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Abstract 

For positive recurrent nearest-neighbour, semi-homogeneous random walks on the lattice 
{ 0, I, 2, ... } x {O, I, 2, ... } the bivariate generating function of the stationary distribution is analysed 
for the case where one-step transitions to the north, north-east and east at interior points of the state 
space all have zero probability. It is shown that this generating function can be represented by 
meromorphic functions. The construction of this representation is exposed for a variety of one-step 
transition vectors at the boundary points of the state space. 
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1. Introduction 

Since the early 1970s random walks on the lattice { 0, 1, 2, ... } x { 0, 1, 2, ... } 
have received increasing attention in the literature, mainly due to their use in 
modelling traffic flow patterns in telecommunication and computer networks. 
For details concerning their applications see for example Takagi [17]. For the 
performance analysis of such networks, information concerning the stationary 
distribution of these random walks is of prime importance. Around 1980 it 
became obvious that the determination of the stationary distribution could be 
formulated as a boundary value problem, cf. Fayolle and Iasnogorodsky [7], 
Cohen and Boxma [6], Cohen [5]; for a review paper, see [4], where the problem 
formulation as a singular Fredholm integral equation is also discussed. 

Nearest-neighbour random walks are a special but important subclass. There 
is a study by Groeneveld, dating from the early 1960s; unfortunately, it has 
never been published. By using uniformisation he solved the functional equation 
for the 'shortest queue' model and showed that the solution can be expressed 
in terms of elliptic functions; Malyshev's approach [14] is of a similar character. 
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Among the nearest-neighbour models, the 'shortest queue' is a much studied one. 
Its basic analysis is due to Kingman [13) and Flatto and McKean [10]. In the 
context of boundary value problems this model has been analysed in [7] and [6]. 

In a nearest-neighbour random walk the one-step transition from an interior 
point (i,j) E { 1, 2, ... } x { 1, 2, ... } of the state space leads with probability 1 to a 
neighbouring point (i + h,j + k), (h, k) E {-1, 0, l} x {-1, 0, 1} \ {(O, O)}. In the 
shortest queue model the one-step transitions with (h,k) E {(1, 1), (1, 0), (0, l)} 
all have probability 0. In Hofri [11) and Jaffe [12], models with this feature are also 
discussed almost along the same lines as in [10], and as with the 'shortest queue' 
model the bivariate generating functions of the stationary distributions are mero
morphic, i.e. their only singularities are isolated poles. These random walks are 
featured by the absence of one-step transitions to the north, north-east and east, 
(N, NE, E), see also Adan [1]; from the results obtained in these studies the 
conjecture arises whether for such random walks the generating function of the 
stationary distribution, if it exists, is always meromorphic. In the present study we 
show that under some mild conditions this conjecture is true. Questions concern
ing the algebraic character of the generating function have also recently been 
studied by Fayolle et al. [8]. Flatto and Hahn [9] provide a model with an 
algebraic generating function, in which the one-step transition to the north-east 
has a non-zero probability; see also Wright [18). 

The character of the generating function of the stationary distribution of a 
nearest-neighbour random walk is determined by the number of branch points 
of the zeros of the so-called kernel 

P1P2 - cP3(P1iP2); 

where cfa3(p1'p2)/(p1p2) is the bivariate generating function of the distribution of 
the one-step transition from an interior point of the state space. The kernel is in 
general a biquadratic in p1 and p2, and its zeros, e.g. p1 as a function of p2, 

generally have four branching points, two within and two outside the unit disk 
ifthe drifts µ3 - 1 and v3 - 1 are negative, as in (2.5) below. In the case with no N, 
NE and E one-step transitions there are only two finite branching points, both 
inside the unit disk. The branching points inside the unit disk play an essential 
role in the analysis of the functional equation for the bivariate generating function 
of the stationary distribution. The branching points outside the unit disk play a 
decisive role in the analytic continuation of the bivariate generating function into 
the domain outside the torus generated by the two unit disks. 

In the present study we consider the nearest-neighbour walk without one-step 
transitions to the N, NE and E at interior points of the state space; it is assumed 
that the process is positive recurrent, cf. Assumption 2.1. It is shown that the 
generating function of the stationary distribution can be described in terms of 
meromorphic functions. The construction of these functions is outlined; some 
weak restrictions have been made, cf. Assumption 4.1. Even with these restric
tions quite a number of variants have to be considered. 
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The organisation of the present study is now described. In Section 2 the 
model of the nearest-neighbour random walk is defined by its one-step tran
sition vectors at interior and at the boundary points of the state space 
{0,1,2, ... } x {0,1,2, ... }. The random walk is semi-homogeneous, i.e. the dis
tribution of the transition vector at interior points is independent of the position 
of such a point, similarly for the boundary points on the positive horizontal axis 
and the positive vertical axis, cf. (2.1) and (2.2). In this section the functional 
equation to be solved is formulated on the zero set of the kernel. By using the 
analytic properties of these zeros the functional equation is replaced by two 
equations with two unknown functions n1(p), D2(p), defined for IPI ~ l; the 
two branching points of a zero located inside the unit disk are instrumental 
here, see Section 3. From the structure of the coefficients in these two equations 
it is shown that n1 (p) and n2 (p) can be continued analytically into IPI > l. In 
Section 4 it is shown that the only singularities of these analytic continuations are 
poles; for the determination of the residues at these pole sets recursive linear 
equations are derived. The pole sets of n1 (') and D2(-) are generated by the zeros 
in JpJ > 1 of some of the coefficients in the two equations for D1(·), 0 2 (·); the 
number of such zeros depends on the character of the transition vectors at the 
boundary points of the state space. From the results so obtained it is seen that 
the solutions of the two functional equations for D1(p) and 0 2 (p), with 0 1(p), 
D2(p) both regular in JpJ < 1 and continuous in Jp[ ~ 1, are meromorphic func
tions with known pole sets and recursively defined residues in JpJ > 1. In Section 
5, 0 1 ( ·) and 0 2 ( ·) are both expressed as the sum of a polynomial and a number of 
meromorphic functions with given poles and residues. These meromorphic func
tions are, apart from a factor, explicitly known; their construction follows from 
the results in Section 4. The polynomials and their degrees still have to be 
determined. Substitution of the expression for 0 1 ( ·) and D2 ( ·) into the two 
equations for these functions (see Section 6) leads to the determination of the 
degrees and the coefficients of these polynomials, and a set of linear equations for 
the unknown factors in the meromorphic functions remains. It is shown that the 
equations have a solution and so 0 1 (p), n2(p) are determined. Finally, it is shown 
that the solution so constructed leads to the unique solution of the functional 
equation for the bivariate generating function of the stationary distribution. In 
order not to interrupt the exposition of the construction of the solution, all the 
algebraic computations are given in Appendixes A, B and C. 

The construction of the generating function of the stationary distribution may 
be also formulated as a boundary value problem, cf. [6], and as such it can be 
solved completely, even when one-step transitions to the N, NE and E occur. If 
they do not occur then the present approach is simpler, because it avoids the 
explicit calculation of a conformal mapping. 

The present investigation has been initiated after reading the studies by Adan 
[l] and Adan et al. [2] on nearest-neighbour random walks without N, NE and E 
one-step transitions. In his search for a direct derivation of explicit expressions for 
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all state probabilities of the two-dimensional stationary distribution, Adan starts 
from the equilibrium equations for these probabilities. For the general equation of 
this set, i.e. the equation containing no state probabilities of the boundary points 
of the state space, he constructs a class of solutions. By choosing suitable linear 
combinations of these solutions Adan tries to satisfy the boundary conditions, 
i.e. the equations containing boundary states. Using an iterative procedure, he 
succeeds in constructing a sequence which, whenever it converges absolutely at all 
points of the state space, provides in the limit the solution of the equilibrium 
equations and the norming condition. This aspect of absolute convergence is 
actually the problem of choosing the exponents of convergence in constructing 
the meromorphic functions, cf. Section 5 and Appendix C. Adan's approach leads 
to an attractive algorithm for the numerical evaluation of the various state 
probabilities. From his analysis it may be shown that the generating function 
of these state probabilities is indeed meromorphic. 

2. Description of the model 

We consider the two-dimensional stochastic process {zni n = 0, 1, 2, ... } with 
state space Y', 

Zn =:: (xn,Yn) E Y':= {0, 1,2, ... } x {0, 1,2, ... }. 

For the characterisation of the structure of the Zn-process we introduce the 
following four sequences of stochastic vectors: 

(i) for every fixed k = 0, 1, 2, 3, 

( c(k) (k)) - 0 1 2 . f .. d h . <,,n , T/n , n - , , , ... , is a sequence o u. . stoc astic 

(2.1) 

(ii) the four families {(e~k), TJ~k)), n = 0, 1, 2, ... } are independent families. 
The structure of the Zn-process is defined by the following recursive relations: 

{ 
(i) zo = (xo, Yo) E Y is the starting point; 

(2.2) (ii) Xn+I = [xn - l]+ + e~k), 
Yn+1 = [Yn - 1 ]+ + T/~k), 

with 

k=3 for Xn > 0, Yn > 0, 

k=2 for Xn = 0, Yn > 0, 

k = 1 for Xn > 0, Yn = 0, 

k=O for Xn = 0, Yn = 0, 

and 

a+:= max (0, a) for a real. 
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We introduce the following notation and definitions. 
(i) (ek> rlk) indicates a stochastic vector with the same state space and the same 

d. "b . ( (k) (k)) . lStn UtlOn as en , 'T/n , Le. 

(2.3) 

(ii) <Pk= <Pk(Pi,P2) := E{pfpik}, IPil s 1, IP2I s 1, 

µk := E{ek}, vk := E{"lk}· 

From (2.1) and (2.2) it is seen that the Zn·process is a discrete-time parameter 
Markov chain. 

The class of nearest-neighbour random walks to be analysed in the present 
study is specified by taking 

(2.4) 

with 

l </>o(Pt.P2) = b10P1 + bo1P2 + b11P1P2, 

</>1 (p1,P2) = h11PTP2 + ho1P1P2 + h_1,1P2 + h10PI + h-1,0, 

</>2(Pi,P2) = W11P1P~ + W10P1P2 + w1,-1P1 + Wo1P~ + wo,-1, 

</>3(P1 ,p2) = r -1,1P~ + r -1,0P2 + r -1,-1 + ro,-1P1 + r1,-1PT, 

<i>k(l, 1) = 1, k= 0, 1,2,3, 

and all coefficients in (2.4) non-negative. 
Note that (2.2) and (2.4) imply that from a point (x,y) with x > 0, y > 0, no 

one-step transition can occur to the north, the north-east and the east. 
We make the following assumptions. 

Assumptions 2.1 

(2.5) 

(i) µ3 - 1 := r1,-1 - {r-1,1 + r -1,0 + r-1,-1} < 0, 

V3 - 1 := r-1,1 - {r1,-1 + ro,-1 + r-1,-d < O; 

(ii) 

(iii) 

0 < 4r _1,1r 1,-1 < l; 
1 - µ3 

µ 1 - l -v1--< 1, 
1 - V3 

1 - V3 
V1 - 1 - µ2 --< 1 j 

1 - µ3 

(iv) h11 + h01 > 0 or W11 + W10 > O; 

(v) h01 > 0 whenever h11 = ho1 = 0, 

w10 > 0 whenever w11 = w10 = 0. 

Remark 2.1. Concerning (2.5) (ii) it is noted that 4r_1,1r1,-1 = 1 implies 
r -l,I = r1,_1 = ! since 0 Sr _1,1 ".5 l, 0 S r1,_ 1 S 1, r -1,1 + r1,-1 S l; and so the 
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second inequality in (2.5) (ii) is implied by (2.5) (i). Although the case 
r 1,_1 = r -l,I = t is an interesting case, we shall discard it because its analysis 
requires a slightly different approach, similarly if r _1,1 = 0 or r 1,_1 = 0. The 
condition (2.5) (iv) has been introduced to guarantee that any two states of S" can 
be reached from each other with positive probability, so that the state space S" is 
irreducible. The conditions (2.5) (v) have been introduced to restrict the number 
of variants which have to be considered in the analysis, see the derivations in 
Appendix C. However, if (2.5) (v) is not assumed, the required analysis does not 
change essentially. 

Whenever the conditions (2.5) (i) hold and the state space S" is irreducible then 
the conditions (2.5) (iii) are necessary and sufficient for the Zn-process to be 
positive recurrent, cf. Cohen [5], Section II.2.6, and hence they imply that the 
Zn-process possesses a unique stationary distribution. If (2.5) (i) is not introduced 
it is still possible that the Zn-process is positive recurrent, cf. [5]; however, we shall 
not discuss such cases here. 

In the present study our interest lies in the study of the functional equation for 
the stationary distribution of the Zn-process. To formulate this equation let (x,y) 
be a stochastic vector with distribution the stationary distribution of the 
Zn-process. 

Put 

It is then easily derived (cf. [5], (II.4.1.3)) that for \pi[$ 1, \p2 \ $I, 

(P1P2 - </>3)il>(P1iP2)/iI>(O, 0) = P1P24>0 - </>3 + (P2</J1 - <,b3)p1!l1 (P1) 

(2.6) 

with 

\pi[$ I, 

(2.7) 

j=0,1,2,3. 

From (2.6) and (2. 7) it follows that for j = I, 2, 

(2.8) flj(p) is regular for \p\ < I, continuous for Jp\ $ 1, and 0 $ n1( l) $ l. 

Put 

(2.9) 

w2(P1iP2) := P2 - </J2(P1iP2), 

w1(P1,P2) :=Pt -</J1(P1iP2), 

wo(P1,P2) := 1 - </>o(P1,P2)· 
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By (Pi, p2) we shall denote a zero of the kernel 

(2.10) Z(p1,P2) := <f>3(P1,P2) - P1P2, 

so 

Writing 

(2.11) j = 0, 1, 2, 

we obtain from (2.6) the functional equation 

(2.12) w1D1(ft1) +w2D2(ft2) +w0 = o, 
because by definition 

(2.13) lfi1 I s 1, lhl s 1. 

213 

Further, this functional equation applies for every zero (fi1 ,ft2) of Z(p1 ,p2 ) with 

IP1I S:: 1, IP2I:::; 1, cf. (2.10). 
The analysis of the functional equation (2.13) for the conditions (2.8) is the 

main goal of the present study. 

3. On the analysis of the functional equation 

In this section we derive some properties of the solution of the functional 

equation (2.12) which satisfies (2.8). Zeros (p1,h) of the kernel Z(p1,p2) are 

anaiysed in Appendix A, cf. Lemma A.2. For every p2 and Pi given by 

(3.1) ft1 = -2 
1 {.Pz - '0-1 ± (1 - 4r1 -1'-1 1)~../(.Pz - 821)(fi2 - Ozz)}, 

'1,-1 j l ' 

(ft1,ft2) is a zero of Z(p1,p2); here the two signs correspond with Pi= Pd.Pz), 

ft1 = P11 (.Pz), cf. (A.8) of Appendix A, and 821> 822 are the branch points of p1 as a 

function offti. Lemma A.2 states that for lhl = 1 the zero P12(fiz) lies in IP2I S 1, 

the other one Pll (h) is in lp1 I > 1. Note that -1 < 82 1 < 822 < 1, cf. (A.5). Put 

(3.2) <§:= {p: 821 S::p S:: 822}, :ff:= {p: IP! S l}\'§, 

and note that each of the functions in (3.1) is regular in :tf and continuous in the 

closure.#' of :ff. Note also that wj(p1 ,p2), j = 0, 1, 2, cf. (2.9), are polynomials in 

Pi and p2, and hence wj(p1 ,fiz) is regular in h E :ff, continuous in ftz E.#'. 

For l.Pzl = 1 and ft1 = P12(fiz), so IP12(ftz)I S 1, cf. (A.8), the functional 

equation (2.12) reads 

(3.3) 

In (3.3) wj = wj(P12 (.Pz),ftz) and 0.z(fiz) are regular in ftz E :ff, and continuous in 

ftz E.#', cf. (2.8). Consequently it follows from (3.3) that !11 (P12 ([J2)) can be 

continued analytically from lfizl = 1 into Pi E .Yf, and this continuation is 
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continuous in .it'. Because the coefficients in wj(p 1 ,p2) are all real, cf. (2.4) and 
(2.9), and the coefficients in the series expansions of 0 1 (p), and of 0 2(p) are all 
non-negative, cf. (2.7), and have a sum bounded by 1, it follows that (3.3) may be 
rewritten for fti E .it' as 

(3.4) 

with 'lj;1 (fli), 'lj;2 (p2) convergent power series in Pi with real coefficients. 
For h E (821 , 822 ) the square root in (3.4) is purely imaginary and since for such 

fti, 'lj;1(h) and 'lf;2(ih) are both real, because they are power series with real 
coefficients, it follows by continuity from (3.4) that 

(3.5) 

From (3.1) it is seen that P 12 (fh) and P 11 (h) are each other's complex conjugates 
for fli E ( 82" 822 ) and so (3.5) implies that (3.4) also holds for h E ( 821i bn) with 
the plus sign replaced by a minus sign, that is we have for p2 E (821,822 ), 

(3.6) 

with 

w1=w1(P11(fti),fl2), j=0,1,2. 

Using the same arguments as above it is seen that (3.6) can be continued analy
tically from h E (821 , 822 ) into J/f. It follows that the relations (3.5) are equivalent, 
for IP2I ::=:: 1, to 

(3. 7) Wt (P12 (P2) ,p2)01 (Pu(pz)) + w2 (Pu(p2) ,p2)02(P2) + wo(P12 (P2),pz) = 0, 

(3.8) Wt (P11 (p2),P2)01 (P11 (P2)) + w2(Pu (pz),P2)02(P2) + wo(Pll (pz),p2) = 0. 

Analogously, we have, cf. Remark A.1, for IPil:::; 1, 

W1 (pi, P21 (P1) )0.1 (pi) + w2(Pt, P2t (Pt) )0.2 (P21 (Pi)) + wo(Pi, P21 (Pi)) = 0, 
(3.9) 

wi(pi, P12(p,))0.1 (Pi)+ w2(P1, P22 (pi) )02(P22(pi)) + wo(Pi, Pn(pi)) = 0. 
(3.10) 

Because w1(p 1,p2 ), j = 0, 1, 2, are polynomials in p 1 and p2, and Pu(p) and 
P 11 (p) are regular in the entire finite p-plane slit along <§, it is seen that all the 
coefficients in (3.7) and (3.8) are regular in this slitp-plane. From Lemma A.2 we 
have P 11 ( 1) > 1 and since all coefficients in (3.8) are real for p2 = 1 and 0 1 (p) is a 
power series in p with non-negative coefficients, it follows that 0 1 (p 1) has an 
analytic continuation in IPd < P11 (1 ). Analogously, 0 2(p2) has such a con
tinuation in IP2 1 < P 21 (1), cf. (A.11), and 0 1(P 11 (1)), 0 2(P21 (1)), are both 
finite. So the relations (3.7) and (3.8) hold for IP2 1 ~P21 (1), and (3.9) and (3.10) 
hold for IPil s; P11 (1), i.e. the domain of validity of (3.7) and (3.8) has been 
extended by analytic continuation; similarly for (3.9) and (3.10). Actually, the 



On a class of two-dimensional nearest-neighbour random walks 215 

relations (3.7) and (3.8) are linear in Ot (-), 0 2(·), and their coefficients are all 
regular in the Prplane slit along'§, and so by analytic continuation it is seen as 
above that !11 (p) and D2(p) possess analytic continuations for IPI > 1, except 
possibly at those points p where the coefficients of D2(p) in (3.7) and Oi(p) in 
(3.10) are zero; at such points DtO and/or 0 2(·) may have poles, and these poles 
may generate other poles via (3.8) and (3.1 O); see Section 4. Branching points 
cannot occur, since P12 (p ), Pt 1 (p ), are regular in the slit p-plane and the relations 
(3.7) and (3.8) are linear in Dt(·) and !12(·). Consequently, it follows that !11(p) 
and 0 2(p) which are regular for IPI < 1, cf. (2.8), are meromorphic functions for 
IPI > 1, if their singularities, i.e. their poles, do not have a finite accumulation 
point, and this is actually the case, as will be shown, cf. (C.2) of Appendix C and 
(6.5). Note that a function is meromorphic if it is regular in the finite complex 
plane except for, at most, a finite number of singularities in every bounded 
domain, these singularities being simple or multiple poles. 

Remark 3.1. Because the Zn-process is positive recurrent and the state space 9" is 
irreducible (cf. Remark 2.1), D1(p) and D2 (p) cannot be polynomials. 

Remark 3.2. From the derivations above it is readily seen that the set of 
relations (3. 7) and (3 .8) is equivalent to the set (3.9) and (3.10). These sets are 
obtained from each other by analytic continuation. 

4. On the determination of the poles and residues 

In the preceding section it has been shown that !11 (p) and D2 (p) should be 
meromorphic functions with poles located in IPI > 1, cf. (2.8). In this section we 
discuss the location of these poles and derive relations for the residues at these 
poles. 

Because !1 1 (p) and D2(p) are meromorphic and the coefficients in (3.7) and 
(3.8) are regular for IPI 2 1, the principle of permanence, cf. [3], p. 106, implies 
that (3.7) and (3.8) hold for IPI 2 l; i.e. for IPI 2 1, 

(4.1) Wt (P!2(p),p)rl1 (Pu(p)) + w2(P12(p),p)0-l(p) + wo(P12(p),p) = 0, 

(4.2) Wt (Pt 1 (p),p)D1 (P11(P)) + w2(Pll (p),p)0.2(P) + wo(Pt1 (p),p) = 0. 

For the present, we consider the case, cf. (2.5) (iv), 

( 4.3) Wt 1 + w01 > O; 

the discussion of the other case of (2.5) (iv) is similar. Hence Lemma B. I (ii) 
guarantees the existence of a zero a(ll such that 

(4.4) 
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This zero er(!) generates recursively the two sequences, cf. Remarks A.2 and 

A.3, 

(4.5) {crUl,i=l,2, ... } and {T(i),i=l,2, ... }, 

with 

TU):= P11 (a(i)) and cr(i+I) := P21(T(i)). 

From (A.8), (A.11) and Remarks A.2 and A.3, it is seen that 

1 < la.(1)1 < IT(l)I < ia12)1 < .. · < ia(i)I < IT(i+l)I < io.(i+l)I <,. .. , 

(4.6) (J"(i) = P22(T(i)), T(i) = Pu(a-(i+l)), 

a(i) and T(i) are all positive or are all negative. 

Put 

(4.7) A1(P) := w1 (Pn(p),p)f21 (P12(P )) + wo(P12(P ),p ), 

and suppose for the present (cf. Remarks 4.1 and 6.5 below) that 

( 4.8) 

It then follows from (4.1) and (4.8) since a-(1) is a simple zero (cf. (4.4) and Lemma 

B. I (ii)), that 

(4.9) p = a-(1) is a simple pole of f22(p). 

Consequently, if 

(4.10) 

then (4.2) implies that 

( 4.11) p = T(I) = P11 ( a-(1)) is a simple pole of !:2 1 (p ). 

If, however 

(4.12) 

then p = T(l) is a pole with multiplicity 2 of !:21 (p). 
Suppose that ( 4.10) holds and that 

( 4.13) 

then, cf. (4.1), 

( 4.14) 

since 

(4.15) 

f22 (p) has a simple pole at p = a-12l, 
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This relation (4.15) holds, because (4.3) and Lemma B.l (ii) imply that 
w2(Pu(p),p) has only one zero in !PI > 1 if w11 = 0, whereas if w11 > 0 it has 
two such zeros but with different signs and this contradicts (4.6). 

If 

( 4.16) 

then 

( 4.17) 02(P) has no pole at p = a<2l. 

It is seen that if 0 2 (p) has a pole at a<2l then, starting from ( 4.11) with p = a<2l 
instead of p = a(l), analogous conclusions follow. So by starting with a< 1l it is seen 

that a(I) may generate sequences of poles of 0 1 (p) and 0 2 (p ), however, we have 
to consider (4.8), (4.10) and (4.13) in more detail. See the following remark. 

Remark 4.1. As noted in Remark A.3 we may complete the sequences (4.5) by 
T(O), a(O), T(-I)' a(-I)' ... ' so that 

[r(-n)I < 1 < [a(-n+l)I < .. · < [rHlj < [a(O)I < lr(O)I < [a(l)I < lr(l)I < .. ·, 

(4.18) 

with n finite, supposing that a r-element is the first one which becomes less than 1 
in absolute value; if it is a a-element only minor changes are needed in the 
following considerations. 

If n = 0 so that 

then, cf. (2.8), [01 (r(O))I < 1, i.e. A2(a( 1)) is finite, and so 0 2(p2) has a simple pole 
atp2 = a(ll if A2(a(l)) =I= O; otherwise, if A2(a( 1)) = 0, a(!) does not generate a pole 

of 0 1 (p). 
If n > 1 then consider ( 4.1) for p = a(o), ... , a( -n+ 1). Whenever for these p the 

coefficient in ( 4 .1) 

( 4.19) 

then 0 1 (P!2(p2)) and 0 2(p2) have no poles for these values of p and so A2 (a(ll) is 

finite; note that w2 ( Pn(p), p) =I= 0 for those p, cf. the proof of ( 4.15). 
Further if 

(4.20) w1(P12(p),p) =/= 0 for all p = a(i+ll, i = 1, 2, ... ' 

then, since w2 (P 12 (p ), p) =I= 0 for p = a(i+I), i = 1, 2, ... , cf. (4.15), it follows from 
(4.1) that if A 2(c7(1)) = 0 then all 0 1(Pn(p2)) and all 0 2(P2) are finite for 
p = (j(i+l), i = 1, 2, ... , and so a(l) does not generate sequences of poles for 

0 1 (p) and 0 2 (p). Concerning A2 (a< 1l) =/= 0, see Remark 6.5 below. 
The analysis in the following sections is based on the following assumption. 
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Assumption 4.1. For i=-n+l, -n+2, ... ,0,1,2, ... , cf. (4.5) and (4.18), 
assume that 

( 4.21) 
(i) w1(TUl,P22(T(i))) =::w1(P11(u(il),1J(i)) =f. 0, 

(ii) w1(TUl,P21(T(i))) :=w1(P12(u(i+l)),u(i+I)) =f. 0. 

Remark 4.2. It is readily seen that (4.21) (i) excludes the case where poles 
with multiplicity larger than 1 do occur, cf. (4.12), whereas (4.21) (ii) disregards 
the case with a finite number of poles generated by u(ll, cf. (4.16). From the 
definition of the u(i) and r(il it is readily seen that, in general, Assumption 4.1 will 
hold. 

From the discussion above it follows for the case ( 4.3) if A ( a-1) =f. 0, cf. ( 4. 7) and 
Remark 4.1, that 

n2 (p) has a simple pole at p = u(I l, 

n1 (p) has a simple pole at p = 7(1)' 

f22(P) has a simple pole at p = a-(2), 

cf. (4.9), 

cf. (4.11), 

cf. (4.14), 

and, generally, 

(4.22) { 
f22(p) has a simple pole at p = a-Ul, 

flt (p) has a Simple pole at p = 7(1 ), 

i = 1, 2, ... ' 

i = 1, 2, ... ; 

Assumption 4.1 excludes the case of poles with multiplicity larger than l. 
Next we start with the determination of the residues at the various poles. 
For i= 1,2, ... , put 

(4.23) 
R2(u(il) := lim. (p - a(il)f22(p). 

p->ull) 

It follows from (4.1) with A2(u(ll) =f. 0, note that IA2(u(ll)I < oo (cf. Remark 4.1), 
that since u(l) is a simple pole of f!2(p), 

(4.24) [ d ]-1 
R2(u(ll) = -A2(u(l)) -d w2(P12(p),p) · 

'P p=alIJ 

Further, from (4.2), 

f21 (Pu (p)) = - w2(P11 (p),p) f22(P) - wo(P11 (p),p)' 
W1 (P11 (p),p) W1 (P11 (p),p) 

and so 

(4.25) 
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Analogously, it follows from (4.1) that 

(4.26) R1(aC2l) = -{wi(Pii(p),p) [.!!_P12(P)J-1} R1(7(tl). 
w2(P12(p),p) dp p=trc21 

Generally, we have for i = 1, 2, ... , 

R1 ( 7(i)) = -{w2(Pu (p ),p) [.!!.... P11 (p )] } R1( a(i)), 
w1(P11(p),p) dp p=uUl 

(4.27) 

Remark 4.3. Because P 12 (p) and P 11 (p) are regular functions of p for IPI > 1, it 
is seen from (4.5) that the derivatives in (4.26) and (4.27) are all non-zero and 
finite. 

5. Definition of meromorphic functions 

Let a with lal > 1 be a zero of 

(5.1) W2(P12(p),p), 

assuming that such a zero exists, cf. Lemma B.l. Denote by S2(a) the sequence 

(5.2) 

with, cf. (4.5), 

(5.3) a(!) =a, 7(i) := P11 (a-(il), 17(i+I) := P21 (7(il), 

Analogously, let 7, 171 > I, be a zero of 

(5.4) 

and define the sequence 

(5.5) S1 (7) := { 7(1), a(I), 7(2), 17(2), ... }, 

with 

(5.6) 7(!) = 7 1 

The sequence S2 (17) generates the meromorphic functions 

00 R21T(17(i)) [ p ]m2u 
(5.7) M2(pla-) := L - (i) (if ' 

i=I p 17 a 

(5.8) 

i=l,2, .... 

i = 1,2, .... 
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(5.9) 

(5.10) 
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(i) where for each i, R2.,.(a(il) and R1.,.(r(il) are defined as R2(a(i)) 
and R1(r(il) in (4.27), the index a has been incorporated in the 
notation to indicate that the series in (5.7) and (5.8) are 
generated by the sequence S2(a), cf. (5.2); and 

(ii) m2.,. and m1.,. are the smallest non-negative integers for which 
the series 

and 
00 R1.,.( T(i)) . '°" (") +l , respectively, {-t [r z ]m1a 

1=1 

converge absolutely. 
Because of (C.2), (C.3) and the existence of the limits in (C.11) and (C.12) it is 

readily seen that m2"' and m1.,. are always well defined for the sequence S2(a); for 
details see Remark 6.1 below. 

Analogously, the sequence S1 ( r), cf. (5.5), generates the meromorphic 
functions 

( 5.11) 
00 R1r( T(i)) [ P ] mi, 

M1 (pir) := ~ p - rUl r(i) ' 

(5.12) 
oo R2r(a(i)) [ p ] m2, 

Mz(pir) := ~ p - aUl aUl · 

Note that here the r(i) and a(i) are different from those in (5.7), (5.8). 
The functions in (5. 7), (5.8), (5.11) and (5.12) are well defined in the sense that 

they converge uniformly and absolutely in every finite circle !PI ~ R, with R > 1, 
whenever the terms with poles inside the circle with radius Rare deleted from the 
sum, cf. [16], p. 309, [3], p. 219. 

In Appendix C it is shown, cf. (C.18), that 

(5.13) 

and so we can delete the indices 2 and 1 and write 

(5.14) 

6. Solution of the functional equation 

In this section we construct the solution of the functional equation (2.12), i.e. 
we show how !"21 (') and !"22 ( ·) are determined. 

From Lemma B.1 it is seen that w2(P12 (p),p) has at most two zeros in IPI > l, 
say, a21 and a22, and, similarly, w1 (p, P22(P)) has at most two zeros in IPI > l, say, 
r11 and r 12 . Assumption (2.5) (iv) guarantees that at least one of these possible 
four zeros exists. In the subsequent analysis we shall always use these four zeros; 
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if, however, a zero does not exist then all symbols referring to that non-existing 
zero should be deleted from the text, cf. Remark 6.4 below. 

For the present, assume that 

(6.1) A1(0"21)-:/:- O,A2(0"22) -:j:. O and A1h1)-:/:- O,A1h2)-:/:- 0, 

cf. (4.8) 'and Remark 4.1, with 

(6.2) A1 (p) := w1 (p, P22(P))fl2(P22(p)) + wo(P, P22(p)). 

Remark 6.1. For the relevant alterations to be made in the subsequent analysis 
if (6.1) does not hold, see Remark 6.5 below. 

Each of the zeros '721 and '722 generates a sequence of the type defined in (5.2), 
and similarly so do the zeros ru and T 12, cf. (5.5). Denote these sequences by 

(6.3) 

and assume that (4.21) applies for the elements of S2(0"21 ) and those of S2(0"22 ). 
The analogous assumption is made for the elements of S 1 ( r 11 ), as well as for those 
ofS1(r12). 

For each of these four sequences we construct a pair of meromorphic functions, 
cf. (5.7) and (5.8) for 0-21 and '722 , and (5.11) and (5.12) for r11 and r12; note that 
here (6.1) is used, cf. Remark 4.1. These pairs of meromorphic functions are 
denoted by 

(6.4) 

Put 

(6.5) 

where 

{ 

(i) 

( 6.6) (ii) 

{M2(PI0"21), M1 (pl0"21 )}, 

{M1 (plr11), M2(Plr11) }, 

{M2(PI0"22), M1 (pl0"22)}, 

{M1 (plr12), M2(Plr12)}. 

fl2(P) := Q2(P) + M2(p), 

01 (p) := Q1 (p) + M1 (p), 

M1(P) := M1(PI0"21) + M1(PI0"22) + M2(Plr11) + M2(Plru), 

M1 (p) := M1 (pl0"21) + M1 (PI0"22) + M1 (plr11) + M1 (plr12); 
Q2 (p) and Q1 (p) are both polynomials in p of degree n2 and n1 

respectively; these degrees will be specified below. 

Substitution of (6.5) into the functional equations (4.1) and (4.2) yields, for 
IPI;::: l, 

w1(P1j(p),p)Q1(P1j(p)) +w2(P1j(p),p)Q2(P) +wo(P1j(p),p) = I1j(p), j= 1,2, 

(6.7) 
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where 

(6.8) -f11(P) := W1 (P11(p),p)M1 (Ptj(p)) + W2(Ptj(p),p)M2(P), j= 1,2. 

Remark 6.2. Consider one of the sequences in (6.3), say S2(0-21) and put 

(6.9) 
To:= Pu(o-W) with aW = CT21> 

,,.._,,.(i) 
•i·- '21' CT ·- CT(i) ;.- 21' 

It then follows from (6.7) for i= 1,2, ... , 

i = 1, 2, .... 

(6.10) 
W1 h-1, cr;)Q1 (7;-t) + w2( T;-1, cr;)Q2( a;) + wo( T;-1, a;) = Iu(o-;), 

w1(T;,a;)Q1(T;) +w2(T;,cr;)Q2(cr;) +wo(T;,o-;) = 111(0-;), 

which represents a set of linear (recursive) equations for the elements of the 
sequences 

(6.11) {Q1(7;), i=O,l, ... } and {Q2(cr;), i= 1,2, ... }. 

It is seen that these sequences are uniquely determined when Iu(o-;), lu(cr;) and 
Q1(cr1) are known. 

Put, cf. (2.4), 

St:= 3 for h11 > 0, 

:=2 for h11=0, h01 + h10 > 0, 

:=I for h11 = 0, ho1 + h10 = O; 

S2 := 3 for Wtt > 0, 
(6.12) 

:=2 for W11=0, Wto + Wot > 0, 

:= 1 for W11 = 0, W10 + Wo1 = O; 

s0:= 2 for b11 > 0, 

:= l for b11 = 0. 

It is then readily seen that the following limits exist, cf. (2.4), (2.5), (2.9) and 
Lemma A.3, 

8},12 := }~~ p-sjwj(Pn(p),p), 

(6.13) 

j = 0, 1, 2, 

and their values are finite and non-zero, except possibly for s1 = 1 and s2 = 1 
where they may be zero in special cases; note that (2.5) (iv) excludes 
S1 = S2 = 1. 
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Again we consider the sequence S2 (a21 ) and with the abbreviated notation 
introduced in (6.9) put, cf. (5.9) and (5.14), 

(6.14) R1(-):=R1112/), R2(-):=R2112i(·), m:=m112i. 

and 

for i = 1, 

for i = 2, 3, ... , 

(i)( I ) ( () ) R1(r;) [P11(P)]m R2(a;) [P]m 
-Ill p a21 := w1 P11 p ,p Pu(P) _ T; -:;:;- + w2(P11(p),p) p- a; a; 

for i = 1, 2, .... 
(6.15) 

Further we introduce 
00 

-I12(Pla21) := - I:1\~(pla21) 
i=l 

00 

-lu(Pla21) := - I:1\?(pla21) 
i=l 

( 6.16) 

The form (6.15) may be rewritten as: 

(i) /(i)(pla21) = _::_.!__ { W1 (P!2(p),p) R1 (r;-1) [Pu(p)]m p-a; pm+si 
12 p-0'; psi rf!._ 1 p P12 (p) - T;-1 

+ w2(P12(p),p) R1(a;)pm+si}, i = 2, 31 ... , 
y2 al 

(ii) /(i)( la )=-=-!_{w1(Pu(p),p)R1(T;) [Pu(P)]m p-a; pm+si 
II P 21 p-a; psi rf' p P 11 (p)-T; 

+ W2(Pu(p),p) R2(a;)pm+si}, i= l, 2, ... , 
psi al 

(iii) 1(')( la ) = - R1(a;) w2(P12(p),p) pm+s2 
12 P 21 er'{' (p _ O'J )psi · 

(6.17) 
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Consider the term in parentheses in the first relation of ( 6.17). Because P12 (p) is 
regular for IPI > l, this term is also regular; note Ti-I = Pu(aJ Consider the 
series expansion of this term in a neighbourhood of ai; note lail > l. The second 
relation of ( 4.27) has actually been obtained from ( 4.1) by multiplying ( 4.1) by 
p - ai and then letting p __, ai. Hence the second relation of ( 4.27) implies that this 
series expansion should contain the factor p - a;, i.e. p = ai is a zero of the term 
inside parentheses of (6.17) (i). Hence, by using Assumption 4.1, Lemma A.3 and 
(6.13), it follows that the following limit exists and 

( 6.18) i = 2, 3, ... ' 

where, cf. (6.14), 

(6.19) n,,.21 := max(m+s1 -1,m +s2 -1). 

Similarly, from (6.17) (ii) and (iii), 

0 <I lim p-n"21 I\?(Phi)I < oo, i = 1, 2, ... , 
p~oo 

( 6.20) 

Note that the existence of the zero a21 implies that s2 ;:::: 2, cf. (6.13) and Lemma 
B.l. 

It further follows that the functions defined in (6.15) are regular for all finite p 
with IPI > 1, so that the definition of m, cf. (6.14), implies for every finite R > 1, 
cf. (6.16), 

( 6.21) IPI < R, 

where the sum in (6.21) converges absolutely and uniformly in p for 1 < IPI < R, 
to a finite limit for N __, oo, which is uniformly bounded for IPI < R (cf. the 
discussion in Appendix C below (C.13)). An analogous result applies for 
I11 (pla21)- Consequently, 

I12 (pi a21) has a pole of order n,,.21 at infinity (p = oo), 
(6.22) 

and similarly for I11 (pla21 ). 

Lemma 6.1. ID(ph1) and Ill (pi a21 ) are polynomials of degree na21 • 

Proof From the conclusions concerning the sum in (6.21) and the regularity of 
its terms, it is seen that I12(pla21 ) is regular for finite p and hence from (6.22) and 
Liouville's theorem it follows that IJ2(pla21 ) is a polynomial of degree na21 ; an 
analogous result applies for !11 (pla2i). 
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An analysis similar to that leading to (6.22) for the sequence S2(a21 ), leads to 
analogous results for the other sequences in (6.3). Put 

(6.23) { (.? nu:= m~~(mu + S1 - 1, mu+ S2 - llu E (a21, a22, 111, 712)), 

(n) n(s1, s2) .- max (n(l21 , na22 , n,.11 , n,.12 , s0), 

the index u being that one for which the max occurs in (i).Further, cf. (6.6), (6.12), 
( 6.16), ( 6.22), 

'Yu:= lim p-n(si,s2)[w1 (Pu(P),p)M1 (Pij(P )) +w2(P11(P),p)M2(P) + wo(P11(p),p)], 
p~oo 

(6.24) 

for j = 1, 2; note that these limits are finite and that (6.23) implies 

(6.25) j = 1,2. 

Hence we obtain from the functional equations (6.7) by using (6.13), (6.24) and 
(6.25); for IPI ___, oo, 

8},11 Q1 ( O!.JJP )ps' + 8j,12Qz(p )Ps2 = "lljPn(s, ,s2) + O(pn(s,,si)-I), 

(6.26) 

Note that (2.5) (iv) excludes the case s1 = s2 = 1, cf. (6.12). 

for}= 1,2. 

From (6.25) and (6.26) it follows that the degrees n2 and n1 of the polynomials 
Q1(P) and Q1 (p), cf. (6.6) (ii), are determined by 

(6.27) j = 1,2. 

Remark 6.3. In Remark C.2 it has been pointed out that if in (C.21) m is 
replaced by m + h, h = 1, 2, ... , then the convergence is maintained; and so in the 
definitions (5.7) and (5.8) we may also take as exponents ma+ h with a non
negative integer. In doing so it is readily seen that the degrees of Q2 and Q1 then 
become larger. Such a change in exponents in (5.7) and (5.8) implies that in 
the representation (6.5) a polynomial is substracted from M2(p) and added to 
Q2(p). 

The relations (5.7), (5.8), (5.11) together with (6.5) and (6.6) characterise the 
structure of the functions n1 (p) and n2(p); they also determine these functions 
uniquely, as will be shown below. 

Because the degrees of the polynomials Q2(·) and Q1(') have been determined, 
we need for the explicit determination of the coefficients of these polynomials a 
total of n1 + n2 + 2 linear equations. In Remark 6.2 it has been shown, by using 
the sequence S2 ( a 21 ) which generates the sets of the poles of the meromorphic 
functions M 2(pla21 ), M 1(plaz 1), that the values of the polynomial Q1(p) at the 
1-points and those of Q2 (p) at the a-points of the sequence S2(a21 ) can be 
expressed as linear combinations of ! 12 (0') and 111 (O') at the a-points of S2(0"21 ). 
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In total we need only n1 +n2 +2 of those relations. So Qz(-) and Q1 (·)are known, 
whenever J12 (p) and fu (p) are known; see Remark 6.5 below for their uniqueness. 
To show that these functions are completely determined, note that a pair of mero
morphicfunctions { M 2 (pla21 ), M1 (pla21 )}, cf. (5.7), (5.8), is determined by S2 (a21) 
apart from a factor because all residues R1a2 (·) of Mz(pla21) and those of 

• ' . . I {I) . (!) 
M 1 (pia21 ) at their poles are lmear funct10ns of R1a21 ( a21 ) with a21 = O"z1, cf. 
(4.24) and (4.27); actually they are all proportional to R1a21 (a~1h By using the 
expression (4.24) for the residue Rza21 (aW) it is seen that Mz(pla21) and 
M 1 (pla21 ) are completely determined, apart from a factor which is a linear function 
of S1 1 (P12 (agi)), on the assumption that A2(aWJ "I- 0, cf. Remark 4.1 and Remark 
6.5 below. If A2 (a~\l) = 0 then S2( a21 ) does not generate a pole set. Similarly for the 
other pairs of meromorphic functions in (6.4), i.e. it remains to determine 

Q 1(p) for p=Pn(agi) and p=Pda~~), 
( 6.28) 

( ( l)) ( ( l)) Q2(p) for p = P22 Tll and p = P22 T 12 . 

Hence by using (6.7) and (6.8), four linear equations are obtained for the 
unknowns 

(6.29) f21 (P!2(a~11))), f21 (Pn(a~~)), S12(P21 (Ti:))), S12(P22(Tg))), 

since, as shown above, the coefficients in the polynomials Q2 (p) and Q 1 (p) 
depend linearly on the unknowns in (6.29). 

Remark 6.4. It has already been mentioned at the beginning of the present 
section that if w2(P12(p),p) and w1(p,P22 (p)) have fewer than four zeros in 
IPI > 1, then only the sequences generated by the existing zeros occur, as do 
the functions derived from these sequences. It is then readily seen that for the 
number of remaining unknowns we are left with a similar number of linear 
equations, whenever the corresponding terms in (6.1) are non-zero, cf. Remark 6.5 
below. 

For the ultimate determination of S1(p1,p2), cf. (2.6) and (2.7), it remains to 
determine Q(O,O) since S1 1(p) and S12(p) have been constructed above. By taking 
p2 = 1 in (2.6), dividing the resulting expression by p1 - 1, taking note that all 
coefficients in (2.6) are zero for p 1 = p2 = 1, we obtain for p2 --+ I a linear relation 
for <Ii(O, 0) because the norming condition requires <I>( 1, l) = l; <I>(O, 0) so calcu
lated is unique and positive (see the following remark). 

Remark 6.5. Apart from Assumption 4.1, which has been introduced for 
technical reasons, cf. Remark 4.2, our analysis is essentially based on Assumption 
2.1. The conditions (2.5) (i), (iii) guarantee that the Zn-process has a unique 
stationary distribution and so <I>(p1 ,p2) should be regular for I Pi I < 1, continuous 
for IPil s; 1, for every fixed P2 with IP2I s; 1; and, similarly, with p1 and p2 
interchanged. It is seen that S1 1 (p) and Q2(p) as defined in (6.5) satisfy the 
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conditions (2.8), independently of the values of the unknowns in (6.30). The 
relations (4.1) and (4.2), or equivalently (6.5), stem from the requirement that 
zeros of the kernel Z(p1,p2), \pil S 1, \p2 \ s l, should be zeros of the right-hand 
side of (2.6), because of the boundedness of iP(P1iP2) in I Pil s l, \p21 S 1. From 
these relations and the regularity properties of Sli(p) and n2 (p) a set of linear 
equations for the coefficients in the polynomials Q1 (p) and Q2(p) and the 
unknowns in (6.30) has been obtained, the number of unknowns and that of the 
equations being equal, independently of the number of zeros of w2 (Pu(p),p) and 
of w1(p,P22 (p)) in IPI > 1, cf. Remark 6.4, but there is at least one such zero, 
because of (2.5) (iv), see Lemma B. I. Because there is a unique iP(p1 ,p2) satisfying 
(2.6) and the mentioned regularity conditions, the set of linear equations just 
mentioned should have a unique solution, and the same holds for the 
determination of iP(O, 0), cf. Remark 6.4. This uniqueness of iP(p1 ,p2) leads 
also to the conclusion that at least one of the inequalities in (6.1) should apply for 
the zeros of w2(P12 (p),p) and of w1 (p, P22 (p)) in \pi > 1. If it turns out that for 
such a zero the relevant inequality in (6.1) does not hold then this zero does not 
generate a pole set S(-), cf. (6.3), and the inherent functions M2(p\·), M 1(p\·) are 
identically zero. Actually the conditions in (6.1) can be only verified if the relevant 
unknowns in (6.30) have been solved from the linear equations; on the other hand 
it is evident from the analysis above that only incidentally one or more of the 
conditions in (6.1) are not satisfied. 

Appendix A. On the zeros of the kernel 

For the analysis of the functional equation (2.12) we need several properties of 
the zero of the kernel (2.10). These properties are derived in this appendix. 

From (2.4) and (2.10) we have 

Z(P1iP2) = <f>3(P1iP2) - P1P2 
(A.I) 

2 2 
= r -1,1P2 + r -1,0P2 + r -1,-1 + ro,-1P1 + r1,-1P1 - P1P2· 

Generally, a zero of Z(P1iP2) is indicated by (p1 ,p2). It is readily verified that 
(cf. also (2.5)) 

P1 = 1 ~ either Pi = 1 

(A.2) 

P1 = l ~ either p1 = l 

A 1 - 1/3 
or p2 = 1 + -- > 0, 

'-1,1 

1- µ3 
or Pi= l +-- > 0. 

r1,-1 

Denote by D3 (p2) the discriminant of the right-hand side of (A. l), considered as a 
quadratic in p1, i.e. 

D3(P2) = (1 - 4r1,-1r-1,1)P~ - 2p2(ro,-1+2r1,-1'-1,o) - 4r1,-1r-1,-1 + '6,-1 

(A.3) = (1 - 4r1,-1r-1,1)(P2 - 821)(P2 - 822), 
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with 

(A.4) 

Lemma A.I 

(A.5) 

Proof From (A.3) we have 

(A.6) D3 (~) =_;.{(I -ro,-1q)2 -4r1,-1(r_1,1 +r_10q+r-1,-1q2)}. 
q q~ 

Obviously, (A.2) implies that 

(A.7) 

It is seen that q2D3(1/q) decreases on [O, 1], and 

q2D3 (-~)>q2D3 G) for qE[O,IJ, 

so D3(p2) has no zero for ii.1 =qE[-I,1]. Because D3 (ro,-1) < 0 it follows, cf. 
(A.7), that D3(1/q) has two real zeros and so (A.5) follows. 

Lemma A.2. The two zeros P11 (P2), P!2(p2) of Z(p1i P2) may be defined so 
that 

IP12(P)I < IPI < IP11(P)I for IPI;::: I, P =I= I, 

(A.8) 1 -µ3 
P12(l) = 1<P11(l)==1 +--, 

r1,-1 

and P11 (p), Pn(p) are both regular functions of p for IPI ;::: 1 and can be continued 
analytically from IPI = 1 into {p : IPI < 1, p fj. ( 821i 822)}. 

Proof Put p1 = zp2 then Z(p1 ,p2) = 0 implies, cf. (A. l), 

(A.9) 

From (2.4) it follows that e3 + '113 S 2, and (2.5) (i), (ii), imply 

Pr{e3 + '113 = 2} = r-1,1 + r1,-1 < 1. 

Hence for IP2I >I, P2 f= I, izl = 1, 

(A.10) 

Because both sides of (A.9) are regular functions of z for lzl S 1, Rouche's 
theorem, cf. [16], p. 155, shows that (A.9) has a unique zero in lzl < I for 
IP2I ;::: 1, P2 f= 1. For P2 = 1, (A.9) has one root in izl ~ 1, viz. z = 1, cf. (A.2). 
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Figure I 

From (A.l) it is seen that (A.9) is a quadratic equation in z. Since for IP21 ~ 1 it 
has exactly one root in lzl :$ 1, the other root is in lzl > 1. Take P 12(p2) for 
IP21 ~ 1 as the zero of Z(Pi.P2) which corresponds to the zero in lzl ~ 1 and 
Pll (p2) as the zero corresponding to lzl > 1, then the relation (A.8) follows. 
Lemma A. l implies that the branching points 821 and fJ22 of P 11 (Pi) and 
P!2(p2) are located in (-1, l), and so the zeros Pu (p2) and Pt2(p2) are both 
regular in IP21 ~ 1. Since 821 and 822 are their only branch points, (A.5) implies 
that they can be continued analytically into {p: IPI < 1, p~ (821,822)}. 

Remark A. I. The analogous lemma for Z(p1 ,p2) can be formulated for its zeros 
as a function of p1 with IPil > 1. So for IPtl > 1 we designate these zeros by 
P21 (P1) and P22(Pi) and such that 

(A.11) IP21(Pi)I > IPtl > IP22(P1)I, IPtl > 1. 

Remark A.2. Take IP~1 ll > l and put 

p\1) :=Pu (p~tl), pfl := P21 (p\ll), P(2) ·- p (p(2)) 
I .- II 2 ' P(3) ·- p (p(2)) 

2 .- 21 I ' 

then from (A.8) and (A.11), 

P~I) = P22(P\1l), (I) ( (2)) 
P1 = P12 P2 · 

These mappings are illustrated in Figure 1, for real p~11 > 1. From Lemma A.2 
and Remark A. l it follows that 

(A.12) 

Lemma A.3. The following limits exist: 

. 1 t 
0:12:= hm P!2{p2)/P2 =-2 -{1- (1-4r1,-1r-1,1)} > 0, 

P2-+oo rl,-1 

(A.13) 

1 1 
0:11 := lim Pll(P2)/P2 = -2 -{1 + (1 - 4r1,-1r-1,i)2 } > 0, 

P2-+oo Yt,-1 

. l t 0!21 := hm P21 (pi)/p1 = -2 -{ 1 + ( 1 - 4r1,-1r -1,i) } > 0, 
P1-+oo r -1,I 
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Proof From (A.1) we have 

f31 = ~{h - ro,-1 ± (1 - 4r _1,1r1,-i)~J(h - fi21)(f32 - c522)}, 
1,-1 

and from this relation together with (2.5) (ii), (A.8) and (A.11) the relations (A.13) 
follow. 

Remark A.3. It is readily verified by using (2.5) (ii) that in the (P1iP2)-plane the 
curve Z(p1,p2) = 0, p 1 and p2 both real, represents a hyperbola. Its centre is in 
the first quadrant and its asymptotic directions are given by p 1 = o: 11 p2 and 
p1 = o: 12p2, cf. (A.13). From Lemma A.1 it is seen that the two branches of 
the hyperbola are located inside the acute angles between the asymptotes; 
note o: 11 > 0, 0:12 > 0. 

To p~1 ) in (A.12) corresponds a zero 

(A.14) P(O) ·- p (p(!)) 
I .- 12 2 ' 

as it follows from Lemma A.2. If lp\0l I > 1 then we can again apply this lemma 
and define 

P(O) ·= p (p(O)) 
2 · 22 I , 

If IP~o) I > 1 then again using the lemma we may define 

A-I):= P12(A0l), 

and so on. So we may continue the sequence in (A.12) to the left, i.e. by elements 
which decrease in absolute value. From the location of the hyperbola just 
described and by using (A.5) it is seen that this completion of the se~uence 
in (A.12) stops after a finite number of steps, because one of the p\' , p~' l, 
i = 0, -1, -2, ... , will be less than or equal to 1 in absolute value. 

It is finally noted that the iterated zeros of Z(p1, p2) in Remark A.2 are all real 
if p~1 ) is real, and they all refer to the same branch of the hyperbola Z(p1,p2) = 0. 
Since one of these branches is located in the first quadrant and the other in the 
third quadrant, cf. (A.5), it is seen that in a sequence of iterated zeros these all 
have the same sign and do not have a finite point of accumulation. 

Appendix B. On the zeros of w2 (P12 (p),p) 

For the detailed analysis of the relations ( 4.1) and ( 4.2) we need information 
concerning the zeros of some of its coefficients. Put, cf. (2.9), 

(B. l) 
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hence for p I- 0, 

(B.2) p-3f2(P) = ;2 -E{ [P1~(p)r'pe2+r12-3 }· 

For the investigation of the number of zeros offi(p) in IPI < 1 and IPI > 1 we 
have to distinguish three cases. 

(i) The case Wu > 0. It is seen from (2.2) and (2.4) that 

(B.3) ez +772 -3::::: 0 and Pr{e2 +7J2 = 3} = W11 > 0. 

Put, for ltl < l, 

(B.4) p-312(t,p) := ;2 - tE{ [P1~(p)r2pe2+r12-3 }· 

Because P 12 (p) is a regular function of p for IPI ~ 1 and IP12(P) /pi ::=:: 1 for IPI ~ 1, 
cf. Lemma A.2, it follows that for ltl < 1, IPI ~ 1, cf. (B.3), 

and so by applying Rouche's theorem, cf. [15], it is seen that for ltl < l,f2(t,p) 
has two zeros in IPI > l. These zeros are obviously continuous functions of t 

and both have a limit fort--+ 1. Denote these limiting values by, say, 0'21 and 0'22 , 

then 

(B.5) 

From (B.3) and Lemma A.3 it is readily verified that 

(B.6) lim E{[P12(P)/p]e2 pe2+ri2 - 3} = E{a1~(e2+1'/2 = 3)} > O; 
p--tOO 

so that, since the expectation in (B.4) is equal to I for p = 1 it is easily seen that 

the zeros of (B.4) in IPI > 1 are both real for real t with ltl < l. Hence, 0"21 and 0"22 

are both real; one, say, 0'21 , is negative, the other is positive, so that 

(B.7) 

Obviously, p = 1 is a zero of/2(p). To investigate whether a 22 > 1 or 0'22 = 1 we 
consider the derivatives with respect to p- 1 of both terms on the right-hand side of 
(B.2). So 

(B.8) !E{[Pdu-1)]e2 u3-ri2 }lu=l = 3 - vz - µz ~ P12(P)lp=I· 

By the definition of Pdp) we have 

P12(P)P = E{[P12(P)]e3 Pri1 }, 
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and it follows that, cf. (2.5) (i), 

(B.9) dP12(P) I = - 1 - 113 ' 

dp p=1 1 - µ3 

(B.10) 

Hence by replacing p in (B.2) by u-1 it is easily seen that at u = 1 the slope of u2 is 
less than that of E{[Pdu-1)Je2u3-'72}, and hence, if w11 > 0, thenfi(p) has three 
zeros in IPI 2: 1, viz. one at p2 = 1 and two in P2 > 1, i.e. a11 < -1, a21 > 1. 

Elimination of p1 from w1(p1,P) = 0 and w3(p1,P) = 0 leads to an algebraic 
equation of the sixth degree (note (2.5) (iii)) and so this equation has six zeros. It 
has been shown above that exactly three of these zeros are located in IPI ~ 1, one 
at p = 1, the other two in IPI > 1, and as it is readily seen the zeros in IPI ~ 1 all 
have multiplicity 1. Hence of the six zeros three are located in IPI < l. 

(ii) The case w11 = 0, w10 + wo1 > 0. From (B.1) we have 

(B.11) p-2h(p) = ~ - E{ [P1~(p)rpe2+1)2-2 }, 

and, cf. (2.2) and (2.4), 

wll = 0, W10 + Wo1 > 0 ==> ez + 'Y/2 - 2 ~ 0, Pr { ez + 'Y/2 = 2} = W10 + Wo1 > 0. 
(B.12) 

An analysis analogous with that of case (i) above shows that/2(p) has exactly two 
zeros in IPI 2: 1, one at p = 1, the other being positive; both have multiplicity 1. 
For the present case elimination of p1 from w1 (p 1 ,p) = 0, w2 (p1 ,p) = 0, yields an 
algebraic equation of the fourth degree, and so h (p) has exactly two zeros in 
IPI <I. 

(iii) The case w 11 = w 10 = w01 = 0, w1,_ 1 > 0, w0,_1 > 0. From (B. l) we have 

(B.13) p-l12(P) = 1 - E{ [P1~(p)rpe2+'72-l }, 

and, cf. (2.2) and (2.4), 

W11 + Wo1 + W10 = 0, WJ,-1 > 0, W0,-1 > 0 =? e1 + 'Y/2 ~ 1, 
(B.14) Pr {6+172 = 1} = w1,_1 > 0. 

As above it is shown for the present case thatfz(p) has exactly one zero in IPI ~ 1, 
viz. p = 1, with multiplicity l. Because f 2(p) = 0 is now equivalent with an 
algebraic equation of the third degree, it has exactly two zeros in IPI < 1. 

The analysis above leads to the following lemma, cf. also Adan [l], p. 48. 
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Lemma B.l. The function w2(Pn(p),p) has a zero with multiplicity 1 at p = 1 
(note (2.6) (i)) and: 

(i) if w11 > 0, it has three zeros in IPI < 1 and two zeros in IPI;::: 1, p =/:- l, one 
negative, and the other positive; 

(ii) if W11 = 0, ww + Wo1 > 0, it has one zero in IP! ;::: 1, p =/:- 1, which is positive 
and has multiplicity 1, and two zeros in IPI < I; 

(iii) if wn = W10 = Wo1 = 0, w1,_1 > 0, wo,-i > 0, it has no zeros in !PI ;::: 1. 
p =j:. 1, and two zeros in IPI < 1; 

(iv) if P2 with IP2I;::: 1 is a zero ofw2(P!2(p),p) then w2(P11(P2),p2) =/:-0. 

Proof The statements (i), (ii), (iii) have been proved above. The fourth 
statement follows from (2.4), (2.9) and Lemma A.2. 

Remark B.l. For the function w 1(p,P22 (p)) a lemma analogous to Lemma 
B.l may be proved, but its formulation and proof are similar, so they are 
omitted. 

Appendix C. Asymptotics of R1 ( T(i)), R2 ( O"(i)) for i ~ oo 

In this section we derive the asymptotic behaviour for i--+ oo of the residues 
R1(r(il) and R2(0'(il), cf. (4.27). 

We start with the asymptotic behaviour of a.(i) and r(i) for i--+ oo, cf. (4.5). 
From (2.5) (ii) it is seen that p1 as a function of P2, with cp3 (PJiP2) - Pt P2 = 0, 
represents a hyperbola, cf. also Remark A.3, with asymptotic directions given by, 
cf. (A.13), 

(C. I) 

and so using (4.5), (A.8) and (A.11) it is readily seen that 

(C.2) .lim IO'(i)I =oo, 
1-00 

_lim Jr{i) I = oo . 
1-00 

Hence neither of the sequences {O'(i), i = l, 2, ... } and {r(i), i =I, 2, ... }, has a 
finite accumulation point. From Lemma A.3 and (4.5) it follows that 

(C.3) 
r(i) 

_lim -,.) = a11 >I, 
l--+00 (J' I 

r(i) 

.lim -(.+I) = a 12 < l, r---ooa z 

from which it follows readily that 

(C.4) 
a(i+I) a T(i+I) 

lim -.- = _ll = lim -.- > 1. 
i-oo (]'(1 ) a12 i-oo r<1l 
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Next we consider 

(C.5) 

w2(P11(a(il), a(il) w2(r(il, a(il) 

w1(P11 (a(il),aUl) = w1(rUl,aUl) 

I I P2 I 
WuP2 + W10 - - + WJ,-1 - + Wo1 - + Wo,-t --1 

Pt P2 Pt P2P2 
=~-----"-+---.:.,..:..--'-=------""-:;=-= 

I 1 h Pt h I P1=,(1)' 
h11P1 +hot - - + h-t,1 - + to - + -t,O -- p =a(ll 

P2 Pt P2 P1P2 2 

It follows from (2.5) (iv), (v), (C.2) and (C.5) that for i-+ oo, 

(C.6) 

Similarly, we obtain for i - oo, 

W1 (P12(a(il), a(i)) - Wt ( T(i-I), a(il) 

w2(P!2(aUl),a(il) - w2(7 U-ll, aUl) 

(c. 7) = ho1 + h10a~2 (1 + 0 (-al.)) 
W1o+wo1- 1 

0:12 

For Pi. P2 satisfying Z(p 1,p2) = 0, i.e. (cf. (2.10)), 

for W11 > 0, h11 > 0, 

for Wu = 0, h 11 > 0, 

for W11 > 0, h11 = 0, 

for W11 = 0, h11 = 0. 

for W11 > 0, h11 > 0, 

for W11 = 0, htl > 0, 

for W11 > 0, h11 = 0, 

for w11 = O,h11 = 0. 

2 2 
'-1,1P2 - P1P2 + r1,-1P1 + '-1,0P2 + ro,-1P1 + r -1,-1 = 0, 

we have 

(C.8) dp1 =_PI 1 - 2r _1,-1P2f Pt - '-1,o/P1 
dpz P2 1 - 2r1,-tPt/P2 - ro,-r/P2 · 
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With Pt = P11 (P2), and Pt = P!2(p2), /p2/ > 1, we obtain from Lemma A.3, after 
some algebra, 

(C.9) 1. dP11(P) 
Im d = °'11• 

p-+oo 'P 
1. dP12(P) 
Im d = °'12· 

p-+oo 'P 

From (4.27) we have 

R2(a(i+I)) {w1 (P12(p),p) w2(P11 (p),p) ( d ) [ d ]-I} 
R2( aUl) = w1 (Pn(p) ,p) w1(P 11 (p ),p) dp p 11 (p) dp Pu(p) p="'<'l · 

(C.10) 

From (C.16), (C.7), (C.9) and (C.10) we find that 

(C.11) 

. R (a(i+I)) 
hm 2 . =l 

i-+oo R2(a( 1 l) 

Wo1 + WJO°'ll °'12 

Wo1 + W100:12 °'l I 

ho1 + h10a12 0:11 
ho1 + h10a1 I °'IZ 

ho1 + h10a12 Woi + W1oa11 

hoi + h10a11 Wo1 + W1oa12 

for W11 > 0, h11 > 0, 

for w11 = O,h 11 > 0, 

for w11 > 0, hu = 0, 

for w11 = 0, h11 = O; 

(C.12) 

lim R1 (r(i+l)) = ~ lim w2(P11 (a('.+ll), aU+l)) wi (Pn(a(il), o-(il) 

i-+oo R 1 (r(1l) a 1z i-+oow1 (P 11 (a(1+ll), a-HI)) w2(P!2(aC1l),o-(1l) 

. R1(a(i+I)) 
= hm ·i , 

i-+oo Rz (a(' ) 

for all the four cases occurring in (C.11 ). 

Remark C.l. Note that (2.5) (iv), (v) imply that the quotients in (C.11) are well 
defined. 

For the definition of the meromorphic functions introduced in Section 5 we 

have to investigate the existence and determination of the smallest positive 
integers m2 and m 1 for which the series 

oo Rz(a(i+t)) 
"""" and ~ {o-UJ}m2+1 
1=! 

(C.13) 

converge absolutely, cf. (5.10). 
Put, cf. (C.11) and (C.12), 

(C.14) 
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where the value of p varies with the four cases in (C.11 ). It follows for fixed but 
sufficiently large i and k = I, 2, ... , cf. (C.4), that 

(C.15) 

(C.16) k=I,2, .... 

Because, cf. (2.5) (ii) and (A.13), 

0 < a 12/a 11 < 1, 

we see that the first series in (C.13) converges absolutely for that value, say, m2 of 
n = 0, I, 2, ... , which satisfies 

n=O 
(C.17) 

and (C.17) implies that m2 exists. 

'f a12 1 Ip-<' 
0'.11 

if /" 12 ::::: 1, 
0'.11 

Analogously, it follows from (C.4) and (C.14) that m 1 is that value of n = 0, 
1, 2, ... , which satisfies (C.17) and hence it is seen that m2 = m1• Put 

(C.18) 

Because la-;! _, oo, cf. (C.2), it follows that for fixed p and sufficiently large i, 

(C.19) 2lpl < la-;I 9 ~ < [l:;I - I ]--l < 2. 

Note that fork= 1,2, ... , 

(C.20) 

and hence it follows from (C.16), (C.19), (C.20) and the definition of m2 in (C.18), 
that the series 

(C.21) 

converge uniformly and absolutely in every circle IPI < R, whenever the terms 
with poles inside the circle with radius R > 1 are deleted, cf. [16] Chapter 7.4, [3], 
p. 219. 
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Remark C.2. It is readily seen that if in the series (C.21) the exponent m is 
replaced by m + h, with h any positive integer, then the series so obtained also 
converge uniformly and absolutely in the same sense as (C.21); see further 
Remark 6.3. 

Acknowledgement 

The author is grateful to Mr S. C. Borst for his very useful comments. 

References 

[I] ADAN, I. J.B. F. (1991) A Compensation Approach for Queueing Problems. Doctoral thesis, 
Department of Mathematics, University of Eindhoven, The Netherlands. 

[2] ADAN, I. J.B. F., WESSELS, J. AND ZuM, W. H. M. (1993) Analysing multiprogramming queues 
by generating functions. SIAM J. Appl. Math. 53, 1123-1131. 

[3] CARATHEODORY, C. (1950) Funktionentheorie. Birkhauser, Basel. 
[4] CoHEN, J. W. (1988) Boundary value problems in queueing theory. QUEST A 3, 97-128. 
[5] COHEN, J. W. (1992) Analysis of Random Walks. l.0.S. Press, Amsterdam. 
[6] COHEN, J. W. AND BoxMA, 0. J. (1983) Boundary Value Problems in Queueing Systems 

Analysis. North-Holland, Amsterdam. 
[7] FAYOLLE, G. AND IASNOGORODSKY, R. (1979) Two coupled processors; reduction to a 

Riemann-Hilbert boundary value problem. Z. Wahrscheinlichkeitsth. 47, 325-351. 
[8] FAYOLLE, G., IASNOGORODSKY, R. AND MALYSHEV, v. A. (1990) Algebraic generating functions 

for two-dimensional random walks. Report, INRIA, Rocquencourt, France. 
[9] FLATTO, L. AND HAHN, S. (1984) Two parallel queues created by arrivals with two demands. 

SIAM J. Appl. Math. 44, 1041-1054. 
[JO] FLATTO, L. AND MCKEAN, H.P. (1977) Two queues in parallel. Commun. Pure Appl. Math. 30, 

255-263. 
[I I] HoFRI, M. (1978) A generating-function analysis of multiprogramming queues. Internal. J. 

Comp. Inform. Sci. 7, 121-155. 
[12] JAFFE, S. (1992) The equilibrium distribution for a clocked buffered switch. Prob. Eng. In}: 

Sci. 6, 425-438. 
[13] KINGMAN, J. F. C. (1961) Two similar queues in parallel. Ann. Math. Sta~ist. 3~. 1314-1323. 
[14] MALYSHEV, V. A. (1972) An analytical method in the theory of two-d1mens1onal positive 

random walks. Sibirskii Math. Zh. 13, 1314-1329. 
[15] NEHARI, Z. (1975) Conformal Mapping. Dover, New York. 
[16] SAKS, S. AND ZYGMUND, A. (1952) Analytic Functions. Matematycznego, Warsaw. 
[17] TAKAGI, H. (1991) Queueing Analysis, Vol. I. North-Holland, Amsterdam. 
[18] WRIGHT, P. E. (1992) Two parallel processors with coupled input. Adv. Appl. Prob. 24, 

986-1007. 


