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Abstract. The stochastic realization problem is considered of representing a stationary Gaussian process 

as the observatio11 process of a Gaussian stochastic control system. The problem formulation includes 

that the last m components of the observation process form the Gaussian white noise input process to the 

system. Identifiability of this class of systems motivates the problem. The results include a necessary and 

sufficient condition for the existence of a stochastic realization. A subclass of Gaussian stochastic control 

systems is defined that is almost a canonical form for this stochastic realization problem. For a structured 

Gaussian stochastic control system an equivalent condition for identifiability of the parametrization is 

stated. 
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1. Introduction 

The purpose of this paper is to present the problem and the solution to a stochastic 

realization problem for a Gaussian stochastic control system. 

The motivation for the stochastic realization problem is system identification. The 

research area of system identification addresses the problem of how to obtain a 

mathematical model for an observed phenomenon. A major question in system 

identification is how to select a parametrization of the model class. 

In this paper, attention is restricted to the class of time-invariant Gaussian stochas­

tic control systems. An element of this class is represented by the relations 

x(t + 1) = Ax(t) + Bu(t) + Mv(t), 

y(t) = Cx(t) + Du(t) + Nv(t), 

in which u represents the input process, v a Gaussian white noise process, x the state 

process, and y the output process. See Section 2 for a fonnal definition. Motivated 
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through the SCIENCE Program by the project System Identification with contract number SCl *· 

CT92-0779. 
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by the practice of system identification, the input process is assumed to be Gaussian 
white noise. The observation process consists then of the input and output process 
combined which leads to the representation 

:c(t + 1) = A:c(t) + ( M B) (v(t)) 
u(t) ' 

z(t)= (~~g) = (~)x(t)+ (~ ~) (~~g). 
The problem is then to select a parametrization for the class of Gaussian stochastic 
control systems and to determine whether this parametrization is identifiable or not. 

In the literature identifiability conditions for this class of systems are stated at 
several places. L. Ljung mentions such conditions for systems in ARMAX represen­
tation (14, pp. 101-106]. However, it is not clear from this description how these 
conditions are derived. The case of a state space representation is restricted to a 
single-input-single-output system. In the book by E. J. Hannan and M. Deistler [8], 
conditions are stated under which a Gaussian stochastic control system is minimal, 
[8, Theorem 2.3.3]. However, the starting point in this book is a spectral factor while 
in the author's opinion, it should be the covariance function or the spectral density. 
However, within the selected framework, the book [8] presents a coherent theory. 

It seems to the author of this paper that conditions for identifiability of a class 
of dynamic systems should be based on stochastic realization theory. Questions 
as to the minimality of a dynamic system and the equivalence class of minimal 
realizations must first be studied within a theoretical framework. The answers to 
these questions will then provide conditions for identifiability of a dynamic system. 
This approach has not been pursued for the class of Gaussian stochastic control 
systems. There is also a need for identifiability of structured Gaussian stochastic 
control systems. In many applications, the system is based on physical laws. This 
results in a representation that is structured, the matrices of the system contain as 
elements zeroes and free parameters. Identifiability conditions for such structured 
systems are currently not available. 

The problem of this paper is to show that a stationary Gaussian process can be 
represented as the observation process of a Gaussian stochastic control system. The 
problem specification includes that the last m components of this observation process 
form a Gaussian white noise process that is to be considered as input process. If such 
a system exists, then it will be called a (weak) stochastic realization of the given 
process. Attention is restricted to those stochastic realizations of which the state space 
is of minimal dimension. In general, many minimal stochastic realizations exist. 
Of interest, then, is a classification of the class of minimal stochastic realizations 
and a canonical form specifying one element in each equivalence class. Stochastic 
realization theory is the name for the research area in which these problems are 
studied. Identifiability conditions follow immediately from stochastic realization 
theory. 
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A summary of the paper by section follows. In Section 2, definitions are presented 

and the problem formulated. The existence of a stochastic realization is proven in 

Section 3 and an algorithm is provided. The issues of a parametrization and a 
canonical fonn are solved in Section 4. 

A preliminary version of this paper was presented at the IFIP-WG 7/1 Workshop 

'White noise models and stochastic systems' at the University of Twente in En­

schede, The Netherlands, 29 June-2 July, 1992, and at the XXIVemes Journees de 

Statistique, Universite Libre de Bruxelles, Brussels, Belgium, 18-22 May, 1992. 

2. Problem Formulation 

In this section, notation is introduced and the problem defined. 

System identification is a research area that addresses the problem of how to 

construct from data a mathematical model in the form of a dynamic system that is 

realistic and not overly complex. System identification is practised in engineering, 

econometrics, statistics, and biology. 
A procedure for system identification of a phenomenon may consist of the follow­

ing steps: 

(1) Modeling of the phenomenon using prior knowledge of the domain. Selection 

of a model class of dynamic systems. 

(2) Experimentation and data collection. 
(3) Parametrization of the model class and a check on the identifiability of the 

parametrization. 
(4) Selection of a model in the model class. This may be done by a least-squares 

algorithm or a maximum likelihood algorithm. 
(5) Evaluation of the selected model. Possibly repetition of one or more of the 

above steps. 

In this paper, attention is restricted to the model class of time-invariant Gaussian 

stochastic control systems. The notation used is fairly standard. Let c- = { c E C I 
lei< l}. If A E Rnxn, then sp(A) denotes the spectrum of A. 

From the geometric approach to linear systems, the notation is 

(A I Im(B)) = {Sx E Rn I Vx E Rn}, 

where 

S = ( B AB . . . An - 1 B ) . 

The real line is equipped with the Borel CT-algebra, denoted by B. That of Rn is 

denoted by Bn. If x: Q - Rn is a random variable with a Gaussian distribution 

having mean value m E Rn and variance Q E Rnxn, then this is denoted by x_ E 

G(m, Q). The er-algebra generated by x is denoted by p:c and the CT-algebra family 

of a stochastic process v: 0 x T - Rr by {Ft~, t ET}. 
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DEFINITION 2.1. A time-invariant Gaussian stochastic control systt:m is a collection 

in which the state process x and the output process y are determined by the recursions 

x(t + 1) = Ax(t) + Bu(t) + M v(t), 

y(t) = C:c(t) + Du(t) + N v(t), 

;z;(to) = xo, (1) 

(2) 

where (Q, F, P) is a probability space, T = {t 0, to+ 1, ... } C Z is a time index set, 

X =R", Y=R!, 

xo: Q--+ X, xo E G(mo, Qo), 

v: Q x T - Rr is a Gaussian white noise process with v(t) E G(O, V), V = VT > 0, 

u: Q x T - U is a stochastic process with pzo, F:;,, and F~ independent u-algebras, 

and x: Q x T- X and y: Q x T - Y defined by (1), (2). If T = Z, as is the case 
in the rest of the paper, then the state at t = -oo is supposed to be an equilibrium 

state. These equations are referred to as the Gaussian stochastic control system 

representation of the corresponding system. The parameters of a Gaussian stochastic 

control system are denoted by 

{A, B, C, D, M, N, V} E GSCSP(p, n, m, r), (3) 

for p, n, m, r E Z+. 

The second step in the system identification procedure is experimentation and 

data collection. Experimentation of a stochastic control system often proceeds by 

supplying a pseudo-random time series as input and collecting the resulting input and 

output time series. In practice, a pseudo-random two-valued time series is used. The 

pseudo-random two-valued input time series may be modelled as a trajectory of a 

Gaussian white noise process. This modeling approximation is of minor importance. 

ASSUMPTION 2.2. The input process of the Gaussian stochastic control system 

considered is a stationary Gaussian white noise process with u(t) E G(O, Vu), Vu = 
VJ >0. 

This assumption is imposed throughout the paper. 
The third step of the system identification procedure is to select a parametrization 

of the model class and to check whether this parametrization is identifiable. Condi­

tions for identifiability of a dynamic system may be based on realization theory as 

developed in systems theory. Below, the stochastic realization problem is posed for 

the class of Gaussian stochastic control systems. 
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PROBLEM 2.3. The weak stochastic realization problem for a stationary Gaussian 

stochastic control system. Assume given a stationary Gaussian process on T = Z 

taking values in (RP+m, BP+m) having mean value function zero and covariance 

function W: T--+ R(p+m)x(p+m). Assume that the last m ~ 1 components of this 

process are the input process and Gaussian white noise with a nonsingular variance. 

Solve the following subproblems. 

(a) Does there exist a time-invariant Gaussian stochastic control system such that 

the observation process of outputs and inputs equals the given process in 

distribution? Or, if the system is given by 

x(t + 1) = Ax(t)+ (M B) (v(t)) 
u(t) ' 

(4) 

( y(t)) (C) (N 
z(t) = u(t) = 0 x(t) + 0 

D) (v(t)) 
I u(t) ' 

(5) 

with u a Gaussian white noise process u(t) E G(O, Vu) independent of the 

process v, is then the observation process z equal to the given process in dis­

tribution? Equality in distribution means that the family of finite-dimensional 

distributions of both processes are identical. Because both processes are sta­

tionary Gaussian with mean value function equal to zero, the equality in dis­

tribution is equivalent to equality of the corresponding covariance functions. 

If such a system exists, then one calls it a weak stochastic realization of the 

given process, or, if the context is known, a stochastic realization. 

(b) Classify all minimal stochastic realizations of the given process. A weak 

stochastic realization is called minimal if the dimension of the state space is 

minimal. The following points must be addressed: 

(1) characterize those stochastic realizations that are minimal; 

(2) obtain the classification as such; 

(3) indicate the relation between two minimal stochastic realizations; 

(4) produce an algorithm that constructs all minimal weak stochastic real­

izations of the given process. 

It is argued that Problem 2.3 is relevant for system identification of Gaussian 

stochastic control systems. Consider the least-squares estimation or maximum likeli­

hood estimation of the parameters of such a control system. As may be seen from the 

book [ 14, pp. 176-177], estimation algorithms for these two criteria are equivalent 

to selection of an clement in the model class that minimize the distance between 

two covariance functions. The first covariance function is that of the considered 

system in the model class and the second is that of the estimated covariance function 

according to, for example, the fonnula's 
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W ( t) = .!_ ~ ( y( s + t) - y) ( y( s) - y ) T 
z t 1 Li u(s+t) u(s) •=l 

The fitting of this estimated covariance function may now be abstracted to the 
stochastic realization Problem 2.3. In this approach, the given process is speci­
fied by its family of finite-dimensional distributions and because it is a Gaussian 
process with mean value zero, it is mainly specified by its covariance function. 

The stochastic realization Problem 2.3 is a special case of one that has been 
formulated by the author in 1985, see [ 17, Problem 4.2). 

The stochastic realization problem in which the input process does depend on the 
output process is not discussed in this paper. See [l, 2] for references on this problem. 
The stochastic realization problem in which it is not known which components of 
the observation process belong to the input and which to the output, is not discussed 
here. In the literature of econometrics there are papers on the causality relation 
between stochastic processes, see [7] for an entry to the literature. 

3. Existence of a Stochastic Realization and an Algorithm 
In this section, the existence part of the stochastic realization problem for a Gaussian 
stochastic control system will be solved and an algorithm stated. 

The stochastic realization problem for a time-invariant Gaussian stochastic system 
without input process has a long history. For references, see [5, 6]. For references 
on the strong stochastic realization problem for Gaussian systems, see (11-13). 
THEOREM 3.1. Consider the stochastic realization Problem 2.3. Assume that the 
covariance function satisfies limt-oo W(t) = 0 and W(O) > 0. Assume that the last 
m components of the observation process are inputs and Gaussian white noise. 

(a) There exists a Gaussian stochastic control system that is a weak stochastic 
realization of the given process iff 

(1) the infinite Hankel matrix associated with the covariance function has 
finite rank (see [4) or [15] for the definition of a Hankel matrix asso­
ciated with an impuls response function); 

(2) W21: T-+ Rmxp, W21(t) = 0, t > 0, (6) 
where W21 is the m x p subblock of W. 

Denote a stochastic realization by 

x(t+l)=Ax(t)+(M B)(~~~D· 

z(t) = ( ~~~n = ( ~) x(t) + ( ~ ~) ( ~~~n . 
(b) A stochastic realization as defined in (a) is minimal if[ 

(1) the state space is the support of the state process, or, equivalently, if 
(A, [ MV I BVu]) is a reachable pair; 
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(2) the stochastic system is stochastically observable, or (A, C) is an ob­

servable pair; 

(3) the stochastic system is stochastically reconstructible, or (A, [01 I B]) 

is a reachable pair where 

G1 = AQCT + MVNT, 

Q = AQAT +MVMT +BVuBT, 

(7) 

(8) 

and where Q E Rnxn is the unique solution of the discrete Lyapunov 

equation (8). 

(c) Assume that the covariance function satisfies the conditions of (a). Then the 

class of minimal stochasiic realizations is described by: 

(1) one particular system and a state space isomorphism as in finite­

dimensional linear systems or in Gaussian systems without input; 

(2) for any fixed isomorphism, the class is in bijective correspondence with 

the set 

Q1 = { Q E Rnxn IQ= QT > 0, V(Q) ~ o}, 

( Q-FQFT 
V(Q) = GT - HQFT 

G-FQHT) 
2J- HQHT 

E R(p+n+m)x(p+n+m). 

(9) 

(10) 

(d) The stochastic realization Algorithm 3.2 given below is well defined and de­

termines a stochastic realization in the form of a Gaussian stochastic control 

system. 

ALGORITHM 3.2. Calculation of a weak stochastic realization of a Gaussian 

stochastic control system. Data: Covariance function W: T --+ R(p+m)x(p+m) and 

dimension m E Z+ with 0 < m < p + m of the input process. 

(1) If the infinite Hankel matrix associated with the covariance function is finite, 

say with rank n E Z+, then determine F E Rnxn, G E R(.p+m)xn, H E 

Rnx(p+m>, J E R(p+m)x(p+m) such that 

W(t) { 2J, t = 0, 
= HFt- 10, t > 0, 

(11) 

by a well known realization algorithm for finite-dimensional linear systems; 

(see for algorithms [ 4] or [1 SJ); else stop; 

(2) Detennine Q E Q1 and V(Q). See (6] for algorithms. 
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(3) Let 

A=F, C=H, M =(In 0), 

V = V(Q), w(t) E G(O, V), 

x(t + 1) = Ax(t) + Mw(t), 

z(t) = Cx(t) + Nw(t), 

N = (0 Ip), 

(4) Partition the observation process into outputs and inputs according to 

z(t) - ( y(t)) 
- u(t) ' 

C1 E Rpxn, C2 E Rmxn, Ni E Rpxk, Nz E Rmxk. Then C2 = 0. 

(5) Compute ry+n+m)x(p+n+m) such that 

V =T1T[ 

and SE Rkxk such that SST = I and 

with L E Rmxm. Let 

(6) The stochastic realiz.ation is then 

z(t) = (Ci) x(t)+ (Nu N12) (v(t)) 
0 0 L u(t) ' 

where u, v are standard independent Gaussian white noise processes 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

The above algorithm is not completely determined, it involves two choices, one 
in each of the steps 1 and 2. 

Before presenting the proof of Theorem 3.1, examples are presented that illustrate 
the minimality condition. 
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EXAMPLE 3.3. Consider the Gaussian stochastic control system with p = 2, n = 3, 

m = 1, and r = 2, 

x(t+l)= ( 1 ~2 1~3 ~) x(t)+ (~~ ~ !6'3) (v(t)) (20) 
0 0 1/4 o tv'15 o u(t) ' 

y(t) = (~ ~ ~) x(t)+ (~ ~ ~) ( ~~!O. (21) 

with v(t) E G(O, I), u(t) E G(O, 1). This system is a minimal stochastic realization 

of its observation process. 

EXAMPLE 3.4. Consider the Gaussian stochastic control system with p = 2, n = 3, 

m = 1, and r = 2, 

x(t+1)=(
1b4 1~3 ~)x(t)+(g ~ ~)(v(t)) (22) 

0 0 1/2 0 -3/2 O u(t) ' 

y(t) = ( ~ ~ ~) x(t) + ( ~ ~ ~) ( ~~!O . (23) 

with v(t) E G(O, I), u(t) E G(O, 1). This system is not a minimal stochastic realization 

of its observation process. The process y2 is Gaussian white noise. This system is 

a minimal stochastic realization according to [8, Theorem 2.3.3]. 

EXAMPLE 3.5. Consider the Gaussian stochastic control system with p = 2, n = 3, 

m = 1, and r = 2, 

( 
1/2 0 0 ) ( iv'3 0 0 ) 

x(t + 1) = 0 1/3 0 x(t) + 0 jv'2 0 ( ~m) ' 
0 0 1/4 0 0 tvTS 

(24) 

( 1 0 1) ( ~..;'3 
y(t) = 0 1 1 x(t) + 0 0 ~v'f5) ( v(t)) 

-tv'2 ~05 u(t) ' 
(25) 

with v(t) E G(O, I), u(t) E G(O, 1). This system is not a minimal stochastic realization 

of its observation process. The conditions for minimality are: 

(1) (A, [M I BJ) is a reachable pair, which condition is satisfied; 

(2) (A, C) is an observable pair, which condition is satisfied; 

(3) (A, [G 1 I B]) is a reachable pair, which condition is not satisfied, because 

(A [ lm(G1)) u (A I Im(B)) =span G n # R' = x. 
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The nonminimality is illustrated by the backward representation of the stochastic 

system 

0 ( 1.J3 
0 ) x(t) + ~ 0 

1/4 0 

0 

~v'z 
0 

~ )(w(t)),(26) 
1 ~ u(t) 
4v15 

Y(t) __ (3/02 o0 1/2) (t) (N 
3/4 x + D) (w(t)) 

u(t) ' 

This system is a minimal stochastic realization according to (14, p. 105]. 

(27) 

The reason why minimality does not hold in Examples 3.4 and 3.5 is because con­

dition 3 of Theorem 3.1.b, stochastic reconstructibility, is not satisfied. In [8, p. 37], 
two ARMAX systems are said to be observationally equivalent if the two transfer 

matrices coincide. These matrices correspond to a spectral factor. In this paper, the 
spectral density is taken as the starting point because in system identification the 
estimated covariance function is the basic object. The same comment applies to the 

approach of [14]. In (14, p. 105], minimality conditions are presented for a state 
space realization. The conditions for minimality differ from those given here. 

There are several articles that discuss stochastic controllability of Gaussian stochas­
tic control systems. None of the definitions given in these papers seems useful in 
the context of Theorem 3.1. 

Below follows the proof of Theorem 3.1. 

PROPOSITION 3.6. Consider a Gaussian stochastic control system in the repre­

sentation (4), (5). Assume that sp(A) C c-. Asymptotically, for large times, tlze 
observation process z of this system is a stationary Gaussian process with zero mean 
value function and covariance function 

(28) 

where Q E Rnxn is the unique solution of the Lyapunov equation 

(29) 

and 

(30) 

Proof This is a direct calculation using results for stochastic realization theory of 
Gaussian stochastic control systems without input. D 
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Proof of Theorem 3.1 (1) By stochastic realization theory for Gaussian stochastic 

systems, the observation process has a stochastic realization as a Gaussian system 

representation 

x(t + 1) = Ax(t) + Mw(t), 

z(t) = Cx(t) + Nw(t), 

(31) 

(32) 

where w: Q x T - Rk is a stationary Gaussian white noise process, say with 

w(t) E G(O, Vw), Vw = VJ > 0. Suppose that a minimal stochastic realization has 

been selected. 
(2) It is given that the last m components of the observation process are Gaussian 

white noise. Partition z as 

z(t) = ( y(t)) 
u(t) ' 

where y: Q x T - RP and u: Q x T --+ Rm. Then u is a stationary Gaussian white 

noise, say u(t) E G(O, Vu)· Partition confonn the partition of z 

N = (~~)' 
where C1 E Rpxn, C2 E Rmxn, N1 E Rpxk, N2 E Rmxk. 

(3) From the fact that the system (31, 32) is a stochastic realization it follows that 

Q = AQAT + MVwMT, 

G = AQCT + MVwNr, 

( VV: (t) W (t)) = { C2QCf + N2VwNJ, t = 0, 
uy uu C2At- 1G, t > 0, 

(33) 

(34) 

(35) 

(36) 

Because the stochastic realization is by construction minimal it follows that (A, G) 

is a reachable pair or 

rank(G AG 

By assumption 

(Wuy(t) Wuu(t))=O, fort>O. 

Hence 



204 J. H. VAN SCHUPPEN 

implies that C2 = 0. 
(4) Let T1 E Rkxk be such that Vw = T1T{. Because Vw is nonsingular, rank(T1) = 

k. Consider N2T1 E Rmxk. Note that m ~ k. Then there exists a S E Rkxlc such 

that SS7' = I, or S is orthogonal, and 

where L E Rmxm. This follows from the singular value decomposition of N2T1 

according to 

Define 

( ~~ ~~) = ( ~) T, S, 

and let v: Q x T _. RP+n, u: Q x T _. Rm 

Then this process is Gaussian white noise with variance 

hence v, u are independent standard Gaussian white noise processes. Then 

Note that 

( 
C1QCf + M1M[ + M2M:f 

Wz(O) = N11M[ + N12M:f 
LMT 

2 

M1N'fi + M2N'fz 

NuN'fi + N12N'fz 

LN'fz 

Then the assumption Wz(O) > 0 implies that rank(LLT) = m or rank(L) = m. 

(5) The stochastic realization is then 

z(t)= (y(t)) = (Ci) x(t)+ (Nu 
u~) 0 0 

N12) (v(t)) 
L u(t) ' 
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in which v, u are independent standard Gaussian white noise processes. 

. (6) From stochastic realization theory for a Gaussian stochastic system without 

mput follows that the system (31), (32) is minimal iff 

(1) the state space is the support of the state process; 

(2) the system is stochastically observable; 

(3) the system is stochastically reconstructible. 

With x(t) E G(O, Q), condition (1) is equivalent to Q > 0. Now sp(A) c c- and 

Q = AQAT + MVMT + BVuB 

= AQAT + (MV1/2 BVu1f2) (MV1/2 BVu1f2)T. 

From a well-known result on the Lyapunov equation it follows that Q > O iff 

(A, [MV112 \ BVu1/ 2]) is a reachable pair. 

From stochastic realization of a Gaussian stochastic system without input and 

condition (1) follows that the system is stochastically observable iff (A, C) is an 

observable pair. Similarly, it follows that the system is stochastically reconstructible 

iff (A, G) is a reachable pair in which 

Now (A, G) is a reachable pair iff 

(A\ Im(G)) = X =Rn. 

Note that 

(A\ Im(G)) =(A\ Im(G1 + BVuDT I BVu)) 

= (A I Im(G1)) U (A I Im(B)). 

4. Canonical Form, Parametrization, and Identifiability 

D 

In this section, a subclass of Gaussian stochastic control systems is defined that is 

almost a canonical form. In addition a parametrization of this class is defined and 

an equivalent condition presented for the identifiability of this parametrization. 

Consider a stationary Gaussian process taking values in RP+m with zero mean 

value function. Denote by W: T - R(p+m)x(p+m) its covariance function. It 

follows from Theorem 3.1 that this process has a stochastic realization iff certain 

conditions are satisfied, see Theorem 3.1. Denote the class of covariance functions 

by WP+m and by Ws(p, n, m) the subclass of covariance functions that satisfy the 

condition of the theorem. Note that the minimal dimension of the state space n can 
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be determined from the covariance function. The parameters of a Gaussian stochastic 
oontrol system are detennined by 

gsp = {A,B,C,D,M,N, V} E GSCSP(p,n,m,r). 

Define the map 

f: GSCSP(p,n,m,r) - Ws(p,n,m), 

J(A,B,C,D,M,N, V) = {W(t), t ET}, 

{ 
( CA~- 1G CAt-;BVu)' 

W(t) = ( CQCT +NV NT + DVu DT 
VuDT 

t > 0, 

Diru)' t = 0, 
see Proposition 3.6, that associates gsp to the covariance function. 

(37) 

(38) 

(39) 

From Theorem 3.1 follows that if a covariance function admits a stochastic real­
ization in the class of Gaussian stochastic control systems, that it may then admit 
many such realizations. First attention is restricted to a minimal realization. Even 
with this restriction, a stochastic realization is not unique. Therefore the map f 
is not injective. What is needed is a way to parametrize the set Ws(p, n, m) by a 
subset GcF C GSCSP(p, n, m, r) for some r E Z+ such that the map h: GcF -
Ws(p, n, m) is injective and preferably continuous. 

The problem of a canonical fonn for the class of Gaussian stochastic control 
systems is now motivated. Below definitions of a parametrization and a canonical 
fonn are stated. 

4.1. PARAMETRIZATION AND CANONICAL FORM 

DEFINITION 4.1. Let Y be a set. A parametrization of the set Y is a pair (X, f) 
with X a set and f: X - Y a map such that f is surjective. It is said to be injective 
if f is injective. It is said to continuous if X and Y are equipped with a topology 
and f is a continuous map with respect to the topology. A parametrization is said 
to be identifiable if it is injective. 

The surjectiveness in Definition 4.1 is imposed because (X, f) must describe or 
parametrize all elements of Y. An example of a set to be parametrized is Y = 
Ws(p, n, m) with parametrization (X, !) in which X = GSCSP(p, n, m, r) with r E 
Z+, r ~ p, and f as defined in (39). Because by Theorem 3.1 any W E W5 (p, n, m) 
admits a minimal realization, f is surjective. 

If a parametrization (X, f) of Y is not injective how can it then be transformed into 
an injective one? Define the relation - on X by z 1 - z2 if f(z 1) = /(z2). It follows 
directly from the definition of this relation that it is an equivalence relation. In Gaus­
sian stochastic systems, an arbitrary stochastic realization and its Kalman realization 
are said to be equivalent if they correspond to the same covariance function. 
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DEFINITION 4.2. Let Y be a set and (X, !) be a parametri:zation of Y. Consider 

the above defined equivalence relation ,...,, on X induced by f. A canonical form for 

(X, Y, f) is a triple (Z, g, h) consisting of a set Z and maps g: X --+ Z, h: Z--+ Y 

such that 

• for all x EX f(x) = h(g(x)), or, equivalently, f =hog; 

• the function g is surjective; 

• the function h is injective. 

THEOREM 4.3. Let Y be a set and (X, !) be a parametrization of Y. 

(a) There exists a canonical form (Z, g, h) of (X, Y, !). 

(b) Suppose there exists two canonical forms (Z i. g1, h 1) and (Z2, g2 , h2) of 

(X, Y, !). Then there exists a bijection b: Z 1 --+ Z2 such that g2 = b o g 1 

and h 1 = h2 o b. 

Proof. Not presented here. 0 

4.2. CANONICAL FORM FOR S1DCHASTIC REALIZATIONS OF GAUSSIAN SlDCHASTIC 

CONTROL SYSTEMS 

To construct a canonical fonn for (GSCSP(p, n, m, r), Ws(p, n, m), f) one has to 

specify a triple (Z, g, h). The canonical fonn for this set is not yet fully developed. 

Instead a set Z and maps g, h will be specified with the remaining equivalence in h. 

DEFINITION 4.4. A Gaussian stochastic control system with as input process a 

Gaussian white noise process is said to be a Kalman realization of its observation 

process if its representation is of the form 

x(t + 1) = Ax(t) + (K B) ( ~g?), (40) 

(y(t)) (C) (I D) (w(t)) 
z(t) = u(t) = 0 x(t) + 0 I u(t) ' (41) 

with w, u independent Gaussian white noise processes with w(t) E G(O, Vw), Vw = 

VJ > 0, u(t) E G(O, Vu), Vu = vJ > 0, and 

(1) sp(A)cc-; 
(2) sp(A - KC) cc-; 
(3) (A, [ KVw I BVu]) is a reachable pair; 

(4) (A, C) is an observable pair; 

(5) (A, [G1 Vw I BVu]) is a reachable pair, where 

(42) 

(43) 
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Denote the set of parameters of a Kalman realization by 

{ 

(A,B,C,D,K,I, Vw, Vu) } 
E Rnxn X Rnxm X RPXn X RPXm 

GSCSPK.R(p, n, m,p) = xRnxp x RPXP x RPXP x Rmxm . 

I satisfying (1) through (5) above 

(44) 

Because of lack of space no realization algorithm is presented for the Kalman 
realization of an observed process. 

THEOREM 4.5. Consider a Gaussian stochastic control system that satisfies sp(A) C 
c- and with a Gaussian white noise input process. 

(a) There exists a Gaussian stochastic control system that is a Kalman realization 
of the observation process associated with the given system. 

(b) Any two Kalman realizations of the same observation process are related by 
a state space transformation, or, if the Kalman realizations are represented 
by 

{(Ai, B1, C1, D1, K1,l, Viw, Viu) E GSCSPKR(p, ni, m,p) }, 

{ (A2, B2, C2, Dz, K2, I, Vzw, Viu) E GSCSPKR(p, nz, m,p)} 

then n = n 1 = n2 and there exists a nonsingular SE Rnxn such that 

(45) 

Proof. (a) Given a Gaussian stochastic control system one may construct its ob­
servation process. 

From Theorem 3.1 follows that there exists a minimal stochastic realization. 
From [6, 11] it follows that there exists a minimal stochastic realization with 

sp(A) Cc- and sp(A - KC) c c-. 
(b) This follows from the corresponding result for Gaussian stochastic systems. D 

In the case of a single output system, with p = 1, one may take the observable 
canonical form for the pair (A, C). This subclass is then truly a canonical form. 

In [14, pp. 101-106] identifiability of Gaussian stochastic systems is discussed. 
The representation used is an ARMAX representation. The condition imposed in 
that book, see (14, p. 103), includes that the ARMAX representation is a predictor. 
This condition is equivalent to condition (2) of Definition 4.4, or sp(A- KC) Cc-. 

In [8, pp. 44-49] a canonical fonn is derived only for the case in which one starts 
with the spectral factor. 

It is conjectured that there does not exist a continuous canonical fonn for W5 (p, n, 
m) if p > 1 and m > 1. This conjecture is inspired by a corresponding result for 
finite-dimensional linear systems, see [9]. 
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4.3. STRUCTURED GAUSSIAN S1DCHASTIC CONTROL SYSTEMS 

Structural identifiability of deterministic finite-dimensional linear systems is dis­

cussed in many papers, see for an introduction to the literature [ 16]. 

As argued before, the subset of Gaussian stochastic control systems that are 

Kalman realizations may be taken as a starting point for a canonical fonn. For 

structured Gaussian stochastic control systems attention is therefore restricted to this 

class of realizations. 

DEFINITION 4.6. A structured Kalman realization of a Gaussian stochastic control 

system with as input process Gaussian white noise is a set P C R8 for some s E Z+, 

and maps 

B: P---.Rnxm, 

D: P---.Rpxm, 

V ... : P---.Rmxm, 

such that for any q E P 

{A(q), B(q), C(q), D(q), K(q), I, Vw(q), V ... (q)} E GSCSP-r:Ji.(p, n, m,p) 

is the parameter of a Kalman realization of a Gaussian stochastic control system. 

This system is represented by 

x(t + 1) = A(q)x(t) + ( K(q) B(q)) ( ~g?) , (46) 

z(t) = ( ~~~n = ( Cbq)) x(t) + (; DJq)) ( ~&?) , (47) 

where w(t) E G(O, Vw(q)) and u(t) E G(O, V ... (q)). Denote by 

GSCSPsKJl(p, n, m,p) = {(A(q), ... , V ... (q)) E GSCSP-r:Ji. I q E P} 

the set of possible parameters of this structured system and by Ji the map 

Ji: P--+ GSCSPsKJl(p, n, m,p), q f--+ (A(q), ... , Vu(q)). 

Note that (P,fi) is a parametrization of the set GSCSPsKR(p,n,m,p). Of in­

terest is the parametrization of the set of covariance functions associated with the 

observation process of such a system, say Ws1r(p, n, m). Let 

f o fi: P---> Ws1r(p, n, m) (48) 
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be the composition of the maps Ii with f, where f is as defined in (37). Then 

(P, f o / 1) is a parametrization of Ws1r(p, n, m). Is this parametrization identifiable? 

In the following, terminology of algebraic geometry is used, see [3] and [10, 

Chapter X, Section 3]. A property is said to be generic on P C Rn if it holds for 

all p E P outside an algebraic set. An algebraic set is defined by a finite set of 

polynomials according to 

{q e PI 91(q) = o, .. .,gk(q) = o}, 

where g,: P __. R, i = 1, ... , k are polynomials. 

DEFINITION 4.7. Consider a structured Gaussian stochastic control system with 

as input process a Gaussian white noise process that is observed. Consider the 

parametrization (P, fi) of GSC SPsKR as defined in Definition 4.6. This parametriza­

tion is said to be structurally identifiable (from the covariance function) if generically 

the parametrization (P, f o /i) of the associated set of covariance functions is iden­

tifiable. Thus, it is structurally identifiable if the map f o Ji: P __. Wsu is injective 

outside an algebraic set. 

THEOREM 4.8. Consider a structured Gaussian stochastic control system with rep­
resentation 

x(t + 1) = A(q)x(t) + ( K(q) B(q)) ( :&? ) , (49) 

z(t)= (y(t)) = (C(q)) x(t)+ (I D(q)) (w(t)) 
u(t) 0 0 I u(t) ' 

(50) 

with 

W(t) E G(O, Vw(q)), Vw(q) = Vw(qf > 0, 

u(t) E G(O, Vu(q)), Vu(q) = Vu(q? > 0, 

and parametrization (P, Ji) as defined in Definition 4.6. This representation need 
not satisfy the conditions of a Kalman realization. 

(a) The representation (49), (50) is a structurally minimal stochastic realization 
of its observation process iff for all q E P outside an algebraic set 

(1) sp(A(q)) cc-; 
(2) sp(A(q)- K(q)C(q)) cc-; 
(3) (A(q), [K(q)Vw(q) I B(q)Vu(q)]) is a reachable pair; 
(4) (A(q), [G1(q) I B(q)Vu(q)]) is a reachable pair, where G 1(q) is as G 1 

in (42); 

(5) (A(q), C(q)) is an observable pair. 
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(b) Assume that the system is a structurally minimal stochastic realization. The 

parametrization (P, / 1) of GSCSPsKR is structurally identifiable if! for all 

qi, qz E P outside an algebraic set and S E Rnxn nonsingular 

A(q1) = SA(qz)s- 1, 

C(q1) = C(qz)s- 1, 

imply that q1 = qz. 

B(q1) = SB(qz), 

D(q1) = D(qz), 

Proof. This follows directly from Theorem 4.5. 

5. Conclusion 

(51) 

0 

The weak stochastic realization problem for a Gaussian stochastic control system has 

been fonnulated and solved. An equivalent condition for the existence of a stochastic 

realization has been presented and an algorithm provided. The subclass of Kalman 

realizations has been defined and it has been established that this class is almost 

a canonical fonn for this problem. The remaining invariance has been exhibited. 

Identifiability conditions for a structured Gaussian stochastic control system have 

been presented. 

Extensions and open questions of the problem considered in this paper there are 

many. The case in which the input process is not Gaussian white noise but a colored 

Gaussian process can be treated along the same lines. More interesting is a more 

explicit canonical fonn that avoids the difficult to verify stochastic reconstructibility 

condition (5) of Definition 4.4 or condition (4) of Theorem 4.8.a. 
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