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Tuning of Gaussian Stochastic Control Systems 
J. H. van Schuppen, Member, IEEE 

Abstract-A closed-loop system consisting of a control system 
and an adaptive controller will be called tuning for a specified 
control objective if the real system and the ideal system defined 
below achieve the same value for the control objective. The 
real system is the system consisting of the unknown control 
system in closed loop with the adaptive controller in which the 
parameters of the adaptive controller have been determined by 
identification under feedback or in closed loop. The ideal system 
is the system consisting of the unknown control system in closed 
loop with a controller in which the controller has been synthesized 
with knowledge of the unknown control system and such that 
the closed-loop system satisfies the control objective. For which 
adaptive controllers does tuning hold? This question will be 
considered for both a Gaussian stochastic control system with 
full observations and with partial observations. The approach to 
the problem is based on stochastic realization theory for Gaussian 
systems. The stated question is answered positively for the control 
objectives of minimum variance control and pole placement. 
Necessary conditions for tuning are discussed. 

I. INTRODUCTION 

T HE purpose of this paper is to explore the question: 
Which adaptive controllers for Gaussian stochastic con­

trol systems achieve tuning in the closed loop? 
The problem of adaptive control is: given an unknown 

control system and control objectives, how can, we synthesize 
an adaptive controller such that the resulting closed-loop 
system satisfies the control objectives as much as possible? 
A major question is whether the adaptive controller will 
achieve the same value for the control objective as a controller 
synthesized with knowledge of the unknown control systems. 
Of the many adaptive control algorithms, attention is limited to 
those produced by the self-tuning synthesis procedure for this 
problem that was developed by Astrom and Wittenmark [2]. 

A theoretical analysis of self-tuning controllers will have 
to establish that these controllers are indeed tuning. Although 
some progress has been made on this question [4], (16], [17], in 
general it is unsolved. A major difficulty in the analysis of this 
question is that identification takes place in the closed loop. A 
consequence of this limitation is that the control system cannot 
be determined uniquely in general. This nonuniqueness .must 
be accounted for in an analysis of self-tuning controllers. 

The problem of whether a controller designed by the self­
tuning synthesis procedure is indeed tuning has been inves­
tigated for several classes of stochastic control systems. For 
Markov chains, the contributions by [6], [16] show that tuning 
in general does not hold but that under certain conditions 
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tuning of specific control objectives does hold. In [24] an 
attempt is made to analyze tuning for Gaussian stochastic 
control systems. The approach is based on an analysis of the 
limit set of parameter estimation algorithms. Only a first-order 
system is treated. Related work may be found in [4], [12], 
[15], [17]-(20], (25]-[29], [31], [33]. 

In this paper a specific problem of tuning will be treated. 
The aim of this investigation is to explore the interaction of 
learning and control in adaptive control. Attention is restricted 
to the model class of Gaussian stochastic control systems, and 
it is assumed that the plant generating the observations may 
be represented by an element of the model class. Attention 
is focused on the consequences of identification of systems 
operating under feedback or in the closed loop. 

Analysis of self-tuning control algorithms will have to 
treat two aspects: 1) the limitations of identification of a 
system operating under feedback or in closed loop; and 2) 
the convergence of parameter estimates. In the opinion of the 
author, both points need to be studied separately in adaptive 
control theory. This viewpoint is rather novel. Point 1) may 
be studied using results of realization theory. It is expected 
that this study will yield information on which controllers are 
tuning as defined in this paper. For earlier works along this 
line [see 27-29]. If a controller is tuning, then a study of point 
2) may yield information on which parameter estimation algo­
rithm in combination with the controller produces convergent 
parameter estimates and achieves tuning in practice. See [21, 
23] for results on convergence of parameter estimates. In the 
past the technicalities of convergence analysis have obscured 
a study of point 1). 

The formulation of the problem requires the introduction of 
several concepts. The ideal system is the system consisting 
of the unknown control system in the closed loop with a 
controller in which the controller has been synthesized with 
knowledge of the unknown control system and such that 
the closed-loop system satisfies the control objective. The 
real system is the system consisting of the unknown control 
system in closed loop with the adaptive controller in which the 
parameters of the adaptive controller have been determined 
by closed-loop identification. A closed-loop control system 
will be called tuning for a specified control objective if the 
identification condition defined in Section II implies that the 
ideal system and the real system achieve the same value for 
the control objective. In Section II these concepts are presented 
in more detail. This terminology applies to both deterministic 
and stochastic systems. 

The problem considered in this paper is to establish whether 
or not a closed-loop control system is tuning as defined in this 
paper. 
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The approach to the problem is stochastic realization theory. 
The weak stochastic realization problem is given an observed 
process to construct a state-space realization in the form of a 
stochastic system such that the output process of this system 
equals the given process in distribution. Stochastic realization 
theory has been developed mainly for Gaussian processes 
[14]. In this paper, characterizations of sets are based on 
the comparison of the ideal and the real system as stochastic 
realizations of their output processes. 

The results obtained so far are as follows. For the full 
observations case, tuning holds for pole placement but not 
for linear quadratic control. For the partial observations case 
with minimum variance control, tuning holds not only for 
the variance but also for the family of finite-dimensional 
distributions of the output process. Tuning also holds for the 
pole placement control objective. The spectra of the ideal 
system and the real system will be different in this case. Tuning 
has also been analyzed for a controller consisting of a Kalman 
filter and a linear control law. The conclusions are as of yet 
unclear, but the indications are that tuning is not achieved in 
general. 

Consideration has been given to the question: Which con­
trollers achieve tuning for the spectrum of the output process? 
A minimum variance controller achieves this goal. Is this the 
only class? For a first-order system, it has been proven that 
tuning of the output process holds only for control laws based 
on either the minimum variance or the pole placement control 
objective. This question for higher order systems is under 
investigation. There are connections of this question with that 
of robustness of adaptive control algorithms; see [5). 

A preliminary version of this paper without proofs appeared 
as [34]. Some of the results of this paper are close in spirit 
to those of [17]; however, the approach and the extent of this 
paper are different. 

II. PROBLEM FORMULATION 

Let (n, F, P) be a probability space consisting of the. set 
n, the a-algebra F, and the probability measure P. The time 
index set is T = Z, the set of the integers. Let R be the set 
of the real numbers and C be the set of the complex numbers. 
Consider the class of Gaussian stochastic control systems. The 
notation p will be used to denote a parameter set of this class. 
It is assumed that P c Rr for some integer r. A Gaussian 
stochastic control system associated with parameter P E P is 
specified by the state-space representation 

x(t + 1) = A(p)x(t) + B(p)u(t) + M(p)v(t), (1) 

y(t) = C(p)x(t) + N(p)v(t) (2) 

where v : n x T -+ Rk is a Gaussian white noise process 
(a sequence of independent random variables) with for all 
t E Tv(t) E G(O, V(p)), u: n x T -+ Rm is the input 
process, x : n x T -+ Rn is the state process, y : n x T -+ RP 
is the output process, and A: P-+ Rnxn is a measurable m~p 
while the maps B, C, M, N are defined similarly. Denote this 
system by a(p) and the class of Gaussian stochastic control 
systems by {cr(p), p E P}. 
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Assumption 2.1: There is a model class of control systems 
each system of which is indexed by a parameter vector p E 
Pc Rr. The notation {a(p), p E P} is used for this class. 
The plant generating the data in the form of the outputs can be 
represented by an element in the model class. Suppose that the 
parameter corresponding to this system is denoted by po E P 
and the system itself by D"(po). Consider a control objective 
and a family of controllers L:c = {a c(P), p E P} such that 
for each p E P the closed-loop system ac1(p, p), consisting of 
the control system i7(p) and the controller D"c(P) (see Fig. 3) 
achieves the control objectives as well as possible. 

The setting of the adaptive control problem is that of a 
technical system which is uncertain. Suppose that a control 
objective is given. The adaptive control problem is then to 
construct an adaptive controller such that the closed-loop 
control system satisfies the control objective. 

The self-tuning synthesis procedure for adaptive control has 
been introduced in [2]. One proceeds as follows. For every 
parameter value p E P construct a controller D"c(P) that in the 
closed loop with the plant D"(p) satisfies the control objectives 
as well as possible. The adaptive controller at time t proceeds: 

1) Estimate the value p0 of the unknown parameter. Denote 
the parameter estimate by p( t) 

2) Apply the input value produced by the controller indexed 
by p(t). 

The performance of such controllers has been investigated. 
The following questions on the performance of self tuning 
controllers are of interest: 

1) Transient behavior. Does as - limt_,00 p( t) exist? The 
expression as - lim denotes the almost sure limit of the 
process {p(t), t E T}. 

2) Control. If the parameter estimates converge does the 
resulting closed-loop system then satisfy the control 
objective? 

The first question concerns the convergence of the parameter 
estimates. As such it deals with the transient behavior of the 
algorithm. The limit, if it exists, may be different from the 
value of the parameter of the system generating the data. It is 
not assumed that the limit of the parameter estimates equals the 
value of the parameter of the system that generates the data. 
That the first question can always be solved is shown by the 
Bayesian embedding technique in [ 17] and by the extended 
least-squares method in [23]. . 

The second question concerns the controller that one will 
use if the parameter estimates have converged. This question 
involves the identification in closed loop. It will be made clear 
that the answer to the second question is negative for some 
classes of controllers. The analysis of this paper concentrates 
exclusively on the second question. 

The problem formulation requires an !ntro~uc~ion and the 
statement of several definitions. The basic objective of study 
is the closed-loop system consisting of a control system 
in combination with a controller. Both the class of control 
systems and the class of controllers are indexed by a parameter 
vector in the parameter set. By Assumption 2.1 the plant t~at 
generates the data is an element of the model class and its 
parameter vector is given by Po E P. 
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u(po) 
y 

Fig. 1. The ideal system u c1 (po. Po). 

y 

Fig. 2. The real system a c1 (Po. p). 

u(p) 
y 

Fig. 3. The imaginary system uc1(p, p). 

According to the self tuning synthesis procedure, a con­
troller is selected on the basis of identification. Suppose that 
the identification procedure produces the parameter vector 
p E P. The controller used is then c;c(p). It is useful for 
the subsequent discussion to introduce the following concepts. 

Definition 2.2: Consider the notation of Assumption 2.1 
and Figs. I, 2, and 3. Let p E P be an arbitrary element. 

I) The ideal system is the closed-loop system c;cl(Po, Po) 
consisting of the unknown control system c;(po) and the 
controller ac(Po) corresponding to it according to the 
control objective. 

2) The real system corresponding to p E P is the closed­
loop system a c1 (Po, p) consisting of the unknown con­
trol system a(p0 ) and the controller ac(p). 

3) The imaginary system corresponding to p E P is the 
closed-loop system a cl (p, p) consisting of the control 
system a(p) and the controller ac(p). 

The interpretation of the ideal, the real, and the imagi­
nary system is as follows. If the unknown system is in the 
model class and represented by c;(p0), then the controller 
that achieves the control objectives as best as possible is by 
definition uc(Po). Because the parameter value Po is unknown, 
however, the controller <7 c (po) cannot be constructed in gen­
eral. Therefore the associated closed-loop system is called the 
ideal system. The closed-loop system that represents what will 
be used if the parameter adjustment lias been completed is 
called the real system. It consists of the unknown control 
system a(po) and the controller ac(p), and it will be denoted 
by acl(p0 , p). This closed-loop system corresponds to reality, 

hence the name real system. If a parameter estimate has been 
obtained say the parameter p, then the control engineer will 
think that the unknown control system is represented by c;(p). 
Hence he will think that the closed-loop system consists of 
ac1(P, p). Since the closed-loop system consisting of a(p) and 
ac(P) is conceived only in the mind of the control engineer, 
it is called the imaginary system. The abbreviation cl stands 
for closed loop. 

Because of the imposed restriction to the study of control 
aspects, there is no parameter estimation algorithm and no 
sequence of parameter estimates. Yet, one needs a condition 
that corresponds to the consistency of a sequence of parameter 
estimates. For this purpose the identification condition is 
introduced that is stated below. This condition is phrased in 
terms of stochastic realization theory. Consider two closed­
loop stochastic systems as defined above. Such Gaussian 
stochastic systems are called output equivalent if the family 
of finite-dimensional distributions of the output processes of 
these systems are the same. If these output processes are 
stationary, Gaussian, and have zero mean value function, 
then the stochastic systems are equivalent iff the covariance 
functions are the same. 

Definition 2.3: For the self-tuning control setup considered, 
the identification condition for the real and the imaginary 
system is said to hold for p E P if one of the following 
equivalent conditions hold: 

1) The family of finite-dimensional distributions of the 
output processes of the real system a cl (Po, p) equals 
that of the imaginary system uc1(p, p). 

2) The systems ac1(p0 , p) and uc1(p, p) are equivalent 
weak stochastic realizations. 

3) The covariance functions of the output process y of the 
systems ac1(Po, p) and ac1(p, p) are equal. 

In this case one also says that the associated systems are 
output equivalent. Let 

Pid(Po, Ee) 
= {p E P\ac1(po, p), c;c1(p, p) are output equivalent}. 

(3) 

For the interpretation of the identification condition the reader 
should recall that by assumption the plant generating the data 
is represented by the control system u(p0 ) of the model class. 
Thus the real system O"cz(po, p) corresponds to what is the 
plant in closed loop with the adaptive controller ac(p), and 
the output process of this system corresponds to the observed 
data. The imaginary system is a mathematical model for the 
closed-loop system in which the control system and the plant 
are indexed by the same parameter vector. The identification 
condition implies that an imaginary system a cl (p, p) or a 
p E P has been selected such that its output process is 
equivalent to the observed data. This condition thus formulates 
in the framework of this paper what an identification procedure 
is supposed to achieve. The convergence results of [17], 
[23] imply that asymptotically the identification Condition 2.3 
holds. 

Definition 2.4: The closed-loop control system of Assump­
tion 2.1 will be called tuning if the identification condition 
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for the real and the imaginary system implies that the ideal 
and the real system achieve the same value for the control 
objective. Thus tuning holds if for p E P for which the 
real system ac1(Po, p) and the imaginary system ac1(p, p) 
are output equivalent, one may conclude that the ideal system 
ad (po, Po) and the real system a cl (Po, p) achieve the same 
value for the control objective. Let 

Ptb(Po, Ee) 

= { E p I aez(po, Po), (Jcl(Po, p) achieve the same} 
p value for the control objective · 

Then the closed-loop system is tuning iff 

Pid(Po, Ee) C Ptb(Po, Ee)· 

(4) 

(5) 

Examples of control objectives for which tuning will be in­
vestigated are minimum variance control and pole placement. 

The definition of tuning may be interpreted as follows. 
Consider an adaptive controller based on the self-tuning syn­
thesis procedure that is put in closed loop with the unknown 
control system. In practice the parameter value is then adjusted 
until the output process of the real system and that of the 
imaginary system are rather close. In the context of this paper, 
this condition is translated to the condition that the output 
processes of the real and the imaginary system are the same 
as stationary Gaussian processes. If these output processes are 
equivalent then the identification condition is said to hold. 
The set Pid(Po, Ee) characterizes the set of parameter values 
to which a parameter estimation algorithm may converge. 
If the closed-loop system is tuning, then the identification 
condition implies that the closed-loop system will be such that 
the ideal and the real system achieve the same value for the 
control objective. Hence the ultimate aim of adaptive control 
is achieved. 

In the literature tuning is sometimes defined as convergence 
of the parameter estimates in combination with the property 
that the resulting closed-loop system achieves the prescribed 
control objective. As argued in Section I, it is useful for 
the development of adaptive control theory to separate the 
convergence issue from the control issue. The author proposes 
to use the term tuning for the property of the closed-loop 
system as specified in Definition 2.4 Another concept of tuning 
has been presented in [26]. 

Problem 2.5: Given the class of Gaussian stochastic control 
systems and a control objective, determine whether the closed­
loop system associated with the control problem for this 
system is tuning. Three subproblems may be deduced from 

this problem: 
1) Characterize the subclass of the class of Gaussian sto­

chastic control systems such that the associated real 
system and imaginary system are output equivalent, or 
determine the set Pid(p0 , Ee); see Definition 2.3. 

2) Characterize the subclass of the class of Gaussian sto­
chastic control systems such that the ideal system and the 
real system achieve the same value for the control_ ?b­
jective, or determine the set P1b(po, Ee); see Defimt10n 

2.4. 
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3) Determine whether or not tuning holds, or whether 

(6) 

Tuning is important not only for adaptive control but for 
the installation of control systems in practice. Note that in 
any installation of a controller tuning takes place in the closed 
loop as indicated above. 

It is conjectured that tuning holds as defined in Definition 
2.4 iff the value of the control objective can be determined 
from the output of the closed-loop system. If this conjecture 
is true, then it has important consequences for synthesis of 
adaptive control systems and for control systems in general. 

There are several issues that complicate solution of the 
above problem: 

1) Identification in closed loop. When identification takes 
place in the closed loop then there may exist more 
than one parameter value that produces the same output 
process of the closed-loop system. 

2) Nonuniqueness of the controller. For a given control 
objective and a stochastic control system, the associated 
controller may not be unique. In the case that the control 
objective is pole placement the controller is nonunique 
in general. 

3) Cancellation of dynamics in closed loop. A minimal 
realization of the closed-loop system may have a state­
space dimension that is less than that of the plant and 
the controller combined. 

These issues will be treated in the subsequent sections. 
The problem of tuning has been isolated first for Markov 

chains although it was not called by that name. In [25] a 
condition of identifiability was imposed which ensures that 
the only element in the set P;d(Po, ~e) is Po· Because always 
p0 E P1b(Po, Ee), tuning takes place. In [6] it was pointed 
out that in general 

(7) 

and that in general tuning does not hold. In a series of papers 
Kumar et al. [18], [19) explored self tuning and showed that 
tuning, defined in a way that is different from that of Definition 
2.4, may take place for specific control objectives under ce1tain 

conditions. 

Ill. COMPLETE OBSERVATIONS CASE 

In this section the problem formulated in Section II is solved 
for a Gaussian stochastic control system in which the state 
is observed. The cases of adaptive control of a finite state 
Markov chain and that of a controlled diffusion process are not 
treated. For convergence results and tuning for an adaptively 
controlled finite-state Markov chain see [7]. For convergence 
results and tuning for a partially observed Markov chain see 
[l], and for a countable-state Markov chain (33, Theorem 7.1]. 
For convergence results of an observed controlled diffusion 

process, see [8], [9], [10]. . . 
Definition 3.1: Consider the class of Gaussian stochastic 

control systems with complete observations. Let a(p) denote 
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a system in the model class represented by the equation 

x(t + 1) = A(p)x(t) + B(p)n(t) + M(p)v(t), 
v(t) E G(O, V(p)). (8) 

Denote the parameter set by P C R". Assume that the 
unknown control system generating the data is in the model 
class and represented by p0 E P. Depending on the control 
objective, attention is limited to a subset P1 C P of the 
parameter set P. On P 1 the feedback law is said to be well 
defined and given by F: P1 -+ Rmxn, n(t) = F(p)x(t). 

The adaptive control problem for the above defined class of 
systems has been considered in [ 12], [ 13]. 

Next the real and the imaginary systems are described. The 
real system O' cl (Po, p) is specified by the equation 

x(t + 1) = [A(po) + B(po)F(p)]x(t) + M(po)v(t), 
v(t) E G(O, V(po)). (9) 

The imaginary system O' c1 (p, p) is specified by 

x(t + 1) = [A(p) + B(p)F(p)]x(t) + M(p)v(t), 
v(t) E G(O, V(p)). (10) 

A stochastic system of the form (9) or (10) will be called 
stochastically stable if the state process is a stationary square­
integrable process with zero mean value function and finite 
variance. This elementary definition will suffice for our pur­
pose because attention is restricted to stationary processes. Let 
c- = { c E Gii cl < 1}. The set of eigenvalues of a matrix 
A is denoted by sp(A). 

Definition 3.2: Define for p E P the conditions: 
1) The feedback law F: P -+ Rmxn is well defined, or 

p E P1. 
2) The real and the imaginary system are stochastically 

stable. 
3) The real and the imaginary system are output equivalent 

(see Definition 2.3) where the output equals the state in 
the case of Definition 3.1. 

Let 

Pid(Po, F) = {p E PI conditions 1, 2, and 3 above hold} 
(11) 

Theorem 3.3: Consider the model class of Definition 3.1. 
The set P;d(Po, F) is characterized by 

P;d(Po, F) = {p E Pip E P1 , and (13), (14), (15) hold} 
(12) 

1) sp([A(p) + B(p)F(p)]) C c- and sp([A(po) + 
B(po)F(p)]) cc-; (13) 

2) A(po) + B(po)F(p)l·im(Q(po, p)) = A(p) + 
B(p)F(p)lim(Q(p, p)) (14) 
where the notation lim(Q(p, p)) stands for the 
restriction to the image of this matrix and 
Q(po, p) = Q(p, p) as established in the proof; 

3) M(po)V(po)M(po)T = M(p)V(p)M(p)T; (15) 
where the definitions of Q(p0 , p) and Q(p, p) are given 
in (66), respectively (68). 

The proof may be found in the appendix. 
Next the question of tuning is briefly discussed. Since the 

conditions of Theorem 3.3 are similar to those obtained for 

a deterministic system, we limit attention to mentioning the 
result on tuning. Consider as control objective F(po) = F(p). 
For other control objectives corresponding results may be 
obtained. 

Definition 3.4: Let 

Pfb(Po, F) = {p E PjF(p) well defined, 

O'cz(po, p) stoc. stable, F(p) = F(po)}. (16) 

Theorem 3.5 ( [27)-{29) ): Consider the model class of Def­
inition 3.1 with the additional condition that the input space 
has dimension one. Assume that for all p E P the pair 
(A(p) + B(p)F(p), (M(p)V(p) 112 ) is reachable. 

a) If a pole assignment control law that is stabilizing is 
used, then tuning holds, or P;d C Pfb· 

b) If a LQ control law is used then the intersection 

(17) 

either is a singleton and Pid (po, F) contains an 
open and dense subset that is cw diffeomorphic 
to an open and dense subset of an n-dimensional 
manifold; 
or is contained in the boundary of a subset of 
Pid(po, F) while this subset is cw diffeomorphic 
to an open and dense subset of an n-dimensional 
manifold. 

In either case (17) is a negligible subset of Pid (Po, F). If 
the identification procedure produces a parameter vector 
in p E Pin the set P;d(Po, F) then tuning holds only if 
p E Pid(Po, F) n PJb(Po, F). Because the intersection 
is either a singleton in the set Pid which is of dimension 
n or because the intersection is contained in a set 
of dimension strictly smaller than that of P;d (p0 , F), 
tuning holds only in exceptional circumstances. 

The proof of this result is easily deduced from Theorem 
3.3, in particular from condition (14), and from the indicated 
references. 

In the paper [12] a particularly structured Gaussian stochas­
tic control system in continuous time is considered. The model 
class consists of systems described by the equation 

dx(t) =[Ao+ ta;A;]x(t)dt+Bu(t)dt+Mdv(t) (18) 

in which v: n x T -+ Rk is a standard Brownian motion, 
u : 0 x T -+ is the input process, and .7: : 0 x T --; R" 
is the state process. Of the parameters of the model class, 
the values of Ao, Ai,···, A,., B, M, are assumed known, 
while those of 001, · · · , °'r are assumed unknown. It is fur­
ther assumed that the matrices in the set { A 1 , · · · , Ar} are 
linearly independent. Assume also that the system generating 
the data is in the model set and denote the corresponding 
parameter by Po = ( 0001, · · · , aor) E P. As before the set 
of admissible control laws is specified by F: P -+ Rmxn, 
u(t) = F(p)x(t). Assume that the real and the imaginary 
system are stochastically stable or that for all p E P the 
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matrices 

r r 

Ao+ L Cl!oiAi + BF(p), Ao+ L Cl!iAi + BF(p) 
i=l i=l 

are stable. Assume finally that for all p E P 

M(p)V(p) 112 ) (19) 

is a reachable pair. Theorem 3.3 has been derived for a 
discrete-time stochastic system. The following proposition is 
based on a continuous-time version of Theorem 3.3. The 
extension of Theorem 3.3 to a continuous-time system as 
presented in (18) is straightforward. 

Proposition 3.6: Consider the model class described by 
(18) and the assumptions stated between (18) and this propo­
sition. Then 

where the left-hand side is as defined in (11). 
Proof- Note that Po E Pid(Po, F) because of the assump­

tions. Let p E Pid(Po, F).Let Q(p, p) and Q(po, p) be the 
variance of the state processes of respectively the imaginary 
and the real system. These variables are the solutions of 
continuous-time Lyapunov equations that differs from the 
discrete-time Lyapunov equation given in (66), (68). Condition 
(19) implies that im( Q(p, p)) = Rn. By the proof of Theorem 
3.3 Q(p, p) = Q(p0 , p). Then 

r 

Ao+ L Cl!oiAi + BF(p) 
i=l 

r 

=Ao+ L aiAi + BF(p), by (14) 
i=l 

r 

<=> L (aoi - ai)Ai = 0 
i=l 

<=> aoi - Cl!i = 0, for i = 1, · · ·, r, <=>Po = p 

where the linear independence of { A1 , · • · , Ar} has been used. 
0 

Thus in Proposition 3.6 Pid(Po, F) = {Po E P}. Hence 
tuning for any control objective will always take place. The 
conclusion of Proposition 3.6 is that the tuning result for this 
model class is due to the imposed identifiability condition, not 
due to an adaptive control technique. 

IV. PARTIAL OBSERVATIONS CASE 

In this section the problem formulated in Section II is con­
sidered for a Gaussian stochastic control system with partial 
observations. A first-order system is treated in Appendix A. In 
this section the polynomial description of Gaussian stochastic 
control systems is used. 
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Definition 4.1: Consider the model class of Gaussian sto­
chastic control systems in ARMAX representation 

a(q-1 )y(t) = q-db(q- 1 )u(t) + c(q-1)w(t) (20) 

in which w is Gaussian white noise with w(t) E G(O, 1), 
q-1y(t) = y(t - 1) 

a(q-1) = ao + a1q-1 + ... + anq-n, (21) 
1 - - 1 - (n d) b(q-) = bo+b1q- +···+bn-dq- - , (22) 

c(q-1) =co +c1q-1 + ·· · +"Cnq-n. (23) 

Assume that b0 -:j:. 0 and that d = 1. Let 

P = Rn(q-1 ) x Rn-d(q-1 )/{bo = O} x Rn(q-1 ) x R+ (24) 

denote the set of polynomial triples (a, b, c) parameterizing 
this model class. Suppose that the unknown system is in the 
model class and represented by Po = (ao, bo, co) E P. 

For controllers attention is restricted to those described in 
polynomial form by 

where 

(25) 

(26) 

(27) 

A polynomial is called stable if all its zeroes are strictly inside 
c-. 

If the control objective is minimum variance control then f 
and g are determined by the polynomial equation 

(28) 

For given polynomials a, b, c this equation has a solution 
in the set of polynomials j, g. In general the solution is not 
unique. From the available literature it is not clear whether the 
polynomial f is stable, even if the system is minimum phase 
or if c is stable. For minimum variance control see [32]. 

Let the control objective be pole placement. Assume given 
a polynomial h at which the poles of the spectrum are to 
be placed. Moreover, it is assumed that the zeroes of the 
polynomial are strictly inside c-. Then the polynomials f, 
g of the controller are solutions of the polynomial equation 

(29) 

Given a, b, all solutions of this equation are given by, see [11], 

g = hu+am 

where m is an arbitrary polynomial and, if a, b are coprime, 
u, v are the unique polynomials such that 

au - q-dbv = 1. 

Among all solutions (j, g) there is a solution in which f is of 
minimal degree. The polynomial equation with this condition 
has an unique solution [22, 3.1]. 
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The real system a c1 (po, p) is represented in polynomial 
form by 

[ao(q-1)f(q-1) - q-dbo(q-1)g(q-1)]y(t) 

= co(q-1 )f(q-1 )w(t). (30) 

Similarly, the imaginary system ac1(p, p) is represented by 

[a(q-1)f(q-1) _ q-db(q-1)g(q-1)]y(t) 

= c(q-1 )f(q-1 )w(t). (31) 

These systems are called stochastically stable if the output 
process y is a stationary process with zero mean value function 
and finite variance. 

The following result is partly also stated in [2]. It is 
proven there by a method different from that of the stochastic 
realization approach of this paper. It is partly also stated in 
[17] again proven by a different method. 

Theorem 4.2: Consider the model class introduced above. 
Assume that the unknown system is an element of the model 
class and represented by Po = (ao, bo, co) E P. Assume 
further that b0 and c0 are stable polynomials and that the pair 
(a0 , b0 ) is coprime. Let the control objective be minimum 
variance control. Define for p E P the conditions: 

1) The real system and the imaginary system are stochas­
tically stable. 

2) The real and the imaginary system are minimum phase. 
3) The real system and the imaginary system are output 

equivalent. 

Let 

Pid(Po, L:c) = {p E PI conditions 1, 2, and 3 above hold}, 
(32) 

p ( I: ) _ { p lthe real system and the ideal } 
fb Po' c - P E system have the same variance · 

(33) 

a) Then 

Pid(Po, 'Ee) 

~{•~(a, b, c) E P 
f, aof - q-dbog } 
are stable polynomials, , 
and co = aof - q-dbog 

(34) 

where f, g are solutions of (28) corresponding to p = 
(a, b, c) E P. 

b) Tuning holds 

Pid(Po, 'Ee) C PJb(Po, 'Ee)· (35) 

c) Also the output spectra of the real, the imaginary, and 
the ideal system are all identical and equal to fofo. 

The proof may be found in the appendix. Note that use of 
the self-tuning minimum variance controller not only provides 
asymptotically a controller that achieves the same variance for 
the real system as would be obtained with the ideal system, 
but also achieves the same family of finite-dimensional distri­
butions of the output process. The assumption on stochastic 
stability for the real and the imaginary system is necessary 

in the stochastic realization framework. The minimum-phase 
assumption is an identifiability condition. 

The result below is partly also stated and proven in [17]. 
Theorem 4.3: Consider the model class and the assump­

tions of Theorem 4.2 except that the control objective is pole 
placement. The poles are to be placed at the zeroes of the 
stable polynomial h. Assume that for all p E P there are 
no cancellations in closed loop in the real and the imaginary 
system. Hence, a0 f - q-dbog and cof are coprime, and 
af - q-dbg and cf are coprime. Let Pid(Po, ac) be as defined 
in (32), and let 

{ 
the real and the ideal system have } 

PJb(po, 'Ee)= p E P both h as the polynomial . 
of their poles 

Then 

a) Pid(Po, 'Ee) = {p E Pip= (a, b, c) conditions 1, 2, and 
3 defined below hold}. (36) 
Let j, g be associated with p = (a, b, c) and h according 
to (29) and let f 0, go be similarly be associated with 
p0 = (a0 , b0 , c0) and h. Define for p E P the conditions: 

1) c, f are stable polynomials. 
2) a0 f - q-db0g is a stable polynomial. 

3) cf = cofo - q-dbom, and cg = cogo - q-daom 
for some polynomial m. 

b) Pid(Po, 'Ee) C PJb(Po, Ee) hence tuning holds. 
c) A minimum-phase stable spectral factor of the real 

system is cf /h while one of the ideal system is c0 fo/h. 
Thus, although the poles of these spectral factors are the 
same, their zeroes may be different. 

The proof may be found in the appendix. 

V. NECESSITY CONDITIONS FOR TuNING 

In this section necessity conditions for tuning are investi­
gated. For related work, see [30]. 

Necessity in the Case n = 1 

Consider the model class of Appendix A, that of the first­
order case. The Gaussian stochastic control system is thus 
represented by 

x(t + 1) = ax(t) + bu(t) +(a+ c)w(t), 

y(t) = x(t) + w(t). 

Let p = (a, b, c, v) E P = R3 x R+, P1 = Rx R/{O} x 
R x R+. Define an output feedback control by P2 C P1, 
f:P2 -+ R,u(t) = f(p)y(t). Assume that the system 
generating the data is in the model class and denote the 
corresponding parameter by Po = ( a0 , b0 , c0 , v0 ). Assume 
in addition that Po E P2. 
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Theorem 5.1: Consider the above defined model class and 

control law. Assume that Po E P2 C P1 is such that bo =f:. 0, 

I col < 1, Vo > 0, and lao + bof (Po)I < 1. Let Pid(Po, f) be 
as defined in (58). Then 

Pid(Po, f) = {p =(a, b, c, v) E P1I 
either case 1 or case 2 defined below holds}. (3 7) 

Case 1) p E P1 is such that: 

1) b :f. 0 and lei < 1. 
2) p E P2. 
3) V = VQ. 

4) f(p) = (-[a+c]/b) = (-[ao+co]/bo) 
Case 2) p E P1 is such that: 

1) b =/:- 0, lcl < 1, and la+ bf(P)I < 1. 
2) p E P2. 

3) cv = covo and (c6 + l)vo = (c2 + l)v. 
4) a+ bf(p) = ao + bof(p). 

(38) 

Theorem 5.2: Consider the notation and the assumptions 
of Theorem 5 .1. Let 

PJb(Po, f) = {p E P1 lf(p) is well defined and f(p) = f (po)} 
(39) 

If tuning holds as defined in Definition 2.4 or if Pid (po, F) C 
PJb(Po, F) then the control law has either one of the following 
forms: 

2185 

The set Pid(Po, !Ye) is as defined in (32). The necessity 
question is then: What does the condition of tuning 

P;d(Po, !Ye) C Pfb(Po, c7c) 

imply about the controller? No progress on this question can be 
made without assumptions on the cancellations of dynamics. 

If in the imaginary system cancellation of dynamics takes 
place so that c = af - q-dbg, then one recovers the minimum 
variance case. If no cancellation takes place, one can say more. 

Proposition 5.3: Consider the single-input-single-output 
Gaussian stochastic control system in ARMAX representation 
and a linear time-invariant controller with the conventions 
above. Assume that: 

1) The ideal and the real system are stochastically stable. 
2) The ideal and the real system are minimum phase. 
3) There is no cancellation of dynamics in either the ideal 

or the real system. 

Then the ideal and the real system are output equivalent iff 

go g 

lo= r (42) 

Proof By the assumptions 1) and 2) above, the formulas 

cofo cof 
aofo - q-dbogo' aof- q-dbog 

1) Minimum variance control 

f(p)= -[a+cJ. 
b 

are minimum phase stable spectral factors of, respectively, the 
ideal and the real system. The ideal and the real system are 

(40) then output equivalent iff 

2) Pole placement, or for all p E Pid(Po, f) 

f(p)=e-a (41) 
b 

for some e E R with lei < 1. 

The proof may be found in the appendix. 

Necessity in the Case n > 1 

Consider the model class of Definition 4.1 with ARMAX 
representation 

a(q- 1 )y(t) = q-db(q-1 )u(t) + c(q- 1 )w(t). 

Consider again a controller of the form 

f(q- 1 )u(t) = g(q- 1 )y(t). 

The ideal, the real, and the imaginary system are then repre­
sented, respectively, by 

[aofo - q-dbogo]y(t) = cofow(t), 

[aof - q-dbog]y(t) = cofw(t), 

[af - q-dbg]y(t) = cfw(t). 

The necessity question requires the specification of a control 
objective. Instead of a control objective, tuning of the spectrum 
of the output process is considered. Thus let 

Ptb(Po, !Ye) = {p E PI the ideal and the real system 

are output equivalent}. 

iff the condition mentioned in the theorem holds. D 
The conclusion from Proposition 5.3 is that the ideal and 

the real system are output equivalent iff the impulse response 
functions of c7c(Po) and !7c(P) are the same. This is a rather 
stringent requirement. Note that under the stability and mini­

mum phase assumptions p E Pid(Po, !Tc) iff 

cof cf 
aof - q-dbog = af - q-dbg · 

(43) 

Thus if tuning holds, then (43) implies (42). This condition re­
stricts the map (a, b, c) r-+ (!, g) that constructs the controller. 
The consequences of this remain to be worked out. 

VI. CONCLUSION 

A concept of tuning of a stochastic control system is stated. 
Tuning holds if identification of the closed-loop system implies 
that the control objective for the closed-loop system achieves 
the same value as when the parameter values were known. 

For a single-input-single-output Gaussian stochastic control 
system, it is proven that tuning holds for the control objectives 
of minimum variance control and of pole placement. A neces­
sity condition for tuning of a first-order Gaussian stochastic 

control system is presented. 
The results of the paper show the limitations of the 

synthesis procedure of self-tuning regulation. Tuning is 
achieved only for some control objectives. An alternative 
synthesis procedure is to apply an excitation signal to the 
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unknown stochastic control system. This synthesis procedure Gaussian stochastic control system 

is well known but not deeply investigated. More research 
is needed on this procedure, in particular on the interaction x(t + 1) = aox(t) + bou(t) + (ao + co)w(t), (52) 

of identification and control. 

APPENDIX A 

FIRST-ORDER CASE 

This appendix contains a result on tuning for a first-order 
Gaussian stochastic control system with partial observations. 
The characterizations are more explicit than those in Section 
IV. This appendix may also be read as an introduction to that 
section. 

Consider the model class of a first-order Gaussian stochastic 
control system in ARMAX representation 

y(t + 1) = ay(t) + bu(t) + w(t + 1) + cw(t) (44) 

in which w is a Gaussian white noise process with w(t) E 
G(O, v). This representation may be converted to a state-space 
representation by the transformation 

x(t) = y(t) - w(t). (45) 

The resulting Gaussian stochastic control system in state-space 
representation is then 

x(t + 1) = ax(t) + bu(t) +(a+ c)w(t), (46) 

y(t) = x(t) + w(t). (47) 

Let P = R3 x R+ and denote p = (a, b, c, v) E P. This 
stochastic system is defined to be stochastically stable if the 
output process is a stationary square integrable process with 
zero mean value function and a finite variance. 

Consider the control objective of minimum variance control, 
that is of minimization of E[y(t) 2]. It is understood that the 
closed-loop system must be such that the output process is 
stochastically stable. The control law is called admissible if 
the input u(t) depends only on the past of the output process y, 
thus on y(t), y(t -1), ···.If bf- 0 and if the parameter c ER 
satisfies the condition that lei < 1, hence the stochastic control 
system is strictly positive real, then the minimum variance 
control law is given by (see [3, 12.2]) 

(a+ c) 
u(t) = --b-y(t). (48) 

The resulting closed-loop stochastic control system is then 

x(t + 1) = -cx(t) (49) 

y(t) = x(t) + w(t). (50) 

Because lei < 1 the output process of this stochastic control 
system is equivalent as stationary process to that of the system 

y(t) = w(t). (51) 

Next the real system and the imaginary system are dis­
played. Consider the real system. It consists of the unknown 

y(t) =x(t)+w(t) (53) 

with Po = (ao, bo, co, vo) E P. Let for p =(a, b, c, v) E P, 
with b f- 0 

f(p) = -(a+ c). 
b 

(54) 

Then the control law is u(t) = f(p)y(t). The real system 
<T cl (Po, p) is then represented by 

x(t + 1) = [ao + bof(p)]x(t) + [ao +co+ bof(p)]w(t), (55) 

y(t) = x(t) + w(t). (56) 

The imaginary system is given in (51). 
Theorem A. I: Consider the class of Gaussian stochastic 

control systems with representation (46), (47) and the control 
objective of minimum variance control. Let P = R3 x R+ 
with p = (a, b, c, v) E P and let 

P1 =Rx (R/{O}) x Rx R+, f:P1--+ R, 

f(p)=-(a+c)_ 
b 

(57) 

Assume that the unknown system is in the model class and 
is represented by Po = (ao, bo, co, vo) E P with bo =f. 0, 
lcol < l, and vo > 0. Define for p E P the conditions: 

1) The feedback law f(p) is well defined. 
2) The real system <T cl (Po, p) and the imaginary system 

<T cl (p, p) are stochastically stable and minimum phase. 
3) The real and the imaginary system, <T cl (Po, p) and 

<Tc1(p, p), are output equivalent. 

Define finally 

Pid(Po, f) = {p E PI conditions 1, 2, and 3 above hold}. 
(58) 

a) Then 

Pid(Po, f) 

_ { _ ( b . ) p I b =1- o, 1c1 < 1, v > o,} - p - a, , c, V E £±.£ _ ao+co _ · 
b - bo 'v - Vo 

(59) 

b) The variance of the ideal respectively the real system is 

[ao +co+ bof(p)]2v (60) 
Vo, V + --:-----~,-

1 - (ao + bof(p)) 2 

The proof of this result is not presented here. Theorem A. l is 
a special case of Theorem 4.2. The proof is similar to that of 
Theorem 5 .1. Note that the expression for Pid (Po, f) is such 
that there may be other parameter values than p0 that can occur 
as limits of parameter estimation algorithms. 
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Theorem A.2: Consider the notation and the assumptions 
of Theorem A. l. Let 

Pfb(po,J) 

= { E p I J(p) is well defined, real and } (6 l) 
P ideal system have identical variance · 

a) Then 

Ptb(Po, f) = {p =(a, b, c, v) E Plb op 0, 

and (63) holds}, (62) 

[ao +co+ boJ(p)]2v (63) 
Vo = V + -=------~=--

1 - (ao + boJ(p))2 

b) Moreover, tuning holds 

Pid(Po, f) C Ptb(Po, f). (64) 

The proof is not presented here. It follows directly from 
Theorem A. l. 

The paper [24] discusses a related problem. The approach 
presented here differs from that of the quoted paper by the 
control system considered and by the approach to the problem. 
The. starting problem of the quoted paper is the limit set for 
the ordinary differential equation approach to convergence 
analysis of recursive algorithms. The approach of this paper 
is based on stochastic realization theory. The results of the 
quoted paper are termed there as of a preliminary nature. 

The author has formulated and proven a theorem like such 
as Theorem A.1 for the case of the pole assignment control 
objective. He has also obtained a characterization for the case 
of a controller consisting of a Kalman filter in combination 
with a linear control law. The latter case yields a complicated 
characterization of Pid(Po, f) which does not provide much 
information. 

APPENDIX B 

PROOFS 

Proofo/Theorem3.3: Let p E Pid(po, F); that the real 
and the imaginary system are stochastically stable is equivalent 
with condition (13). The proof of the sufficiency of this 
statement follows from a standard result for stochastic system 
theory and that of necessity from consideration of the mean 
value function. The covariance function of the state process 
of the real system is given by 

Wv(t, Po, p) 

{
Q(po, p), 

= [A(po) + B(po)F(pWQ(po, p), 
Q(po, p)[A(po) + B(po)F(p)]-t, 

Q(po, p) = [A(po) + B(po)F(p)]Q(po, p) 

if t = 0, 
if t > 0, 
if t < 0, 

(65) 

· [A(po) + B(po)F(p)]T + M(po)V(po)M(po)T. (66) 

Similarly for the imaginary system 

Wv(t, p, p) 

- {Q(p, p) 
- [A(p) + B(p)F(p)]t-1Q(p, p), 

if t = 0, 
if t > 0, 

(67) 
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Q(p, p) = [A(p) + B(p)F(p)]Q(p, p) 

· [A(p) + B(p)F(p)]T + M(p)V(p)M(p)T. (68) 

Then p E Pid(Po, F) and condition 3) of Definition 3.2 
imply that the covariance functions (65), (67) are equal. 
Hence Q(p, p) = Q(p0 , p). Because the state process is 
stationary and Gaussian, the support of the state process of 
the real respectively the imaginary system is determined by 
im(Q(p0 , p)) and im(Q(p, p)). Because Q(p, p) = Q(p0 , p), 
im(Q(p0 , p)) = im(Q(p, p)). From the equality of the 
covariance functions follows that (14) holds. Subtracting (66) 
from (68) yields condition (15). 

Conversely, let p be an element of the right-hand side of 
(12). From (13), (14), (15), of Theorem 3.3, and the uniqueness 
of a solution of the Lyapunov equation (66), it follows that 
Q(p, p) = Q(p0 , p). It follows then from (14), (65), and (67) 
that the covariance functions of the real and the imaginary 
system are the same. Hence p E Pid(Po, F). D 

Proof of Theorem 4.2: Let p E Pid(po, F). Let 

ki = cof /[aof - q-dbog] and k2 = cJ /[af - q-dbg]. 

Because the control objective is minimum variance control, J, 
g are determined by a, b, c via the polynomial equation 

c = aJ - q-dbg. 

Hence, k2 = cf /c = f. If ki(q- 1) is a polynomial then 
denote ki ( q-1 ) = k1 ( q). The spectrum of the output process 
of the real system is k1ki and that of the imaginary system 
is k2k2. By condition 3) the real and the imaginary system 
are output equivalent, hence have the same spectrum for the 
output process. By condition 2) the real and the imaginary 
system are minimum phase, hence the minimum-phase stable 
spectral factors are equal ki = k2 or 

co = aoJ - q-dbog. (69) 

Hence a0 J - q-db0g is a stable polynomial. Given ao, bo, co, 
with according to the assumption a0 , b0 coprime, the equation 
for f 0 , go, with the restriction that Jo E Rand go a polynomial 
of degree n - d 

(70) 

has an unique solution. Because by (69), the pair f, g is also 
a solution of (70), there results 

f =Jo, g =go. 

Thus the controller crc(P) with fu(t) = gy(t) and the con­
troller ac(Po) with Jou(t) = goy(t) have identical impulse 
response functions. 

The ideal system is given by 

[aoJo - q-dbogo]y(t) = cofow(t) 

so the minimum-phase stable spectral factor is coJo/co =Jo. 
The minimum-phase stable spectral factor of the real system is 
cof /co = J = Jo. Thus the ideal and the real system are output 
equivalent, p E Ptb(Po, crc). and Pid(Po, crc) C Ptb(Po, O'c)· 
A straightforward verification establishes that the right-hand 
side of (34) is contained in Pid(Po, uc)· D 
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Proof of Theorem 4.3: Let p E Pid(Po, Ee)· The real 
system is stable iff the polynomial 

(71) 

is stable. The imaginary system is stable iff the polynomial 

(72) 

is stable. Because by assumption there are no pole-zero 
cancellations in the closed loop, the imaginary system is 
minimum-phase iff the polynomial cf is stable. The spectra 
of the real and the imaginary system are, respectively 

( aof ~0:-dbog) ( aof ~0:-dbo9) *' 
( af -c~-dbg) ( af -c~-dbg) * 

Now c0 is a stable polynomial by assumption, c and f are 
stable because of the minimum phase condition, h is stable by 
assumption, and aof-q-dbog is stable because the real system 
is. Thus the minimum-phase stable spectral factors of the real 
and the imaginary system, which are equal by p E Pid. are 

cof cf 
aof - q-dbo9 =h. 

Because h = aofo - q-dbo9o this is equivalent with 

co[aofo - q-dbogo] = c[aof - q-dbog] 

{::? ao[co - cf] - q-dbo[cogo - cg] = 0. 

The assumption that ao, bo are coprime implies that 

cofo - cf = q-dbom and cogo - cg = aom 

for some polynomial m. Thus 

cf = cofo - q-dbom and cg = cogo - aom. 

Note that the poles of the real system are from (30) given by 

aof - q-dbo9 

= c- 1 [aocofo - aoq-dbom - q-dbocogo + q-dboaom] 

= c- 1co[aofo - q-dbaga] = c- 1coh (73) 

and the spectral factor is 

cof cf 
c-1coh = h" (74) 

A spectral factor of the ideal system is 

co fa cof o 
aof o - q-dbago = h · (75) 

Thus both the real and the ideal system have the same closed­
loop poles and hence p E Ptb(Po, O'e)· 

Conversely, let p be an element of the right-hand side 
of (36). Because of condition 2), the real system is stable. 
From the pole placement objective follows that the imaginary 
system is stable. Because of condition 1) the imaginary system 
is minimum phase. That the real system and the imaginary 

system are output equivalent follows from the equality of the 
spectral factors via 

cof d = c~f h by condition 3 and (73) 
aof - q- bog c- co 

cf cf 
= h = af - q-db9 

because of the pole placement objective. Thus 
p E Pid(Po, :Ee)· D 

Proof of Theorem 5.1: The real system is represented by 
the equations 

x(t+l) = (ao+bof(p))x(t)+(ao+co+bof(p))w(t), (76) 

y(t) = x(t) + w(t) (77) 

with w(t) E G(O, v0 ). The covariance function of the real 
system's output process is given by 

( f) { qo + vo, if t = 0, 
Wy t, Po, p, = (ao + bof(p))t-lgo, if t > 0 

where 

[ao +co+ bof(p)]2vo 
qo = 1 - (ao + bof(p))2 ' 
go= [ao + bof(p)]qo + [ao +co+ bof(p)]vo. 

(78) 

(79) 

(80) 

The corresponding equations for the imaginary system are 

x(t + 1) =(a+ bf(p))x(t) +(a+ c + bf(p))w(t), (81) 

y(t) = x(t) + w(t) (82) 

with w(t) E G(O, v). The covariance function of the imagi­
nary system's output process is given by 

{ q+v ift = 0, 
Wy(t, p, p, f) = (a+ bj(p))t-l9, if t > 0 (83) 

where 

[a+ c + bf(p)]2v 
q = 1- (a+ bf(p))2 ' <34) 

9 =[a+ bf(p)]q +[a+ c + bf(p)]v. (85) 

=?Let p E Pid(Po, !). The real and the imaginary system are 
stable iff 

lao + bof(p)I < 1 and la+ bf(p)I < 1. (86) 

These systems are minimum phase iff I col < 1 and lei < 1. By 
assumption lcol < 1. These systems are output equivalent iff 

iff 

{ qo + vo = q + v, 
[ao + bof(p)Jt- 1go =[a+ bf(p)]t-lg, \ft 2: 1 

{ 
qo + vo = q + v, 
9o = g, 
[ao + bof(p)] = [a+ bf(p)], if go = g i 0. 

A calculation using (84) and (85) shows that 

9 = v[a + c + bf(p)][c(a + bf(p)) + 1] 
1- (a+ bf(p))2 

One distinguishes the cases g = g0 = 0 and g = 90 # 0. 

(87) 

(88) 
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Suppose that ? = 90 = 0. Now g = O implies by (86) 
and (88) that either v = O, or a+ c + bf(p) = o, or 

c[a + bf(p)] + 1 = 0. If v = 0 then q = 0 by (84). Hence 
qo.+.vo = q+v = 0. Because qo ~ 0 and by assumption v > O, 
this 1s a contradiction. Thus v > O. If c[a+ bf (p )] + 1 = o then 

a+bf(p) = -1. 
c 

Th~ stabilit~ .condition (86) implies then that 11/cl < 1 
while the m~mmu~ phase assumption requires that lei < 1. 
Therefore this case 1s also excluded. If a+ c + bf (p) = O then 

f(p) = -(at c). (89) 

Similarly g0 0 leads to 

(90) 

In this case a+ c + bf(p) = O implies by (84) that q = O, 
and similarly by (90) that q0 = 0, hence by (87) that v = v0 . 

This proves case 1). 

Suppose that g == go =f- 0. The conditions obtained so 
far are p E P2, b =f- 0, q0 + v0 = q + v, g = g0 =f- O, 
ao + bof(p) =a+ bf(p), lei< 1, a+ bf(p)I < 1. Note that 

q = [a+ bj(p)]q+ [a+ c+ bj(p)]v = [a+ bf(p)][q + v] + cv. 
(91) 

Hence g = go implies that cv = c0v0 . From this, q0 + v0 = 
q + v, (79), and (84) follows with a calculation that 

vo(c6 + 1) = v(c2 + 1). (92) 

<= Conversely, Jet p be an element of the right-hand side of 
(37). Suppose that Case 1) holds. Then p E P2, and f(p) is 
well defined. Then a+ bf(p) = -c and lei < 1 imply that the 
imaginary system is stable. Similarly, f(p) = -[a0 + co]/bo 
and Jco I < 1 imply that the real system is stable. From (88) 
follows (38) that g = g0 = 0. Similarly it follows from (79) 
and (84) that q = 0 = q0 . The condition v = v0 and (87) 
then imply that the real and the imaginary system are output 
equivalent. 

Suppose that Case 2) holds. Then b =f- 0 implies that p E P2, 
hence f is well defined. Conditions 1) and 4) imply that 
the real and the imaginary system are stable. The assumption 
Jco J < 1 and the condition lei < 1 imply that these systems 
are minimum phase. Note that 

qo + vo = q + v <= vo(co + ao + bof(p))2 

+ vo[l - (ao + bof(p)) 2] 

= v(c +a+ bf(p)) 2 + v[l - (a+ bf(p)) 2] 

by (79), (84), and Condition 4 
2 <= 2covo(ao + bof(p)) + voco +Vo 

= 2cv(a + bf(p)) + vc2 + v 

<:::? vo(c5 + 1) = v(c2 + 1) 
by Conditions 3 and 4. (93) 

This relation, (80), (85), and conditions 3) and 4) imply that 
g = g0 . From (87) then follows that the real and the imaginary 
system are output equivalent. D 
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Proof of 5.2: Let p E P;d(Po, f). According to Theorem 
5.1 one of the following cases holds. 

Case 1: Minimum variance control 

f(p) = -(at c). (94) 

Case 2: By condition 4) a+bf(p) = a 0 +bof(p). Because 
PE P;d(Po, f) C P1b(Po, f), f(v) = f(po). Thus 

a+ bf(p) = ao + bof(po) =: e, lei < l 

for all p E Pid in which e does not depend on p. Hence 

f(p) = ~ 
b 

for all p E P;d and f is effectively pole assignment. 
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