,i,j); insert intfy list,j,i);
insert bool (x def, i, true); insert boolfy def, j, true)

od;

x list[x]

) $ myhill ■?;

DISCUSSION

Values of s and s * are stored in x list and y list. The boolean ar
rays x def and y def designate whether s(x) or s *(y) is defined or not.
During execution of the program a loop is executed during which first s(x)
is defined for the lowest x for which s(x) was not defined before; after
wards the lowest value y is found for which s '(y) is not yet defined and
a corresponding x is found such that s(x) = y is a legal extension of s.
Execution of the loop is terminated when s(x) is found to be defined for
the requested argument x.

During execution of the algorithm we preserve correctness of the as
sertions :

00 oo

(a) Vx[x def[x] = false]; Vy[y def[y] = false];
(b) x def[x] = true imp 3y[x list[x] = y and y def[y] = true and

y list[y] = x and (x e A iff y e B)];

201

y def[y] = true imp 3x[y list[y] = x and x def[x] = true and
x list[x] = y and (x e A iff y e B)].

(c) x def[xl] = x def[x2] = true and xl # x2 imp x list[xl] * x list[x2];
y deftyl] = y def[y2] = true and yl * y2 imp y list[yl] * y list[y2].

Because of (a) computation of i always succeeds. Hence j can be com
puted as well. When i and j are known execution of a while loop is initi
ated. Let and be the values of i and j when the execution of the
while loop begins. If y deftj^] = true then let i^+ j = y list[j^] and

= f(i j). By (a) the while loop will terminate unless the sequences
(i) and (j) become periodic. Since by our assumptions on f and g and
(c) both f and the partial function whose values are stored in y list are
1 - 1 this occurs only if i, = i for some k > 0 , which, by (b) contra-
diets the fact that x defti^] = false. This shows that the while loop must
terminate by detecting y def[j] = false. Next s is extended by letting

- 1 ks(iq) = j^, (and s (j^) = iQ) . By (b) and the assumptions on f and g we
have iQ £ A iff e B iff ij e A iff iff e B. Hence the extension
of s with the pair <1^,ĵ .> preserves the validity of (a), (b) and (c).

During the second half of the main loop the roles of x and y are in
terchanged in order to enforce that s becomes a surjection.

A2. ENUMERATION OF A I2 -PRESENTABLE CLASS X USING A WAY-OUT STRATEGY
(52.3.2)

Let A be a I^-class and let B be a general discriminator for A (i.e.
x e A iff Vx[B(i,x)]). Assume moreover that X = { qu J i e A}.

Finite functions are represented by tables for their values; i.e. an
array of the mode ref flex[] struct(int val,bool def). The default value
of a value of the mode (int val3bool def) equals (0, false).

The way-out strategy is represented by a routine proa way-out -
- (table t) int : some element i such that ip̂ is an extension of the
finite function encoded in t

For example, the way-out strategy which extends each finite function
by the constant value zero is defined by:

202

mode tablit = struct (int val3bool def); pr_ the default value of a tablit

equals (0, false) pr

mode table - ref flex[] tablit;
proa way out - (table t) int:

index(int x) int:

(tablit z = look up tablit(t,x);

(def of z | val of z j 0));

The enumeration of the class X is performed by the transformation t :
for each i and j j^ will be a member of X and for each f e X there
exist indices i and i such that f = cp ..

proa (int i,x) bool B = ~;
proa(table t) int way out -

VT(itd)(x)
(flex[0:0] tablit results;
int prog i;
bool original prog := true;

for z while not def of look up tablit(results3x) do

if original prog and z > j and not B(i,z)

then prog := way out(results); original prog false fi;

if not def of look up tablit (results, n^z) and 4> (n~z) < z-----—' 1 --- prog 1
then insert tablit (re suits, n, z. (ip in.si. true)) fi---- 1 prog 1 ---- *—

od;

val of look up tablit(results,x));

DISCUSSION

This enumeration technique was described in §2.3.2. The way-out strat-
egy is used at most once (because of the boolean original prog). The inte
gral variable prog is initialized at the candidate index i. If the way-out
strategy is not used then the function qu is enumerated by a dove-tailed
computation; otherwise a safe extension of some subfunction in tp. is enu
merated .

Only finite values of ip are stored in results. Note that the com
putation runs independent of the argument x up to the point where q (x)prog
is enumerated.

203

A3. THE OPERATOR GAP ALGORITHM FOR WEAK CLASSES (chapter 3.2)

begin

<r The algorithm described in §3.2.3 is a non-terminating algorithm
which enumerates the graph of t. Clearly this program may be used to
compute t(x) by inserting into it a suitable exit, which is activated
if t(x) is enumerated.

Our formal description follows the informal one in §3.2.3 except
that the instruction "proceed to stage k+1" is implemented by a recur

sive call of the procedure stage. t

mode fun = proc(int) int;

mode operator - proc(fun) fun;
mode acrel - proa(int, int, int) bool;

fun lower bound = ~;
operator gamma = ~;
acrel acceptance = ~;
flex[0:0] int table;

{ it is assumed that lower bound is total, that gamma is total effective
and satisfies gamma(f) > f and that acceptance computes k(i,x,z) = true
for some acceptance relation A f

proc extend - (int x, low, fun t, ref l] fun tj) void:
begin int ub = \tj; (ub < x \ error);

tj[0] (int z) int:

if 3 < low then t(z)
else max(t(z-1),lower bound(z)+l)

for j from 1 to x do

tj[j\ :- (int z) int:

if z < low then t(z)

else max(tj[j-l](z), tj[j](z-1) ,gamma(tj[j-l])(z))

£i
od

end £ extend t;

pr the above procedure is illegal in ALGOL 68 since the environ of the
routine denotations in the above routine text is newer than the environ
of the names to whom they are assigned pr_

204

proa support = (int x,fun f, operator g) int:
begin int ub := 0;

fun f star = (int i) int: ((i > ub \ ub i); f(i));
gif star)(x);
ub

end <r support <r;

pr we assume that the operator g works by issuing calls of the function it
works on, the result being independent of the actual computation in

voked by it but dependent only on the value which is delivered pr

proo suponint = (int x, y, fun f, operator g) int:
begin (x > y \ error);

int out := y+1;

for z from x to y do

int p = support (z, f,g); (p > out \ out :- p)
od;

out

end t suponint

proa domains = (int low, [] fun tj) [] int:
begin up = \tj; if [_tj > 0 then error £i;

[0:up] int yj; int last yj := low + 1;
for j from up by -1 to 0 do

last yj :- yj[j] := suponint(0, last yj,tj[j],gamma)
od;

pr this downward loop is assumed to be legitimate, al

though it uses the monadic operator - pr

yj
end f domains t;

pr domains is the procedure which computes the pointers vj, l in part 2 of
the informal algorithm pr_

205

proa entergap = (int nof, low, up, fun bottom, roof) bool:

1i tests whether -index nof enters the local gap-section determined by
bottom and roof over the interval [low+l,up]; the gap-section is as
sumed to be closed <r

begin bool safe : = true;

for z from low + 1 to_ up while safe do

safe A:— aaceptance(nof,z,bottom(z)) = acceptance(nof,z,roof(z))
od;

safe

end f entergap f;

proa imsafegap = (int nof,k, low, [\int up, []fun bottom,roof) result:

'r seeks the highest entered gap-section if such a gap-section exists;
otherwise unsafegap yields true t

begin if k > [up or k > [bottom or_ k > [roof then error fi;
bool untouched := true; int p := k+1;

for j from k by_ -1 to_ 0 while untouched do_

if untouched A:- entergap (nof, low, upl j] ,bottom[j], rooflj])
then p :- p-1 fi

od;

(p=0 j true | p-1)
end $ unsafegap

proa stage = (int stage number, last defined, [] fun local extension <f - tj ‘r,
[]int locub 'r = zk <t) void:

begin int st = stage number, yO - last defined;
[0:st][0:st+l] int next stage locub;
[0: st][0: st+1] fun next stage extension;

fun giant;

for j from 0 to st do

extend(st+l,locub[j], local extension]j],next stage extensionlj]);
next stage locublj] := domains docublj],next stage extensionlj]);
'r informal description 1 and 2 $

206

giantlj] := (int z) int:

if 2 < yO or_ z > locub[j] then skip
elif j < st and z < locub[j+l]

then local extension]j+1](z)
else int great := local extension[j](z)+l;

for k to_ st+1 do

int p = gammainext stage extension] j,k]) (z);

(p > great \ great := p)
od;

great

$ informal description 3 ï

od t end for g-loop t;

]0:st] bool safegap;
for j to_ st do_ safegap] j] := true od;

for nof to_ st-1 do

case unsafegap(nof,st,yO,locub, local extension,giant)
in bool : skip,

int mis : safegap[mis] false
out error

esac od;

'r informal description 4 and 5 t

int select 0;

while not safegap[select]do select +:= 1 od;
if select > st then error fi;

■r informal description 6 <r

for x from y0+1 to_ locub\select]do

insert (tab le, x, local extension]select] (x)) od;

pr if looub[select] > argument looked for then exit fi_ pr

stage (sn+1, locub]select],next stage extension[select],
next stage locub]select])

‘r this recursive call takes care of 7 in the informal descrip

tion ‘r

end ‘r stage t;

207

start of the algorithm:

{0:1] fun extensions;

[0:1] int upper bounds;

extendi 1, 0, zero, extensions);

upper bounds := domains (0, extensions) ;

t initialization from informal description f

stage (1, 0, extensions, upper bounds)

end <r operator-gap algorithm $

A4. THE UNION ALGORITHM (chapter 3.3)

The union algorithm as described in chapter 3.3 clearly is a sequen
tial implementation of a more general algorithm involving a great deal of
synchronization and parallelism. Below we present first a sequential and
next a parallel implementation.

begin

<r declarations common to both implementations 4

mode tablit = struct(int val,bool def);

mode table = ref flex{] tab lit;
mode sr - struct (int ind,arg,bnd,val);
mode vr - srj

pr the default value of a suspect report equals (0,0,0,0) pr
mode acrel - proc(int, int, int) bool;

flex[0:0]tablit tinf;
acrel acceptance - skip;

2int index of sequence = skip; f the index t such that (i,x) = t^(x) t
flex[0:0]int toomp, guess;

llsr suspect list := (skip, nil);

llvr violation queue := (skip,nil);

int max comp, max test, max guess, max arg, max ind, max bnd, stage number;

208

$ sequential implementation f
proo sequential union algorithm = void: (
prop stage = (int n) void:
begin int t - index of sequence;

10: max aomp := max test :- max guess := max arg := max ind := max bnd n;
11: insert inti guess,max ind,max guess);

insert intitaomp,max ind,0);

12: for z to_ max arg do

int new aomp := teomp[z]; bool new :- false;
for i from new aomp to_ minis,max bnd) do

2
if $>^(i,z) s max aomp then new aomp := i; new true fi

od;

if new then

for i from taomp[a]to new aomp do
int val = qfj_(i,s);

for j to_ max ind do_

if guess [j] - i and not aooeptanaei z, j ,val)
then attach srisuspeot list, (j,z,i,val))

£i
od

od

fi
od;

13: for item over suspect list do_

if acceptance (ind of item, arg of item, max test)
then attach vriviolation queue,item)

f i 2fb
for item over violation queue do
for item 1 over suspect list do

i f ind 2 f item - ind of item 1 then
delete srisuspeot list,iteml)

fi od;

guess[ind of item] :~ max guess + 1

od;

209

14: for z to_ max arg do_

if not def of look up tablit(tinf,z) then
int viol bnd := max bnd + 1; val := 0;
for item over violation queue do_

if arg of item = z and bnd of item < viol bnd
then viol bnd := bnd of item; val val of item
fi od;

it viol bnd < max bnd then
insert tablit(tinf,z, (val, true))

fi
fi od;

15: clear vr(violation queue); stage(n+l)

end f stage f;

start of sequential implementation: stage(O)

<r end of sequential union algorithm f);

t parallel implementation of union algorithm.

There are three independent sections. The driver adjusts max arg, max
bndj max ind and max guess. The emanerator computes values of td.x) and
uses these values to test indices in order to place possible violators
on the suspect list. The inventor tries to find on the suspect list a
weak violator and using these weak violators tinf is defined. The array
guess and the suspect list are shared by the enumerator and the inventor;
consequently these structures can only be read or written within "criti

cal sections". The driver is only activated at a time where both the
enumerator and the inventor have completed a full turn. <r

proc parallel union algorithm = void: (

proa something = int: skip + 1;
proc waste time - void:

f e.g. executes Lucas ' test in order to find a new Mersenne prime f;

sema inventor sem = level 1, enumerator sem - level 1, guessem = level 1,
suspect sem = level 1;

int t = index of sequence;

210

proa driver = void:

do down enumerator sem; down inventor sem;
max bnd +:= something;

max arg +:= something; extend int(tcomp,max arg);
extend tab lit (tinf,max arg);

int mi = max ind; maxind +: = something; extend int(guess,max ind)

max guess +:- something;

int mai - max (max ind,max arg);
while max guess < mai do max guess +:= something od;
for i from rrri+1 to_ max ind do_ guess li] : = max guess od;
up enumerator sem; ug_ inventor sem;
waste time

od ‘r end driver

proa enumerator = void:

do down enumerator sem;
for z to_ max arg do_

new aomp := tcomp[z]; bool new := false;

for i from new comp to_ min(z,max bnd) do_
2if <&t(i,z) < max comp then new comp :- i; new := true fz

od;

if new then for i from toomp[z] to_ new comp do
2int val - (p̂ (i,z);

for j to_ max ind do

down guessem; int g = guess[j]; up_ guessem;
i£ 3 = i and not acceptance(z,j,val)

then down suspect sem;

attach srfsuspect list, (j, z,i, val)) ;
up suspect sem

fi od od

fi od;

max comp +:- something; «£ enumerator sem
od •f end enumerator t;

proa inventor = void:

do down inventor sem;
down suspect sem;
for item over suspect list do_

if acceptance(ind of item, arg of item,max test)
then attach vr(violation queue,item)
fi od;

up suspect sem;

for item over violation queue do
down suspect sem;

for item 1 over suspect list do_
il ind of item - ind of item 1
then delete sr(suspect list,item 1)

fi od;

up suspect sem;
down guessem;

guesslind of item] := max guess + 1;
up guessem

od;

for z to max arg do_

if not def of tinfl z]
then int viol bnd max bnd + 1, val := 0;

for item over violation queue do_
if arg of item = z and bnd of item < viol bnd
then viol bnd := bnd sl item; val : = val of item
fi od;

if viol bnd < max bnd then tinf[z] := (val, true) fi
fi od;

clear vr(violation queue);
max test +:= something;
up inventor sem

od $ end inventor f;

start of parallel implementation:

par begin driver, enumerator, inventor end

t end of parallel union algorithm 'f);
pr at this place one of the two union algorithms must be called pr_ skip
end t union algorithm f

212

A5. THE MEYER-McCREIGHT ALGORITHM (chapter 3.4)

In the discussion of the MEYER-McCREIGHT algorithm we indicated a num
ber of variants of such an algorithm. Below we present again a sequential
and a parallel implementation, both of which use the strategy against un
wanted revisions developed by R. MOLL. Both MMC-algorithms are based upon
some general discriminator B; for the classical case, where membership of
F(t) is tested, a procedure is given.

As we indicated in §3.4.1 there must be designed some interface be
tween the MMC-algorithm and its subroutine searchtime with respect to the
representation of the priority queue. The possible representations are
(i) an infinite array of pairs consisting of a priority number and a

boolean
(ii) a queue of pairs consisting of an index and a boolean
(iii) a double representation consisting of both (i) and (ii).

The first representation is easy for the MMC-algorithm as a whole
whereas the second one makes it easier to write the subroutine searchtime.
Choosing a double administration does not solve the problem since every
manipulation on one structure must be repeated for the other structure.

In our implementation we have used the representation by an infinite
array. The routine searchtime is equipped with a number or procedures yield
ing the first or next element in the priority queue.

begin $ declarations common to both MMC-algorithms ‘f

mode priostat = struct(int prio,bool stat);
mode acrel = proa(int, int, int) bool;

mode discr = proa (int, int) boo l;

mode quit - struct(int ind,bool stat);

mode candy al = struct (int cand,val) ;

mode quiter = union(quit,bool) ;

mode candvaler = union (candva l, boo l) ;

mode tab lit - struct (int val, bool def);

acrel acceptance - skip;
discr B - skip;
int index name = skip; int t = index name;

discr strong class = (int i,x) bool:

| acceptance (i, T\̂ x,ifî (-n̂ x)) \ true);

'r tests membership i e F(ip̂) 'r

213

flexlO:O]priostat prior;

pr the default value of a priorstat value equals (0, true) pr

int priorcounter : = 0;

proa next = int: priorcounter +:= 1;

flex[0:0\tablit t prime;

'r the procedures first and next take care of the interface inbetween search
time and the MMC-algorithm $

proc first = ([] priostat prior) quiter:
if [prior < [prior then false
else int aand := |_ prior; int height :- prio of prior[cand];

bool colour := stat of prior[cand];
for i from cand+1 to \ prior do_

if int new - prio of prior[i]; height > now
then height := now; aand := i; color : = stat of priorii]

fi od;

(cand, colour)
fi $ end first $;

proa next = ([]priostat prior,quit this) quiter:
begin int height; bool not found true;

for i from |_ prior to_ \ prior while not found do_
if(i,stat of prior[i]) = this

then height :- prio of prior[i]; not found false
fi od;

if not found then error fi;

int next height, cand; bool colour, found := false;
for i from |_ prior to_ |" prior do_
if int p - prio of priorii]; p > height then

if not found

then found :- true; next height := p;

cand := i; colour := stat of priorli]
elif next height > p

then next height := p; cand i; colour := stat of priorli]

fi od;

if found then(aand,colour) else found fi
end <r next <r;

214

roc searchtime = (int arg, low, high, []priorstat prior) candvaler:
begin int val := low; int cand; quit candidate;

case first(prior)
in quit yes: candidate yes
out goto failure
esac;

while val < high do_
if stat of candidate and not acceptance(ind of candidate,arg,val)
then val +:= 1

elif acceptance (ind of candidate, arg, val)
then case next (prior, candidate)

in quit yes: candidate := yes

out goto failure

esac

else <r solution found t goto success
fi od;

sucess: (ind of candidate, val) .

failure: false
end t searchtime t;

215

proa sequential MMC algorithm = void: (
proa stage = (int n,disor B) void:

begin extend priostat(prior,n); prior[n] := (next,skip);
extend tablitit prime,n);
for ind to n do

tf Blind, n) then prior[ind] (next, false)
fi od;

if not def of t prime [tt ,«] then
ease searahtime(T\jn,-n^n,T\^n,prior)
in oandval good:

(int test := val of good; t prime[u^n] (test, true);
for i to_ n do

if not stat of prior[i]and not acceptance(i, test)
then prior[i] :- (next, true)
fi od)

pr if def of t prime[wanted]

then terminate(val of t primelwanted])
fi pr

esaa

fi;

stage(n+l,B)
end ‘r stage tj

t to start a MMC algorithm to compute a new name for ‘f
staged, strong class)

$ end sequential MMC-algorithm f);

216

proc parallel MMC algorithm = void: (

‘f parallel implementation of MMC-algorithm.

There are two independently operating sections. The discriminator
tests indices and moves violators to the black list. Also the task of in

troducing new indices is given to the discriminator. The incriminator issues
calls of searchtime, and tries to invent values for t-prime. Both sections
share the priority queue as a common data structure. This queue is protected
using a semaphore prior sem i

proc something - int: skip;
sema prior sem = level 2;

proc discriminator = void:
do

for ind to_ max ind do_

if not B (ind, max ind)
then down prior sem;

prior [ind] (next, false) ;
up prior sem

fi_ od;

max ind +:= 1;
down prior sem;

insert priorstat (prior, max ind, (next, skip));
up prior sem

od <r end discriminator t;

proc incriminator = void:

do int arg = trial;

if def of_ t primelarg] then skip

else int low - last triedlarg]; int high = low + something;
last triedlarg] high + 1

candyal happy;
down prior sem;

case searchtime (arg, low, up, prior)

in candy al good: happy := good; wp_ prior sem

out up prior sem; failure

esac;

217

int test = val of happy;
t prime [arg] := (test, true);
down prior sem; int up :- |" prior; up_ prior sem;
for i to up do
down prior sem;

if not stat of prior[i]
and not acceptanceli, arg, test)

then prior[i] := (next,true)

tl)
up prior sem od

failure: trial +:= 1;

extend tablit(t prime, trial);
extend intdast tried,trial)

od ‘f end inoriminator $;

start: int max ind := 0, trial := 0;
flexlO:0\int last tried;

par begin discriminator,inoriminator end
$ end parallel MMC-algorithm <f);

pr at this place one of the MMC-algorithms must be called pr_ skip
end $ MMC-algorithms $

A6. THE WEAK MEYER-McCREIGHT ALGORITHM (Chapter 3.4)

For this algorithm we present a parallel implementation. The algorithm
is based upon the acceptance relation "acceptance", the discriminator "B"
and the wizard "bias". The algorithm consists of three independent sections.
The discriminator has the same function as in A5. The inoriminator uses the
subroutine weak searchtime in order to generate new values of t'. Testing
of indices against t' and making white indices out of black ones is per
formed by a new section called "the judge".

A number of mode declarations, which are equal to the corresponding
ones in A5, have been omitted.

218

begin

proa(int,int)bias - skip; acrel acceptance - skip; discr B = skip;
int k = index \x[bias(0,x)] t used to test convergence of bias (0,x) t;
■f int eps = an index whose a-run-time equals e $
int prior counter := 0; proa next - int: prior counter +:= 1;
int time := 0, max test := 0, trial := 0, max ind 0;

proc something = int: skip;

proc current time - int: time +:= (something + 1);
sema prior sem = level 13 t prime sem = level 1;

flex\0:0]priorstat prior; flexlO:0]tab lit t prime;

proc first = ([]priorstat prior)quitter: £ see A5
proc next = ([]priorstat prior,quit this)quitter: see At <r_;

flex[0:O\bool test against output;

pr remember that the default value of a boolean value equals false pr

proc weak searchtime =

(int x3 lcw3high3 [] priors tat prior, proc (int, int)bool bias) candvaler:
begin if O^fx) > current time then come back another time fi;

down prior sem; int up - [prior;
[0:up+l] priors tat own prior; own priori 0: up] :- prior;
own priorlup+1] := (next, true);
up prior sem;

proc own bias = (int i)bool: if i = up+1 then true else bias(i,x)fi;
proc own accept = (int i, z)bool: if i = up+1 then false else

acceptance (i,x,z)fi;

f by these redefinitions of prior, bias and acceptance the element
eps is inserted at the tail of the priority queue $

Hint earlier cand (up+1,nil);

$ this element never gives a solution i
proc increase val - void:

(val +:= 1;

for j over earlier cand do_

if own accept! j,val+l) then cand := j; go to success fi
od);

219

int val := low; quit candidate;

case first(own prior)

in quit yes: candidate :- yes

out error <r own prior is not empty $

esac;

int cand := ind of candidate;
while val < high do_

iL stat °L candidate

then if own bias(cand) and not own accept(cand,val)
then increase Val

else case next(own prior,candidate)
in quit yes: candidate :- yes
out error ‘r the last queue element has infinite

a-run-time $

esac

fi
elif own accept (cand, val)
then case next(own prior,candidate)

in quit yes: candidate := yes
out error ‘r see above <r
esac

elif own accept(cand,val+1)
then goto success

else attach int (earlier cand, cand);
case next(own prior,candidate)
in quit yes: candidate := yes

out error t the last item in the queue is white <r
esac

fi od;

failure: false.

come back another time: true.

success: (cand,val)

end t weak searchtime f;

220

proa discriminator = void:
do for ind to_ max ind do_

if not B(ind,max ind)
then down prior sem;

prioriind] := (next,false);
up prior sem

fi od;

max ind +:= 1;
down prior sem;

insert priorstat (prior, max ind, (next, skip)) ;
up prior sem

od <r end discriminator $;

proa inariminator - void:
do int arg = trial;

down t prime sem;
if def of t primeiarg]
then up t prims sem
else up t prime sem;

case weak s earahtimef arg, 0, trial, prior, bias)
in aandval good:

(down t prime sem;
t primeiarg] := (val of good, true);
up t prime sem),
bool mis: skip

esao

ff;
trial +:= 1;
down t prime sem;
extend tablit(t prime, trial);
up t prime sem

od <r end inariminator $;

221

proa judge = void:

do down prior sem; int upp = [prior; wp_ prior sem;
down t prime sem; int upt = \ t prime; ug_ t prime sem;

if <upp,upt> > I test against output

then extend booKtest against output, <upp,upt>)

&

for ind to_ upp do
for arg to_ upt do_

±L test against output[<ind,arg>]
then skip 'f test was already exeauted $
else tablit targ; priorstat prind;

down prior sem; prind := prior [ind]; up_ prior sem;
down t prime sem; targ := t prime[arg]; up_ t prime sem;
if not def of targ

then skip t test Value not yet available t
elif stat of prind

then skip <r white indices are not tested f
else int val targ = val of targ;

if acceptance (ind, arg, val targ)
then test against output[<ind,arg>]
elif acceptance(ind, arg,max test)
then test against output[<ind,arg>]

down prior sem;
prior[ind] : = (next,true);
up prior sem

true

true

£L

£ l

£i
od od;

max test +:= (something + 1)
od judge <r;

start of the weak MMC algorithm:

par begin discriminator, incriminator, judge end

end t weak MMC-algorithm $

223

REFERENCES

[Al 73] ALTON, D., Speed-ups and embeddability in Computational Complex
ity. Dept, of Comp. Sei., University of Iowa, Iowa City,
TR 73-01, 1973.

[Al 73.b] ALTON, D., Non existence of program optimizers in an abstract
setting. Dept, of Comp. Sei., University of Iowa, Iowa City,
TR 73-08, 1973.

[Au 70] AUSIELLO, G., On the bounds on the number of steps to compute
functions. Proc. 2nd ACM Symp. on the theory of computing,
Northampton, Mass., (1970) 41-47.

[Ax 63] AXT, P., Enumeration and the Grzegorczyk hierarchy. Z. Math.
Logik. Grondlagen Math. 9 (1963) 53-65.

[Ba 70] BASS, L., Hierarchies based on computational complexity and ir
regularities of class determining measured sets. Ph.D. Thesis
Purdue Univ., 1970.

[BCH 69] BORODIN, A., CONSTABLE R.L. & HOPCROFT, J.E., Dense and non-
dense families of complexity classes. Proc. 10th SWAT Symp.,
Waterloo, Ontario, (1969) 7-19.

[Bl 66] BLUM, M., Recursive function theory and speed of computation.
Canad. Math. Bull. 9 (1966) 745-750.

[Bl 67] BLUM, M., A machine-independent theory of the complexity of re
cursive functions. J. Assoc. Comput. Mach. 14 (1967) 322-336.

[Bl 71] BLUM, M., On effective procedures for speeding up algorithms.
J. Assoc. Comput. Mach. 18 (1971) 290-305.

[Bo 72] BORODIN, A., Computational complexity and the existence of com
plexity gaps. J. Assoc. Comput. Mach. 19 (1972) 158-174.

[BY 73] BASS, L. & YOUNG, P., Ordinal hierarchies and naming complexity
classes. J. Assoc. Comput. Mach. 20 (1973) 668-686.

[Co 72] CONSTABLE, R.L., The operator gap. J. Assoc. Comput. Mach. 19
(1972) 175-183.

[Da 58] DAVIS, M.D., Computability and unsolvability. McGraw-Hill, New
York, 1958.

224

[Da 73] DAVIS, M.D., Hilberth tenth problem is unsolvable. Amer. Math.
Monthly 80 (1973) 233-269.

[EB 71] EMDE BOAS, P. van, A note on the Meyer-McCreight naming theorem
in the theory of computational complexity. Report ZW 7/71,
Math. Centrum, Amsterdam, 1971.

[EB 72] EMDE BOAS, P. van, Gap and operator gap. Report ZN 42/72, Math.
Centrum, Amsterdam, 1972.

[EB 72.b] EMDE BOAS, P. van, A comparison of the properties of complexity
classes and honesty classes, in: Automata Languages and Pro
gramming, M. Nivat (ed.), Proc. IRIA Symp. Rocquencourt,
North Holl. Publ. Comp., 1973.

[EB 73] EMDE BOAS, P. van, Mostowski's universal set algebra. Report
ZW 14/73, Math. Centrum, Amsterdam, 1973.

[EB 73.b] EMDE BOAS, P. van, The non-renameability of honesty classes.
Preprint:Report ZW 18/73, Math. Centrum, Amsterdam, 1973.
(To appear in Computing Arch. Elektron. Rechnen.)

[EB 74] EMDE BOAS, P. van, Introduction to machine-independent complex
ity theory; Part I: Complexity measures, Part II: Resource-
bound Classes, Part III: Abstract resource-bound classes.

Math. Centre Tracts 61 & 62 (in preparation), Amsterdam, 1974.

[EL 66] Reference Manual ELX8 Chapter A4 (Dutch) ed. Electrologica, 1966

[En 73] ENGELER, E., Introduction to the theory of computation. Ac.
Press, New York, 1973.

[FS 72] FELDMAN, J.A. & SHIELDS, P.C., Total complexity and the infer
ence of best programs. Standford artificial intelligence pro
ject, Memo AIM-159, CSD rep. CS-253, 1972.

[Gz 53] GRZEGORCZYK, A., Some classes of recursive functions. Rozprawy
Matematyczne 4, Warsaw, (1953) 1-45.

[HH 71] HARTMANIS, J. & HOPCROFT, J.E., An overview of the theory of
computational complexity. J. Assoc. Comput. Mach. 18 (1972)
444-475.

[Hm 71] HARTMANIS, J., Computational complexity of random access stored
program machines, Math. Systems Theory 5 (1971) 232-245.

225

[Hm 73]

[Hm 73.b]

[HY 71]

[K1 52]

[Kn 68]

[Le 70]

[Le 71]

[LR 72]

[Ly 72]

[MC 69]

[MC 69.b]

[MCM 69]

HARTMANIS, J., On the problem of finding natural computational
complexity measures. Proc. Symp. and Summer School on Mathema
tical foundations of computer science, High Tatras, C.S.S.R.,
(1973) 95-104.

HARTMANIS, J., Computational complexity of formal translations.
Cornell Dept, of Comp. Sci., TR 73-192, 1973.

HELM, J.P. & YOUNG, P.R., On size versus efficiency for programs
admitting speed-up. J. Symbolic Logic 36 (1971) 21-27.

KLEENE, S.C., Introduction to Metamathematics, van Nostrand,
Princeton, New Jersey, 1952.

KNUTH, D.E., The art of computer programming, Vol. 1. Fundamen

tal algorithms. Addison Wesley, Reading, Mass., 1968.

LEWIS, F.D., Unsolvability considerations in computational com
plexity. Ph.D. Thesis, Cornell University, 1970.

LEWIS, F.D. , The enumerability and invariance of complexity
classes. J. Comput. System Sci. _5 (1971) 286-303.

LANDWEBER, L.H. & ROBERTSON, E.L., Recursive properties of ab
stract complexity classes. J. Assoc. Comput. Mach. J_9 (1972)
296-308.

LYNCH, N.A., Relativization of the theory of computational com
plexity. Ph.D. Thesis, MIT, rep. MAC TR-99, Cambridge, Mass.,
1972.

McCREIGHT, E.M., Classes of computable functions defined by
bounds on computation. Ph.D. Thesis, Carnegy Mellon Univ.,
1969.

McCREIGHT, E.M., A note on complex recursive characteristic
functions. Rep. Comp. Sci. Dept., Carnegy Mellon Univ., 1969.

McCREIGHT, E.M. & MEYER, A., Classes of computable functions de
fined by bounds on computation. ACM Symp. on the theory of
computing, Marina del Rey, Cal., (1969) 79-88.

MEYER, A.R. & FISCHER, P.C., Computational speed-up by effec
tive operators. J. Symbolic Logic _37_ (1972) 55-68.

[MF 72]

[MMo 72]

[Mo 73]

[Mo 73.b]

[MT 72]

[Pa 67]

[Pe 50]

[Rb 70]

[Rb 71]

[Rd 68]

[Ro 58]

[Ro 67]

[Rr 63]

[Ru 73]

[SS 63]

226

[MMC 69] MEYER, A.R. & McCREIGHT, E.M., Properties of bounds on computa
tion. Proc. 3rd ann. Princeton Conf. on Information Sciences
and Systems, (1969) 154-156.

MEYER, A.R. & MOLL, R., Honest bounds for complexity classes of
recursive functions. Proc. 13th SWAT Symp. Univ. of Maryland,
1972. (to appear in J. Symbolic Logic.)

MOLL, R., Complexity classes of recursive functions. Ph.D. The
sis, MIT, report MAC TR-110, Cambridge, Mass., 1973.

MOLL, R., An operator embedding theorem for complexity classes
of recursive functions. MAC. Techn. Mem. 32_, 1973.

MILLER, R.E. & J.W. THATCHER (eds.), Complexity of computer
computations. Plenum Press, New York, 1972.

PARIKH, R.J., On non-uniqueness in transfinite progressions.
J. Indian Math. Soc. 3J_ 0967) 23-32.

PETER, R., Rekursive funktionen. Akademiai Kiado, Budapest, 1950.
(English translation, Academic Press, New York, 1967).

ROBERTSON, E.L., Properties of complexity classes and sets in
abstract complexity theory. Ph.D. Thesis, Univ. of Wisconsin,
1970.

ROBERTSON, E.L., Complexity classes of partial recursive func
tions. 3rd ACM Symp. on the theory of computing, Shaker
Heights, Ohio, (1971) 258-266.

RITCHIE, D.M., Program structure and computational complexity.
Ph.D. Thesis, Harvard Univ., 1968 (unpublished).

ROGERS, H., Gödel numberings of partial recursive functions.
J. Symbolic Logic 23 (1958) 331-341.

ROGERS, H., The theory of recursive functions and effective com
putability. McGraw Hill, New York, 1967.

RITCHIE, R.W., Classes of predictably computable functions.
Trans. Amer. Math. Soc. 106 (1963) 139-173.

RUSTIN, R. ed., Computational complexity. Courant Comp. Sci.
Symp. 7, Algorithmic Press Inc., New York, 1973.

SHEPHERDSON, J.C. & STURGIS, H.E., Computability of recursive
functions. J. Assoc. Cornput. Mach. _1_0 (1963) 217-255.

227

tSy 71]

[Yo 71.a]

[Yo 71.b]

[Yo 73]

[Wea 74]

SYMES, D.M., The extension of machine independent computational
complexity theory to oracle machine computation, and to the
computation of finite functions. Ph.D. Thesis, Univ. of Water
loo, Ontario, CSRR 2057, 1971.

YOUNG, P., Speed-ups by changing the order in which sets are
enumerated. Math. Systems Theory 5_ (1971) 148-156.

YOUNG, P., A note on dense and non-dense families of complexity
classes. Math. Systems Theory 5̂ (1971) 66-70.

YOUNG, P., Easy constructions in complexity theory: gap and
speed-up theorems. Proc. Amer. Math. Soc. 37_ (1973) 555-563.

WIJNGAARDEN, A. van, e.a. (eds.), Revised Report on the Algorith
mic Language ALGOL 68. Math. Centre Tracts 50, Amsterdam,
(to appear).

229

SUMMARY

We present a survey of the theory of resource-bound classes in ab
stract complexity theory within a machine-independent framework.

To be able to discuss algorithms without relying on the informal or
semi-formalized descriptions found otherwise, we present a formalism to
represent algorithms and expressions denoting computable functions. This
formalism, described in chapter 1.1, consists of a high level programming
language, extended by a number of primitives needed for discussing the
basic concepts of an effective enumeration and a complexity measure. In
order to accomodate the mathematical reader, a mathematical style of rep
resentation is defined, which makes it possible in a majority of situations
to use the same informal expressions which have been traditionally used, by
giving these expressions a formalized meaning. In this way a number of im
plicit ambiguities within the language of abstract complexity theory are
eliminated.

After this introduction we present the basic concepts of an effective
enumeration (1.2) and a complexity measure (1.3). To illustrate our formal
ism, and in order to make this publication self-contained, we present some
basic facts from recursion theory (1.4) and some elementary results on com
plexity measures (1.5). The monotonicity lemma in 1.5, showing the exis
tence of programs with increasing run-times for total functions, completely
solves the problem whether sufficiently many increasing run-times exist.
Part 1 is completed by mentioning the speed-up phenomenon.

The second part gives a survey of the known results on classes of com
putable functions defined by bounds on computations, the so-called resource-
bound classes. The most important types of such classes are the complexity
classes (where the bound on the run-time depends on the argument only) and
the honesty classes (where the maximally allowable run-time depends both
on the argument and on the computed value). In particular, the results on
the behaviour of honesty classes compared with the known properties of com
plexity classes, are new.

Following the definitions of the classes (2.1) we discuss diagonal-
ization techniques (2.2), enumerability properties (2.3) and set theoreti
cal closure properties (2.4).

In part 3 the resource-bound classes mentioned above are reconsidered
from a more general point of view. To explain the different behaviour of
complexity classes and honesty classes, given their similarity of defini

230

tion, we introduce the concept of an acceptance relation, together with a
corresponding measured set of generalized run-times. It is argued that
there exist two different ways in which some function, used as a name of a
class, restricts membership in this class, depending on whether divergence
of the run-time is felt to be in violation of the restriction (strong re
striction) or not (weak restriction).

Relative to a given acceptance relation we define in this way for each
partial recursive function a corresponding strong (weak) class; these
classes will be called abstract resource-bound classes hereafter.

The difference between complexity classes and honesty classes origi
nates from the fact that classes of the former type are examples of strong
classes whereas the latter type consists of weak classes.

In the sequel of Part 3 we discuss those results on resource-bound
classes which can easily be treated within the language of abstract resource-
bound classes. Chapter 3.2 contains the proofs of the gap theorem and the
operator-gap theorem for both strong and weak classes, yielding the opera-
tor-gap theorem for honesty classes as a corollary. In chapter 3.3 we dis
cuss the union theorem, which is proved for both strong and weak classes,
where, moreover, the functions in the increasing sequence of names are al
lowed to be partial (using the extra condition that the domains of the
functions form a decreasing sequence of sets). Again the union theorem for
honesty classes is a straightforward corollary.

In chapter 3.4 we discuss the MEYER-McCREIGHT naming theorem, which
claims the existence of a measured transformation of programs renaming all
complexity classes. This theorem, in combination with the compression
theorem, yields a method to extend uniformly complexity classes by operat
ing on programs for their names. This is interesting since the gap theorems
show that no uniform extension by operation on the names themselves is pos
sible. In contrast to the situation in the preceding two chapters, this
theorem cannot be generalized for weak classes; instead we prove that each
measured transformation fails to rename correctly at least one honesty
class.

Section 3.4.3 contains a number of modifications of the MEYER-
McCREIGHT algorithm which is used in the proof of the naming theorem. The
first modification enables us to rename a strong class by two names having
disjoint domains. The second modification yields a further generalization
of the union theorem for strong classes, where the monotonicity of the se
quence of names is replaced by the monotonicity of the sequence of classes

231

of indices c.q. programs.
In section 3.4.4 we discuss how the MEYER-McCREIGHT algorithm can be

used to compute a name for the smallest strong class containing a I^-class
which is given to us by means of some "almost everywhere"-condition. Al
though the computed name highly depends on the precise MEYER-McCREIGHT al
gorithm used, the strong class named by this function is characterized in
terms of the given l2 _class-

The theory of these last two sections is generalized for weak classes
in section 3.4.5. As follows from the negative results in 3.4.2, the MEYER-
McCREIGHT algorithm behaves badly for weak classes; however, its renaming
properties may be preserved by equipping it with a so-called "wizard" which
guesses by means of prejudice which run-times are finite and which ones
diverge. The weak MEYER-McCREIGHT algorithm, constructed this way, yields
a further generalization of the union theorem for weak classes, and a
proof that the intersection of two honesty classes of programs with partial
names is again an honesty class; the latter result cannot be derived in the
usual way by taking the minimum of the two names since this no longer needs
to be a computable function.

In the Appendix we formally represent a number of the more complicated
algorithms by means of programs written in the programming language des
cribed in chapter 1.1.

233

SAMENVATTING

Dit proefschrift geeft, in het kader der abstracte complexiteitstheorie,
een overzicht van de theorie van de klassen van functies die gedefinieerd
worden in termen van begrenzingen op de rekentijd, die we bij gebrek
aan ingeburgerde Nederlandse terminologie "verbruiksklassen" zullen noemen.
We werken op een machine-onafhankelijke basis.

Om te kunnen praten over algoritmen zonder te hoeven vervallen in het
gebruikelijke, informele of half-formele taalgebruik, ontwikkelen we een
formalisme om algoritmen, en expressies die een berekenbare functie voor
stellen, te beschrijven. Dit formalisme is gebaseerd op een hogere orde
programmeertaal, voorzien van enkele primitiva, nodig om de structuur van
een effectieve enumeratie van recursieve functies, of een complexiteits-
maat, formuleerbaar te maken. Om het de wiskundige lezer echter niet al te
moeilijk te maken, definiëren we ook een wiskundige representatiestij1
voor deze programmeertaal. Hiermee vangen we twee vliegen in een klap: we
kunnen in een groot aantal gevallen volstaan met de expressies die inge-
burgerd zijn voor simpele berekenbare functies, en bovendien krijgen dezelf
de expressies een geformaliseerde betekenis. Op deze wijze verdwijnen
bovendien een aantal impliciet aanwezige ambiguiteiten uit de taal der
abstracte complexiteitstheorie.

De basisbegrippen van een effectieve enumeratie en een complexiteits-
maat worden gedefinieerd in hoofdstuk 1.2 resp. 1.3. Hoofdstuk 1.4 bevat
(ten behoeve van de zelfstandigheid van dit proefschrift en ter illustratie
van ons formalisme) enkele basisstellingen uit de recursietheorie, en in
hoofdstuk 1.5 behandelen we de elementaire theorie der complexiteitsmaten.
In dit laatste hoofdstuk lossen we het probleem op of er voldoende stijgen
de rekentijden bestaan, door aan te tonen, dat iedere totale functie zich
laat berekenen met behulp van een programma met stijgende rekentijd. Een
korte toelichting van de versnellings-stelling in hoofdstuk 1.6 besluit
het eerste deel.

In het tweede gedeelte vertellen we wat er bekend is over verbruiks
klassen. De belangrijkste typen verbruiksklassen zijn de zo te noemen
complexiteitsklassen (waar de begrenzing op de rekentijd slechts van het
argument afhangt) en de "gelijkmatigheidsklassen" (waar de begrenzing
zowel bepaald wordt door het argument als door de berekende waarde). De
hier gepresenteerde resultaten over gelijkmatigheidsklassen, in vergelijking
met die over complexiteitsklassen, zijn nieuw.

234

Na de definities (2.1) volgen achtereenvolgens diagonalisatie-
technieken (2.2), opsombaarheids-kwesties (2.3) en verzamelingstheoretische
aspecten van de verbruiksklassen (2.4).

In deel 3 bekijken we de verbruiksklassen vanuit een algemener stand
punt. Hoe is het mogelijk dat, ondanks een zichtbare analogie in definities
van complexiteits- en gelijkmatigheidsklassen, de twee types een verschil
lend gedrag vertonen? Om dit te verklaren voeren we het begrip "acceptatie-
relatie" in met een daarbij behorende "opvraagbare rij” van gegeneraliseer
de rekentijden. We maken aannemelijk dat er twee verschillende manieren
zijn waarop een functie op kan treden als naam van een klasse, afhankelijk
of het divergeren van de rekentijd beschouwd wordt als een schending van
de begrenzingsconditie (sterke begrenzing), of niet (zwakke begrenzing).
Met betrekking tot een gegeven acceptatierelatie definiëren we voor iedere
partieel recursieve functie een bijbehorende sterke resp. zwakke klasse.
Deze klassen noemen we in het vervolg abstracte verbruiksklassen.

Het verschil tussen complexiteits- en gelijkmatigheidsklassen is nu
geheel en al te verklaren, door op te merken, dat eerstgenoemde klassen
sterk begrensd zijn, terwijl de laatstgenoemde klassen een voorbeeld zijn
van zwak begrensde klassen.

In de rest van deel 3 komen die resultaten uit de abstracte complexi-
teitstheorie aan de orde, die zich goed laten behandelen in de taal der
abstracte verbruiksklassen. Hoofdstuk 3.2 bevat het bewijs van de "gaten
stelling" en de "operator-gatenstelling" voor zowel de sterke als zwakke
verbruiksklassen; geldigheid van de laatste stelling voor gelijkmatigheids
klassen is een direct gevolg.

In hoofdstuk 3.3 behandelen we de verenigingsstelling. Deze laat zich
generaliseren tot zwakke klassen; bovendien mogen de functies in de stij
gende rij namen partieel zijn, mits wordt aangenomen dat de bijbehorende
rij definitie-gebieden een krimpende rij verzamelingen is. Ook deze
stelling is nu voor gelijkmatigheidsklassen bewezen.

Hoofdstuk 3.4 handelt over de omnoemings-stelling van MEYER en
McCREIGHT, die uitspreekt dat alle complexiteitsklassen op uniforme wijze
kunnen worden voorzien van een opvraagbare rij namen. Deze stelling ont
leent haar belang aan het feit dat zij, in samenwerking met de "compressie-
stelling", de mogelijkheid geeft op uniforme wijze complexiteitsklassen te
vergroten door middel van operaties op programma's voor de namen van deze
klassen. Men dient hierbij te beseffen dat een zodanige vergroting door
middel van operaties op de namen zelf op grond van de gatenstellingen

235

onmogelijk is. In tegenstelling tot de voorafgaande stellingen laat deze
stelling zich niet generalizeren voor zwakke klassen; in tegendeel: iedere
transformatie van programma's die een opvraagbare rij namen geeft is foutief
voor minstens één gelijkmatigheidsklasse (3.4.2).

Paragraaf 3.4.3 bevat een aantal varianten van de Algoritme van MEYER
en McCREIGHT, die gebruikt wordt om de omnoemings-stelling te bewijzen. De
eerste variant laat zien hoe een naam van een sterke verbruiksklasse zich
laat transformeren tot een paar namen voor dezelfde klassen die disjuncte
definitie-gebieden hebben. De tweede variant levert een generalisatie van
de verenigings-stelling, waarbij de conditie, dat de namen een monotone rij
vormen, is vervangen door de monotonie van de rij verbruiksklassen van
rangnummers resp. programma's.

Paragraaf 3.4.4 laat zien hoe de MEYER-McCREIGHT algoritme ons in staat
stelt een naam te berekenen voor de kleinste sterke verbruiksklasse die
een ^ “klasse omvat, die gedefinieerd is m.b.v. een "bijna overal"-criterium.
Hoewel de berekende naam afhangt van de gebruikte algoritme, laat de bijbe
horende sterke klasse zich helemaal definiëren in termen van de gegeven
I^-klasse.

De theorie uit de laatste twee paragrafen wordt gegeneraliseerd voor
zwakke klassen in paragraaf 3.4.5. Het negatieve resultaat uit paragraaf
3.4.2 laat zien dat de MEYER-McCREIGHT algoritme niet werkt voor zwakke
klassen. We kunnen echter, door de algoritme te voorzien van een "waarzegger"
die (op grond van ingeworteld vooroordeel) gokt of een rekentijd al dan niet
divergeert, een algoritme construeren, die de omnoemings-eigenschappen van
de MEYER-McCREIGHT algoritme bewaart. Dit geeft aanleiding tot een verdere
generalisatie van de verenigings-stelling voor zwakke klassen en een bewijs
dat de doorsnede van twee gelijkmatigheidsklassen met partiele namen een
gelijkmatigheidsklasse is; dit laatste laat zich niet bewijzen door (als
gewoonlijk) het minimum van twee namen te trekken, omdat dit een niet-
recursieve functie kan zijn.

In de Appendix geven we voor enkele der meer ingewikkelde algoritmen
programma's, geschreven in onze programmeertaal uit hoofdstuk 1.1.

Bij het schrijven van deze samenvatting is de volgende terminologie in
het Nederlands ingevoerd:

236

(Abstract) Resource-Bound class
Honesty class
Measured Set
Acceptance relation
Run-time
Index
Gap Theorem
Naming Theorem

(Abstracte) Verbruiksklasse
Gelijkmatigheidsklasse
Opvraagbare rij
Acceptatierelatie
Rekentijd
Rangnummer
Gatenstelling
Omnoemings-stelling

Een aantal andere nieuwe begrippen werd verkregen door woordelijke verta
ling van het Engelse equivalent.

A
CO
MP
AR
IS
ON
 O

F
TH
E

PR
OP
ER
TI
ES
 O

F
CO
MP

LE
XI

TY
 C

LA
SS
ES
 A

ND
 H

ON
ES

TY
 C

LA
SS
ES

