
Chapter 1
Advances in Large-scale RDF Data Management

Peter Boncz, Orri Erling, Minh-Duc Pham

Abstract One of the prime goal of the LOD2 project is improving the performance
and scalability of RDF storage solutions so that the increasing amount of Linked
Open Data (LOD) can be efficiently managed. Virtuoso has been chosen as the ba-
sic RDF store for the LOD2 project, and during the project it has been significantly
improved by incorporating advanced relational database techniques from MonetDB
and Vectorwise, turning it into a compressed column store with vectored execution.
This has reduced the performance gap (“RDF tax”) between Virtuoso’s SQL and
SPARQL query performance in a way that still respects the “schema last” nature
of RDF. However, by lacking schema information, RDF database systems such as
Virtuoso still cannot use advanced relational storage optimizations such as table
partitioning or clustered indexes and have to execute SPARQL queries with many
self-joins to a triple table, which leads to more join effort than needed in SQL sys-
tems. In this chapter, we first discuss the new column store techniques applied to
Virtuoso, the enhancements in its cluster parallel version, and show its performance
using the popular BSBM benchmark at the unsurpassed scale of 150 billion triples.
We finally describe ongoing work in deriving an “emergent” relational schema from
RDF data which, can help to close the performance gap between relational-based
and RDF-based storage solutions.

1.1 General Objectives

One of the objectives of the LOD2 EU project is to boost the performance and the
scalability of RDF storage solutions so that it can, efficiently manage huge datasets
(e.g., one trillion RDF triples) of Linked Open Data (LOD). However, it has been

Peter Boncz, Minh-Duc Pham
CWI, Amsterdam e-mail: {P.Boncz,duc}@cwi.nl

Orri Erling
OpenLink Software, U.K. e-mail: erling@xs4all.nl

1

{P.Boncz, duc}@cwi.nl
erling@xs4all.nl


2 Peter Boncz, Orri Erling, Minh-Duc Pham

noted that given similar data management tasks, relational database technology still
significantly outperforms RDF data stores. One controlled scenario in which the two
technologies can be compared is the BSBM benchmark [5], which exists equivalent
relational and RDF variants. As illustrated in Figure 1.1, while the SQL systems can
process by up to 40-175K QMpH, the Triple stores can only reach 1-10K QMpH,
showing a factor of 15-40 of performances difference.

Fig. 1.1 Triple Stores vs. SQL: a heavy “RDF Tax” (2009)

In the LOD2 project we
investigated the causes of this
large difference (the “RDF
tax”, i.e. the performance
cost of choosing RDF in-
stead of relational database
technology). Here we iden-
tify three causes:

• the particular case of BSBM is to the disadvantage of RDF as BSBM by its nature
is very relational: its schema has just few classes, and all its properties occur
exactly once for each subject, such that the data structure is very tabular. As such,
the ease of use of SPARQL to formulate queries on irregularly structured data
does not come int play, and the complications to which such irregular data leads
in relational solutions (many more tables, and many more joins) are avoided.

• relational systems are quite mature in their implementations. For instance, the ex-
plore workload is an OLTP workload which relational systems target with key in-
dex structures and pre-compiled PL/SQL procedures. The BI workload of BSBM
benefits from analytical execution techniques like columnar storage and vector-
ized execution and hash joins with bloom filters (to name just a few). While rela-
tional products over the years have implemented many such optimizations, RDF
stores typically have not. Another area where analytical relational database en-
gines have made important progress is the use of cluster technology. Whereas in
1990s only the very high end of RDBMS solutions was cluster-enabled (i.e. Tera-
data), many other systems have been added such as Greenplum, Paraccel, Vertica,
SAP HANA and SQLserver Parallel data Warehouse (which without exceptional
also leverage columnar storage and vectorized or JIT-compiled execution).

• RDF stores do not require a schema but also do not exploit it, even though the
structure of the data in fact is highly regular. This hurts in particular in the very
common SPARQL star-patterns, which need to be executed using multiple self-
joins, where relational systems do not need joins at all. The structure that is
heavily present in RDF triples further leads to the co-occurrence of properties
to be heavily (anti-)correlated. The complexity of query optimization is not only
exponential with respect to the amount of joins (and SPARQL needs many more
than SQL) but also relies on cost models, yet cost models typically become very
unreliable in the face of correlations. Unreliable cost models lead to bad query
plans and this very strongly affects performance and scalability of RDF stores.
In all, query optimization for SPARQL is both more costly and unreliable than
for SQL.



1 Advances in Large-scale RDF Data Management 3

Virtuoso6, a high-performance RDF Quad Store, was chosen as the main RDF
store for LOD2 knowledge base at the start of the project. In order to reduce the
“RDF tax”, we first revised architectural ideas from the state-of-the-art of rela-
tional database systems, particularly, advanced column stores such as MonetDB [2],
Vectorwise [17]. Then, we brought some of the unique technologies and architec-
tural principles from these column stores into Virtuoso7, making it work more ef-
ficiently on modern hardware. These techniques include tuning the access patterns
of database queries to be CPU-cache conscious, and also making query process-
ing amendable to deeply pipelined CPUs with SIMD instructions by introducing
concepts like vector processing. We note that the insights gained in improving Vir-
tuoso will also be useful for other RDF store providers to enhance their respective
technologies as well.

Further, the cluster capabilities of Virtuoso were significantly improved. Note
that by lack of table structures, RDF systems must distribute data by the triple (not
tuple), which leads to more network communication during query execution. Net-
work communication cost tends to be the limiting factor for parallel database sys-
tems, hence Virtuoso7 Cluster Edition introduced an innovative control flow frame-
work that is able to hide network cost as much as possible behind CPU computation.

By the end of the LOD2 project, these improvements in Virtuoso7 on the BSBM
BI workload strongly improved performance. A quantified comparison is hard as
Virtuoso6 would not even complete the workload (“infinitely better” would be an
exaggeration). Still, when comparing the SQL with the SPARQL implementation of
BSBM-BI on Virtuoso7, we still see an “RDF tax” of a factor 2.5. This performance
difference comes from the schema-last approach of RDF model: SPARQL plans
need more joins than SQL and often the query plan is not optimal. To address this
issue, CWI performed research in the line of the second bullet point above: the
goal would be to give the RDF store more insight in the actual structure of RDF,
such that SPARQL query plans need less self-joins and query optimization becomes
more reliable. This goal should be achieved without losing the schema-last feature
of RDF: there should be no need for an explicit user-articulated schema.

The idea of recovering automatically an “emergent” schema of actual RDF data
is that RDF data in practice is quite regular and structured. This was observed in the
proposal to make SPARQL query optimization more reliable by recognizing “char-
acteristics sets” [10]. A characteristic set is a combination of properties that typically
co-occur with the same subject. The work in [10] found that this number is limited
to a few thousand on even the most complex LOD datasets (like DBpedia), and the
CWI research on emergent schema detection that started in the LOD2 project [14]
aims to further reduce the amount of characteristic sets to the point that characteris-
tics sets become tables in a table of limited size (less than 100), i.e. further reducing
the size. To that, the additional challenge of finding human-understandable labels
(names) for tables, columns, and relationships was added. The goal of emergent
schemata thus became two-fold: (1) to inform SPARQL systems of the schema of
the data such that they need less self-joins and query optimization becomes more
reliable, (2) to offer a fully relational view of an RDF dataset to end-users so that
existing SQL applications can be leveraged on any RDF dataset. The latter goal



4 Peter Boncz, Orri Erling, Minh-Duc Pham

could help to increase RDF adoption and further help make relational systems more
semantic (because all tables, columns and relationships in an emergent schema are
identified by URIs).

In all, this chapter shows tangible progress in reducing the “RDF tax” and a
promising avenue to further reduce the performance gap between SPARQL and SQL
systems and even some hope of making them converge.

1.2 Virtuoso Column Store

The objective of the Virtuoso7 column store release was to incorporate the state
of the art in relational analytics oriented databases into Virtuoso, specifically for
the use with RDF data. Ideally, the same column store engine would excel in both
relational analytics and RDF.

Having RDF as a driving use case emphasizes different requirements from a
purely relational analytics use case, as follows:
Indexed access. Some column stores geared purely towards relational analytics [17]
obtain excellent benchmark scores without any use of index lookup, relying on
merge and hash join alone. An RDF workload will inevitably have to support small
lookups without setup cost, for which indexed access is essential.
Runtime data types. Runtime data typing is fundamental to RDF. There must be
a natively supported any data type that can function as a key part in an index. Dic-
tionary encoding all literal values is not an option, since short data types such all
numbers and dates must be stored inline inside an index. This offers native collation
order and avoids a lookup to a dictionary table, e.g. before doing arithmetic or range
comparisons. This is a requirement for any attempt at near parity with schema-first
systems. Thus dictionary encoding is retained only for strings.
Multi-part and partitionable indices. Many early column stores [2] were based
on an implicit row number as a primary key. Quite often this would be dense and
would not have to be materialized. Such a synthetic row number is however ill suited
to an RDF use case that further must be scale-out capable. Thus, Virtuoso does
not have any concept of row number but rather has multi-part sorted column-wise
compressed indices for all persistent data structure. In this, Virtuoso most resembles
[8, 4]. This structure is scale-out friendly since partitioning can be determined by
any high cardinality key part and no global synthetic row number needs to exist,
even as an abstraction.
Adaptive compression. Column stores are renowned for providing excellent data
compression. This comes from having all the values in a column physically next to
each other. This means that values, even in a runtime typed system, tend to be of
the same type and to have similar values. This is specially so for key parts where
values are ascending or at least locally ascending for non-first key parts. However,
since a single column (specially for the RDF object column) will store all the object
values of all triples, there can be no predeclared hints for type or compression. Dif-
ferent parts of the column will have radically different data types, data ordering and



1 Advances in Large-scale RDF Data Management 5

number of distinct values. Thus local environment is the only indication available
for deciding on compression type.
Transactionality. While a column-wise format is known to excel for read-intensive
workloads and append-style insert, RDF, which trends to index quads at least from
S to O and the reverse. Thus with one index there can be mostly ascending insert but
there is no guarantee of order on the other index. Also row-level locking needs to
be supported for transactional applications. This is by and large not an OLTP work-
load but short transactions must still be efficient. Thus Virtuoso departs from the
typical read-intensive optimization of column stores that have a separate delta struc-
ture periodically merged into a read-only column-wise compressed format [17, 8].
Virtuoso updates column-wise compressed data in place, keeping locks positionally
and associating rollback information to the lock when appropriate. Thus there is no
unpredictable latency having to do with flushing a write optimized delta structure to
the main data. While doing so, Virtuoso has excellent random insert performance,
in excess of the best offered by Virtuoso’s earlier row store.

As a result of these requirements, Virtuoso uses a sparse row-wise index for each
column-wise stored index. The row wise index is a B-Tree with one row for any-
where between 2000 to 16000 rows. This entry is called the row-wise leaf. To each
row-wise leaf corresponds a segment of each column in the table. Each segment
has an equal number of values in each column. Consecutive segments tend to be of
similar size. When values are inserted into a segment, the segment will split after
reaching a certain size, leading to the insertion of a new row-wise leaf row. This
may cause the row-wise leaf page to split and so forth. Each column segment is
comprised of one or more compression entries. A compression entry is a sequence
of consecutive values of one column that share the same compression. The com-
pression entry types are chosen based on the data among the following:

• Run length. Value and repeat count
• Array. Consecutive fixed length (32/64 nbit) or length prefixed strings
• Run length delta. One starting value followed by offsets and repeat counts for

each offset
• Bitmap. For unique closely spaced integers, there is a start value and a one bit

for each consecutive value, the bit position gives the offset from start value
• Int delta. From a start value, array of 16 bit offsets
• Dictionary. For low cardinality columns, there is a homogenous or heterogenous

array of values followed by an array of indices into the array. Depending on the
distinct values, the index is 4 or 8 bits.

Using the Virtuoso [7] default index scheme with two covering indices (PSOG
and POSG) plus 3 distinct projections (SP, OP, GS), we obtain excellent compres-
sion for many different RDF datasets. The values are in bytes per quad across all the
five indices, excluding dictionary space for string literals.

- BSBM: 6 bytes
- DBpedia: 9 bytes
- Uniprot: 6 bytes
- Sindice crawl: 14 bytes



6 Peter Boncz, Orri Erling, Minh-Duc Pham

DBpedia has highly irregular data types within the same property and many very
differently sized properties, thus it compresses less. Uniprot and BSBM are highly
regular and compress very well. The web crawl consists of hundreds of millions of
graphs of 20 triples each, thus the graph column is highly irregular and thus less
compressible, accounting for the larger space consumption. However one typically
does not reference the graph column in queries, so it does not take up RAM at
runtime.

1.2.1 Vectored Execution

A column store is nearly always associated with bulk operators in query execution,
from the operator at a time approach of MonetDB [2] to vectored execution [17, 8,
1]. The idea is to eliminate query interpretation overhead by passing many tuples
between operators in a query execution pipeline. Virtuoso is no exception, but it
can also run vectored plans for row-wise structures. The main operators are index
lookup and different variations of hash, from hash join to group by. An index lookup
receives a vector of key values, sorts them, does a log(n) index lookup for the first
and subsequently knows that all future matches will be to the right of the first match.
If there is good locality, an index lookup is indistinguishable from a merge join. The
added efficiency of vectoring is relative to the density of hits. Considering that over a
million rows are typically under one row-wise leaf page (e.g. 16K rows per segment
* 70 segments per page), there is a high likelihood that the next hit is within the next
16K or at least within the next 1M rows, hence there is no need to restart the index
lookup from the tree top.

Hash based operations use a memory-only linear hash table. This is essentially
the same hash table for hash join, group by and distinct. The hash table consists of
a prime number of fixed size arrays that are aligned by CPU cache line. Different
fields of a 64 bit hash number give the array and a place in the array. The entry is
either found at this place or within the same cache line or is not in the hash table.
If a cache line is full and the entry does not match, there is an extra exceptions list
which is typically short. One can determine the absence of a value with most often
one cache miss. Only if the line is full does one need to consult the exceptions,
leading to a second cache miss. Since the hash operations are all vectored, prefetch
is used to miss multiple consecutive locations in parallel. Further, if the hash table
contains pointers to entries instead of single fixed length integers, the high bits of the
pointer are used to contain a filed of the hash number. Thus one does not dereference
a pointer to data unless the high bits of the pointer (not used for addressing) match
the high bits of the hash number. In this way cache misses are minimized and each
thread can issue large numbers of cache misses in parallel without blocking on any.

Further, Bloom filters are used for selective hash joins. We have found that a
setting of 8 bits per value with 4 bits set gives the best selectivity. Typically the
Bloom filter drops most of non-matching lookup keys before even getting to the
hash table.



1 Advances in Large-scale RDF Data Management 7

1.2.2 Vector Optimizations

Virtuoso can adjust the vector size at runtime in order to improve locality of refer-
ence in a sparse index lookup. Easily 30% of performance can be gained if looking
for 1M instead of 10K consecutive values . This comes from higher density of hits
in index lookup. The vector size is adaptively set in function of available memory
and actually observed hit density.

1.2.3 Query Optimization

All the advanced execution techniques described so far amount to nothing if the
query plan is not right. During the last year of LOD2 we have made a TPC-H imple-
mentation to ensure that all state of the art query optimization techniques are present
and correctly applied. TPC-H is not an RDF workload but offers an excellent check-
list of almost all execution and optimization tricks [6].

The goal of LOD2 is RDF to SQL parity but such parity is illusory unless the
SQL it is being compared to is on the level with the best. Therefore having a good
TPC-H implementation is a guarantee of relevance plus opens the possibility of
Virtuoso applications outside of the RDF space. Details are discussed in [3].

In the following we will cover the central query optimization principles in Virtu-
oso.
Sampling. Virtuoso does not rely on up-front statistics gathering. Instead, the opti-
mizer uses the literals in queries to sample the database. The results of sampling are
remembered for subsequent use. In RDF, there is an indexed access path for every-
thing. Thus if leading P, S or O are given, the optimizer can just look at how many
hits there in the index. The hits, if numerous, do not have to be counted. Counting
the number of hits per page and number of pages is accurate enough. Also, within
each RDF predicate, there is a count of occurrences of the predicate, of distinct
S’s, distinct O’s and G’s. These allow estimating the fan-out of the predicate, e.g. a
foaf:Name has one O per S and foaf:knows has 100 O’s per S. Also we recognize
low cardinality properties, e.g. there is one city per person but 1M persons per city.

The statistics interact with runtime support of inference. Thus in one inference
context, if tag is a super-property of about and mentions, but there are no triples
with tag, the statistics automatically drill down to the sub-properties and sum these
up for the super-property. This is however scoped to the inference context.

There can be conditions on dependent part columns, e.g. if P, S and G are given,
G is likely a dependent part since in PSOG there is O between the leading parts and
G. Thus sampling is used to determine the frequency of a specific G within a fixed P,
S. The same is done for relational tables where there in fact are dependent columns
that do not participate in ordering the table.
Cost Model. It has been recently argued [16] that SPARQL can be optimized just
as well or even better without a cost model. We do not agree with this due to the
following: It is true that a cost model has many complexities and possibilities for



8 Peter Boncz, Orri Erling, Minh-Duc Pham

error. However, there are things that only a cost model can provide, in specific,
informed decision on join type.

There is a definite break-even point between hash join and vectored index lookup.
This is tied to the input counts on either side of the join. Both the number of rows
on the build and the probe sides must be known in order to decide whether to use
hash join. Also, when building the hash table, one has to put as many restrictions
as possible on the build side, including restrictive joins. To get this right, a cost
model of one kind or another is indispensable. The choice hinges on quantities, not
on the structure of the query. If the goal is only to do look-ups efficiently, then one
can probably do without a cost model. But here the goal is to match or surpass the
best, hence a cost model, also for RDF is necessary even though it is very complex
and has a high cost of maintenance. It is also nearly impossible to teach people
how to maintain a cost model. Regardless of these factors, we believe that one is
indispensable for our level of ambition.

1.2.4 State of the RDF Tax

We refer to the performance difference between a relational and RDF implemen-
tation of a workload as the RDF tax. This has been accurately measured with the
Star Schema Benchmark [12], a simplified derivative of TPC-H. While Virtuoso
does TPC-H in SQL [3] on a par with the best, the RDF translation of all the query
optimization logic is not yet complete, hence we will look at SSB.

SSB has one large fact table (lineorder) and several smaller dimension tables
(part, supplier, dw_date, nation and region). The schema is denormalized into a
simple star shape. Its RDF translation is trivial; each primary key of each table is a
URI, each column is a property and each foreign key is a URI.

SSB was run at 30G scale on a single server with Virtuoso, MonetDB and
MySQL. In SQL, Virtuoso beats MonetDB by a factor of 2 and MySQL by a factor
of 300 (see Table 1.1). In SPARQL, Virtuoso came 10-20% behind MonetDB but
still 100x ahead of MySQL. These results place the RDF tax at about 2.5x in query
execution time. Thanks to Virtuoso’s excellent query performance, SPARQL in Vir-
tuoso will outperform any but the best RDBMS’s in analytics even when these are
running SQL.

All plans consist of a scan of the fact table with selective hash joins against
dimension tables followed by a simple aggregation or a group by with relatively
few groups, e.g. YEAR, NATION. In the RDF variant, the fact table scan becomes a
scan of a property from start to end, with the object, usually a foreign key, used for
probing a hash table built from a dimension table. The next operation is typically a
lookup on another property where the S is given by the first and the O must again
satisfy a condition, like being in a hash table.

The RDF tax consists of the fact that the second column must be looked up by a
self join instead of being on the same row with the previous column. This is the best
case for the RDF tax, as the execution is identical in all other respects. There are



1 Advances in Large-scale RDF Data Management 9

Query 30GB 300GB
Virtuoso Virtuoso RDF MonetDB MySQL Virtuoso Virtuoso RDF

SQL SPARQL tax SQL SPARQL tax
Q1 0.413 1.101 2.67 1.659 82.477 2.285 7.767 3.40
Q2 0.282 0.416 1.48 0.5 74.436 1.53 3.535 2.31
Q3 0.253 0.295 1.17 0.494 75.411 1.237 1.457 1.18
Q4 0.828 2.484 3.00 0.958 226.604 3.459 6.978 2.02
Q5 0.837 1.915 2.29 0.648 222.782 3.065 8.71 2.84
Q6 0.419 1.813 4.33 0.541 219.656 2.901 8.454 2.91
Q7 1.062 2.33 2.19 5.658 237.73 5.733 15.939 2.78
Q8 0.617 2.182 3.54 0.521 194.918 2.267 6.759 2.98
Q9 0.547 1.29 2.36 0.381 186.112 1.773 4.217 2.38
Q10 0.499 0.639 1.28 0.37 186.123 1.44 4.342 3.02
Q11 1.132 2.142 1.89 2.76 241.045 5.031 12.608 2.51
Q12 0.863 3.77 4.37 2.127 241.439 4.464 15.497 3.47
Q13 0.653 1.612 2.47 1.005 202.817 2.807 4.467 1.59
Total 8.405 21.989 2.62 17.622 2391.55 37.992 100.73 2.65

Table 1.1 Star Schema Benchmark with scales 30GB and 300GB (in seconds)

some string comparisons, e.g. brand contains a string but these are put on the build
side of a hash join and are not run on much data.

In a broader context, the RDF tax has the following components:
Self-joins. If there are conditions on more than one column, every next one must be
fetched via a join. This is usually local and ordered but still worse than getting an-
other column. In a column store, predicates on a scan can be dynamically reordered
based on their observed performance. In RDF this would alter the join order and is
not readily feasible.
Cardinality estimation. In a multi-column table one can sample several predicates
worth in one go, in RDF this requires doing joins in the cost model and is harder.
Errors in cost estimation build up over many joins. Accurate choice of hash vs index
based join requires reliable counts on either side. In SQL analytics, indices are often
not even present, hence the join type decision is self-evident.
Optimization search space. A usage pattern of queries with tens of triple patterns
actually hitting only a few thousand triples leads to compilation dominating execu-
tion times. A full exploration of all join orders is infeasible, as this is in the order
of factorial of the count of tables and there can easily be 30 or 40 tables. Reuse of
plans when the plans differ only in literals is a possibility and has been tried. This is
beneficial in cases but still needs to revalidate if the cardinality estimates still hold
with the new literal values. Exploring plans with many joins pushed to the build side
of a hash join further expands the search space.
String operations. Since RDF is indexed many ways and arbitrary strings are al-
lowed everywhere, implementations store unique strings in a dictionary and a spe-
cially tagged reference to the dictionary in the index. Going to the dictionary makes
a scan with a LIKE condition extremely bad, specially if each string is distinct. Use
of a full text index is therefore common.



10 Peter Boncz, Orri Erling, Minh-Duc Pham

URI’s. For applications that do lookups, as most RDF applications do, translating
identifiers to their external, usually very long, string form is an RDF-only penalty.
This can be alleviated by doing this as late as possible but specially string conditions
on URI’s are disastrous for performance.
Indexing everything. Since there is usually an indexed access path for everything,
space and time are consumed for this. TPC-H 100G loads in SQL in 15 minutes
with no indices other than the primary keys. The 1:1 RDF translation takes 12 hours.
This is the worst case of the RDF tax but is limited to bulk load. Update intensive
OLTP applications where this would be worse still are generally not done in RDF.
Of course nobody forces one to index everything but this adds complexities to query
optimization for cases where the predicate is not known at compile time.
Runtime data typing. This is a relatively light penalty since with vectored exe-
cution it is possible to detect a homogenous vector at runtime and use a typed data
format. If a property is all integers, these can be summed by an integer-specific func-
tion. This usually works since RDF often comes from relational sources. DBpedia
is maybe an exception with very dirty data, but then it is not large, hence the penalty
stays small.
Lack of schema. There is usually no schema or the data does not comply with
it. Therefore optimizations like late projection that are safe in SQL are not readily
applicable. If you take the 10 youngest people and return their birth date, name and
address you cannot defer getting the name and address after the top 10 since there
might be people with many names or no names etc. These special cases complicate
the matter but optimizations having to do with top k order are still possible. Similarly
dependencies inside grouping columns in a group by cannot be exploited because
one does not know that these are in fact functional even if the schema claims so.

Many of these penalties fall away when leaving the triple table format and ac-
tually making physical tables with columns for single valued properties. The ex-
ceptions may still be stored as triples/quads, so this does not represent a return
to schema-first. Physical design, such as storing the same data in multiple orders
becomes now possible since data that are alike occupy their own table. Also n:m
relationships with attributes can be efficiently stored in a table with a multi-part key
while still making this look like triples.

This is further analyzed in a later section of this chapter. Implementation in Vir-
tuoso is planned for the summer of 2014.

1.3 Virtuoso Cluster Parallel

Virtuoso’s scale out capability has been significantly upgraded during LOD2. The
advances are as follows:
Elastic partitions. The data is sharded in a large number of self-contained parti-
tions. These partitions are divided among a number of database server processes
and can migrate between them. Usually each process should have one partition per
hardware thread. Queries are parallelized to have at most one thread per partition.



1 Advances in Large-scale RDF Data Management 11

Partitions may split when growing a cluster. Statistics are kept per partition for de-
tecting hot spots.
Free-form recursion between partitions. One can write stored procedures that
execute inside a partition and recursively call themselves in another partition, ad
infinitum. This is scheduled without deadlocking or running out of threads. If a
procedure waits for its descendant and the descendant needs to execute something
in the waiting procedure’s partition, the thread of the waiting procedure is taken
over. In this way a distributed call graph never runs out of threads but still can
execute at full platform parallelism. Such procedures can be transparently called
from queries as any SQL procedures, the engine does the partitioning and function
shipping transparently.
Better vectoring and faster partitioning. Even the non-vectored Virtuoso cluster
combined data for several tuples in messages, thus implementing a sort of vectoring
at the level of interconnect while running scalar inside the nodes. Now that every-
thing is vectored, the architecture is simpler and more efficient.
More parallel control flows. The basic query execution unit in cluster is a series of
cross partition joins, called DFG (distributed fragment). Each set of co-located joins
forms a stage of the DFG pipeline. Each stage runs one thread per partition if there is
work to do in the partition. The results are partitioned again and sent onwards. The
DFG ends by returning vectors of query variable bindings to the query coordinator
or by feeding them in an aggregation. An aggregation itself will be partitioned on
the highest cardinality grouping key if the cardinality is high enough. A subsequent
DFG can pick the results of a previous partitioned aggregation and process these
through more joins again with full platform utilization.
Different parallel hash joins. Tables are usually partitioned and in the case of RDF
always partitioned. However, if a hash join build side is small, it is practical to
replicate this into every server process. In this way, what would be a non-colocated
join from foreign key to primary key becomes colocated because the hash table goes
to its user. However, if the probe key is also the partitioning key of the probe, there
is never a need to replicate because the hash table can be partitioned to be colocated
with the probe without replicating. If the hash table would be large but the probe
key is not the partitioning key of the probing operator, the hash table can still be
partitioned. This will require a message exchange (a DFG stage). However, this is
scalable since each server will only host a fraction of the whole hash table. Selective
hash joins have Bloom filters. Since the Bloom filter is much smaller than the hash
table itself, it can be replicated on all nodes even if the hash table is not. This allows
most of the selectivity to take place before the inter-partition message exchange
(DFG stage).

With the embarrassingly parallel SSB, cluster shows linear throughput gains: 10x
the data takes 5x longer on twice the hardware (See Table 1.1). This is the case for
either RDF or SQL. The RDF tax is the same for cluster as for single server, as one
would expect.



12 Peter Boncz, Orri Erling, Minh-Duc Pham

1.3.1 Performance Dynamics

Running complex queries such as the BSBM BI workload makes high use of cross
partition joins (DFG) and of nested subqueries. This is a DFG inside a DFG, where
the innermost DFG must run to completion before the invoking stage of the calling
DFG can proceed. An existence test containing a non-colocated set of joins is an
example of such pattern.

We find that message scheduling that must keep track of distributed dependen-
cies between computations becomes a performance bottleneck. Messages can be
relatively fragmented and numerous. Scheduling a message involves a critical sec-
tion that can become a bottleneck. In subsequent work this critical section has been
further split. The scheduling itself is complex since it needs to know which threads
are waiting for which operations and whether a descendant operation ought to take
over the parent’s thread or get its own.

All the techniques and observed dynamics apply identically to RDF and SQL
but are worse in RDF because of more joins. Use of hash joins and flattening of
subqueries alleviates many of these problems. Hash joins can save messages by
replicating the hash table, so there are messages only when building the hash table.
In a good query plan this is done on far less data than probing the hash table.

1.3.2 Subsequent Development

Virtuoso is at present an excellent SQL column store. This is the prerequisite for
giving RDF performance that is comparable with the best in relational data ware-
housing.

The next major step is storing RDF in tables when regular structure is present.
This will be based on the CWI research, described in the next section. Query plans
can be made as for triples but many self-joins can be consolidated at run time in
into a table lookup when the situation allows. Cost model reliability will also be
enhanced since this will know about tables and can treat them as such.

1.4 BSBM Benchmark Results

The BSBM (Berlin SPARQL Benchmark) was developed in 2008 as one of the first
open source and publicly available benchmarks for comparing the performance of
storage systems that expose SPARQL endpoints such as Native RDF stores, Named
Graph stores, etc. The benchmark is built around an e-commerce use case, where
a set of products is offered by different vendors and consumers have posted re-
views about products. BSBM has been improved over this time and is current on
release 3.1 which includes both Explore and Business Intelligence use case query
mixes, the latter stress-testing the SPARQL1.1 group-by and aggregation function-



1 Advances in Large-scale RDF Data Management 13

ality, demonstrating the use of SPARQL in complex analytical queries. To show the
performance of Virtuoso cluster version, we present BSBM results [5] on the V3.1
specification, including both the Explore (transactional) and Business Intelligence
(analytical) workloads (See the full BSBM V3.1 results for all other systems1).

We note that, comparing to the previously reported BSBM report2 for 200M
triples dataset, this BSBM experiment against 50 and 150 billion triple datasets on
a clustered server architecture represents a major step (750 times more data) in the
evolution of this benchmark.

1.4.1 Cluster Configuration

RDF systems strongly benefit from having the working set of the data in RAM.
As such, the ideal cluster architecture for RDF systems uses cluster nodes with rel-
atively large memories. For this reason, we selected the CWI scilens3 cluster for
these experiments. This cluster is designed for high I/O bandwidth, and consists
of multiple layers of machines. In order to get large amounts of RAM, we used
only its “bricks” layer, which contains its most powerful machines. Virtuoso V7
Column Store Cluster Edition was set up on 8 Linux machines. Each machine has
two CPUs (8 cores and hyperthreading, running at 2GHz) of the Sandy Bridge ar-
chitecture, coupled with 256GB RAM and three magnetic hard drives (SATA) in
RAID 0 (180 MB/s sequential throughput). The machines were connected by Mel-
lanox MCX353A-QCBT ConnectX3 VPI HCA card (QDR IB 40Gb/s and 10GigE)
through an InfiniScale IV QDR InfiniBand Switch (Mellanox MIS5025Q). The clus-
ter setups have 2 processes per machine, 1 for each CPU. A CPU here has its own
memory controller which makes it a NUMA node. CPU affinity is set so that each
server process has one core dedicated to the cluster traffic reading thread (i.e. dedi-
cated to network communication) and the other cores of the NUMA node are shared
by the remaining threads. The reason for this set-up is that communication tasks
should be handled with high-priority, because failure to handle messages delays all
threads. These experiments have been conducted over many months, in parallel to
the Virtuoso V7 Column Store Cluster Edition software getting ready for release.
Large part of the effort spent was in resolving problems and tuning the software.

1.4.2 Bulk Loading RDF

The original BSBM data generator was a single-threaded program. Generating 150B
triples with it would have taken weeks. We modified the data generator to be able

1 http://bit.ly/ZHtG5D
2 http://bit.ly/12DpjMU
3 This cluster is equipped with more-than-average I/O resources, achieving an Amdahl number
> 1. See www.scilens.org.



14 Peter Boncz, Orri Erling, Minh-Duc Pham

to generate only a subset of the dataset. By executing the BSBM data generator in
parallel on different machines, each generating a different part of the dataset, BSBM
data generation now has become scalable. In these experiments we generated 1000
data files with the BSBM data generator. Separate file generation is done using the
nof option in the BSBM driver. These files are then distributed to each machine
according to the modulo of 8 (i.e., the number of machine) so that files number 1,
9, 17, ... go to machine 1, file number 2, 10, 18,... go to machine 2, and so on. This
striping of the data across the nodes ensures a uniform load, such that all nodes get
an equal amount of similar data.

nr triples Size (.ttl) Size (.gz) Database Size Load Time

50 Billion 2.8 TB 240 GB 1.8 TB 6h 28m
150 Billion 8.5 TB 728 GB 5.6 TB n/a

Table 1.2 BSBM data size and loading statistic

Each machine loaded its local set of files (125 files), using the standard parallel
bulk-load mechanism of Virtuoso. This means that multiple files are read at the same
time by the multiple cores of each CPU. The best performance was obtained with
7 loading threads per server process. Hence, with two server processes per machine
and 8 machines, 112 files were being read at the same time. Also notice that in a
cluster architecture there is constant need for communication during loading, since
every new URIs and literals must be encoded identically across the cluster; hence
shared dictionaries must be accessed. Thus, a single loader thread counts for about
250% CPU across the cluster. The load was non-transactional and with no logging,
to maximize performance. Aggregate load rates of up to 2.5M quads per second
were observed for periods of up to 30 minutes. The total loading time for the dataset
of 50 billion triples is about 6h 28 minutes, which makes the average loading speed
2.14M triples per second.

The largest load (150B quads) was slowed down by one machine showing
markedly lower disk write throughput than the others. On the slowest machine io-
stat showed a continuous disk activity of about 700 device transactions per second,
writing anything from 1 to 3 MB of data per second. On the other machines, disks
were mostly idle with occasional flushing of database buffers to disk producing up
to 2000 device transactions per second and 100MB/s write throughput. Since data
is evenly divided and 2 of 16 processes were not runnable because the OS had too
much buffered disk writes, this could stop the whole cluster for up to several min-
utes at a stretch. Our theory is that these problems were being caused by hardware
malfunction.

To complete the 150B load, we interrupted the stalling server processes, moved
the data directories to different drives, and resumed the loading again. The need for
manual intervention, and the prior period of very slow progress makes it hard to
calculate the total time it took for the 150B load.



1 Advances in Large-scale RDF Data Management 15

1.4.3 Notes on the BI Workload

The test driver can run with single-user run or multi-user run.

• Single user run: This simulates the case that one user executes the query mix
against the system under test.

• Multi-user run: This simulates the case that multiple users concurrently execute
query mixes against the system under test.

All BSBM BI runs were with minimal disk IO. No specific warm-up was used
and the single user run was run immediately following a cold start of the multi-
user run. The working set of BSBM BI is approximately 3 bytes per quad in the
database. The space consumption without literals and URI strings is 8 bytes with
Virtuoso column store default settings. For a single user run, typical CPU utilization
was around 190 of 256 core threads busy. For a multi-user run, all core threads were
typically busy. Hence we see that the 4 user run takes roughly 3 times the real time
of the single user run.

1.4.4 Benchmark Results

The following terms will be used in the tables representing the results.

• Elapsed runtime (seconds): the total runtime of all the queries excluding the time
for warm-up runs.

• Throughput: the number of executed queries per hour.
Throughput = (Total # of executed queries) * (3600 / ElapsedTime) * scaleFactor.
Here, the scale factor for the 50 billion triples dataset and 150 billion triples
dataset is 500 and 1500, respectively.

• AQET: Average Query Execution Time (seconds): The average execution time
of each query computed by the total runtime of that query and the number of
executions: AQET(q) = (Total runtime of q) / (number of executions of q).

Some results seem noisy, for instance Q2@50B, Q4@50B, Q4@150B are sig-
nificantly cheaper in the multi-client-setup. Given the fact that the benchmark was
run in drill-down mode, this is unexpected. It could be countered by performing
more runs, but, this would lead to very large run-times as the BI workload has many
long-running queries.

In the following, we discuss the above performance results over several specific
queries Q2 and Q3.

Query 2 in the BI use case:

SELECT ?otherProduct ?sameFeatures {
?otherProduct a bsbm:Product .
FILTER(?otherProduct != %Product%)
{ SELECT ?otherProduct (COUNT(?otherFeature) AS ?sameFeatures) {

%Product% bsbm:productFeature ?feature .
?otherProduct bsbm:productFeature ?otherFeature .



16 Peter Boncz, Orri Erling, Minh-Duc Pham

50 Billion triples 150Billion triples

Single-Client 4-Clients Single-Client 4-Clients
runtime 3733s 9066s 12649s 29991s

Tput 12.052K 19.851K 10.671K 18.003K

AQET AQET AQET AQET
Q1 622.80s 1085.82 914.39s 1591.37s
Q2 189.85s 30.18 196.01s 507.02s
Q3 337.64s 2574.65 942.97s 8447.73s
Q4 18.13s 6.3s 183.00s 125.71s
Q5 187.60s 319.75s 830.26s 1342.08s
Q6 47.64s 34.67s 24.45s 191.42s
Q7 36.96s 39.37s 58.63s 94.82s
Q8 256.93s 583.20s 1030.73s 1920.03s

Table 1.3 Business Intelligence Use Case: Detailed Results

FILTER(?feature=?otherFeature)
} GROUP BY ?otherProduct }}
ORDER BY DESC(?sameFeatures) ?otherProduct LIMIT 10

BSBM BI Q2 is a lookup for the products with the most features in common with
a given product. The parameter choices (i.e., %Product%) produce a large variation
in run times. Hence the percentage of the query’s timeshare varies according to the
repetitions of this query’s execution. For the case of 4-clients, this query is executed
for 4 times which can be the reason for the difference timeshare between single-
client and 4-client of this query.

Query 3 in the BI use case:
SELECT ?product
(xsd:float(?monthCount)/?monthBeforeCount AS ?ratio) { { SELECT
?product (COUNT(?review) AS ?monthCount) {
?review bsbm:reviewFor ?product .
?review dc:date ?date .
FILTER(?date >= "%ConsecutiveMonth_1%"^^<http://www.w3.org/2001/XMLSchema#date>

&& ?date < "%ConsecutiveMonth_2%"^^<http://www.w3.org/2001/XMLSchema#date>) }
GROUP BY ?product }

{ SELECT ?product (COUNT(?review) AS ?monthBeforeCount) {
?review bsbm:reviewFor ?product .
?review dc:date ?date .
FILTER(?date >= "%ConsecutiveMonth_0%"^^<http://www.w3.org/2001/XMLSchema#date>

&& ?date < "%ConsecutiveMonth_1%"^^<http://www.w3.org/2001/XMLSchema#date>) }
GROUP BY ?product
HAVING (COUNT(?review)>0) }}

ORDER BY DESC(xsd:float(?monthCount) / ?monthBeforeCount) ?product
LIMIT 10

The query generates a large intermediate result: all the products and their review
count on the latter of the two months. This takes about 16GB (in case of 150 billion
triples), which causes this to be handled in the buffer pool, i.e. the data does not all
have to be in memory. With multiple users connected to the same server process,
there is a likelihood of multiple large intermediate results having to be stored at
the same time. This causes the results to revert earlier to a representation that can
overflow to disk. Supposing 3 concurrent instances of Q3 on the same server pro-
cess, the buffer pool of approximately 80G has approximately 48G taken by these



1 Advances in Large-scale RDF Data Management 17

intermediate results. This causes pages needed by the query to be paged out, lead-
ing to disk access later in the query. Thus the effect of many instances of Q3 on the
same server at the same time decreases the throughput more than linearly. This is
the reason for the difference in timeshare percentage between the single-user and
multi-user runs. The further problem in this query is that the large aggregation on
count is on the end result, which re-aggregates the aggregates produced by differ-
ent worker threads. This re-aggregation is due to the large amount of groups quite
costly; therefore it dominates the execution time: the query does not parallelize well.
A better plan would hash-split the aggregates early, such that re-aggregation is not
required.

50 Billion triples
Single-Client 4-Clients

runtime 1988s 4690s
Tput 22.629K 38.375K

AQET AQET
Q1 58.93 72.26
Q2 2.15 20.14
Q3 449.42 656.52
Q4 36.35 75.09
Q5 95.37 312.33
Q6 0.31 25.85
Q7 7.72 27.96
Q8 154.47 292.77

Table 1.4 Business Intelligence Use Case: Updated Results in March 2013

The benchmark results in the Table 1.3 are taken from our experiments running in
January 2013. With more tuning in the Virtuoso software, we have re-run the bench-
mark with the dataset of 50B triples. The updated benchmark results in Table 1.4
show that the current version of Virtuoso software, namely Virtuoso7-March2013,
can run the BSBM BI with a factor of 2 faster than the old version (i.e., the Vir-
tuoso software in January). Similar improvement on the benchmark results is also
expected when we re-run the benchmark with the dataset of 150B triples.

We now discuss the performance results in the Explore use case. We notice that
these 4-client results seem more noisy than the single-client results and therefore it
may be advisable in future benchmarking to also use multiple runs for multi-client
tests. What is striking in the Explore results is that Q5 dominates execution time.

Query 5 in the Explore use case:

SELECT DISTINCT ?product ?productLabel
WHERE {
?product rdfs:label ?productLabel .
FILTER (%ProductXYZ% != ?product)
%ProductXYZ% bsbm:productFeature ?prodFeature .
?product bsbm:productFeature ?prodFeature .

%ProductXYZ% bsbm:productPropertyNumeric1 ?origProperty1 .
?product bsbm:productPropertyNumeric1 ?simProperty1 .
FILTER (?simProperty1 < (?origProperty1 + 120) &&



18 Peter Boncz, Orri Erling, Minh-Duc Pham

50 Billion triples 150Billion triples
Single-Client 4-Clients Single-Client 4-Clients

runtime 931s (100 runs) 15s (1run) 1894s (100 runs) 29s (1 run)
Tput 4.832M 11.820M 7.126M 18.386M

AQET AQET AQET AQET
Q1 0.066s 0.415s 0.113s 0.093s
Q2 0.045s 0.041s 0.066s 0.086s
Q3 0.112s 0.091s 0.111s 0.116s
Q4 0.156s 0.102s 0.308s 0.230s
Q5 3.748s 6.190s 8.052s 9.655s
Q7 0.155s 0.043s 0.258s 0.360s
Q8 0.100s 0.021s 0.188s 0.186s
Q9 0.011s 0.010s 0.011s 0.011s

Q10 0.147s 0.020s 0.201s 0.242s
Q11 0.005s 0.004s 0.006s 0.006s
Q12 0.014s 0.019s 0.013s 0.010s

Table 1.5 Explore Use Case: Detailed Results

?simProperty1 > (?origProperty1 - 120))

%ProductXYZ% bsbm:productPropertyNumeric2 ?origProperty2 .
?product bsbm:productPropertyNumeric2 ?simProperty2 .
FILTER (?simProperty2 < (?origProperty2 + 170) &&

?simProperty2 > (?origProperty2 - 170))
} ORDER BY ?productLabel LIMIT 5

Q5 asks for the 5 most similar products to one given product, based on two nu-
meric product properties (using range selections). It is notable that such range se-
lections might not be computable with the help of indexes; and/or the boundaries
of both 120 and 170 below and above may lead to many products being considered
‘similar’. Given the type of query, it is not surprising to see that Q5 is significantly
more expensive than all other queries in the Explore use case (the other queries are
lookups that are index computable. – this also means that execution time on them
is low regardless of the scale factor). In the explore use case, most of the queries
have the constant running time regardless of the scalefactor, thus computing the
throughput by multiplying the qph (queries per hour) with the scalefactor may show
a significant increase between the cases of 50-billion and 150-billion triples. In this
case, instead of the throughput metric, it is better to use another metric, namely
qmph (number of query mixes per hour).

Single Client 4-Clients
50B 4253.157 2837.285

150B 2090.574 1471.032

Table 1.6 Explore Results: Query Mixes Per Hour



1 Advances in Large-scale RDF Data Management 19

1.5 Emergent Schemas

In this section, we describe solutions for deriving an emergent relational schema
from RDF triples, that one could liken to an UML class diagram. These solutions
have been implemented in the RDF parser of the open-source research column store,
MonetDB, which we call MonetDB/RDF. A more extensive description of this work
can be found in [9].

Our problem description is as follows. Given a (very) large set of RDF triples, we
are looking an emergent schema that describes this RDF data consisting of classes
with their attributes and their literal types, and the relationships between classes for
URI objects, but:
(a) the schema should be compact, hence the amount of classes, attributes and rela-
tionships should be as small as possible, such that it is easily understood by humans,
and data does not get scattered over too many small tables.
(b) the schema should have high coverage, so the great majority of the triples in the
dataset should represent an attribute value or relationship of a class. Some triples
may not be represented by the schema (we call these the “non-regular” triples), but
try to keep this loss of coverage small, e.g. <10%.
(c) the schema should be precise, so the amount of missing properties for any subject
that is member of such an recognized class is minimized.

Our solution is based on finding Characteristic Sets (CS) of properties that co-
occur with the same subject. We obtain a more compact schema than [10], by us-
ing the TF/IDF (Term Frequency / Inverted Document Frequency) measure from
information retrieval [15] to detect discriminative properties, and using semantic
information to merge similar CS’s. Further, a schema graph of CS’s is created by
analyzing the co-reference relationship statistics between CS’s.

Given our intention to provide users an easy-to-understand emergent schema, our
second challenge is to determine logical and short labels for the classes, attributes
and relationships. For this we use ontology labels and class hierarchy information, if
present, as well as CS co-reference statistics, to obtain class, attribute and relational
labels.

1.5.1 Step1: Basic CS Discovery

Exploring CS’s. We first identify the basic set of CS’s by making one pass through
all triples in the SPO (Subject, Predicate, Object) table created after bulk-loading of
all RDF triples. These basic CS’s are secondly further split out into combinations
of (property, literal-type), when the object is a literal value. Thus, for each basic CS
found, we may have multiple CS variants, one for each combination of occurring
literal types. We need the information on literal types because our end objective is
RDF storage in relational tables, which allow only a single type per column.

Exploring CS Relationships. A foreign key (FK) relationship between two CS’s
happens when a URI property of one CS typically refers in the object field to mem-



20 Peter Boncz, Orri Erling, Minh-Duc Pham

bers of one other CS (object-subject references). Therefore, we make a second pass
over all triples with a non-literal object, look up which basic CS the reference points,
and count the frequencies of the various destination CS’s.

1.5.2 Step2: Dimension Tables Detection

There tends to be a long tail of infrequently occurring CS’s, and as we want a com-
pact schema, the non-frequent CS’s should be pruned. However, a low-frequency
CS which is referred to many times by high-frequency CS’s in fact represents im-
portant information of the dataset and should be part of the schema. This is simi-
lar to a dimension table in a relational data warehouse, which may be small itself,
but may be referred to by many millions of tuples in large fact tables, over a for-
eign key. However, detecting dimension tables should not be handled just based
on the number of direct relationship references. The relational analogy here are
snowflake schemas, where a finer-grained dimension table like NATION refers to
an even smaller coarse-grained dimension table CONTINENT. To find the transi-
tive relationships and their relative importance, we use the recursive PageRank[13]
algorithm on the graph formed by all CS’s (vertexes) and relationships (edges). As
a final result, we mark low-frequency CS’s with a high rank as “dimension” tables,
which will protect them later from being pruned.

1.5.3 Step3: Human-friendly Labels

When presenting humans with a UML or relational schema, short labels should be
used as aliases for machine-readable and unique URIs for naming classes, attributes
and relationships. For assigning labels to CS’s, we exploit both structural and se-
mantic information (ontologies).
Type Properties. Certain specific properties (e.g., rdf:type) explicitly specify the
class or concept a subject belongs to. By analyzing the frequency distribution of
different RDF type property values in the triples that belong to a CS, we can find
a class label for the CS. As ontologies usually contain hierarchies, we create a his-
togram of type property values per CS that is aware of hierarchies. The type property
value that describes most of the subjects in the CS, but is also as specific as possible
is chosen as the URI of the class. If a ontology class URI is found, we can use its
label as the CS’s label. In Figure 1.3, the value “Ship” is chosen.
Ontologies. Even if no type property is present in the CS, we can still try to match
a CS to an ontology class. We compare the property set of the CS with the property
sets of ontology classes using the TF/IDF similarity score [15]. This method relies
on identifying “discriminative” properties, that appear in few ontology classes only,
and whose occurrence in triple data thus gives a strong hint for the membership of
a specific class. An example is shown in Figure 1.2.



1 Advances in Large-scale RDF Data Management 21

The ontology class correspondence of a CS, if found, is also used to find labels
for properties of the CS (both for relationships and literal properties).

Relationships between CS’s. If the previous approaches do not apply, we can look
at which other CS’s refer to a CS, and then use the URI of the referring property to
derive a label. For example, a CS that is referred as <author> indicates that this CS
represents instances of a <Author> class. We use the most frequent relationship to
provide a CS label. Figure 1.4 shows an example of such “foreign key” names.

CS
2

rdf:type

gor:validFrom

gor:validThrough

gor:hasCurrency

gor:hasCurrencyValue

gor:hasUnitOfMeasurement

gor:valueAddedTaxIncluded

gor:eligibleTransactionVolume

PriceSpecification

gor:description

gor:name

gor:eligibleTransactionVolume

gor:validFrom

gor:validThrough

gor:hasCurrency

gor:hasCurrencyValue

gor:hasUnitOfMeasurement

gor:valueAddedTaxIncluded

gor:hasMaxCurrencyValue

gor:hasMinCurrencyValue

(prefix gor: 

http://purl.org/goodrelations/v1#)

Fig. 1.2 Example CS vs. Ontology Class

Level Type %
0 Thing 100
1 MeanOfTransportation 100
2 Ship 97
2 Automobile 2
2 SpaceShuttle 1

Fig. 1.3 CS Type Property values

FK name #CS #tuples
instrument 3 93532
author 1 5

Fig. 1.4 References to a CS

URI shortening. If the above solutions cannot provide us a link to ontology infor-
mation, for providing attribute and relationship labels we resort to a practical fall-
back, based on the observation that often property URI values do convey a hint of the
semantics. That is, for finding labels of CS properties we shorten URIs (e.g., http:
//purl.org/goodrelations/v1#offers becomes offers), by remov-
ing the ontology prefix (e.g., http://purl.org/goodrelations/v1#) or
simply using the part after the last slash, as suggested by [11].

1.5.4 Step4: CS Merging

To have a compact schema, we further reduce the number of tables in the emergent
relational schema by merging CS’s, using either semantic or structural information.
Semantic Merging. We can merge two CS’s on semantic grounds when both CS
class labels that we found were based on ontology information. Obviously, two CS’s
whose label was created using the same ontology class URI represent the same con-
cept, and thus can be merged. If the labels stem from different ontology classes we
can observe the subclass hierarchy and identify the common concept/class shared
by both CS’s (e.g.,<Athlete> is a common class for <BasketballPlayer> and
<BaseballPlayer>), if any, and then justify whether these CS’s are similar based
on the “generality” of the concept. Here the “generality” score of a concept is com-
puted by the percentage of instances covered by it and its subclasses among all the



22 Peter Boncz, Orri Erling, Minh-Duc Pham

instances covered by that ontology. Two CS’s whose labels share a non-general an-
cestor in an ontology class hierarchy can be merged.
Structural Merging. The structural similarity between two CS’s can be assessed by
using the set of properties in each CS and the found relationships to them with other
CS’s. As original class can be identified based on “discriminating” properties (based
on TF/IDF scoring), we merge two CS if their property sets have a high TF/IDF
similarity score. Additionally, as a subject typically refers to only one specific entity
via a property, we also merge two CS’s which are both referred from the same CS
via the same property.

1.5.5 Step5: Schema and Instance Filtering

We now perform final post-processing to clean up and optimize both the schema and
the data instances in it. At part of this phase, all RDF triples are visited again, and
either become stored in relational tables (typically >90% of the triples, which we
consider regular), and the remainder gets stored separately in a PSO table. Hence,
our final result is a set of relational tables with foreign keys between them, and a
single triple table in PSO format.
Filtering small tables. After the merging process, most of these merged classes
(i.e., surviving merged CS’s) cover a large amount of triples. However, it may hap-
pen that some classes still cover a limited number of RDF subjects, (i.e. less than
0.1% of all data). As removing these classes will only marginally reduce coverage,
we remove them from the schema (except classes that were recognized as dimen-
sion tables with the described PageRank method). All triples of subjects belonging
to these classes will be moved to the separate PSO table.
Maximizing type homogeneity. Literal object values corresponding to each at-
tribute in a class can have several different types e.g., number, string, dateTime,
etc. The relational model can only store a single type in each column, so in case
of type diversity multiple columns will be used for a single property. As the num-
ber of columns can be large just due to a few triples having the wrong type (dirty
data), we minimize this number by filtering out all the infrequent literal types (types
that appear in less than 5% of all object values) for each property. The triples with
infrequent literal types are moved to the separate PSO table.
Minimizing the number of infrequent columns. Infrequent columns are those that
have lots of NULL values. If the property coverage is less than a certain threshold
value (i.e., 5%), that property is infrequent and all the RDF triples of that property
are treated as irregular data and moved to the separate PSO table.
Filtering the relationships. We further filter out infrequent or “dirty” relationships
between classes. A relationship between csi and cs j is infrequent if the number of
references from csi to cs j is much smaller than the the frequency of csi (e.g., less
than 1% of the CS’s frequency). A relationship is considered dirty if most but not all
the object values of the referring class (e.g., csi) refer to the instances of the referred



1 Advances in Large-scale RDF Data Management 23

class (cs j). In the former case, we simply remove the relationship information be-
tween two classes. In the latter case, the triples in csi that do not refer to cs j will be
filtered out (placed in the separate PSO table).

Multi-valued attributes. The same subject may have 0, 1 or even multiple triples
with the same property, which in our schema leads to an attribute with cardinality
> 1. While this is allowed in UML, direct storage of such values is not possible in
relational databases. Practitioners handle this by creating a separate table that con-
tains the primary key (subject oid) and the value (which given literal type diversity
may be multiple columns). The MonetDB/RDF system does this, but only creates
such separate storage if really necessary. That is, we analyze the mean number of
object values (meanp) per property. If the meanp of a property p is not much greater
than 1 (e.g., less than 1.1), we consider p as a single-valued property and only keep
the first value of that property while moving all the triples with other object values
of this property to the non-structural part of the RDF dataset. Otherwise, we will
add a table for storing all the object values of each multi-valued property.

1.5.6 Final Schema Evaluation

For evaluating the quality of the final schema, we have conducted extensive ex-
periments over a wide range of real-world and synthetic datasets (i.e., DBpedia4,
PubMed5, DBLP6, MusicBrainz7, EuroStat8, BSBM9, SP2B10, LUBM11 and Web-
DataCommons12). The experimental results in Table 1.7 show that we can derive
a compact schema from each dataset with a relative small number of tables. We
see that the synthetic RDF benchmark data (BSBM, SP2B, LUBM) is fully rela-
tional, and also all dataset with non-RDF roots (PubMed, MusicBrainz, EuroStat)
get >99% coverage. Most surprisingly, the RDFa data that dominates WebDataCom-
mons and even DBpedia are more than 90% regular.
Labeling Evaluation. We further evaluate the quality of the labels in the final
schema by showing the schema of DBpedia and WebDataCommons (complex and,
may be, “dirty” datasets) to 19 humans. The survey asking for rating label quality
with the 5-point Likert scale from 1 (bad) to 5 (excellent) shows that 78% (WebDat-
aCommons) and 90% (DBpedia) of the labels are rated with 4 points (i.e., “good”)
or better.

4 http://dbpedia.org - we used v3.9
5 http://www.ncbi.nlm.nih.gov/pubmed
6 http://gaia.infor.uva.es/hdt/dblp-2012-11-28.hdt.gz
7 http://linkedbrainz.c4dmpresents.org/data/musicbrainz_ngs_dump.rdf.ttl.gz
8 http://eurostat.linked-statistics.org
9 http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
10 http://dbis.informatik.uni-freiburg.de/forschung/projekte/SP2B/
11 http://swat.cse.lehigh.edu/projects/lubm/
12 A 100M triple file of http://webdatacommons.org



24 Peter Boncz, Orri Erling, Minh-Duc Pham

Table 1.7 Number of tables and coverage percentage after merging & filtering steps

Datasets
Number of tables Coverage – Metric C (%)

before merging after remove remove prune final
basic frequent merging small small infrequent schema
CS’s CS’s tables tables properties

Pubmed 3340 1754 14 10 99.99 99.74 99.72
DBpedia 472244 213851 517 298 94.12 91.73 90.82
BSBM 51 51 8 8 100 100 100.00
DBLP 251 181 9 6 99.99 99.68 99.60
SP2B 554 410 13 9 99.99 99.65 99.65

MusicBrainz 27 27 12 12 100 99.9 99.19
LUBM 17 16 12 11 100 100 100.00

WebDataCommons 13913 8319 780 113 98.79 94.55 92.90
EuroStat 44 27 5 5 99.51 99.32 99.32

Computational cost & Compression. Our experiments also show that the time
for detecting the emerging schema is negligible comparing to bulk-loading time for
building a single SPO table, and thus the schema detection process can be inte-
grated into the bulk-loading process without any recognizable delay. Additionally,
the database size stored using relational tables can be 2x smaller than the database
size of a single SPO triple table since in the relational representation the S and P
columns effectively get compressed away and only the O columns remain.
Final words. We think the emergent schema detection approach we developed and
evaluated is promising. The fact that all tested RDF datasets turned out highly regu-
lar, and that good labels for them could be found already provides immediate value,
since MonetDB/RDF can now simply be used to load RDF data in a SQL system;
hence existing SQL applications can now be leveraged on RDF without change. We
expect that all systems that can store both RDF and relational data (this includes
besides Virtuoso also the RDF solutions by Oracle and IBM) could incorporate the
possibility to load RDF data and query it both from SQL and SPARQL.

Future research is to verify the approach on more RDF dataset and further tune
the recognition algorithms. Also, the second and natural step is now to make the
SPARQL engine aware of the emergent schema, such that its query optimization can
become more reliable and query execution can reduce the join effort in evaluating
so-called SPARQL star-patterns. In benchmarks like LUBM and BSBM our results
show that SPARQL systems could become just as fast as SQL systems, but even on
“real” RDF datasets like DBpedia 90% of join effort can likely be accelerated. Work
is underway to verify this both in MonetDB and Virtuoso.

References

1. IBM DB2. www.ibm.com/software/data/db2/.
2. MonetDB column store. https://www.monetdb.org/.
3. Openlink Software Blog. http://www.openlinksw.com/weblog/oerling/.

www.ibm.com/software/data/db2/
https://www.monetdb.org/
http://www.openlinksw.com/weblog/oerling/


1 Advances in Large-scale RDF Data Management 25

4. Daniel J. Abadi. Query execution in column-oriented database systems. MIT PhD Disserta-
tion, 2008. PhD Thesis.

5. Christian Bizer and Andreas Schultz. The berlin sparql benchmark. International Journal on
Semantic Web and Information Systems (IJSWIS), 5(2):1–24, 2009.

6. Peter Boncz, Thomas Neumann, and Orri Erling. Tpc-h analyzed: Hidden messages and
lessons learned from an influential benchmark. TPCTC, 2013.

7. Orri Erling. Virtuoso, a hybrid rdbms/graph column store. IEEE Data Eng. Bull, 35(1):3–8,
2012.

8. Andrew Lamb et al. The vertica analytic database: C-store 7 years later. Proceedings of the
VLDB Endowment, pages 1790–1801, 2012.

9. P. Minh-Duc et al. Deriving an emergent relational schema from rdf data. In ISWC. (submit-
ted), 2014.

10. T. Neumann et al. Characteristic sets: Accurate cardinality estimation for RDF queries with
multiple joins. In ICDE, 2011.

11. Robert Neumayer, Krisztian Balog, and Kjetil Nørvåg. When simple is (more than) good
enough: Effective semantic search with (almost) no semantics. In Advances in Information
Retrieval, pages 540–543. Springer, 2012.

12. Pat O’Neil, Elizabeth J O’Neil, and Xuedong Chen. The star schema benchmark (ssb). Pat,
2007.

13. L. Page et al. The pagerank citation ranking: Bringing order to the web. Technical report,
Stanford InfoLab, 1999.

14. Minh-Duc Pham. Self-organizing structured RDF in monetdb. In ICDE Workshops, pages
310–313, 2013.

15. Gerard Salton and Michael J McGill. Introduction to modern information retrieval. 1983.
16. Petros Tsialiamanis et al. Heuristics-based query optimisation for sparql. In EDBT, pages

324–335, 2012.
17. Marcin Zukowski and Peter A Boncz. Vectorwise: Beyond column stores. IEEE Data Eng.

Bull., pages 21–27, 2012.


	Advances in Large-scale RDF Data Management
	Peter Boncz, Orri Erling, Minh-Duc Pham
	General Objectives
	Virtuoso Column Store
	Vectored Execution
	Vector Optimizations
	Query Optimization
	State of the RDF Tax

	Virtuoso Cluster Parallel
	Performance Dynamics
	Subsequent Development

	BSBM Benchmark Results
	Cluster Configuration
	Bulk Loading RDF
	Notes on the BI Workload
	Benchmark Results

	Emergent Schemas
	Step1: Basic CS Discovery
	Step2: Dimension Tables Detection
	Step3: Human-friendly Labels
	Step4: CS Merging
	Step5: Schema and Instance Filtering
	Final Schema Evaluation

	References



