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1. Introduction 

Hypergroups originated as abstractions of convolution algebras of measures on locally compact 
groups, see for instance Jewett [9]. Gelfand pairs and orthogonal systems of special functions 
which (for certain parameter values) can be interpreted as spherical functions on Gelfand 
pairs, are good sources of commutative hypergroups. 

Quantum groups are generalizations of groups. They were discovered during the last 
decade and provide a good setting for q-special functions. See Drinfel'd [5] and Woronowicz 
[24] for two quite different approaches to general quantum groups and Koornwinder [13] for a 
survey about the interpretation of orthogonal polynomials on quantum groups. 

This paper is in particular meant for workers in hypergroups and in ( q-special) orthog­
onal polynomials. I hope it will provide them with new examples and that it will give them 
new sources of inspiration. 

The first sections contain a short introduction to Hopf algebras, quantum groups and 
the example of quantum SU(2). Then, starting at §7, I show how quantum group analogues 
of Gelfand pairs give rise to positivity of linearization coefficients for spherical "functions" 
and to positivity of multiplication on the dual of the C*-algebra of biinvariant elements with 
respect to the quantum subgroup. I suspect that the resulting structures are hypergroups, 
although I leave the proof of this to my friends of the hypergroup community. In the example 
of the SU(2) quantum group the spherical "functions" are expressible in terms of little q­
Legendre polynomials. In §9 the case of Askey-Wilson polynomials is discussed, which has a 
quantum group interpretation, but not as a straightforward quantum Gelfand pair. In §10 
my old technique [11] of deriving positivity oflinearization coefficients from addition formulas 
is adapted to a class of addition formulas which one meets in the q-world. Finally, §11 deals 
with a class of orthogonal polynomials in two non-commuting variables yielding (in the case 
of quantum group interpretation) a non-commutative hypergroup with commutative dual 
hypergroup. 

I conclude this introduction with some notation used in the theory of q-hypergeometric 
series. See Gasper & Rahman [8] for more information about this theory. Let q be some 
complex number, usually taken between 0 and 1. Put 

(a; q)k := (1- a)(l - aq) .. . (1- aq"'-1), k = 1,2, ... ; 

For lql < 1 let 
(a;q) 00 := lim (a;q)1c. 

k--+oo 
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(a;q)o:=l. 
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Put 
( a1 , a2, ... , ar; q) k : = ( a1 ; q) k ( u2; q),. ... (Ur; q )k. 

Define the q-hypergeometric series by 

oo ( )k k(k-l)/2)•-r+l k </> [u1 1 ••• ,ur. ] ·- 2: (a1, ... ,ar;q)k (-1 q z 
r • bi, ... ,b,'q,z .- k=O (bi, ... ,b,;q)k(q;q)k 

Note that the summand at the right hand side simplifies if r = s + 1. Note also that the series 
at the right hand side terminates after the term k = n if one of the parameters ai, ... , ur 
equals q-n for some n E 1+. 

2. Compact Gelfand pairs 
We recall the definition of a compact Gelfand pair. A good introduction to harmonic analysis 
on Gelfand pairs is Faraut [6]. Let G be a compact group with closed subgroup K. Let G 
be the set of equivalence classes of irreducible unitary representations of G. Let rt( 7r) be the 
(finite-dimensional) Hilbert space on which (a representative of) 7r E G acts. Put 

m,.. := dim{v E rt(7r) I ir(k) v = v 'r/k EK}. 

Then ( G, K) is called a compact Gelfand pair if m,,. = 0 or 1 for all 7r E G. . 
Assume that ( G, K) is a compact Gelfand pair. Let ( G / K)" denote the set of all 7r E G 

for which m,.. = 1. Such representations are called spherical. Let ir be spherical. Choose a 
K-fixed unit vector v,.. in rt( ir ). Then the spherical function associated with ir is defined by 

<f>,,.(x) := (v.,..,ir(x)v,..), x E G. 

Note that it is uniquely determined by 7r. Spherical functions satisfy the product formula 

</>"(x)<f>"(y)= /K<t>.,..(xky)dk, x,yEG. (2.1) 

This can be rewritten as 

(2.2) 

where, for each :z:, y E G, µ,,, 11 is a positive Borel measuxe on G. This product formula is 
associated with a positive convolution structure for the K-biinvariant functions and measures 
on G. It yields one of the standard examples of a (compact commutative) hypergroup. See 
Jewett [9, Theorem 8.2A]. 

If p and <7 are spherical representations for the compact Gelfand pair ( G, K) then the 
corresponding spherical functions </>p and ef>u are positive definite, hence the product </>p </>u 
is also positive definite. Any positive definite K-biinvariant function on G has an expansion 
with nonnegative coefficients in terms of the spherical functions. Hence 

</>p(x)<f>u(:z:) = 2: cp,ir(r)</>T(z), x E G, 
TE(G/K)" 

where the coefficients cp,ir( r) are non-negative. In fact, only finitely many of them are non­
zero. This product formula is associated with a positive dual convolution structure for the 
measures on the discrete set ( G / Kf. Again this yields a standard example of a hypergroup, 
dual to the hypergroup of the previous paragraph ( cf. Gallardo & Gebuhrer [7, §2.2.1]). 

As an example (see Vilen.kin, [23, Ch.9]), let G := O(d), the group of orthogonal d X d 
matrices, and let K := O(d - 1), the subgroup leaving the first standard basis vector fixed. 
Then ( G, K) is a Gelfand pair and ( G / K)" can be identified with Z+, the set of nonnegative 
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integers. For n E Z+, a model for 1t'.( 11" n) is the space of spherical harmonics of degree n on 
3d-t, the unit sphere in Rd. The corresponding spherical function </>n can be expressed in 
terms of ultraspherical polynomials as follows. Put 

(

cos e - sine 

ae := sine 0 case 
0 J 1 

Then 
P(a,<>)( e) 

</>n(KaeK) = n cos 
p~o,o)(l) ' 

where a = !d- i and P~or,t3)(2)) is defined as the orthogonal polynomial of degree n orthogonal 
with respect to the measure (1 - :!))" (1 + z)l3 dz on the interval [-1, l]. For general o:,/3 
these polynomials are called Jacobi polynomials and for a = f3 ultraspherical polynomials. 
For a = 0, t, 1,... the two dual hypergroup structures associated with the ultraspherical 
polynomials P~"'·"')(:I)) come from the group interpretation. But the product formula and 
dual product formula for the ultraspherical polynomials persist for all real a 2 - ! , and so 
do the two corresponding hypergroup structures, dual to each other. See Lasser [16]. 

3. The function algebra on a group as a Hopf algebra 
Let G be a group and Fun( G) be the space of all complex-valued functions on G. It will 
provide an example of a commutative Hopf algebra. It is good to keep this example in mind 
when going to non-commutative Hopf algebras. We can observe the following structures, 
operations and identities in Fun( G). 

(i) Fun(G) is an associative algebra with identity 1 
where (Jg)( z) := f( z) g( :!) ) (pointwise multiplication) 
and 1(2)) := 1. 
The algebra is also commutative. 

(ii) There is an algebra homomorphism .6.: Fun( G) ---> Fun( G X G) ( comultiplication) 
given by (.6.f)(z,y) := f(zy). 

(iii) It satisfies (.6. ©id) o .6. =id= (id© .6.) o .6. ( coassociativity). 
(iv) There is an algebra homomorphism t:: Fun(G)---> C (counit) 

given by t:(f) := f(e). 
(v) It satisfies (c ©id) o .6. =id= (id© c) o .6.. 
( vi) There is a linear mapping S: Fun( G) ---> Fun( G) (antipode) 

given by (Sf)(:!)):= f(:l)- 1 ). 

(vii) Define the linear operator m: Fun( G x G) ---> Fun( G) by m(f © g) := f g. 
Here (f©g)(:l),y) := f(z)g(y). 
Then (m(f © g))(:I)) = (! © g)(:l), :!)). 
More generally put (mF)(:I)) := F(z, z), FE Fun(G x G). 

(viii) The antipode satisfies (mo(S©id)o.6.)(f) = c(f) 1 = (mo(id0S)o.6.)(f), f E Fun(G). 
The first identity in the above antipode formula is evident from: 

f(z- 1z) = f(e) = c(f) = t:(f) l(z) 
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In particular consider the example of a complex algebraic group. Consider the algebra 
Pol(G) of polynomial functions on G instead of Fun(G). Then the algebraic tensor product 
Pol( G) ©Pol( G) can be identified with Pol(G x G) such that (! © g)(2!, y) = f( 2:) g(y). 

4. Hopf algebras and quantum groups 
We can now define a Hopf algebra as an associative (not necessarily commutative) algebra 
A with identity 1 such that the statements (i)-(vili) of §3 are satisfied with Fun(G) and 
Fun(G X G) being replaced by A and A© A, respectively. However, the indented lines of 
§3 do not apply to the case of a general Hopf algebra. See Sweedler [20] and Abe [1] for 
the general theory of Hopf algebras. It can be proved that the antipode is antimultiplicative: 
S(ab) = S(b) S(a). Sometimes we will use a symbolic notation for the comultiplication: 

.6.(a) = 2>(1) © a(2)­
(a) 

The underlying idea is that .6.( a) is a finite sum of (not uniquely determined) elements a(t) © 
a(2). This notation is extended to iterated comultiplication: 

( ( .6. ©id) o .6. )(a) = ((id© .6.) o .6.)( a) = 2.:>(1) © a(2) © a(a). 
(a) 

It is difficult to give a straightforward definition of a quantum group. It is a rather 
virtual object, but to some extent it can be implicitly defined as follows. We say that the 
algebra of polynomial functions on a quantum group is defined as a non-commutative Hopf 
algebra Aq which is a deformation with deformation parameter q of a commutative Hopf 
algebra Ai, where Ai is the algebra of polynomial functions on a complex algebraic group. 
See Drinfel'd [5]. 

As an example let G be the complex algebraic group 

Let a, /3, 1, 5 be the polynomial functions on S L(2, C) which send ( ~ ! ) to a, b, c, d, respec­
tively. Then Pol(SL(2,C)) is the commutative algebra generated by a,/3,1,5 with relation 
a5 - /31 = 1. The comultiplication acting on the generators is given by 

.6. (a /3) = (a /3) ©(a /3) 15 15 15' (4.1) 

which should be read in the sense of matrix multiplication, e.g., 

.6.(a)=a®a+/3®1· 

For the counit we have 

(4.2) 

and for the antipode 

S (a /3) = ( 5 -/3) . 
I 5 -1 a 

These formulas determine .6., e and S on the whole algebra, by continuation as algebra ho­
momorphisms. (The anti-algebra homomorphism S is an algebra homomorphism on a com­
muatative algebra.) 
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We now define a q-deformation Aq = Pol( S Lq(2, C)) of Pol(S L(2, C)). It will be the 
algebra generated by the non-commuting variables a, /3,;, 5 with relations 

a/3 = q/3a, 

/3; = ;{3, 

a; = q;a, {35 = q5/3, 

a.5 - fo = (q - q-1 )/3;, 
16 = q5;, 

o.5 - q/3; = 1. 
(4.3) 

Note that, for q = 1, these relations say that everything commutes and that a.5 - {3; = 1, 
so we are back then at Pol(S L(2, C)). The definitions of comultiplication .:1 and counit e are 
still as in ( 4.1) and ( 4.2), while 

S (a /3) _ ( 5 -qa-1{3). 
'Y 5 - -q; 

Then extend .:1 and e as algebra homomorphisms and S as anti-algebra homomorphism. It 
has to be verified as a non-trivial fact, that these extensions are compatible with the relations 
( 4.3). However, it is easily verified that these extensions satisfy the Hopf algebra axioms, 
since they already verify these axioms on the generators. Thus we have implicitly defined the 
quantum group S Lq(2, C) by defining the non-commutative algebra of "polynomial functions" 
on it. 

5. Hopf *-algebras and compact matrix quantum groups 

Let G be a complex algebraic group and let the subgroup Go be a real form of G. Note that 
a polynomial function on G is completely determined by its restriction to Go. We can now 
make Pol( G) into a *-algebra by defining 

/*(z) := f(z), z E Go. 

Then .:1 and£ become *-homomorphisms. 
As an example let G := SL(2, C) and Go := SU(2). (Note that Go is now a compact 

real form.) Then 

( ~: ~:) = ( !/3 -a;) . 
Then* extends to Pol(SL(2, C)) as an antilinear antimultiplicative mapping, while antimulti­
plicative is here just multiplicative, because the algebra is commutative. 

A Hopf *-algebra is defined as a Hopf algebra .A with involution * such that A is a 
*-algebra and .:1 and e are *-homomorphisms. It can be proved that, if in a Hopf *-algebra 
the antipode S is invertible, we have the identity 

s 0 * 0 s 0 * = id. 

We can make the Hopf algebra Aq = Pol( S Lq(2, C)) into a Hopf *-algebra for 0 < q < 
1. Put 

( a• /3*)·-( 5 -q/) 
;• 5* .- -q-1 /3 a · 

Then * can be extended to Aq as an antilinear antimultiplicative mapping. The underlying 
quantum group is called SUq(2) and the Hopf *-algebra is denoted by Pol(SUq(2)). See 
Woronowicz [24], [25]. 

We define a matrix corepresentation of a Hopf algebra .A as a square matrix t 
(t;,j)i,i=l, .. .,n with entries t;,j EA such that 

.:l(t;,j) = :~:);,,. ® t,.,j and e(t;,j) = 5;,j· ,. 
If A is a Hopf *-algebra then a matrix corepresentation t is called unitary if 

ti.i = S(tj,;). 
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Note that, for our example A.q, the matrix ( ~ ~) is a unitary matrix corepresentation. 

Moreover, the entries of this matrix corepresentation generate .Aq as an algebra. 
For the next topic we neeed some facts about tensor products of C*-algebras ( cf. 

Takesaki (21, Ch.4, §4]). Let A1 and A 2 be C*-algebras with unit element. The algebraic 
tensor product Ai ©atg A2 is a *-algebra. A norm on it is called a C*-norm if ll:i:yjj:::; llxll llYll 
and llx*zll = llxll2 for all z, y E A1 ®aig A, and it is called a cross norm if 

for all a 1 E Ai, a 2 E A2 • It can be shown that each C*-norm on A1 ©atg A, is a cross norm. 
In particular, the norm 

iiail := sup 11(11"i ® 11"2)(a)ll, a E Ai ®a!g A2, (5.1) 
'11'1 ,1f:i 

where 11"i and 11"2 run over all representations of Ai and A2, defines a C*-cross norm on 
A1 ®a!g A2 , which is called the injective C*-cross norm. Whenever we write Ai ® A2, we 
mean the completion of Ai ©aig A2 with respect to this norm. This is a C*-algebra called the 
injective C*-tensor product of Ai and A2• The injective C*-cross norm is smallest among all 
possible C*-norms on Ai ® .. 1g A2. 

A special class of quantum groups is given by the compact matrix quantum groups. 
We will characterize them by their Hopf algebras A of "polynomial functions". We require 
that A is a Hopf *-algebra such that: 
(i) A is generated as a *-algebra by the matrix entries ti,j of a unitary matrix corepresenta­
tion t = (t;,j)· 
(ii) For a E .A define llall as the supremum of all operator norms 117r(a)ll, where 7l' runs 
through all *-representations of the *-algebra .A on a Hilbert space. (Then I !al I is finite 
because the generating matrix ti,j is unitary.) Suppose that II· II is nondegenerate, i.e., a= 0 
if llall = 0. (This condition is satisfied if A has a faithful *-representation. This is the case 
for .Aq = Pol(SUq(2)), cf. Woronowicz (24). ) 

If .A satisfies the above conditions then it has, in the above norm, a completion to a 
C*-algebra A and .6. extends to a homomorphism Ll: A--> A® A of C*-algebras. To see this, 
recall that A ® A is the injective C* tensor product of A and A. For a E .A we have 

llll(a)ll = sup 11(7ri © 11"2)(.6.(a))ll ~sup 117r(a)ll = llall, 
'11"1,11":1 7f 

where 7ri, 11"2 and 11" run over all *-representations of A and where we used ( 5 .1) and the fact 
that a 1-t (11"i © 11"2)(.ll(a)) is a *-representation of .A. 

The pair (A, t) is now a compact matrix pseudogroup in the sense of Woronowicz (24). 
For compact linear groups G (equivalently, compact Lie groups), the algebra .A will be 

the linear span of the matrix elements of the irreducible unitary representations of G, while 
A will be the commutative C*-algebra C(G) of continuous functions on G. 

We conclude this section with a description of the Hopf algebra operations induced by 
a Hopf algebra A on its algebraic linear dual A•. For f, g E .A* and a, b EA we put 

(fg)(a) := (f ® g)(.6.(a)), (Ll(f))(a ® b) := f(ab), (S(f))(a) := f(S(a)). 

Then fg and S(f) belong to .A*, but, in general, Ll(f) belongs to (.A® A)*, not to .A*® A*. 
For the unit element of .A• we can take the counit of A. The counit of .A• is given by f H f (1 ). 
If .A is a Hopf *-algebra then we define an involution on .A• by 

r(a) := f(S(a)•). 

It can now be verified that the Hopf *-algebra axioms are valid on .A* (except that .6. sends 
A* to A•® .A*). If .A and A are associated with a compact matrix quantum group and if A* 
is the continuous linear dual of A then, for f, g E A*, f g as defined above is a well-defined 
element of A•. 
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6. Haar and Schur 

Let A be the Hopf *-algebra associated with a compact matrix quantum group and let A be 
its C*-algebra completion. Then Woronowicz (24] shows that there exists a Haar functional, 
a generalization of the Haar measure on a compact group: 

Theorem 6.1: There is a unique continuous linear functional h: A-+ C such that 
(i) h(l) = 1; 

(ii) h(aa") ~ 0 for all a E A and a= 0 if h(aa•) = 0. 
(iii) (h ® id)(.6.(a)) = h(a) 1 = (id® h)(.6.(a)). 

We say that two matrix corepresentations s and t of a Hopf algebra A are equivalent 
if they have the same size and if there is a complex scalar invertible matrix b of the same 
size such that bs = tb. Call a matrix corepresentation t irreducible if it is not equivalent to a 

matrix corepresentation of the form ( ~ : ) . 

Let { tcr} = {( t::.,n)} be a complete set of representatives of equivalence classes of 
irreducible unitary matrix corepresentations of a Hopf *-algebra A. Then it can be shown 
that the t!,n form a basis of A. Woronowicz (24] also proves a generalization of Schur's 
orthogonality relations: 

Theorem 6.2: There is an algebra homomorphism </J: A --+ C such that 

5 5 <P(t<r ) h(ta (tf3 )*) = cr,{3 m,n l,lc 
m,lc n,l </J(Lj t'],;) > 

h((t<r )" tf3 ) = 5a,{3 5m,n <P((t~1c)"). 
lc,m l,n <P(" . t~ ·) 

L..,3 ,,, 

7. Positive dual convolution structures from quantum groups 

Let the Hopf *-algebra A and the Hopf C*-algebra A be associated with a compact matrix 
quantum group as in §5. Let A" be the algebraic linear dual of A. Define the involution 
f >--+ f":A"-+ A" as in §5, by 

f"(a) := f(S(a)•), a EA. 

Definition 7.1: a EA is positive definite if 

(f" ® /)(.6.(a));:: 0 VJ EA". 

Proposition 7.2: Let (ti,j)i,j=l, ... ,n be a unitary matrix corepresentation of A. Let 
(ai,j)i,j=l, ... ,n be a positive definite complex hermitian matrix. Then 

is positive definite. 

Proof: 

Hence 

n 

a := L ai,i t;,; 
i.J=l 

.6.(a) = L a;,j t;,1c ® t1c,;. 
i,j,'lc 

(f" ® 1)(.6.(a)) = La;,; f"(t;,1c) f(t1c,j) 

=La;,; f(S(t;,1c)")f(t1e,;) 
i,j,lc 

= L(La;,;f(t1c,;)f(t1e,;)) ~ 0, 
le i,j 

where we used S(t;,1e)" = (tk,;)" = t1e,i· D 
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Let {( tf.1 )i,j=l , ... ,da} be a complete set ofrepresentatives of irreducible unitary corep­
resentations of A. 

Proposition 7.3: Let a EA be expressed in terms of the ti,3 by 

Then a is positive definite iff, for each o:, (ai,1) is a positive definite hermitian matrix. 

Proof: One direction follows from Proposition 7.2. Now suppose a is positive definite. Fix 
f3 and let c1 , .•• , cdf!l be complex numbers. Let f be the linear functional on A which sends 
tf.3 to 6°',/3 6;,1 CJ· Then 

Since the c; are arbitrary, the matrix ( a~i) is positive definite hermitian. D 

Corollary 7.4: Let a,b EA be positive definite. Then e(a) 2'. 0, S(a) = a• and ab is 
positive definite. 

Proof: Write 

Then 

a• = ~ a"!'. (t? ·)* = ""' a~. S(t~ ·) = S(a) L.-J ,,, i,J L...J 1,i J,1. ' 

ab = 
a 1j3,i,j 11c,l 

c';•13 • t';·13 • is positive definite, i,lej3,l i,k;3,l 

where c~f;j,I := ai,1 bt1 and t~~j,I := ti,; t~.z · We used that ( c;,1e;;,1) is again a positive definite 
hermitian matrix and the tensor product corepresentation (t~f;1, 1 ) is again unitary. 0 

Let J be a subset of the set of o:'s labeling the equivalence classes of irreducible 
unitary corepresentations of A. For each a E J let z°' be a nonzero positive definite element 
of Span{t::;,,n I m,n = 1, ... ,d"'}. Suppose that 

Z := fficz0 

aEJ 

is a subalgebra with 1 of A. Now the following proposition is evident from Corollary 7.4 and 
Proposition 7.3. 

Proposition 7.5: Let a,/3 E J. Then 
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A class of examples of such subalgebras Z is provided as follows. Let the Hopf *-algebra 
B and the Hopf C*-algebra B be associated with another compact matrix quantum group and 
let 'I: A -+ B be a surjective Hopf *-algebra homomorphism. By the definition of the norms 
on A and B (cf. §5), 'I has a continuos extension to a C*-homomorphism 'l:A-+ B. By 
Dixmier [4, Corollaire 1.8.3) 'l(A) will be closed in B. Hence 'l(A) = B. Then we say that 
the quantum group associated with B and B is a quantum subgroup of the quantum group 
associated with A and A. 

We say that a EA is left (right) invariant with respect to B if 

('l®id)(.6.(a))= ls®a resp. (id®'li)(.6.(a)) = a®ls. (7.1) 

The left (right) B-invariant elements form a *·subalgebra with unit of A. 

Definition T.6: The pair (A, B) is called a quantum Gelfand pair if for each irreducible 
unitary matrix corepresenta.tion ( t1,;) of A the dimension of vectors ( c1 , •.. , en) in C" such 
that 

is 0 or 1. 

L c;'l(t1,;) = c, 18 , 

i 

i = 1, ... ,n, 

Equivalently: for each (t,,;) the dimension of biinvariant elements with respect to Bin Span 
{t1,;} is 0 or 1. 

H the above dimension is 1 then we can make a unitary basis transformation such that 

('li( ti,j)) = ( ~~. 0 .* .. 0) . 

Then t1 ,1 is the unique, up to a constant factor, B-biinvariant element in Span{t;,;}. 
Let (A, B) be a quantum Gelfand pair. Let Z be the unital subalgebra of B-biinvariant 

elements of A. Then 

where the (tf.;), a E J, form a maximal set of inequivalent irreducible unitary corepresenta­
tions with dimension of B-biinvariant elements in Span{tf.;} equal to 1. Note that the tf,1 

are positive definite. 

Example T.T: Consider Aq = Pol(SUq(2)). Let B be the algebra generated by z and 
z-1 with relations zz-1 = 1 = z-1 z. This becomes a Hopf algebra with .6.(z) := z ® z 
and it becomes a Hopf *-algebra with z• := z-1 • Evidently, it can be identified with the 
algebra of polynomial functions on the circle group and it has as C*-algebra completion B the 
algebra of continuous functions on the circle group. Now we define a surjective homomorphism 
'1"!: Aq -+ B of Hopf *-algebras by 

'1(,8)) (z 0 ) 
'1(5) := 0 z-1 • 

Up to equivalence, there is for each positive dimension 21+1 (l = O, t, 1, ... ) a unique 
irreducible unitary matrix corepresentation t 1 of Aq. The representative (t!,.,,.)m,n=-1,-1+1,. .. ,1 

can be chosen such that 'l(t!,.,,.) = 5m,n z-2". Then the pair (Aq,B) is a quantum Gelfand 
pair and J = {O, 1, 2, ... } = Z+. Now th 0 is B-biinvariant for l E Z+ and 
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where p1( • ; q2 ) is the orthogonal polynomial of degree l with respect to the weights q2,. on the 
points q2" (k = 0, 1, 2, ... ), with normalizationp1(0; q2) = 1. The orthogonality can be derived 
from the Schur orthogonality relations of Theorem 6.2 together with an explicit expression for 
the Haar functional acting on polynomials of ·•rt*· See Vaksman & Solbel'man [22], Masuda 
e.a. (17] and Koomwinder [12] for these results. These orthogonal polynomials are called little 
q-Legendre polynomials, a special case of little q-Jacobi polynomials ( cf. Andrews & Askey 
[2]). They can be written in terms of q-hypergeometric series as 

[
q-",qn+l ] 

P1(z;q)=2</>1 q ;q,qz. 

It follows from Proposition 7.5 that the little q-Legendre polynomials have a linearization 
formula 

PIPm = l:c1,m(k)p1o with cz,m(k) 2 0. 
le 

This is a first example of a positivity result for a (dual) convolution structure obtained from 
quantum groups. I could not find this positivity result (maybe proved by analytic methods) 
in the literature. 

8. Positive convolution structures from quantum groups 

Let A be a C*-algebra. Call a E A positive if a = b*b for some b E A. Let A* be the 
continuous linear dual of A. Call a linear mapping from A to another C*-algebra positive if 
it sends positive elements to positive elements. In particular, call f EA* positive if /(a) 2 0 
for all positive a E A. Let now A and A be associated with a compact matrix quantum group 
as in §5. 

Proposition 8.1: H f, g EA* are positive then so is fg. 

Proof: There are *-representations u, r of A on Hilbert spaces and vectors v, w in the 
corresponding representation spaces such that 

/(a)= (u(a)v,v), g(a) = (r(a)w,w) for all a EA, 

cf. Takesaki [21, Ch.I, Theorem 9.14]. Then the tensor product 1r of u and r defined by 

1r(a) := (u ® r)(A(a)) 

is again a *-representation of A and 

(fg)(a) = (! ® g)(A(a)) = (1r(a) v@ w, v ® w). 

Hence f g is positive. D 

Let B and B be associated with a quantum subgroup of the quantum group associated 
with A and A, as in §7, where .P- maps A onto Band A onto B. We can extend the definition of 
left or right B-invariant elements of A, given by (7.1), to a definition ofleft or right B-invariant 
elements a of A: 

Proposition 8.2: Let hB be the Haar functional on B. Let the continuous mappings L 
and R from A to A be defined by 

L(a) := (hB.P- ®id) .6.(a), R(a) :=(id® hBW) A(a). (8.1) 

(We wrote hB q; for hB o q;.) Then L and R are commuting projections on the closed subspaces 
ofleft respectively right B-invariant elements. Moreover, Land Rare positive mappings. 
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Proof: We prove the projection property for L. (The proof for R is similar.) If a EA is left 
B-invariant then clearly L(a) =a. Now we will show that, for arbitrary a E A, L(a) is left 
B-invariant: 

(~®id) A(L(a)) =(~®id) A (hail® id) A(a) 

=(ii® id) (hail® id® id) (id® A) A(a) 

= (hs ®id® id)(~® ii® id)(A ®id) A(a) 

= (hs ®id® id) (As® id) (ii® id) A(a) 

=ls® ((hs ®id)(il ®id)A(a)) =ls® L(a). 

For the commuting property of L and R observe that both LR and RL are equal to 

(hsil ®id® hsil) o (A® id) o A. 

Finally, to see that, for instance, L is positive, observe that A and ", being C*-homomorph­
isms, are positive mappings, and that hs is a positive linear functional on B, so hs" is a 
positive linear functional on A. By Takesaki (21, Ch.IV, Cor. 4.25] it follows that the mapping 
hsi1 ®id is positive from A® A to A. 0 

Note that the B-biinvariant elements in A form a C*-subalgebra of A. We will denote 
it by Ass· 

We call f E A• left (right) B-invariant if 

("if® f)(A(a)) = f(a) ls resp. (! ® iJ)(A(a)) = f(a) ls for all a EA. (8.2) 

Proposition 8.3: The left (right) B-invariant elements in A* form a right (left) ideal in 
A*. In particular, the B-biinvariant elements form an algebra. Furthermore, the mapping 
sending elements of A• to their restriction to Ass establishes a bijection between the space 
of B-biinvariant elements of A" and the continuous linear dual Ass of Ass. This is also a 
bijection between the positive B-biinvariant elements of A* and the positive elements of Ass· 

Proof: H f, g E A•, a E A and f is left B-invariant then 

("if® f g)(A( a))= L '1(11(1)) /(11(2>) g(ll(s)) = L f( 11(1)) 9(11(2)) ls = (lg)( a) ls. 
w (aj 

Hence the left B-invariant elements in A• form a right ideal. Similarly for the other case. 
Next observe from (8.1) and (8.2) that a left B-invariant element fin 4* will satisfy 

f(a) = f(L(a)), a EA. 

So such an element f is determined by its restriction to the left B-invariant elements of A. 
Conversely, if f is a continuous linear functional on the the space of left B-invariant elements 
of A and if 

g(a) := f(L(a)), a EA, 

then g is a left B-invariant element of A*. This follows from (8.2) and the fact that 

(ii® L)(A(a)) =ls® L(a), a EA. 

The proof of this last identity is by a similar string of identities as at the end of the proof 
of Proposition 8.2. Similar statements also hold for right B-invariant elements. Combination 
of these statements together with the commuting of L and R proves the bijection statement 
about the restriction mapping in the proposition. Regarding the action on positive elements 
of this bijection observe that clearly the restriction of a positive f E A* to Ass is positive. 
Conversely, if f E Ass is positive and g := f o LR then g is positive since L and R are 
positive. D 
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Suppose now that (A, B) is a quantum Gelfand pair as defined in §7. Let 

Z = :E Ctf,1 
aEJ 

as in §7. 

Proposition 8.4: Let f,g E A* be B-biinva.riant. Then f(tf,;) f= 0 implies a E J and 
i = j = 1 and 

(fg)(tf,1) = f(tf,1)g(tf,i), a E J. (8.3) 

In particular, the B-biinva.riant f E A• form a commutative algebra. Finally, f*(a) = f(a) 
for all a EA. 

Proof: 

f(tf,;) lB = (/ ® 'l!)(~(ti,;)) = :E f(ti,1e) iJ.i(tk)· 
k 

Hence 

f(ti,;) = f(ti,;) hB(lB) = :E f(tf,,.) hB('l!(tk,;)) = 0 if j f= 1 or a~ J. 
k 

Similarly, 

f(ti,;) = L hB('1!(ti,1c)) f(tk,j) = 0 if if= 1 or o: ~ J. 
le 

This yields the first statement of the proposition. Next, if a E J: 

(fg)(tf.1) = 2:t(tf,1c)g(tk,d = t(tf,i)g(tf,1) = (gf)(tf,1)-
le 

So Jg= gf when restricted to A, and by continuity on A. 
Finally, we can establish r(a) = f(a) on A (and therefore on A) by observing that 

f*(t'=' ·) = f(S(t'!- ·)*) = f(t~ -). 1,3 i,3 J,1. D 

The conunutative algebra of B-biinva.riant elements in A• generalizes the commutative 
algebra of K-biinva.riant measures for a Gelfand pair ( G, K). In particular, if the C*-algebra 
of B-biinvariant elements in A is commutative then it can be identified with C(X) for some 
compact Hausdorff space X and its continuous linear dual with the space of Borel measures 
on X. Then we obtain a positive convolution product on this measure space. 

Let ef.; E A* be defined by 

An arbitrary f EA* has the form 

(8.4) 
a,i,j 

for certain complex f,~j (infinitely many of them may be nonzero). Any f EA* is determined 
by its restriction to A, so can be written in the form (8.4), but not each f EA* can be lifted 
to a continuous linear functional on A. By Proposition 8.4, the expression (8.4) reduces for a 
B-biinvariant f E A* to 

t = 2::: 1~1 ef,1· 
aEJ 
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Proposition 8.5: Let 0 f= a E A be 8-invariant and ha.ve the property tha.t 

(fg)(a) = f(a)g(a) 

for a.11 B-biinvaria.nt f,g EA•. Then a= tf,1 for some a E J. 

Proof: Put 

1='L1~1 ef.1, g = :L gf.1 ef.1, a= L af,1 tf,1· 
<>EJ aEJ oEJ 

Then 

L f~1 gf,1 al,1 ( ef,1 ef,1 )(ti,d = L f!.',1 gf,1 al,1 af.1 ef,1 (ti,d ef,1 (tf,i ). 
ofln afl~~ 

Hence, by (8.3), 

Take 

Then 
«< -"' {3 a1,1 °a,{3 - a1,1 a1,1 for all a, {3. 

This forces af,1 = ha,{3 for some a. D 

have 
Next we will derive product formulas for the tf,1 which generalize (2.1) and (2.2). We 

c~ 0 id) ~(tf.1) = :L tf.k 0 t~.1 0 t~1 · 
k,l 

Hence 
(id 0 hBiJ! 0 id)(~ 0 id) ~(tf,1) = tf,1 0 tf,1 1 a E J. (8.5) 

This generalizes (2.1). Now let f,g EA*. Define µf,g EA* by 

µ1,9 (a) := (! 0 hB'l! 0 g) (~ 0 id) Ll(a) = (! (hB o ii) g)(a). (8.6) 

Then 
(8. 7) 

This generalizes (2.2). If f, g are positive (as elements of A*) then µ 1,9 is positive, since h8 o iJ! 
is positive. Observe that, if f, g are B-biinvariant, then µ 1,9 is B-biinvariant and 

µf,g = fg. 

Example 8.6: Now consider our standard example Aq = PoI(SUq(2)). Denote its C*­
completion by Aq. The B-biinvariant elements of Aq are precisely the polynomials in;;*, so 
they form a commutative algebra and (Aq)BB will be a commutative C*-algebra C(X) for 
some compact Hausdorff space X. We will determine X. 

The irreducible *-representations of Aq on a Hilbert space can be classified ( cf. Vaks­
man & Solbel'ma.n [22]): 

(a) one-dimensonal representations xe (0 $ B < 27r) such that Xe(a) := ei8 , Xe(;) := 0. 
(b) oo-dimensional representations 'Ire ( O $ B < 27r) on a Hilbert space with orthonormal 

basis e0 , e1 , . • • such that 

{ }1 - q2ne 
7re(a)en := O n-l 

( ) i8 n 'Ire i en := e q en. 

, n > 0, 
, n = 0, 
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Hence, for a polynomial f, 

so 
11/(-y*-y)\I = sup l/(q2n)I. 

nEZ+ 

Thus Aq = C(X) with 
X := {O}U{l,q2 ,q4 , ... }. 

We conclude from the earlier results in this section that the little q-Legendre polynomials ( cf. 
Example 7. 7) satisfy a product formula 

where µz,y is a positive measure on X. In fact, the measure has been explicitly computed in 
Koornwinder [15]. We have 

with 

00 

Pz( q"'; q) pz(q11 ; q) = (1 - q) L pz(qz; q) K(q"', q11 , q'; q) q• 

K(q"', qY, q'; q): 

z=O 

( q"'+1; q )oo { qtl+l; q )oo { q•+1; q)oo q"'Y+zz+yz 

(q; q);, (1 - q) 

x {3q;2 [q-"',~~~,q-•;q,q]f 

9. Askey-Wilson polynomials and SUq(2) 

Askey-Wilson polynomials ( cf. Askey & Wilson [3]) are defined by 

[
q-n qn-1 abcd aei8 ae-i8 ] 

Pn(cosli;a,b,c,dl q) := a-n(ab,ac,ad;q)n44>3 ' b 'd ' ;q,q · 
a ,ac,a 

(9.1) 

They are polynomials of degree n in cos 0 and they are symmetric in a, b, c, d. Assume a, b, c, d 
are real, or if complex, appear in conjugate pairs, and that lal, lbl, lei, ldl :S 1, but the pair­
wise products of a, b, c, d have absolute value less than one. Then they satisfy orthogonality 
relations 

1 r 
271" Jo Pn(cosB)pm(cosB)w(cosB)dB = 6n,mhn, (9.2) 

where 
(e2i8,e-2i8; q)oo 

w(cosli) = ( .8 .8 .8 b ·o ·8 ·s ·8 ·IJ ) ' ae' ae-• be• e-• ce• ce-• de' de-• · q 
' , ' ' , , ' ' 00 

{9.3) 

hn ( 1 - qn-l abcd) { q, ab, ac, ad, be, bd, ed; q )n 

ho { 1 - q2n- l abed) { abcd; q )n 
(9.4) 

and 

ho = { abed; q )00 

( q, ab, ac, ad, be, bd, ed; q) 00 

(9.5) 

If a, b, c, d are real, or if complex, appear in conjugate pairs, and the pairwise products of 
a, b, e, dare not ;::: 1, but one or more of a, b, c, d have absolute value larger than one, then the 
Askey-Wilson polynomials satisfy orthogonality relations 

n -f: m, 
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where w( cos 8) is as above, the wk are certain positive weights and the z1c are the points 

(eqk + e-1q-k)/2 with e any of the para.meteters a, b, c or d whose absolute value is larger 

than one. The sum is over the k E Z+ with leqlcl > 1. 

As another preliminary to this section we describe the Hopf algebra Uq, which is a 

q-deformation of the universal enveloping algebra of the Lie algebra sl(2, C). As an algebra, 

Uq is generated by the non-commuting variables A, A-1 , B, C with relations 

AA-1 = 1 = A-1 A, AB = qBA, AC= q-1 CA, 
A2 A-2 

BC-CB= . 
q - q-1 

Comultiplication, counit, antipode and involution are defined on the generators by 

6.(A±l) = A±l © A±1, li(B) =A© B + B © A-1 , li(C) =A© C + C@ A- 1 , 

e(A) = 1 = e(A-1 ), e(B) = 0 = e(C), 

S(A) = A-1 , S(A-1 ) =A, S(B) = -q-1 B, S(C) = -qC, 

A*= A, (A-1 )* = A-1 , B* = C, C* =B. 

Two Hopf *-algebras A and U are said to be in nondegenerate duality if there is a 

bilinear form ( . , . ) on U x A such that 

(u, a) = 0 Va E A==? u = 0, (u, a) = 0 Vu EU ==? a= 0, 

(6.(u),a©b) = (u,ab), (u@v,li(a)) = (uv,a), 

(1, a)= e(a), (u, 1) = e(u), 

(S(u),a)= (a,S(u)), (u*,a) = (u,S(a)*). 

Thus U is embedded in the algebraic linear dual A• of A and we may write u( a) instead of 

(u, a). Note that the above formulas are compatible with the formulas for the Hopf algebra 

operations on A* as given at the end of §5. If U and A are both generated as an algebra by 

certain generators then (., . ) is already determined by the values (u, a) for u, a belonging to 

the generators. 
The Hopf *-algebras Aq and Uq are in nondegenerate duality in the following way. The 

only pairs of generators ( u, a) yielding nonzero ( u, a) are: 

(A±1 ,a)=q±!, (A±1 ,5)=q:i=!, (B,/3)=1, (C,1)=1. 

If the Hopf algebras A and U are in nondegenerate duality then define left and right 

actions of U on A by 

u.a :=(id@ u)(6.(a)), a.u := (u@ id)(6.(a)), u EU, a EA. 

In particular, consider this for Aq cand Uq and let X E Span{A - A-1 , B, C}. Then 

Li(X)=A@X+X@A-1 

and 

X.a = 0 & X.b = 0 :::=:;. X.(ab) = 0, 

a.X = 0 & b.X = 0 ==? (ab).X = 0. 

We say that a E A.q is left X -invariant or right X -invariant if X.a = 0 or a.X = 0 and we 

call a X-biinvariant if X.a = 0 = a.X. Thus the left X-invariant, right X-invariant and 

X-biinvariant elements form subalgebras of Aq· If X = A-A-1 this coincides with left, right 

or biinvariance under the Hopf algebra 13 of §7. For other choices of X this is a quantum 

analogue of being invariant with respect to a subgroup of SU(2) conjugate to S(U(l) X U(l)). 

Let u ER. Let 

Then x; =Xu. Let 

Pu:= t{a2 + /3 2 + / 2 + 52 + iqt (q-" - qu) (6/ + f3a - 5{3- 1a) + (q-" - q")2 /31). 

Proposition 9.1: The algebra of X.,-biinvariant elements in Aq coincides with the algebra 

of elements p(pu ), where p is a polynomial. 
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Let 

Proposition 9.2:; Let l E tZ+. The dimension of the X.,.-biinva.riant element.sin the space 
Span{ t~,.. I m, n = -l, -l + 1, ... , l} is equal to O if l E Z+ + i and equal to 1 if l E Z+. For 
l E Z+ ~e have 

I I 1,.,.,2 
~ 1 u zo: 1 c1 ( 20-+1 -2.,.+1 I 2) (9 6) L.J c,;. c,; tn,m = (q21+2; q2)1 PI p,,; -q '-q 'q, q q ' . 

n,m=-l 

where p1 is an Askey-Wilson polynomial. Both sides of the above formula are X .,.-biinvariant 
elements in Span{ t~,m} and a general X.,.-biinva.riant element can be written a.s a. linear 
combination of them (with l running through Z+)· 

The c~ can be extended to a. unitary matrix, the elements of which consist of cert a.in 
dual q-Krawtchouk polynomials. This amounts to an orthonormal ha.sis transformation of the 
corepresentation space of t1 from a basis adapted to B to a basis of eigenvectors of t1(X.,.). 
See Koornwinder [13), [14] for the above results. (There slightly different expressions for X.,. 
and ptT were used, and also (9.6) occurred there in a slightly different form, but it is easy to 
make the transition between the two versions.) 

Now it follows from (9.6) and Proposition 7.2 that the two sides of (9.6) are positive 
definite. Moreover, the pz(pu; -q2"+1 , -q-2u+i, q, q I q2 ) span an algebra (of X.,.-biinvariant 
elements). Thus, by Proposition 7.5 we have a linearization formula 

PI Pm= I:C1,m(k)p1c with C!,m(k) ~ 0, 
le 

where 

The case u = O of this positivity result is well-known and goes back to Rogers, cf. 
Gasper & Ra.liman [8, §8.5). The case of general u maybe new. The positivity oflinearization 
for the little q-Legendre polynomials, obtained at the end of §7, is also the limit case u-> oo 
of the present result, cf. Koornwinder [14, §6). 

I did not yet succeed to extend the results of §8 to the case of Xu-biinvariant elements. 
However, it can be expected that the positivity of the kernel in the continuous q-Legendre case 
q = i of Rahman & Verma's product formula [19, (1.20)] has a quantum group interpretation. 

10. Positivity of linearization coefficients from addition formulas 
In Koornwinder (11) a method was described how the positivity of linearization coefficients 
for certain orthogonal systems can be obtained from the addition formula which they satisfy. 
The idea was that much group theoretic information about spherical functions is encoded in 
addition formulas and that addition formulas may persist for parameter values for which the 
group theoretic interpretation is lost. The addition formulas for q-hypergeometric orthogonal 
polynomials (sometimes derivable from a quantum group interpretation) usually have a dif­
ferent structure than the classical addition formulas. Fortunately we can adapt [11, Theorem 
4.1] to the q-situation. This will give us a tool to derive positivity of linearization coefficients 
in cases where the quantum group approach of §7 is not applicable. 

I use this occasion to point out an error in [11): The second factors at the left hand 
sides of (3.4) and (4.3) should get a complex conjugate bar. Some consequent modifications 
should be made in the proofs of Theorem 3.1 and Theorem 4.1. 
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Theorem 10.1: Let X be a. compact Hausdorff space. Let {p0 } be a family of continuous 
functions on X such tha.t 

(10.1) 

for some positive Borel measure o: on X, where O < 'R'n < co. Let {rn} be a. family of 
continuous functions on X X X X X such that. for each z, y E X, r,.(z; :i:, y) = 1 and 

l rm(z;z,y)r,.(z;:i:,y)d,8.,,y(z) = Pn(z)p,,(y)6m,n (10.2) 

for some positive Borel measure ,8.,,y on X, where (:i:,y),..... ,8,.,y(E) is continuous on X x X 
for a.l1 Borel sets E of X and Pn is continuous and strictly positive on X. Suppose tha.t there 
is a.n addition formula of the form 

Pn(z) = Lcn,lcP~(z)p~(y)r1c(z;:i:,y), (10.3) 
k 

where p~ is continuous on X, p~ = Pn> Cn,k 2 0, cn,o > 0, a.nd for ea.eh n only finitely many 
terms in the sum a.re nonzero. Suppose that 

Pm Pn = 2:: a( m, n, l) 11'1 pz, 
I 

(10.4) 

Suppose that, if two of the three arguments of a(m, n, l) a.re fixed, it is nonzero for only finitely 
many values of the remaining argument. Then a(m, n, l);::: 0. 

Proof: Formula. (10.4) is equivalent to 

hence to 
Pm( z) Pn( z) = 2:: a(l, m, n) 1qpz(z). (10.5) 

I 

Substitute the addition formula. (10.3) for p1(z) in (10.5) and integrate both sides of (10.5) 
over X with respect to d,8.,,y(z). Then multiply with p1(:i:)p1(Y)/(p0 (z)po(y)) and integrate 
over X x X with respect to do:(z) do:(y). We obtain 

11'1- 1 cz,oa(l,m,n)= { { ( { Pm(z)pn(z)d,8.,,y(z))P1 t~~da(z)da(y). 
lxlxlx PoZPoY 

(10.6) 

Substitute the addition formula (10.3) for Pm(z) and Pn(z) in (10.6) a.nd apply {10.2). Then 
we obtain 

'.lrz """"" 11 i -. Pi(z) 12 0 a(l, m, n) = - L.., Cm,i Cn,i Pm(z) p~( Z) Pi( Z) -( -) do:(:i:) 2 0. 
c1,o i x Po :i: 

We now apply this theorem to the case of q-ultraspherical polynomials, for which 
Rahman & Verma [19] derived an addition formula of the form (10.3). Let 0 < a < 1. Let X 
be the interval [-1, l]. Let 

l l 

Pn(z) := Pn(z; a, aq>, -a, -aq> I q) (10.7) 

(we used the notation (9.1) for Askey-Wilson polynomials) and take for do:( z) the correspond­
ing orthogonality measure for these polynomials a.s given by (9.2), (9.3). Let 

r,..(z;cosO,cos<f>) :=pn(z;aei8+i<f>,ae-i8-i4>,ae•9 -i<f>,ae•<f>-iB I q) 
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and let d/3,,,,y be the corresponding orthogonality measure given by (9.2), (9.3). Then it follows 
from (9.2), (9.4), (9.5) that (10.2) holds with 

Let 
p~(z) :=Pn-k(z;aqkf2,aqU•+l)f2,-aqkf2,-aq<1c+1)/2 I q). 

Then the Rahman-Verma addition formula has the form (10.3) with 

(q; q)n (a4qn, a4q-1, a2ql/2, -a2ql/2, -a2; q)1c an-k 
Cn,k := (q;q)i.(q;q)n-1<(a4q-l;q)?k(a2ql/2,-a2ql/2,-a2;q)n · 

We conclude the positivity of the linearization coefficients for the q-ultraspherical polynomials 
(10.7) (0 <a< 1). This result goes back to Rogers, cf. Gasper & Rahman [8, §8.5]. 

11. Quantum disk polynomials and a non-commutative hypergroup 
The spherical functions on the compact Gelfand pair (U(n), U(n - 1)) can be expressed in 
terms of the disk polynomials R~; 2 ( z ). These are polynomials in z and z ( z E C) defined in 
terms of normalized Jacobi polynomials Rha,/3) := Pia,/3) / Pia,/3)(1) by 

R°' (re'8) ·= R("'.,l"-lll(2r2 - 1) ei(k-1)8 k,l · mrn{k,!} · 

See Koornwinder [10]. 
The quantum group analogue (Uq(n), Uq(n - 1)) of this Gelfand pair was studied by 

Noumi, Yamada & Mimachi [18]. Associated with the quantum group Uq(n) and the quantum 
subgroup Uq(n - 1) they have certain Hopf *-algebras A and B. In [18, §4.3] they show that 
the *-subalgebra of B-biinvariant elements in A can be identified with a certain *-algebra Ass 
generated by z and z• with relation 

z• z - q2 zz• = 1 - q2 

(here 0 < q < 1) and that the Haar functional restricted to Ass is given by 

Put 

h(( ·)" ') c (q2; q2),. 2 
z z = vk,l (q2<>+4; q2)k, a= n - . 

( := 1 - zz•. 

Then they express the spherical elements in terms of little q-Jacobi polynomials 

which satisfy orthogonality relations 

cf. Andrews & Askey [2]. Here the q-integral is defined by 

11 
f(z) dqz := (1- q) f f(q") q". 

0 k=O 
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The expression of Noumi, Yamada & Mirna.chi for the spherical elements is 

R"' z Z*" 2 ·- z Pi .,,; q { 
k-1 (a,k-l)(I' 2) 

k,l( , ,q) ·- P~a,l-k)((;q2)(z•)l-k 
' k ?: l, 
, k < l. 

(11.3) 

The orthogonality relations for the spherical elements now follow from the Schur orthogonality 

and (11.2). However, suppose that, outside the context of quantum groups, the relations 

(11.1), the elements (11.3) of the *-algebra Aas generated by z and z* and the functional 

(11.2) on Aas (for arbitrary a > -1) are given. Then it is still possible to derive the 

orthogonality relations 

h((R~ .• (z, z"; q2))* R~.1 (z, z•; q2 )) = 0 = h(R~. 1 (z, z*; q2 ) (R~ .• (z, z*; q2 ))*), 

One uses the identity 
(z*r zm = (q2(; q2)m 

(k,l)=f(r,s). 
(11.4) 

(easily proved by complete induction with respect to m) and the q-beta integral 

cf. Gasper & Rahman [8, (1.11.7), (1.10.14)]. Then it follows that 

and this readily yields (11.4). Thus we have obtained a class of orthogonal polynomials in 

two non-commuting variables. We call them quantum disk polynomials. 

By the quantum group interpretation for a = n - 2, the results of§ 7 and §8 can now be 

applied. By §7 we will obtain positivity of linearization coefficients for the (non-commuting) 

quantum disk polynomials, while §8 will establish a positive commutative multiplication on 

the continuous linear dual of the C*-closure of Aas. 
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