
Information
Processing
letters

ELSEVIER Information Processing Letters 52 (1994) 333-337

A complete equational axiomatization for prefix iteration
Wan Fokkink 1

Centrum voor Wzskunde en lnformarica, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Communicated by H. Ganzinger; received 28 February 1994; revised 30 June 1994

Abstract

Prefix iteration a'• x is added to Minimal Process Algebra (MPA8), which is a subalgebra of BPAs equivalent to Milner's
basic CCS. We present a finite equational axiomatization for MPA8, and prove that this axiomatization is complete with
respect to strong bisimulation equivalence. To obtain this result. we will set up a term rewriting system, based on the axioms,
and show that bisimilar tenns have the same nonnal fonn.

Keywords: Concurrency; Formal languages; Programming calculi; Basic CCS; Iteration; Complete equational axioms

1. Introduction

Kleene [7] defined a binary operator _*_in the con­
text of finite automata, called Kleene star or iteration.
Intuitively, the expression p* q yields a solution for the
recursive equation X = p · X + q. In other words, p* q
can choose to execute either p, after which it evolves
into p* q again, or q, after which it tenninates.

Milner [11] studied the unary version p• of the
Kleene star in the setting of (strong) bisimulation
equivalence, and raised the question whether there ex­
ists a complete axiomatization for it. Bergstra, Bethke
and Ponse [1] incorporated the binary Kleene star
into Basic Process Algebra (BPA) (2], and they sug­
gested three equational axioms for iteration. Fokkink
and Zantema [5] proved that these three axioms, to­
gether with the five standard axioms for BPA, are a
complete axiomatization for BPA * modulo bisimula­
tion.

In this paper. we add the deadlock 8 to the syntax.
Sewell [14] proved that there does not exist a corn-

1 Email: wan@cwi.nl.

plete finite equational axiomatization for BPA6. In or­
der to prove a completeness result, nevertheless, we
restrict the binary sequential composition x · y to its
unary prefix version a · x, to obtain Minimal Process
Algebra MPAc5, equivalent to basic CCS [10]. Like­
wise, we add prefix iteration a• x to the syntax, re­
sulting in the algebra MPA6. This algebra is less ex­
pressive than BPA6. For instance, it cannot express a
simple process such as (a + b) *c. On the other hand,
it contains processes which can be expressed neither
in BPA * nor in BPA.s. such as a* 8.

We propose two simple equational axioms for iter­
ation, which are actually instantiations of the first and
the third axiom for the binary Kleene star. We prove
that these two axioms, together with the four standard
axioms of MPA.s, are a complete axiomatization for
MPA6 with respect to bisimulation. The proof con­
sists of producing a term rewriting system from the
axioms, and showing that bisimilar normal forms are
equal modulo AC. This method yields an algorithm to
decide whether or not two terms are bisimilar.

0020-0190/94/SO'?.OO © 1994 Elsevier Science B.V. All rights reserved
SSDI0020-0190(94)00163-4

334 W.J. Fokkink/ Information Processing Letters 52 (1994) 333-337

x~x'

a 1 a
x+y----....x <--y+x

a
a·x-+x

a*x~a*x
x __!:_, x'

a* x _..!!_, x'

Fig. I. Action rules for MPA5.

2. Minimal Process Algebra with iteration

We assume an alphabet A of atomic actions. The
signature of the algebra MPA8 (A), or MPA8 for short,
consists of a constant o, which represents deadlock,
together with the binary alternative composition x + y,
and the unary prefix sequential composition a . x and
prefix iteration a* x, for a E A. Fig. 1 presents an
operational semantics for MPA:5 in Plotkin style [13).
Prefix iteration a* x can choose to execute either a,
after which it evolves into a* x again, or x.

Our model for MPA:5 consists of all the closed terms
that can be constructed from deadlock and the three
operators. That is, the BNF grammar for the collection
of process terms is as fo11ows, where a E A:

p ::= 8 I p + p I a . p I a* p.

As binding convention, • binds stronger than ·,which
in turn binds stronger than + .

Process terms are considered modulo (strong)
bisimulation equivalence [12]. Intuitively, two pro­
cess terms are bisimilar if they have the same branch­
ing structure.

Definition 1. Two processes Po and qo are called
bisimilar, denoted by Po,. qo, if there exists a
symmetric relation B on processes such that Po l3 qo,
and if p ~ p' and p l3 q, then there is a transition
q ~ q' with p' l3q'.

The action rules in Fig. 1 are in the tyftltyxt format
of Groote and Vaandrager [6]. Hence, bisimulation
equivalence is a congruence with respect to all the
operators, i.e. if p,. p' and q !::! q', then p + q !:::.
p' +q' and a· p !:::. a· p' and a*p !:::. a* p'. See [6] for

Al .x+y=y+x

A2 (.x+y) +z = x+ (y+z)

A3 .x+x=x

A6 .x+o"'x

MU a · a• .x + x = a* x

Ml2 a*(a*.x) = a*x

Fig. 2. Axioms for MPA5.

the definition of the tyft/tyxt format, and for a proof
of this congruence result. (This proof uses the extra
assumption that the rules are well-founded. In [4] it
is shown that this requirement can be dropped.)

Furthermore, the three rules for MPAs are pure and
well-founded, and the two rules for iteration incorpo­
rate the Kleene star in the left-hand side of their con­
clusions. Hence, MPA8 is an operationally conserva­
tive extension of MP~, i.e. the action rules for itera­
tion do not influence the transition systems of MPAs
terms. See I 6] for the definitions, and for a proof of
this conservativity result.

Fig. 2 contains an axiom system for MPAfi, which
consists of the four axioms from MPAo together with
two axioms for iteration. In the sequel, p = q will
mean that this equality can be derived from these ax­
ioms. Our axiomatization for MPA;5 is sound with re­
spect to bisimulation equivalence, i.e. if p = q then
p !:::. q. Since bisimulation is a congruence, this can be
verified by checking soun<lness for each axiom sepa­
rately. In this paper it is proved that the axiomatization
is complete with respect to bisimulation, i.e. if p !:::. q
then p = q.

3. A Tenn Rewriting System

Our aim is to prove that the axioms in Fig. 2 are
complete for our model ofMPA8 modulo bisimulatio_n.
A standard scheme for such a proof is to set up a Term
Rewriting System (TRS) from the axioms as follows.

1. Turn the axioms into rewrite rules.
2. Apply the Knuth-Bendix completion algorithm

[9], which yields extra rewrite rules to make the
TRS weakly confluent. That is, if a term p has

W.J. Fokkinkllnformation Processing Letters 52 (1994) 333-337 335

PMil a· (affix+ x) = aEBx

PMI2 affi(affix + x) = aEBx

Fig. 3. Semantics and axioms for proper iteration.

one-step reductions p' and p", then both terms can
be reduced to a term q.

3. Check that the resulting TRS is terminating, which
means that there are no infinite reductions.

If the TRS is weakly confluent and terminating, New­
man's Lemma says that it supplies each term with a
unique normal form. The construction of the TRS en­
sures that all its rules can be deduced from the axioms.
The final step in the completeness proof is to show
that bisimilar normal forms are syntactically equal.

See [3,8] for an overview of the field of term rewrit­
ing.

3.1. Proper iteration

We want to define a TRS for process terms that re­
duces bisirnilar terms to the same normal form. How­
ever, it is not so easy to construct such a TRS for
MPA;5. Namely, the terms a• x + x and a* x are bisim­
ilar, so they should reduce to the same normal form.
A rule a* x -+ a• x + x does not terminate, so we need
the rule

a* x + x ----+ a'" x.

However, this rule is not yet sufficient, because it
does not deal with the case a* (b* x) + x !::::!. a• (b* x).
Hence, for this case we must introduce an extra
rewrite rule. But this rule does not cover the case
a*(b*(c*x)) + x ~ a*(b*(c*x)), etc. So in order
to obtain unique normal forms modulo bisimulation
for MPA5, apparently we need an infinite number of
rewrite rules.

To avoid this complication, we replace iteration by
an equivalent operator affix, which represents the be­
haviour of a· a* x. The construct aEll x is called proper
iteration. (Its standard notation would be a+ x, but we
want to avoid ambiguous use of the + .) The oper­
ational semantics and the axiomatization for proper
iteration are given in Fig. 3. They are obtained from

l.

2.

3.

4.

5.
6.

x+x--+x

x+B--+ x

a· (aEBx +x) --+ aEBx

affi(aex + x) --+ aEl>x

a· (aeo) --+ aeo

affi(aeo) --+ aEllo

Fig. 4. Rewrite rules for MPA~.

the action rules and axioms for MPA8, using the obvi­
ous equivalence a*x !:::!. affix+ x. Conversely aEBx !::::!.

a· a*x, and

MPA;5 + (aex =a· a*x) f- PMil,2,

MPAf + (a*x = aEBx + x) f- Mil,2.

So we find that the axiomatization in Fig. 3 is complete
for MPAT if and only if the axiomatization in Fig. 2
is complete for MPA6.

3.2. The TRS for MPAf

We want to find a TRS for MPAf that reduces
bisimilar terms to the same normal form. In particular,
the TRS should be tenninating. Axioms Al,2 obstruct
this property, so from now on process terms are con­
sidered modulo AC (that is. modulo associativity and
commutativity of the +).

Fig. 4 contains a TRS for MPAf, which is obtained
in two steps. First, axioms A3,6 and Mll,2 are turned
into rewrite rules, aiming from left to right. Next, the
Knuth-Bendix completion algorithm is applied, which
yields Rules 5 and 6. The resulting TRS in Fig. 4
is weakly confluent, and all its rules can be deduced
from the axioms for MPA1. Furthermore, in each rule
the term at the left-hand side contains more symbols
than the term at the right-hand side, so clearly the TRS
is terminating. Thus, Newman's Lemma ensures that
the TRS reduces each term to a unique normal form,
modulo AC.

336 W.J. Fokkink/lnformation Processing Letters 52 (1994) 333-337

4. Normal forms decide bisimilarity

We have developed a TRS for MPAf that reduces
terms to a unique normal form. Furthermore, all its
rules can be deduced from the axioms of MPA1.
Therefore, all the rules are sound with respect to bisim­
ulation equivalence, so each term is bisimilar with its
normal form. Hence, in order to determine complete­
ness of the axiomatization for MPA1 with respect to
bisirnulation, it is sufficient to prove that if two normal
forms are bisimilar, then they are equal modulo AC.

Process terms are considered modulo AC. From
now on, this equivalence is denoted by p =Ac q, and
we say that p and q are of the same form. Each pro­
cess term p is a sum of terms of the fonn o or a · q or
aer, the so-called summands of p.

We present the proof of the completeness theorem,
which is in fact a simplified version of the complete­
ness proof in [5] , with some minor extra cases to deal
with deadlock. In the proof we apply induction on the
following weight function on terms:

g(o) = o.
g(p + q) = max{g(p),g(q)},

g(a·p) =g(p) + l,
g(aep) = g(p) + 1.

Theorem 2. If two normal forms p and q are
bisimilar, then p =Ac q.

Proof. We apply induction on g(p) +g(q). If g(p) +
g(q) = 0, then both p and q must be sums of o. Since
p and q are normal forms, Rule I ensures that both p
and q are of the form o, so p =Ac q.

Now assume that we have already proved the theo­
rem for bisimilar nonnal forms p and q with g(p) +
g(q) < n, for some n ~ 1. We prove it for g(p) +
g(q) = n, by showing that the separate bisimilar sum­
mands of p and q are of the same form. Since g(p) +
g(q) > 0, clearly p and q are not bisimilar to 8. Then
Rule 2 ensures that they do not contain any summands
8. This leaves the following three possibilities.

(1) First, suppose that summands a · r of p and a· s
of q are bisimilar, so r !:!. s. Since g(r) + g(s) < n,
the induction hypothesis yields r =Ac s.

(2) Next, let summands a · r and ae s be bisimilar,
so r !:!. affi s + s. We deduce a contradiction.

If s :f Ac S, then ae s + s is a normal fonn, because
we cannot apply Rule 1 or 2 to affi s + s, and ae s and
s are normal forms. Moreover, g(r) + g(aEB s + s) <
n, so the induction hypothesis yields r =Ac afBs + s.

Then we can apply Rule 3 to a· r =Ac a· (affis + s),
so a · r is not a normal form. Contradiction.

Ifs =Ac 8, then r !:!. affi8, and g(r) + g(afB8) < n,
so induction yields r =Ac aEBS. Then we can apply
Rule 5 to a · r =Ac a · (ae 8). Again, contradiction.

(3) Finally, assume that summands affir and afBs

are bisimilar,so affir+r !:!. afBs+s. Weprover =Ac s.
If r and s do not contain summands that are bisimilar

with ae sand aer respectively, then dl~r+r !:!. ae s+s

implies r !:!. s. Since g(r) + g(s) < n, induction
yields r =Ac s, and we are done.

So suppose that either r contains a sumrnand bisim­
ilar to ae s, ors contains a summand bisimilar to aE9r.

We deduce a contradiction.
By symmetry, it is sufficient to deduce a contradic­

tion for the first case only, where r contains a sum­
mand bisimilar to aE!l s. Induction yields that this sum­
mand of r is of the form aE!l s. According to Rule 1, r
can contain only one subterrn of the form afl1s. Hence,
either r =Ac affi s, or r =Ac aED s + r' where the sum­
mands of r' are not bisimilar to ae s. Then aEll r + r !:!.
ae s + s implies that the summands of r' are bisimilar
to summands of s.

The term s does not contain any summands bisimilar
to aEDs or a@r. For else, induction would yield that
this summand is of the form aE& s or affir respectively,
which would imply that s contains more symbols than
s or r respectively. However, clearly s cannot contain
more symbols than itself, and since r has a summand
al!l s, it follows that r contains more symbols than s.

Recall that r is either of the form aEll s + r' or ae s,
and if r' occurs, then all its summands are bisimilar to
summands of s. Conversely, since aer+r !:!. aEBs+s,
and since the summands of s are not bisimilar to affi s
or affir, it follows that they must all be bisimilar to
summands of r', or to 8. Hence, either s !:!. r' if r'
occurs, or s !::! 8 otherwise. We distinguish the two
possibilities.

• r =Ac aES s + r' and s !:::: r'. Then induction im­
plies s =Ac r1 , so we can apply Rule 4 to aff>r =Ac
aEEl (ae s + s) . Contradiction.

• r =Ac ae s and s !:!. 8. Then induction implies s =Ac
8, so we can apply Rule 6 to a$r =Ac affi(ae8).

W.J. Fokkillk//nformation Processing Letters 52 (1994) 333-337 337

Again, contradiction.

Hence, we may conclude that p and q contain ex­
actly the same surnmands. Rule I ensures that both
p and q contain each summand only once, so p =Ac
q. 0

Corollary 3. The axiomatization Al,2,3,6 + MII,2
for MPA6 is complete with respect to bisimulation
equivalence.

Proof. If two terms in MPA1 are bisimilar, then ac­
cording to Theorem 2 their normal forms are of the
same form. Since all the rewrite rules can be deduced
from Al ,2,3,6 + PMil,2, it follows that this is a com­
plete axiom system for MPA~. Then clearly Al,2,3,6
+ Mll,2 is a complete axiomatization forMPA8. 0

Acknowledgements

Jan Bergstra initiated this research, and Jos van
Wamel provided helpful comments.

References

[I] J.A. Bergstra. I. Bethke and A. Ponse, Process algebra with
iteration and nesting, Comput. J. 37 (4) (1994) 243-258.

[2] J.A. Bergstra and J.W. Klop, Process algebra for synchronous
communication. Inform. and Comput. 60 (1I3) (I 984) 109-
137.

[3] N. Dershowitz and J.-P. Jouannaud, Rewrite systems, in:
J. van Leeuwen, ed., Handbook of Theoretical Computer
Science, Volume B, Formal Methods and Semantics (Elsevier,
Amsterdam, 1990) 243-320.

(4) W.J. Fokkink, The tyft/tyxt fonnat reduces to tree rules,
in: M. Hagiya and J.C. Mitchell, eds., Proc. 2nd Symp.
on Theoretical Aspects of Computer Software (TACS'94),
Sendai, Japan, Lecture Notes in Computer Science 789
(Springer, Berlin, 1994) 440-453.

[5] W.J. Fokkink and H. Zantema, Basic process algebra with
iteration: completeness of its equational axioms, Comput. J.
37 (4) (1994) 259-267.

(6) J.F. Groote and F.W. Vaandrager. Structured operational
semantics and bisimulation as a congruence, Inform. and
Comput. 100 (2) (1992) 202-260.

[7 I S.C. K.leene, Representation of events in nerve nets and finite
automata, in: Automata Studies (Princeton University Press,
Princeton, NJ, 1956) 3-41.

[8] J.W. Klop, Tenn rewriting systems. in: S. Abramsky, D.M.
Gabbay and T.S.E. Maibaum, eds .• Handbook of Logic in
Compurer Science, Volume I, Background: Computational
Strucrures (Oxford University Press, Oxford, 1992) 1-116.

[9) D.E. Knuth and P.B. Bendix, Simple word problems in
universal algebras, in: J. Leech, ed., Computational Problems
in Abstract Algebra (Pergamon, Oxford, 1970) 263-297;
reprinted in: Automation of Reasoning l (Springer, Berlin,
1983) 342-376.

[10) R. Milner, A Calculus of Communicating Systems, Lecture
Notes in Computer Science 92 (Springer, Berlin, 1980).

[11] R. Milner, A complete inference system for a class of regular
behaviours, J. Comput. System Sci. 28 (1984) 439-466.

[12] D.M.R. Park, Concurrency and automata on infinite
sequences, in: P. Deussen, ed .• Proc. 5th GI Conj, Lecture
Notes in Computer Science 104 (Springer, Berlin, 1981)
167-183.

[13) G.D. Plotkin, A structural approach to operational semantics,
Tech. Rept. DAIMI FN-19, Aarhus University, 1981.

[14] P. Sewell, Bisimulation is not finitely (first order)
equationally axiomatisable, in: Proc. UCS'94, Paris (IEEE
Computer Society Press, Silver Spring, MD, 1994) 62-70.

