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Abstract

For positive recurrent nearest-neighbour, semi-homogeneous random walks on the lattice
{0,1,2,...} x {0,1,2,...} the bivariate generating function of the stationary distribution is analysed
for the case where one-step transitions to the north, north-east and east at interior points of the state
space all have zero probability. It is shown that this generating function can be represented by
meromorphic functions. The construction of this representation is exposed for a variety of one-step
transition vectors at the boundary points of the state space.
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1. Introduction

Since the early 1970s random walks on the lattice {0,1,2,...} x {0,1,2,...}
have received increasing attention in the literature, mainly due to their use in
modelling traffic flow patterns in telecommunication and computer networks.
For details concerning their applications see for example Takagi [17]. For the
performance analysis of such networks, information concerning the stationary
distribution of these random walks is of prime importance. Around 1980 it
became obvious that the determination of the stationary distribution could be
formulated as a boundary value problem, cf. Fayolle and Iasnogorodsky [7],
Cohen and Boxma [6], Cohen [5]; for a review paper, see [4], where the problem
formulation as a singular Fredholm integral equation is also discussed.

Nearest-neighbour random walks are a special but important subclass. There
is a study by Groeneveld, dating from the early 1960s; unfortunately, it has
never been published. By using uniformisation he solved the functional equation
for the ‘shortest queue’ model and showed that the solution can be expressed
in terms of elliptic functions; Malyshev’s approach [14] is of a similar character.
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Among the nearest-neighbour models, the ‘shortest queue’ is a much studied one.
Its basic analysis is due to Kingman [13] and Flatto and McKean [10]. In the
context of boundary value problems this model has been analysed in [7] and [6].

In a nearest-neighbour random walk the one-step transition from an interior
point (7,7) € {1,2,...} x {1,2,...} of the state space leads with probability 1 to a
neighbouring point (i + h,j + k), (h,k) € {-1,0,1} x {-1,0,1} \ {(0,0)}. In the
shortest queue model the one-step transitions with (h,k) € {(1,1), (1, 0), (0, 1)}
all have probability 0. In Hofri [11] and Jaffe [12], models with this feature are also
discussed almost along the same lines as in [10], and as with the ‘shortest queue’
model the bivariate generating functions of the stationary distributions are mero-
morphic, i.e. their only singularities are isolated poles. These random walks are
featured by the absence of one-step transitions to the north, north-east and east,
(N, NE, E), see also Adan [1]; from the results obtained in these studies the
conjecture arises whether for such random walks the generating function of the
stationary distribution, if it exists, is always meromorphic. In the present study we
show that under some mild conditions this conjecture is true. Questions concern-
ing the algebraic character of the generating function have also recently been
studied by Fayolle et al. [8]. Flatto and Hahn [9] provide a model with an
algebraic generating function, in which the one-step transition to the north-east
has a non-zero probability; see also Wright [18].

The character of the generating function of the stationary distribution of a
nearest-neighbour random walk is determined by the number of branch points
of the zeros of the so-called kernel

P2 — &3(p1.p2);

where ¢3(py, p2)/(p1p2) is the bivariate generating function of the distribution of
the one-step transition from an interior point of the state space. The kernel is in
general a biquadratic in p; and p,, and its zeros, e.g. p; as a function of p,,
generally have four branching points, two within and two outside the unit disk
if the drifts u3 — 1 and v3 — 1 are negative, as in (2.5) below. In the case with no N,
NE and E one-step transitions there are only two finite branching points, both
inside the unit disk. The branching points inside the unit disk play an essential
role in the analysis of the functional equation for the bivariate generating function
of the stationary distribution. The branching points outside the unit disk play a
decisive role in the analytic continuation of the bivariate generating function into
the domain outside the torus generated by the two unit disks.

In the present study we consider the nearest-neighbour walk without one-step
transitions to the N, NE and E at interior points of the state space; it is assumed
that the process is positive recurrent, cf. Assumption 2.1. It is shown that the
generating function of the stationary distribution can be described in terms of
meromorphic functions. The construction of these functions is outlined; some
weak restrictions have been made, cf. Assumption 4.1. Even with these restric-
tions quite a number of variants have to be considered.
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The organisation of the present study is now described. In Section 2 the
model of the nearest-neighbour random walk is defined by its one-step tran-
sition vectors at interior and at the boundary points of the state space
{0,1,2,...} x {0,1,2,...}. The random walk is semi-homogeneous, i.e. the dis-
tribution of the transition vector at interior points is independent of the position
of such a point, similarly for the boundary points on the positive horizontal axis
and the positive vertical axis, cf. (2.1) and (2.2). In this section the functional
equation to be solved is formulated on the zero set of the kernel. By using the
analytic properties of these zeros the functional equation is replaced by two
equations with two unknown functions Q(p), Q,(p), defined for |p| <1; the
two branching points of a zero located inside the unit disk are instrumental
here, see Section 3. From the structure of the coefficients in these two equations
it is shown that Q;(p) and Q,(p) can be continued analytically into |p| > 1. In
Section 4 it is shown that the only singularities of these analytic continuations are
poles; for the determination of the residues at these pole sets recursive linear
equations are derived. The pole sets of (-) and Q,(-) are generated by the zeros
in |p| > 1 of some of the coefficients in the two equations for Q;(-), ,(-); the
number of such zeros depends on the character of the transition vectors at the
boundary points of the state space. From the results so obtained it is seen that
the solutions of the two functional equations for ,(p) and Q,(p), with Q(p),
O, (p) both regular in |p| < 1 and continuous in |p| < 1, are meromorphic func-
tions with known pole sets and recursively defined residues in |p| > 1. In Section
5, (") and Q,() are both expressed as the sum of a polynomial and a number of
meromorphic functions with given poles and residues. These meromorphic func-
tions are, apart from a factor, explicitly known; their construction follows from
the results in Section 4. The polynomials and their degrees still have to be
determined. Substitution of the expression for Q,(-) and Q,(*) into the two
equations for these functions (see Section 6) leads to the determination of the
degrees and the coefficients of these polynomials, and a set of linear equations for
the unknown factors in the meromorphic functions remains. It is shown that the
equations have a solution and so Q;(p), Q,(p) are determined. Finally, it is shown
that the solution so constructed leads to the unique solution of the functional
equation for the bivariate generating function of the stationary distribution. In
order not to interrupt the exposition of the construction of the solution, all the
algebraic computations are given in Appendixes A, B and C.

The construction of the generating function of the stationary distribution may
be also formulated as a boundary value problem, cf. [6], and as such it can be
solved completely, even when one-step transitions to the N, NE and E occur. If
they do not occur then the present approach is simpler, because it avoids the
explicit calculation of a conformal mapping.

The present investigation has been initiated after reading the studies by Adan
[1] and Adan et al. [2] on nearest-neighbour random walks without N, NE and E
one-step transitions. In his search for a direct derivation of explicit expressions for
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all state probabilities of the two-dimensional stationary distribution, Adan starts
from the equilibrium equations for these probabilities. For the general equation of
this set, i.e. the equation containing no state probabilities of the boundary points
of the state space, he constructs a class of solutions. By choosing suitable linear
combinations of these solutions Adan tries to satisfy the boundary conditions,
i.e. the equations containing boundary states. Using an iterative procedure, he
succeeds in constructing a sequence which, whenever it converges absolutely at all
points of the state space, provides in the limit the solution of the equilibrium
equations and the norming condition. This aspect of absolute convergence is
actually the problem of choosing the exponents of convergence in constructing
the meromorphic functions, cf. Section 5 and Appendix C. Adan’s approach leads
to an attractive algorithm for the numerical evaluation of the various state
probabilities. From his analysis it may be shown that the generating function
of these state probabilities is indeed meromorphic.

2. Description of the model
We consider the two-dimensional stochastic process {z,,n =0, 1,2,...} with
state space &,
2= (X)) € £:=1{0,1,2,...} x {0,1,2,...}.
For the characterisation of the structure of the z,-process we introduce the

following four sequences of stochastic vectors:
(i) for every fixed k =0, 1, 2, 3,

(5,, 0%, n=0,1,2,...,is a sequence of i.i.d. stochastic
(2.1) vectors with (Ef,k),nf,k)) € Y,

(ii) the four families {( €W nlN, n=0,1,2,.. .} are independent families.
The structure of the z,-process is defined by the following recursive relations:

(1) zg = (x0,¥0) € & is the starting point;
(22) (i) Xpe1 = [en = 1] + €09,
Pner = [y = 11" + 0,

with
k=3 for x,>0, y,>0,
k=2 for x,=0, y,>0,
k=1 for x,>0, y,=0,
k=0 for x,=0, y,=0,
and

a" := max (0, a) for a real.
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We introduce the following notation and definitions.

(i) (&, ) indicates a stochastic vector with the same state space and the same
distribution as (£, n{), i.e.

(2.3) Eeom) ~ (€0,n), k=0,1,2,3;
(i) ¢y = pr(p1,p2) = E{p}P3}, Pl <1, | po] €1,
i = E{&c}, v = E{my}.

From (2.1) and (2.2) it is seen that the z,-process is a discrete-time parameter
Markov chain.

The class of nearest-neighbour random walks to be analysed in the present
study is specified by taking
®o(p1,P2) = b1op1 + borp2 + b1 p1pa,
é1(p1,p2) = hupips+ horp1pa + hoy1 P2 + hiopi + h_yp,
$2(P1,P2) = W11 P1D3 + Wi0P1P2 + W1_1P1 + Woi P + Wo1,
G3(p1,p2) = ro11 D5+ royoPa+ Ty o1+ fo_1P1 + L1 PYs

(2.4)

with
¢k(1)1)=17 k=0a172137

and all coefficients in (2.4) non-negative.

Note that (2.2) and (2.4) imply that from a point (x,y) with x > 0, y > 0, no
one-step transition can occur to the north, the north-east and the east.

We make the following assumptions.

Assumptions 2.1

(1) ws—l=r_ —{ro+roo+roa)r <o,
vi—l=roy —{n_1+ro-1+r11} <0
(ll) 0< 4"_1,17'1’_1 < 1,
1 -
(i) m—1-ng _‘:3 <1,
(2.5) 3
1 %]
Vl—l—le_ <1
(1V) h“ +h01 >0 or wi + Wy >0;
(V) h()] > 0 whenever h” = hOl =0,
wyo > 0 whenever wy; = wyy = 0.
Remark 2.1. Concerning (2.5) (i) it is noted that 4r_,;r;_; =1 implies

ro1 = ry,-1 Z% since 0 Sr__“ < l, 0 Srl‘_l < 1’ rei1 +r1,—] < ls and so the
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second inequality in (2.5) (ii) is implied by (2.5) (i). Although the case
ri-1 =r_y; =45 is an interesting case, we shall discard it because its analysis
requires a slightly different approach, similarly if r_); =0 or r;_; =0. The
condition (2.5) (iv) has been introduced to guarantee that any two states of % can
be reached from each other with positive probability, so that the state space & is
irreducible. The conditions (2.5) (v) have been introduced to restrict the number
of variants which have to be considered in the analysis, see the derivations in
Appendix C. However, if (2.5) (v) is not assumed, the required analysis does not
change essentially.

Whenever the conditions (2.5) (i) hold and the state space . is irreducible then
the conditions (2.5) (iii) are necessary and sufficient for the z,-process to be
positive recurrent, cf. Cohen [5], Section I1.2.6, and hence they imply that the
Z,-process possesses a unique stationary distribution. If (2.5) (i) is not introduced
it is still possible that the z,-process is positive recurrent, cf. [5]; however, we shall
not discuss such cases here.

In the present study our interest lies in the study of the functional equation for
the stationary distribution of the z,-process. To formulate this equation let (x, p)
be a stochastic vector with distribution the stationary distribution of the
Z,~process.

Put

®(p1,p2) = E{pip3}, Iml<Lip| <L
It is then easily derived (cf. [5], (I1.4.1.3)) that for |p;| < 1, |ps] < 1,
(P1P2 — $3)®(p1,p2)/®(0,0) = py pacdo — ¢3 + (P21 — d3)P1 (1)

(2.6) + (192 — 63)p20(p2),
with

Q(py) = pil{cﬁ(pl,m ~8(0,0}/2(0,0), |p| <1,

RN %)= (80.5) - 20,0}/20,0,  pal<1,
¢ = ¢i(p1,p2),  7=0,1,23.
From (2.6) and (2.7) it follows that for j = 1, 2,
(2.8) Q(p) is regular for |p| < 1, continuous for [p| <1, and 0 < Q;(1) < 1.
Put

wy(p1,P2) = Py — $2(P1, P2);
(2.9) w1 (p1,p2) = p1 — ¢1(p1,P2),

wo(p1,p2) =1 = ¢o(p1, p2)-
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By (By, p,) we shall denote a zero of the kernel

(2.10) Z(p1,p2) = ¢3(P1,P2) — P1P2,
o)
Z(p1,p2) = 0.
Writing
(2.11) @; = wi( Py, P2), j=0,1,2,
we obtain from (2.6) the functional equation
(2.12) &1 (P1) + 6 Q(pr) + @ =0,
because by definition
(2.13) @(pLp) <1, A<, 1Al <1,

Further, this functional equation applies for every zero (p;,p,) of Z(py,p,) with
|pl| S l) |P2| < 1’ cf. (210)‘

The analysis of the functional equation (2.13) for the conditions (2.8) is the
main goal of the present study.

3. On the analysis of the functional equation

In this section we derive some properties of the solution of the functional
equation (2.12) which satisfies (2.8). Zeros (p;,p,) of the kernel Z(p,,p,) are
anatysed in Appendix A, cf. Lemma A.2. For every p, and p; given by

R 1 . ~ —
(3.1) b= 7 {pr=ro—1 (1~ 4"1,—1"-1,1)%\/(7’2 —621)(P2 — 622) },

(P1,P,) is a zero of Z(py,p,); here the two signs correspond with p; = Py2(53),
b1 = P1(P,), cf. (A.8) of Appendix A, and 6,;, 65, are the branch points of 5| asa
function of p,. Lemma A.2 states that for | j,| = 1 the zero Pj(p,) liesin |py| < 1,
the other one Py (p,) is in |p;| > 1. Note that —1 < & < 6, < 1, cf. (A.5). Put

(3.2) G:={p:6y <p<bn}, H={p:|pl <1}\¥9,

and note that each of the functions in (3.1) is regular in # and continuous in the
closure # of #. Note also that wi(p1,p2),J =0, 1,2, cf. (2.9), are polynon_lials in
p1 and p,, and hence w;(py, p,) is regular in p, € #, continuous in p; € H#’.

For |p,| =1 and p; = Py(py), so |Pia(p2)l <1, cf. (A.8), the functional
equation (2.12) reads

(3.3) 01 (P12(P2)) + @2 (P2) + @p = 0.

In (3.3) &; = w;(P12(B2), P2) and 2(p,) are regular in , € #’, and continuous in
P, € #, cf. (2.8). Consequently it follows from (3.3) that ©;(P)5(p;)) can be
continued analytically from |[p,| =1 into p, € #, and this continuation is
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continuous in #. Because the coefficients in w;(p;, p;) are all real, cf. (2.4) and
(2.9), and the coefficients in the series expansions of ;(p), and of Q,(p) are all
non-negative, cf. (2.7), and have a sum bounded by 1, it follows that (3.3) may be
rewritten for p, € # as

(34) ¥1(P2) + ¥2(P2)V/ (B2 — 621) (P2 — 622) = 0,

with 9 (B,), ¥,(P,) convergent power series in p, with real coefficients.

For p, € (64, 622) the square root in (3.4) is purely imaginary and since for such
P2, Ui(P2) and v, (p,) are both real, because they are power series with real
coefficients, it follows by continuity from (3.4) that

(3.5) Ui(p) =0, U(p)=0 for pe€ (61,6n).

From (3.1) it is seen that Pi,(p,) and Py, (p,) are each other’s complex conjugates
for p, € (621,652) and so (3.5) implies that (3.4) also holds for p, € (6,1, 62) with
the plus sign replaced by a minus sign, that is we have for p, € (651,62),

(3.6) O (P11(P2)) + 028a(p2) + @9 = 0,
with

@y = wi(P11(p2), p2), Jj=0,1,2.

Using the same arguments as above it is seen that (3.6) can be continued analy-
tically from p, € (6,1, 8p) into 3. It follows that the relations (3.5) are equivalent,
for |po| < 1, to

(3.7) wi(P12(p2); P2)(P12(p2)) + w2 (P12(p2), P2)Q2(P2) + wo(Pr2(p2), p2) =0,
(3-8) wi(P11(p2); P2)Su(P11(p2)) + w2 (P11(p2), P2)Q0(P2) + wo(Pr1(P2),p2) = 0.

Analogously, we have, cf. Remark A.1, for |p;| <1,

w1 (P1, P (p1)) (1) +wa(pys Par(21))22(Par(p1)) + wolpi, Par(p1)) =0,
(3.9)

wi(P1, Pu(p1))(p1) +wa(py, P (1)) (Paa(p1)) + wolpis Pr(p1)) = 0.
(3.10)

Because w;(p1,p2), j=0, 1, 2, are polynomials in p; and p,, and P,(p) and
Py (p) are regular in the entire finite p-plane slit along %, it is seen that all the
coefficients in (3.7) and (3.8) are regular in this slit p-plane. From Lemma A.2 we
have P (1) > 1 and since all coefficients in (3.8) are real for p, = 1 and Q;(p) isa
power series in p with non-negative coefficients, it follows that Q,(p,) has an
analytic continuation in |p;| < Py;(1). Analogously, Q,(p,) has such a con-
tinuation in |py| < Py (1), cf. (A.11), and Q;(Py;(1)), Q(Py (1)), are both
finite. So the relations (3.7) and (3.8) hold for |p,| < P,;(1), and (3.9) and (3.10)
hold for |p;| < Py (1), i.e. the domain of validity of (3.7) and (3.8) has been
extended by analytic continuation; similarly for (3.9) and (3.10). Actually, the
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relations (3.7) and (3.8) are linear in Q;(-), Q2,(-), and their coefficients are all
regular in the p,-plane slit along ¢, and so by analytic continuation it is seen as
above that Q;(p) and ,(p) possess analytic continuations for |p| > 1, except
possibly at those points p where the coefficients of Q,(p) in (3.7) and Q;(p) in
(3.10) are zero; at such points £, (-) and/or ©,(-) may have poles, and these poles
may generate other poles via (3.8) and (3.10); see Section 4. Branching points
cannot occur, since Py, (p), Py;(p), are regular in the slit p-plane and the relations
(3.7) and (3.8) are linear in Q,(+) and Q,(-). Consequently, it follows that Q,(p)
and Q,(p) which are regular for |p| < 1, cf. (2.8), are meromorphic functions for
|pl > 1, if their singularities, i.e. their poles, do not have a finite accumulation
point, and this is actually the case, as will be shown, cf. (C.2) of Appendix C and
(6.5). Note that a function is meromorphic if it is regular in the finite complex
plane except for, at most, a finite number of singularities in every bounded
domain, these singularities being simple or multiple poles.

Remark 3.1. Because the z,-process is positive recurrent and the state space & is
irreducible (cf. Remark 2.1), Q;(p) and Q,(p) cannot be polynomials.

Remark 3.2. From the derivations above it is readily seen that the set of
relations (3.7) and (3.8) is equivalent to the set (3.9) and (3.10). These sets are
obtained from each other by analytic continuation.

4. On the determination of the poles and residues

In the preceding section it has been shown that Q;(p) and Q,(p) should be
meromorphic functions with poles located in |p| > 1, cf. (2.8). In this section we
discuss the location of these poles and derive relations for the residues at these
poles.

Because Q,(p) and ,(p) are meromorphic and the coefficients in (3.7) and
(3.8) are regular for |p| > 1, the principle of permanence, cf. [3], p. 106, implies
that (3.7) and (3.8) hold for |p| > 1; i.e. for |p| > 1,

(4.1) w (P1a(p), P)U (P12(p)) + wy(P12(p), P) () + wo(P12(p),p) =0,

(4.2) wi (P11(p), P)Q (P11(p)) + w2 (P11 (p),P)(P) + wo(Pi1(p),p) = 0.
For the present, we consider the case, cf. (2.5) (iv),
(4.3) wiy + wop > 0;

the discussion of the other case of (2.5) (iv) is similar. Hence Lemma B.1 (ii)
guarantees the existence of a zero o'V such that

(4.4) wy(Pa(6M),d)y =0, oV > 1.
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This zero o!!) generates recursively the two sequences, cf. Remarks A.2 and
A3,

(4.5) (o,i=1,2,...} and {rV,i=12,.},
with
7= Py (c¥) and o .= Py (7D).
From (A.8), (A.11) and Remarks A.2 and A3, it is seen that
1< |cr(1)| < |T(1)] < |a(2)| <. < IU(i)| < |7.(i+1)| < 1a(i+1)| <.
(46) o= Pu(r?), =P,

o) and 7) are all positive or are all negative.

Put

(4.7) A3(p) = wi (P12(p), ) (Pr2(p)) + wo(Pr12(p), ),
and suppose for the present (cf. Remarks 4.1 and 6.5 below) that
(4.8) 0 # |4y(oV)] < 0.

It then follows from (4.1) and (4.8) since oWisa simple zero (cf. (4.4) and Lemma
B.1 (ii)), that

4.9) p = oV is a simple pole of QU (p).
Consequently, if

(410) wl(Pll(p)aP) 7é 0 for p= 0'(1)7

then (4.2) implies that

(4.11) p =7 =P (V) is a simple pole of Q,(p).
If, however

(4.12) wi(Py (W, 0M)) = wy (7D, Py (r1)) = 0,

then p = v is a pole with multiplicity 2 of O (p).
Suppose that (4.10) holds and that

(4.13) wi(Pp(p),p) #0 for p= 0'(2),
then, cf. (4.1),

(4.14) Qy(p) has a simple pole at p = o'»

il

since

(4.15) wz(Plz(G(z)), 0.(2)) £0.



On a class of two-dimensional nearest-neighbour random walks 217

This relation (4.15) holds, because (4.3) and Lemma B.l (ii) imply that
w,(P12(p), p) has only one zero in |p| > 1 if wj; = 0, whereas if w;; > 0 it has
two such zeros but with different signs and this contradicts (4.6).

If

(4.16) wi(Pia(@®),0®) =0,
then
4.17) Q,(p) has no pole at p = .

It is seen that if Q,(p) has a pole at 0@ then, starting from (4.11) with p = ¢®@

instead of p = b, analogous conclusions follow. So by starting with o\ it is seen
that o{") may generate sequences of poles of €,(p) and Q,(p), however, we have
to consider (4.8), (4.10) and (4.13) in more detail. See the following remark.

Remark 4.1. As noted in Remark A.3 we may complete the sequences (4.5) by
T(O), a(0>, 'T(_l), a(‘l), ..., so that

I <1< o™ <o < fY < 1069 < |7O) < o] < |7 D) < L
(4.18)

with n finite, supposing that a T-element is the first one which becomes less than 1
in absolute value; if it is a o-element only minor changes are needed in the
following considerations.

If n =0 so that
Qi (Pa(eM) = ,(+9), |79 <1,

then, cf. (2.8), [ (7?)| < 1, i.e. 45(c!V) is finite, and so Q,(p,) has a simple pole
atp, = AV if Az(o(l)) # 0; otherwise, if Az(a(l)) = 0, o) does not generate a pole
of Q (p).

If n > 1 then consider (4.1) for p = @, ..., o
coefficient in (4.1)

(4.19) wi(Pia(p),p) #0,

then Q, (P1,(p,)) and ©,(p,) have no poles for these values of p and so Ay (M) is
finite; note that w,(P1,(p),p) # 0 for those p, cf. the proof of (4.15).
Further if

(4.20) wi(P1a(p),p) #0 forallp=o"*D  i=12,..,

then, since wy(Py(p),p) #0forp = ot i=1,2,..., cf. (4.15), it follows from
(4.1) that if Az(a(l)) =0 then all Q(P;5(p,)) and all Q,(p;) are finite for
p= At = 1,2,..., and so o) does not generate sequences of poles for
Q1(p) and Q,(p). Concerning Ay(0W) # 0, see Remark 6.5 below.

The analysis in the following sections is based on the following assumption.

~n+1) Whenever for these p the
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Assumption 4.1. For i=—-n+1, —n+2,...,0,1,2,..., cf. (4.5) and (4.18),
assume that
() wi(, Pp(r) = w (P (a1"),61) # 0,

4.2 ) ) . .
(420 () w (79, Py (rM)) = wy (Pra(0"FY), 6 *Y) £ 0.

Remark 4.2. 1t is readily seen that (4.21) (i) excludes the case where poles
with multiplicity larger than 1 do occur, cf. (4.12), whereas (4.21) (ii) disregards
the case with a finite number of poles generated by oM, cf. (4.16). From the
definition of the o) and 7\") it is readily seen that, in general, Assumption 4.1 will
hold.

From the discussion above it follows for the case (4.3) if 4(oy) # 0, cf. (4.7) and
Remark 4.1, that

Q,(p) has a simple pole at p = b, cf. (4.9),

Q,(p) has a simple pole at p = 71| cf. (4.11),

Q,(p) has a simple pole at p = o?, cf. (4.14),
and, generally,

Q has a simple pole at p = ¢(*), i=1,2,...,
(4.22) { jSf)i has a simile I:>ole atz =70 i=12,..;

Assumption 4.1 excludes the case of poles with multiplicity larger than 1.
Next we start with the determination of the residues at the various poles.
Fori=1,2,..., put

Ri(7):= lim (p—7")(p),

p—»T“)
Ry(0'):= lim (p — o')2y(p).
pct)

It follows from (4.1) with 4,(c'!) # 0, note that |4,(c")| < oo (cf. Remark 4.1),
that since o) is a simple pole of O (p),

(4.23)

-1

(4.24) Rao) = —ay(o™) [di‘;wz(ﬂz(m,p)]

p=ci!)

Further, from (4.2),

__wa(Pu(p),p) _wo(Pui(p),p)
Pule) = =5 2 p) 2P T G ap))

1

and so

S

S

[iPu(P)] },,:amRZ(U(l))'
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Analogously, it follows from (4.1) that

w -1
(4.26) Rz(U(Z))=_{£z—E%§—; = Pulp) } Ri()

Generally, we have for i =1,2,...,

O wa(Pi(p),p
R = {wl(Pn(P D
(4.27)
(p):p
(p),p

; [ Pn(P)] }p=a<f)R2(a(i))’
Ry(o!' V) = —{ﬂgﬁ_‘?)’__
)

)

) L4

) - o)
wy(P1a(p),p) |4 [ 12(p):| }I,:UUH)RI( )

Remark 4.3. Because Pi,(p) and Py,(p) are regular functions of p for [p| > 1, it
is seen from (4.5) that the derivatives in (4.26) and (4.27) are all non-zero and
finite.

5. Definition of meromorphic functions

Let o with |o| > 1 be a zero of

(5.1) wy(P12(P), P)s
assuming that such a zero exists, cf. Lemma B.1. Denote by S,(o) the sequence
(5.2) Sy(0) = {aV, 7V, 6@ 7@ 3,

with, cf. (4.5),
(53) oV =, = Py (), ot = le(T(i)), i=1,2,....

Analogously, let 7, |7| > 1, be a zero of

(54) wl(P: P22(p))a

and define the sequence

(5.5) Si(r):= {T(l), oD 7@ 5@ 1

with

(56) T(l)=7', l) “”P‘)l( ) T(i+1) = P“(a(i)), = 1,2,... .

The sequence S,(o) generates the meromorphic functions
o] (i) my

Roo(e) [ p 1™

(5.7) M;(plo) = Z-p—”——,)— [;(7)‘] )
= Ry () [ p 1™

(55) o) = 3BT LB
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(i) where for each i, Ry, (")) and Ry, (7)) are defined as R,(c")
and R;(7\")) in (4.27), the index o has been incorporated in the
(5.9) notation to indicate that the series in (5.7) and (5.8) are
) generated by the sequence S,(o), cf. (5.2); and

(i) m,, and m,, are the smallest non-negative integers for which

L the series
o0 i o0
Ry, (01) Ry, (T .
(5.10) ZIW and ZI[T(‘) o +1, respectively,
=

converge absolutely.

Because of (C.2), (C.3) and the existence of the limits in (C.11) and (C.12) it is
readily seen that m,, and m,, are always well defined for the sequence S,(o); for
details see Remark 6.1 below.

Analogously, the sequence S;(7), cf. (5.5), generates the meromorphic
functions

e i m
RIT(T( )) |: p ] “
5.11 M AL (LN
(5.11) 1(plT) 2y 70 |70
00 i m
i E :RZT(U( )) 14 4
(512) M2(P|T) = 2 p——w 0_—(1)~ .

Note that here the 7") and o) are different from those in (5.7), (5.8).

The functions in (5.7), (5.8), (5.11) and (5.12) are well defined in the sense that
they converge uniformly and absolutely in every finite circle |p| < R, with R > 1,
whenever the terms with poles inside the circle with radius R are deleted from the
sum, cf. [16], p. 309, [3], p. 219.

In Appendix C it is shown, cf. (C.18), that

(513) Mye = Mg, Moy = My,
and so we can delete the indices 2 and 1 and write

(5.14) Mgy = My = Mg, My = My, = Mmy,.

6. Solution of the functional equation

In this section we construct the solution of the functional equation (2.12), i.e.
we show how Q,(-) and Q,(-) are determined.

From Lemma B.1 it is seen that w,(P;(p),p) has at most two zeros in |p| > 1,
say, o1 and oy, and, similarly, w; (p, P2y(p)) has at most two zeros in |p| > 1, say,
71 and 7y,. Assumption (2.5) (iv) guarantees that at least one of these possible
four zeros exists. In the subsequent analysis we shall always use these four zeros;
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if, however, a zero does not exist then all symbols referring to that non-existing
zero should be deleted from the text, cf. Remark 6.4 below.
For the present, assume that

(6.1) Ay(02) #0,45(00) #0 and  A;(1y)) #0,4;(112) # 0,
cf. (4.8) and Remark 4.1, with
(6.2) A1(p) = wi(p, Ppa(p))0(Poa(P)) + wo(p, Pra(P))-

Remark 6.1. For the relevant alterations to be made in the subsequent analysis
if (6.1) does not hold, see Remark 6.5 below.

Each of the zeros o0, and o,, generates a sequence of the type defined in (5.2),
and similarly so do the zeros 71; and 7,, cf. (5.5). Denote these sequences by

(6.3) Sa(o21), S2(022) and  Sy(7y1), Sa(m12);

and assume that (4.21) applies for the elements of S;(05;) and those of S(o).
The analogous assumption is made for the elements of S;(7;), as well as for those
of §)(m12).

For each of these four sequences we construct a pair of meromorphic functions,
cf. (5.7) and (5.8) for oy, and 0,5, and (5.11) and (5.12) for y; and 75; note that
here (6.1) is used, cf. Remark 4.1. These pairs of meromorphic functions are
denoted by

{M;(ploar), My(ploa)}s {M(ploxn), Mi(plon)},

. {M1(plm1), Ma(plmin)}, {M,(plT12), Ma(plm2)}-
Put
(6.) M(p) = 02(p) + M1(p),
Q(p):= Qi(p) + M1(p),
where
(i)  My(p):= My(ploa1) + Ma(plon) + Ma(plmn) + Ma(plmi2),
(6.6) My(p):= M\(ploa1) + Mi(plow) + Mi(plri1) + Mi(plm12);

(i) Q,(p) and Q;(p) are both polynomials in p of degree n, and n,
respectively; these degrees will be specified below.

Substitution of (6.5) into the functional equations (4.1) and (4.2) yields, for
lpl > 1,

wi (P1;(p), P)Q1(P1j(P)) + wa(P1;(p),p)Q2(p) + wo(P1(p),p) = Lj(p), j=1,2,
6.7)
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where

(6.8) —11,(p)=wi(Pi;(p),p)M (Py;(p)) +w2(P1j(p), P)M2(p),  J=1,2.

Remark 6.2. Consider one of the sequences in (6.3), say S»(o2;) and put

T = Plz(crgll)) with agll) = 0y,
(6.9) ' "
n=r) o=, i=1,2,....
It then follows from (6.7) for i=1,2,...,
(6.10) wi(Ti_1,0)01(Ti-1) + wa(Ti21,0:)Q2(07) + wo 71, 04) = L1z (0y),
. wi(13,01) Q1 (1) + wa (73, 07) Q2(07) + wo (T3, 0) = 111 (03),

which represents a set of linear (recursive) equations for the elements of the
sequences

(6.11) {0i(r), i=0,1,..} and {Q(s), i=1,2,...}.

It is seen that these sequences are uniquely determined when I5(o;), I;;(0;) and
Q(0y) are known.

Put, cf. (2.4),
s;:=3 for hy >0,
=2 for hy =0,  hy+hyg>0,
=1 for hy; =0, hoy + hyo = 0;
s:=3 for wy >0,

(6.12)
=2 for wy =0, Wwio + wo1 > 0,
=1 for w; =0, Wi + Wop = 0;
so:=2 for by >0,
=1 for by =0.

It is then readily seen that the following limits exist, cf. (2.4), (2.5), (2.9) and
Lemma A.3,

bj,12 = plgglo P_sjwj(Plz(PLP)a S1= plggo P—S"wj(Pll(P),p), j=0,1,2,
(6.13)

and their values are finite and non-zero, except possibly for s; = 1 and s;=1

where they may be zero in special cases; note that (2.5) (iv) excludes
S =8 = 1.
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Again we consider the sequence S»(03;) and with the abbreviated notation
introduced in (6.9) put, cf. (5.9) and (5.14),

(6.14) Ri(7) = Ry, (), Ry(") = Ry, (), m:=mg,,
and
~1plon) = wn(Pralp)p) 22 | 2] for i1,
= wi (P12(p), )Plj;()ﬂ—li_l [Pxff)):l + w2 (Pr2(p), p) ;3250‘;2 [:,p_l]
fori=2,3,...,
~19(plog) = wi (P1(p),p) Plﬁlp(;’z - [P“T(? )ra— wy(P1y(p),p) p&’-_i‘fg [g.]m
fori=1,2,....

(6.15)

Further we introduce

~Tu(plon) = - i} 19 (plom)
o (Prs(), )My (Pra(p)r) -+ 2 Prs(p). ) MalPra(p) o),

~I(plom) = 21,1(,,|02,)
(6.16) o (P(p) P)ML (Pra(P)ons) + w(Prs(0),p)Ma(Pu ().

The form (6.15) may be rewritten as:

[ @) 7 _ =1 Jwi(Pi(p)p) Ri(mi-1) [P,z(p)J’" p—o; s,
P

(i)
1) I o
(@) Tz (plon) —o; I i P Pa(p) = Tia

i-1

L <a(Pua(p).p) Ralor) pmﬂz} i—2a
P oF

. i -1 wi(P11(p),p) Ri(7y) [PH(P)]m p—0; s
ot = ! !
(i) i1 (Ploar) p—cn{ IS ™ ) Pi(p) - 4
wa(P1(p),P) Ro(0i) s .
+ » o P S i=12,...,
Ry(0;) wa(P1a(p),p)
i I(l) o) = — 2\Yi sy
\( ) 12(P| 21) o (p—o1)p"

(6.17)
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Consider the term in parentheses in the first relation of (6.17). Because P,(p) is
regular for |p| > 1, this term is also regular; note 7;_; = P5(0;). Consider the
series expansion of this term in a neighbourhood of o;; note |o;| > 1. The second
relation of (4.27) has actually been obtained from (4.1) by multiplying (4.1) by
p — o; and then letting p — o;. Hence the second relation of (4.27) implies that this
series expansion should contain the factor p — oy, i.e. p = 0; is a zero of the term
inside parentheses of (6.17) (i). Hence, by using Assumption 4.1, Lemma A.3 and
(6.13), it follows that the following limit exists and

(6.18) 0<|1}Lr&p‘"021[§?(p|021)|<00, i=2,3,...,

where, cf. (6.14),
(6.19) Ny, =max (m+s; — 1,m+s; — 1).
Similarly, from (6.17) (ii) and (iii),

0<|lim p~=I{{(plow)| <00, i=1,2,...,
(6.20) A
0 <[ lim p=™*+ 1 (plow)| < co.

Note that the existence of the zero o, implies that s, > 2, cf. (6.13) and Lemma
B.1.

It further follows that the functions defined in (6.15) are regular for all finite p
with | p| > 1, so that the definition of m, cf. (6.14), implies for every finite R > 1,
cf. (6.16),

N
(6.21) p " lp(ploy) = —p " 1\}1?30215'2)(14021), |pl <R,
i=

where the sum in (6.21) converges absolutely and uniformly in p for 1 < |p| < R,
to a finite limit for N — oo, which is uniformly bounded for |p| < R (cf. the
discussion in Appendix C below (C.13)). An analogous result applies for
I11(p|oy;). Consequently,

(6 22) 112(P1021) has a pOIe 0f0rder nUZl at lnﬁmty (p = OO),

and similarly for Iy;(plos)).

Lemma 6.1. I5(ploy) and Iy (p|oyy) are polynomials of degree Ry, -

Proof. From the conclusions concerning the sum in (6.21) and the regularity of
its terms, it is seen that I5(p|oy;) is regular for finite p and hence from (6.22) and
Liouville’s theorem it follows that I;y(p|oy;) is a polynomial of degree gy > AN
analogous result applies for Ij;(p|oy;).
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An analysis similar to that leading to (6.22) for the sequence S,(o5;), leads to
analogous results for the other sequences in (6.3). Put

(6 23) { (l) nu = max (mu+S] - l,mu-I—Sz —_ 1|u € (0'2]’022’7-1!’7.!2))’
(if)  n(s1,5,) := max (”621 1 Poy s Rryy s ”maso),

the index u being that one for which the max occurs in (i). Further, cf. (6.6), (6.12),
(6.16), (6.22),
Y= lim P w (Py(p), p)M, (P1j(P)) +wa(P1j(p), p) M (p) + wo(Py1;(p), P)]s

p—o

(6.24)
for j = 1, 2; note that these limits are finite and that (6.23) implies
(6.25) n(sy,s2) >8> 1, j=12.

Hence we obtain from the functional equations (6.7) by using (6.13), (6.24) and
(6.25); for |p| — oo,

61n01(ap)p™ + 6;1202(p)p™ = ’Ylen(S‘ ) 4 o(prra)h), forj=1,2.
(6.26)

Note that (2.5) (iv) excludes the case s; = 5, = 1, cf. (6.12).
From (6.25) and (6.26) it follows that the degrees n, and n; of the polynomials
0,(p) and Q,(p), cf. (6.6) (ii), are determined by

(6.27) n; = n(sy,8) = Sj, j=12.

Remark 6.3. In Remark C.2 it has been pointed out that if in (C.21) m is
replaced by m + A, h = 1,2,. .., then the convergence is maintained; and so in the
definitions (5.7) and (5.8) we may also take as exponents m, + h with a non-
negative integer. In doing so it is readily seen that the degrees of O, and O, then
become larger. Such a change in exponents in (5.7) and (5.8) implies that in
the representation (6.5) a polynomial is substracted from M,(p) and added to
0x(p).

The relations (5.7), (5.8), (5.11) together with (6.5) and (6.6) characterise the
structure of the functions ,(p) and Q,(p); they also determine these functions
uniquely, as will be shown below.

Because the degrees of the polynomials Q,(*) and Q; () have been determined,
we need for the explicit determination of the coefficients of these polynomials a
total of n; + n, + 2 linear equations. In Remark 6.2 it has been shown, by using
the sequence S,(0,;) which generates the sets of the poles of the meromorphic
functions M,(p|os;), M;(p|oa;), that the values of the polynomial Q;(p) at the
T-points and those of Q,(p) at the o-points of the sequence S,(o,;) can be
expressed as linear combinations of I;5(0) and I (o) at the o-points of S;(o;).
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In total we need only n; + n, + 2 of those relations. So Q,(-) and @, () are known,
whenever I),(p) and I, (p) are known; see Remark 6.5 below for their uniqueness.
To show that these functions are completely determined, note that a pair of mero-
morphic functions { M (p|oa1), Mi(ploa)}, cf. (5.7), (5.8), is determined by Sy(c2;)
apart from a factor, because all residues Ry, (-) of Ma( p]a?l) an)d those of
M;(ployy) at their poles are linear functions of Ry, (03;') Wtilig‘l oy = oy, cf.
(4.24) and (4.27); actually they are all proportional to Ry,, (05,'). By using the
expression (4.24) for the residue Ry, (agll)) it is seen that M,(p|o,;) and
M, (p|os;) are completely determined, apart from a factor which is a linear function
of Q (Plz(agll))) on the assumption that Az(a21 ) # 0, cf. Remark 4.1 and Remark
6.5 below. If A,(crzll ) = 0 then S, (0, ) does not generate a pole set. Similarly for the
other pairs of meromorphic functions in (6.4), i.e. it remains to determine

Q,(p) for p=Ppad)) and p=Py(aly),
Oo(p) for p=Pu(rV) and p=Pu(rY).

Hence by using (6.7) and (6.8), four linear equations are obtained for the
unknowns

(6.29) Qi (Ppa(ai)), Q,(Pa(a), Qz(Pm(‘ﬁ(:)))’ Qz(Pzz(Tg))),

since, as shown above, the coefficients in the polynomials Q,(p) and Q;(p)
depend linearly on the unknowns in (6.29).

(6.28)

Remark 6.4. It has already been mentioned at the beginning of the present
section that if w,(Piy(p),p) and wi(p, P»(p)) have fewer than four zeros in
|p| > 1, then only the sequences generated by the existing zeros occur, as do
the functions derived from these sequences. It is then readily seen that for the
number of remaining unknowns we are left with a similar number of linear
equations, whenever the corresponding terms in (6.1) are non-zero, cf. Remark 6.5
below.

For the ultimate determination of Q(py,p,), cf. (2.6) and (2.7), it remains to
determine Q(0,0) since ,(p) and Q,(p) have been constructed above. By taking
p2 =1 in (2.6), dividing the resulting expression by p; — 1, taking note that all
coeflicients in (2.6) are zero for p; = p, = 1, we obtain for p, — 1 a linear relation
for ®(0,0) because the norming condition requires ®(1,1) = 1; ®(0,0) so calcu-
lated is unique and positive (see the following remark).

Remark 6.5. Apart from Assumption 4.1, which has been introduced for
technical reasons, cf. Remark 4.2, our analysis is essentially based on Assumption
2.1. The conditions (2.5) (i), (ili) guarantee that the z,-process has a unique
stationary distribution and so ®(py, p,) should be regular for |p1| < 1, continuous
for |pi| <1, for every fixed p, with |p,| < 1; and, similarly, with p; and p,
interchanged. It is seen that Q,(p) and Q,(p) as defined in (6.5) satisfy the
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conditions (2.8), independently of the values of the unknowns in (6.30). The
relations (4.1) and (4.2), or equivalently (6.5), stem from the requirement that
zeros of the kernel Z(py,p2), |p1| < 1, |p2] < 1, should be zeros of the right-hand
side of (2.6), because of the boundedness of ®(p;,p,) in | p| <1, |py| < 1. From
these relations and the regularity properties of 9;(p) and Q,(p) a set of linear
equations for the coefficients in the polynomials Q,(p) and Q,(p) and the
unknowns in (6.30) has been obtained, the number of unknowns and that of the
equations being equal, independently of the number of zeros of w,(Py,(p), p) and
of wi(p,Py(p)) in |p| > 1, cf. Remark 6.4, but there is at least one such zero,
because of (2.5) (iv), see Lemma B.1. Because there is a unique ®(p, p,) satisfying
(2.6) and the mentioned regularity conditions, the set of linear equations just
mentioned should have a unique solution, and the same holds for the
determination of ®(0,0), cf. Remark 6.4. This uniqueness of ®(p;,p,) leads
also to the conclusion that at least one of the inequalities in (6.1) should apply for
the zeros of w,(P13(p),p) and of wy(p, Pp(p)) in |p| > 1. If it turns out that for
such a zero the relevant inequality in (6.1) does not hold then this zero does not
generate a pole set S(), cf. (6.3), and the inherent functions M,(p|-), M(p|-) are
identically zero. Actually the conditions in (6.1) can be only verified if the relevant
unknowns in (6.30) have been solved from the linear equations; on the other hand
it is evident from the analysis above that only incidentally one or more of the
conditions in (6.1) are not satisfied.

Appendix A. On the zeros of the kernel

For the analysis of the functional equation (2.12) we need several properties of
the zero of the kernel (2.10). These properties are derived in this appendix.
From (2.4) and (2.10) we have

Z(p1,p2) = ¢3(P1,02) — P12
(A1)

2
= r—l,lP% +r_10P2+r-1,-1 +ro-1P1 + 11, -1P1 — P1P2-

Generally, a zero of Z(p;,p,) is indicated by (p;,p,). It is readily verified that
(cf. also (2.5))

1“'1/3

py=1=eitherp,=1 or p,=1+ >0,

11
1 — 3
ry—1

(A.2)

ﬁlzlﬁeitherﬁ:I or ﬁ1=1+ > 0.

Denote by D;3(p,) the discriminant of the right-hand side of (A.1), considered as a
quadratic in p, i.e.

Ds(py) = (1 = 4ry _17_1,1)P3 — 2pa(ro—1 + 211 _17_10) — 4ry_1r_i 1 + 751
(A3) = (1 =4r;_yr_11)(P2 — 621) (P2 — 622),



228 J. W. COHEN

with

(A.4) 841,65, the two zeros of D3(p,), 1621] < 162]-
Lemma A.1

(A.S) —1< by <dp <l

Proof. From (A.3) we have

1 1
(A.6) Ds <5> = Ez‘{(l —ro_19)* —4r 1 (ro g +ro0d + 7o 167))
Obviously, (A.2) implies that
(A7) D4(1) > 0.

It is seen that ¢*Ds(1/q) decreases on [0, 1], and
1 1
qus(— —) >¢'Dy (—) for g€[o,1],
q q
s0 D3(p,) has no zero for pz"l =g € [—1,1]. Because D;(rg ;) < 0 it follows, cf.

(A.7), that D5(1/q) has two real zeros and so (A.5) follows.

Lemma A.2. The two zeros Pyi(py), Pia(p2) of Z(py,p2) may be defined so
that

[Pu(p)l <lpl<[Pu(p)l  for |pl21, p#1,

(A.8) 1—
Pp(l)=1<Py(l)=1 +_r__ﬁi,
1,-1

and Py1(p), P12(p) are both regular functions of p for |p| > 1 and can be continued
analytically from |p| =1 into {p: |p| < 1, p & (631,6n)}.

Proof. Put p; = zp, then Z(py,p,) = 0 implies, cf. (A.1),
(A.9) z = E{5p5T™ %),
From (2.4) it follows that &5 +n; < 2, and (2.5) (i), (ii), imply
Pri{&+m=2}=r_y,+rn_ <L
Hence for |p,| > 1, py # 1, |z] = 1,
(A.10) |E{z5%p5T 2} < 1.

Because both sides of (A.9) are regular functions of z for |z| < 1, Rouché’s
theorem, cf. [16], p. 155, shows that (A.9) has a unique zero in |z] < 1 for
|p2l 2 1, py # 1. For p = 1, (A.9) has one root in |z| < 1, viz. z = 1, cf. (A.2).
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Pu(p") P (plV) Pu ()
/—\ m
. . . . /)"'
() \’/ (1 \\_/ (2) (2)
P2 Pi P~
PG @ 2 = P SN
22(P; ) 12(py ) Py ()

Figure 1

From (A.1) it is seen that (A.9) is a quadratic equation in z. Since for |p,| > 1 it
has exactly one root in |z| < 1, the other root is in |z| > 1. Take Pyy(p,) for
|p2] > 1 as the zero of Z(p;,p;) which corresponds to the zero in |z] < 1 and
P1(p,) as the zero corresponding to |z| > 1, then the relation (A.8) follows.
Lemma A.l implies that the branching points é,; and &, of P(p,) and
Pi»(p,) are located in (-1, 1), and so the zeros Py;(p,) and Py,(p,) are both
regular in |p,| > 1. Since 6, and é;, are their only branch points, (A.5) implies
that they can be continued analytically into {p: |p| < 1, p & (631,62)}-

Remark A.1. The analogous lemma for Z(p,, p,) can be formulated for its zeros

as a function of p; with |p;| > 1. So for |p;| > 1 we designate these zeros by
Py1(p,) and Py(p;) and such that

(A.11) [Pa1(p1)l > |p1| > [Paa(pi)ls [p1l > 1.
Remark A.2. Take lpgl)l > 1 and put

2 2 2 2
A =pue), =), A= PaG), A= Pale),
then from (A.8) and (A.11),

1 1 1 2
PV =pPupl), PV = Pu(pY).

These mappings are illustrated in Figure 1, for real pgl) > 1. From Lemma A.2
and Remark A.1 it follows that

2 2
(A.12) L<Ipl < 1pl <P < Ipl <o
Lemma A.3. The following limits exist:

. 1
oy = p}l_fgoPn(Pz)/Pz = 271“;{1 - (1= 4’1,—1’—1,1)%} >0,

. 1 1
ay = lim Py (p,)/p2 = o {14+ (1—4r_yr_11)7} >0,
Py -1

(A.13) 1

Q) = p}iﬂo Py (p1)/p1 = 57‘—1_1{1 + (1= 4’1,-1f-1,1)5} >0,

1

11

Qg = p}i_{{lm Py(p1)/p1 = ) {1=(1—4r_yr_y1)7} >0
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Proof. From (A.1) we have

1
2rL_1

p1= {hr—ro1 £(1~ 4’-1,#1,-1)%\/(132 = 621)(P2 — b))},
and from this relation together with (2.5) (ii), (A.8) and (A.11) the relations (A.13)
follow.

Remark A.3. 1t is readily verified by using (2.5) (ii) that in the (py, p,)-plane the
curve Z(py,p;) =0, p; and p, both real, represents a hyperbola. Its centre is in
the first quadrant and its asymptotic directions are given by p, = a;;p, and
D1 = apapa, cf. (A.13). From Lemma A.l it is seen that the two branches of
the hyperbola are located inside the acute angles between the asymptotes;
note ap; > 0, Qyy > 0.

To p(zl) in (A.12) corresponds a zero

0 1 0
(A.14) Y =Pud),  101< 1),

as it follows from Lemma A.2. If | pgo)l > 1 then we can again apply this lemma
and define

(0)

0
py = Pzz(Pg )),

0 0
1P < 127

If | pgo)| > 1 then again using the lemma we may define

-1 0
5= Py(pd),

and so on. So we may continue the sequence in (A.12) to the left, i.e. by elements
which decrease in absolute value. From the location of the hyperbola just
described and by using (A.5) it is seen that this completion of the sequence
in (A.12) stops after a finite number of steps, because one of the p(l'), pg')
i=0,-1,-2,..., will be less than or equal to 1 in absolute value.

It is finally noted that the iterated zeros of Z(p;,p,) in Remark A2 are all real
if pgl) is real, and they all refer to the same branch of the hyperbola Z(p;,p,) = 0.
Since one of these branches is located in the first quadrant and the other in the
third quadrant, cf. (A.5), it is seen that in a sequence of iterated zeros these all
have the same sign and do not have a finite point of accumulation.

El

Appendix B. On the zeros of w,(P1,(p), p)

For the detailed analysis of the relations (4.1) and (4.2) we need information
concerning the zeros of some of its coefficients. Put, cf. (2.9),

(B.1) f2(p) = wa(P12(p),p) =p — &2(P12(p), p),
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hence for p # 0,
B 1 P & ~
(B.2) P fip) = 72 E{ [_‘27(‘0_)] patm 3}‘

For the investigation of the number of zeros of /5(p) in |p| < 1 and |p| > 1 we
have to distinguish three cases.

(i) The case wy; > 0. It is seen from (2.2) and (2.4) that

(B.3) & +m —3<0 and Pr{& +mn,=3}=w;>0.
Put, for |7 < 1,

1 &
(B4) p_3f2(tap) = ;2‘ - [E{ [——-—Pu’fp):l p€2+n2"3}.

Because Py,(p) is a regular function of p for |p| > 1 and |Py,(p)/p| < 1 for |p| >1,
of. Lemma A.2, it follows that for |¢f| < I, |p| > I, cf. (B.3),

{5

and so by applying Rouché’s theorem, cf. [15], it is seen that for |¢| < 1, f,(¢,p)
has two zeros in |p| > 1. These zeros are obviously continuous functions of ¢
and both have a limit for t — 1. Denote these limiting values by, say, o7, and oy,
then

(B.5) loa| > 1, loaa| > 1.

<1,

From (B.3) and Lemma A.3 it is readily verified that
(B6)  lim E{[Piz(p)/p®p® ™7} = E{af3 (& + m2 = 3)} > 0;

so that, since the expectation in (B.4) is equal to 1 for p = 1 it is easily seen that
the zeros of (B.4) in |p| > 1 are both real for real  with |¢| < 1. Hence, 05 and 02,
are both real; one, say, o,;, is negative, the other is positive, so that

(B7) (20} < '—1, (ep)) > 1.

Obviously, p = 1 is a zero of f,(p). To investigate whether 095 > 1 or o9 = 1 we
consider the derivatives with respect to p~! of both terms on the right-hand side of
(B.2). So

d _ s d
(B.8) E;E{[sz(u D&Y ey =3 -1y — MZB;P12(p)|p=1-

By the definition of Pj,(p) we have

Piy(p)p = E{[P1(p)]® P},
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and it follows that, cf. (2.5) (i),

dPy(p) -y
(Bg) dp p=1 1 — U3 ?
so by using (2.5) (iii),
d —1\1&, 3= —9_ —1= 1 - v
(B.10) EE{[Plz(u e ey =2 (I/z 1 K21 s > 2.

Hence by replacing p in (B.2) by »~! it is easily seen that at u = 1 the slope of #? is
less than that of E{ [Plg(u“l)]£2u3”72}, and hence, if wi; > 0, then f,(p) has three
zeros in |p| > 1, viz. one at py = 1 and two in p, > 1, i.6. 091 < =1, 095 > 1.

Elimination of p; from w,(p;,p) =0 and ws(p;,p) = 0 leads to an algebraic
equation of the sixth degree (note (2.5) (iii)) and so this equation has six zeros. It
has been shown above that exactly three of these zeros are located in |p| > 1, one
at p = 1, the other two in |p| > 1, and as it is readily seen the zeros in |p| > 1 all
have multiplicity 1. Hence of the six zeros three are located in |p| < 1.

(i) The case wy; = 0, wyg + wg; > 0. From (B.1) we have
P & _
(B.11) P 2h(p) = I E{ [ﬁ(ﬁ)_} patm 2},
p P
and, cf. (2.2) and (2.4),

win =0, wp+wy>0=>&+mm—-2<0, Pr{&+mn =2} =wj+wpy >0.
(B.12)

An analysis analogous with that of case (i) above shows that f,(p) has exactly two
zeros in |p| > 1, one at p = 1, the other being positive; both have multiplicity 1.
For the present case elimination of p; from w;(py,p) = 0, wy(py,p) = 0, yields an

algebraic equation of the fourth degree, and so f,(p) has exactly two zeros in
lp| < 1.

(iii) The case wy; = wig = wo; =0, w; _; > 0, wo,~1 > 0. From (B.1) we have

&
(B.13) p‘lfz(p) =1- E{ [&—zb(—p-){’ p€2+ﬂ2—1 }’

and, cf. (2.2) and (2.4),

Wi+ wop + wig = 0, wy_1 >0, wo-1 >0=& +m, <,
(B.14) Pr{&+m=1}=w;_; >0.

As above it is shown for the present case that J2(p) has exactly one zeroin |p| > 1,
viz. p=1, with multiplicity 1. Because f,(p) =0 is now equivalent with an
algebraic equation of the third degree, it has exactly two zeros in |p| < 1.

The analysis above leads to the following lemma, cf. also Adan [1], p. 48.
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Lemma B.1. The function wy(P,(p), p) has a zero with multiplicity 1 at p =1
(note (2.6) (i) and:

() if wiy > 0, it has three zeros in |p| < 1 and two zeros in |p| > 1, p # 1, one
negative, and the other positive;

(ii) if wy; =0, wig + wo; > 0, it has one zero in |p| > 1, p # 1, which is positive
and has multiplicity 1, and two zeros in |p| < 1;

(i) i wyy =wyo =wp =0, wy_; >0, wy_y >0, it has no zeros in |p| > 1,
p# 1, and two zeros in |p| < 1;

(iv) if p with |pa| > 1 is a zero of wy(Pya(p), p) then wy(Py1(p2), pa) # 0.

Proof. The statements (i), (ii), (iii) have been proved above. The fourth
statement follows from (2.4), (2.9) and Lemma A.2.

Remark B.1. For the function w,(p, P»(p)) a lemma analogous to Lemma
B.1 may be proved, but its formulation and proof are similar, so they are
omitted.

Appendix C. Asymptotics of R, (")), Ry(o") for i — oo

In this section we derive the asymptotic behaviour for i — oo of the residues
R (7)) and R,(0"), cf. (4.27).

We start with the asymptotic behaviour of o) and 7¢) for i — oo, cf. (4.5).
From (2.5) (ii) it is seen that p; as a function of p,, with ¢3(p1,p2) —p1p2 =0,
represents a hyperbola, cf. also Remark A.3, with asymptotic directions given by,
cf. (A.13),

(C.1) pir=oappy and p;=app;

and so using (4.5), (A.8) and (A.11) it is readily seen that

(C.2) lim |o'| = oo, lim 7] = oo.
1—0C 1 e ol

Hence neither of the sequences {¢"),i=1,2,...} and {r\,i=1,2,...}, has a
finite accumulation point. From Lemma A.3 and (4.5) it follows that

o0 G
(C3) llir{.lo;.—(’—)- =ay > 1, Ilil’lo]cm =ap <1,
from which it follows readily that
(i+1) (i+1)
(C.4) lim T — == fim > 1,
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Next we consider
wr(Pru(e),0") _wp(r, o)
wl(P“(a'(i)),g(i)) wl(r(i),a(i))

+ LIV N - S
Wig — — 1 - -1
wip2 10 7 1, lp2 Olp1 DaDa
(C.5) = 1

1 1
hupy + ho -;“"h 11;+h10p—+h 10—

py=rt)

ppy =
It follows from (2.5) (iv), (v), (C.2) and (C.5) that for { — oo,

(i) 1)
wy(T )~ 1 wi (1 +0(L)) for wy; > 0,h; >0,

wy (T (),U(i)) ay by (0

1 1 1 1
- — — — = 0,hy >0,
0 I {WIO + wo a“} <1 + 0<7—("))) for wyy = 0,4y, >

. 1
= U(’)wll{hm +h10a“}_1 (1 —+ 0(;)) for wip > Oihll = 0,

1
W10+W01a— 1
— {140 for wj; =0,h;; =0.
"~ hoy + hye ( <0’>> " !

(C.6)
Similarly, we obtain for i — oo,
wi(Pip(e™), o) _wy (7Y, oy
wy(Pyy(a), o) B wz(T(i—l),U(i))
h 1
-—-0112-l 1+ 0{— fOI'W11>O,h11>O,
0‘(’)

Wi

1 -1
= )hll{W10+w01_12} (1-}-0(_%1“)) for Wi =0,h” >0,

o
1 1
=-(——-{h01+h10a12} 1+0 '0_(—1 for wyp > 0, Ay =0,
hoy +h 1
(C.7) =0~1——@§%<1+0<;>> for wy = 0,4, = 0.
Wi + Wop — !
3¥)

For py, p, satisfying Z(p;, p,) = 0, i.e. (cf. (2.10)),
2
r1p2—p1py + r1,-1P% troepr+roipr+ro =0,
we have

(C.8) i _ P =2 apa/p — o1 /p

dp, Py 1=2r_1p/pa—ro_1/ps
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With p; = Py;(p2), and p; = Py5(pa), |pa] > 1, we obtain from Lemma A.3, after
some algebra,

. dPy(p) _ . dPp(p) _
(C9) ]}erolo——d[—)—— =y, ;}LTOT =ajp

From (4.27) we have
RZ(U(i+1)) _ {wl (P12(p),p) wa(P11(p),p) (_‘iP (P)> [iplz(p)ji _1}

Rz(U(i)) wi (Plz(P),P) wl(Pu(P)aP) dp ! dp p=al)
(C.10)
From (C.16), (C.7), (C.9) and (C.10) we find that
(i+1)
IlmBEE—)=I for W11 >O,h“ >0,
i=c0 Ry(oli))
=w_miml__oil_2. for wi; = 0,4 >0,
(C.11) Wo1 + Witz Qg
=M£?1_1 for wy; > 0,h;; =0,
hot + hyoy app
_ hor + higary Wor + Wigoi for wyy = 0, hy, = 0;
hot + hipouy wor + Wi
i RET o (P (081), o) w0 (Pin(0), o)
(C 12) i—00 R](T(i)) - alzi——ocowl(P“(O'(i+1)),0'(i+l)) UJZ(Plz(G'(i)),O'(i))
. . Rz(O'(i+l))
= lim ——,
i=0 Ry(a)

for all the four cases occurring in (C.11).

Remark C.1. Note that (2.5) (iv), (v) imply that the quotients in (C.11) are well
defined.

For the definition of the meromorphic functions introduced in Section 5 we
have to investigate the existence and determination of the smallest positive
integers m, and m; for which the series

) Rz(a(iH)) 0 Rl(T(i))
(C13) ZW and Z{"T"('i)}ml_‘_l:

converge absolutely, cf. (5.10).
Put, cf. (C.11) and (C.12),

i=1 i=1

(i+1) R, (74D
(C.14) pom tim R ) i Rl

2= 5= >0,
[—00 Rz(o-(’)) i—»rgo RI(T(X))
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where the value of p varies with the four cases in (C.11). It follows for fixed but
sufficiently large i and k = 1,2,..., cf. (C.4), that

R U(i+k) a_(i+k) o k
(C.15) —2(—.—2~p", —~ o
Ry (a1 o Qg

Consequently, for every integer n,

(i+k) () n+1) K
(C.16) Ry(o )NRz(J ){p[_?‘_l_g} }, k=1,2,...

[U(i+k)]n+l [O_(i)]n+1 oy

Because, cf. (2.5) (i) and (A.13),
0< alz/C\{“ < l,

we see that the first series in (C.13) converges absolutely for that value, say, m, of
n=0,1,2,..., which satisfies

n=20 if pgl—2 <1,
(C.17) o
. n n+1
p[fﬁ]szfm} 22 5
a1 Qi aq

and (C.17) implies that m, exists.
Analogously, it follows from (C.4) and (C.14) that m, is that value of n =0,
1, 2,..., which satisfies (C.17) and hence it is seen that m, = m,. Put

(C.18) m:=m = my.

Because [o;| — oo, cf. (C.2), it follows that for fixed p and sufficiently large i,
2 P -l

(C.19) pl <ol =< ||| =1 <2.
3 ag;

Note that for k =1,2,...,

(C.20) M[ p ]m= m{ p 1}—1 Ry (o179

p — glith) | gli+k) otk { O,(i+k)}m+_l )

and hence it follows from (C.16), (C.19), (C.20) and the definition of my in (C.18),
that the series

xR (o) m o (i) m
(C21) Z—Zi’-(—)){%} and SR H
i P—0C g = p-—ﬂr(’) T,

converge uniformly and absolutely in every circle | pl < R, whenever the terms

with poles inside the circle with radius R > | are deleted, cf. [16] Chapter 7.4, 3],
p. 219.
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Remark C.2. It is readily seen that if in the series (C.21) the exponent m is
replaced by m + h, with A any positive integer, then the series so obtained also

converge uniformly and absolutely in the same sense as (C.21); see further
Remark 6.3.
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