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New asymptotic expansions are given for the q-gamma function, the q-exponen
tial functions, and for the Hahn-Exton q-Bessel function. For the theta functions, 
four expansions are given. And for the Hahn-Exton q-Bessel difference equation, a 
new solution is given, which forms with the Hahn-Exton q-Bessel function a 
numerically satisfactory pair of solutions. © 1994 Academic Press, Inc. 

1. INTRODUCTION 

In this paper we give new asymptotic expansions for the q-gamma func
tion I'q(x), for the q-exponential functions eq(x) and Eq(x), and for the 
Hahn-Exton q-Bessel function J,(x, q). These functions are q-analogues of 
the classical functions and have been studied in many places in the 
literature. For a recent introduction to q-hypergeometric functions see 
Gasper and Rahman [3]. However, the asymptotic properties for these 
functions, as lxl --+ oo, have not been studied extensively. This may be due 
to the fact that these functions do not have nice integral representations, 
and are not solutions of linear differential equations. 

For obtaining the asymptotic expansions of I'q(x), in Section 2, and of 
eq(x) and Eq(x), in Section 3, for x--+ co, we use the Abel-Plana formula. 

THEOREM 1.1. Let f(t) be holomorphic in n ~Re t ~ m, n, m e·Z, and 
suppose that f(t) = o(e2" iim ' 1) as Im t--+ ± oo, uniformly with respect to 
Re t e [n, m], then 

m m 1 1 
.I f(j) = f f(t) dt +2 f(n) + 2 f(m) 
J=n n 

·Joo f(n + iy)-f(m + iy)- f(n -iy) + f(m- iy) 
+ l 2ny 1 dy, o e -

( 1.1) 

where Z is the set of integers. 
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For a proof of this theorem see Olver [J 1, p. 290]. At the end of 
Section 3 we use the expansions of eq(x) and E)x) for obtaining certain 
expansions for the theta functions ,9 1, 92 , 93 , and .94 • 

In Section 4 the asymptotic expansion of J,.(x, q ), for x ~ oo, is obtained 
with a symmetry relation for the q-hypergeometric function 1 <P 1 • We show 
how this expansion can be obtained from the Hahn-Exton q-Bessel dif
ference equation. For this second-order linear difference equation we find 
another solution, which forms with lv(x, q) a numerically satisfactory pair 
of solutions. 

2. ASYMPTOTIC EXPANSIONS FOR THE q-GAMMA FUNCTION 

2.l. The q-gamma function. Jackson [5] defined a q-analogue of the 
gamma function by writing 

I'(x)= (q;q)x (1- )1-x 
q ( x. ) q ' q 'q :;) 

lql < 1, (2.1) 

where the product (a; q)x is defined by (a; q)cr:; = n;;o=O (1-aq"), a E IC, 
and (a; qL =(a; q)w/(aqv; q)"', v E IC. Thus for n a positive integer we have 
(a; q),, = (1-a)(l -aq) · · · (1-aq"- 1 ) and 

(2.2) 

The factor ( 1 - q")/( 1 - q) is called the basic number of a, and q is called 
the base. It follows from limq ~ 1 ( 1 - q")/( 1 - q) =a that I'q(n + I) is a 
generalization of I'( n + 1 ). In [ 3] a sim pie proof is given for 
limqp I'q(x) = I'(x). For a rigorous justification of that formal proof, see 
Koornwinder [6]. And Askey [1] investigated thoroughly the q-gamma 
function as a function of both x and q. 

2.2. A simple asymptotic expansion for fixed q. The q-binomial theorem 
(see [3]) reads 

(ay; q) 00 

(y;q)w 

~ (a;q)o n 
L.. --y' 

n=O (q; q)n 
IYI < 1. 

By taking a= 0 and y = q=, in [ 1] the expansion 

I'q(z)=(q;q)oo (1-q)l-= f ( ~n=)' 
n=O q,q n 

(2.3) 

(2.4) 
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is obtained, which converges very fast for large positive z and 0 < q < 1 
fixed. But this simple expansion does not converge to Stirling's formula 
as qi 1. 

2.3. An asymptotic expansion which is valid for q j 1. In this section we 
take Re z > 0. The asymptotic expansion for In I'(z) reads 

( 1) 1 ~ B2n 1 2 
lnI'(z)~ z-2 ln(z)-z+2ln(2n)+ n'::12n(2n- l)z - n, (2.5) 

lzl ~ oo, larg zl ~ n - b, where Bm are the Bernoulli numbers. To derive an 
asymptotic expansion of the q-gamma function, we use the Abel-Plana 
formula withf(t)=ln(l-qz+ 1), n=O, m=ro. Then from (2.1) we derive 

z ( 1 - w) 1 ( 1 - z) ro ( 1 - 1 + iy) d 
lnI'q(z)=L In l-qq dw-21n l-~ +it In 1_:t-iy e27t/_ 1 

·fro (1-qz+iy) dy 
- l o ln 1 - qz - iy e27ty - 1 . (2.6) 

Expression (2.6) holds for Re z > 0, and it is a q-analogue of Binet's second 
expression for lnI'(z) (see Whittaker and Watson [13, p. 251]). The 
function 

lxl ~l, (2.7) 

is the dilogarithm function (see Lewin [8]). Using this, the first integral 
can be expressed as 

f z In (-1 -_q_w) dw = z In (-1 -_q_z) +_Li_· 2_( 1_-_q_z_) -_Li_· 2_( 1_-_q_) 
I 1-q 1-q Jnq 

_ ( 1 _ qz) ro ( 1 _ qz )k _ ( 1 _ q )k 
- z In 1 + L kz I . -q k=I nq 

(2.8) 

Thus 

fz (1-qw) lim In -1-- dw = z ln(z)-z + 1. 
qfl I - q 

(2.9) 

The second integral in (2.6) does not depend on z, and it converges to 

ICJJ (1 + iy) dy 1 
i 0 In l-iy e21tY_ 1 =2 In(2n)-1, (2.10) 



ASYMPTOTICS FOR q-SPECIAL FUNCTIONS 899 

as qi 1. In (2.10) we used Gradshteyn and Ryzhik [4, formula 4.552]. The 
final term in (2.6) can be expanded in an analogue of the infinite series 
in (2.5 ): 

·foo (1-q=+iy) dy -z In 1 z - iv 2nv 1 o -q · e -

=-1 n . +1 ·fool [(i(q-=-cos(ylnq)) )/(i(q-=-cos(ylnq)) 
o sm(ylnq) sin(ylnq) 

dy 
x e2ny - 1 

-*; 2(-1)"' (2m-l)zfoo( sin(ylnq) )2rn-l dy 
L, --q (2.11) 

- m=l 2m-1 0 1-q=cos(ylnq) e2"Y-l' 

where* holds for l(q-=-cos(ylnq))/sin(ylnq)l>l, thus for 
Re z > - ~ ln 2/ln q. This series converges termwise to the final term of 
(2.5 ), as qi 1. Hence, we claim that the q-analogue of (2.5) is the 
convergent expansion 

l () ( 1) 1 (1-q=) Li2(1-q=)-Li2(1-q) nr z = z-- n -- +--------
q 2 1 - q In q 

·f"' (1-ql+iy) dy 
+ z o ln 1 - q1 - iy e2n.v - 1 

+ 00 2(-lr'qt2m-l)zfoo( sin(ylnq) )2m-l_!!.!___. 
n~l 2m-1 O 1-q=cos(ylnq) e2"Y-l 

(2.12) 

Expansion (2.12) holds for Re z > - ~ ln 2/ln q, and it is an asymptotic 
expansion for largzl ,;;;n/2-6. The integrals in the infinite series of (2.12) 
can be viewed as analogues of the Bernoulli numbers in (2.5). It seems it 
is not possible to express these integrals in terms of known special func
tions. For obtaining an expansion of these integrals we write 

I 00 ( sin( y In q) ) 2m - 1 dy 
F m( W, q) = l ( 1 ) 2ny 1 · o - w cos y n q e -

(2.13) 

It is not difficult to prove that this function satisfies 

2m(2m -1) Fm+ 1(w, q) = (w2 - l )-? +4mw-+ 2m(2m -1) Fm(w, q). [ d 2 d J 
dw- dw 

(2.14) 
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The substitution of the Taylor expansion F m( w, q) = }::;'= 0 c(n, m) wn into 
(2.14) leads to 

00 ( sin(y In q) ) 2m- l dy 00 

= c(n m)qnz t 1 - q= cos( y In q) e2">' - 1 n ~ 0 ' ' 
(2.15) 

where the coefficients have the recursion relation 

(n+2m- l)(n+2m) (n+ l)(n+2) 
c(n,m+l)= 2m(2m-l) c(n,m)- 2m(2m-l) c(n+2,m), 

(2.16) 

m = 1, 2, ... The initial values are 

)-f 00 sin(y In q)(cos(y In qW d 
c(n, 1 - 2nv 1 y 

o e · -

-1 [n/2]((n) ( n ))[l+qn+l-2k 2 J 
=*2n+ 2 k~o k - k-1 l-q11 +1 - 2k+(n+l-2k)lnq · 

(2.17) 

In * we first expanded sin(x) cosn(x) as a sum of sin(kx), and then we used 
[ 4, formula 3.911.2]. And we have chosen C'i) = 0. 

Remark 1. Observe that the asymptotic expansion (2.12) converges 
termwise to the well-known expansion (2.5) as qi 1. The asymptotic expan
sions derived in the following sections, for the q-exponential functions and 
for the Hahn-Exton q-Bessel functions, do not share this property. 

Remark 2. With the Euler-Maclaurin formula (see [ 11, p. 285]) the 
following q-analogue of (2.5) is obtained in Moak [ 10]: 

(2.18) 

as z ~ oo, where Pn is a polynomial of degree n satisfying 

PAz) = (z-z2 ) P~_ i(z) + (nz + 1) P,,_ 1(z), P0 = 1, n ~ 1. (2.19) 

In [10] it is proven that the coefficients of Pn(z) are all positive, and 
P ,,(1) = (n + 1 )!. Although the series converges term wise to (2.5) as qi 1, it 
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seems that the expansion does not have an asymptotic property as : --+ x. 
because 

B2n (~)2n l =p (c=)/ 82,,+2 (' lnq )211+1 -
(2n)! q=-1 q 2n 3 1 / (2n+2)! c(-1 q·P1,, 

,...., B2n (2n + l )(2n + 2) 

B2,,+2 ln2 q 
(2.20) 

as z--+ w. Hence, successive terms of the series in (2.18) are not of lower 
order, as z--+ w, and q and n are fixed. 

3. ASYMPTOTIC EXPANSIONS FOR THE q-EXPONENTIAL FUNCTIONS 

3.1. The q-exponential functions. In this section we take O < q < I. The 
q-analogue eq(z) of the exponential function is defined by 

(3.1) 

where * follows from the q-binomial theorem (2.3 ), with a= O; it holds for 
izl < 1. Another q-analogue of the exponential function is defined by 

x q(~) 
Eq(z) = ( -z; q).x =* I -( -. -) z", 

n=O q,q n 

(3.2) 

and, again, * follows from the q-binomial theorem (2.3 ), with y = - z/a 
and letting a--+ w; it holds for all z E IC. Now the q j 1 limits read 

lim eq((l - q)z) = e=, 
q ii 

Note that eq(z) Eq(-z) = 1. 

Jim Eq((l -q)z)=e=. 
qp 

(3.3) 

In the next subsections we derive asymptotic representations of eq(z) and 
E q(z) as z --+ oo. As becomes clear these expansions do not converge to 
known representations of eq(z) and Eq(z) as qj l. This is due to the fact 
that the qj I limits require arguments (1-q)z, as shown in (3.3). 

3.2. An asymptotic expansion for Eq(z ). In the following analysis we 
suppose that z > I. For obtaining an asymptotic expansion for In E,/z ), we 

use the Abel-Plana formula (1.1 ), with n = 0, m = ro, andf(t) =lo( I+ zq'). 

This function has singularities (branch points) at t = - In z/ln q -
(2p + 1) ni/ln q, p E 'li., and these singularities give an extra term in the 

Abel~Plana formula. We obtain 
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Q+ 
ln(z) 3ni 

- Tri(cif - Tr1(qf 

ln(z) ni Q - Tri(cif - Tr1(qf 

~ 

~ 31t Sit 
ln(z) ni T T 

- Tri(cif + Tr1(qf 

Q 
ln(z) J1Ci 

-
- Tri(cif + lil(cif 

F10. 3.1. The contours of integration of (3.5) and (3.10). 

00 

In Eq(z) = L In(l + zqn) 
n=O 

Iro 1 
= 

0 
In( 1 + zq') dt + 2In(1 + z) 

Ioo ( 1 + zqiy ) dy 
+i o In l+zq-iy e2"Y-l +F(z,q), (3.4) 

with 

( )=f In(l+zq')d f In(l+zq')d 
F z, q 1 -2";' t+ 2";' 1 t, a. -e a_ e -

(3.5) 

where the contours of integration look like those in Fig. 3.1. 
The first integral in ( 3.4) can be expanded as 

Ioo 1 
In( 1 + zq 1 ) dt = -1 - Li 2( - z) 

o n q 

* 1 [1 2 1 2 ~ ( -z)-k] 
= -lnq 6n +2In (z)+ k'::1 k2 ' (3.6) 
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where Li 2(z) is defined in (2.7), and * is proved in [8, p. 4]. The second 
integral can be expanded as follows: 

. f 00 
( l + zq') ) dy 

z ln . - 1--

0 l+zq-'Y e~11Y-} 

. s 00 
[ ( q -iy) ( qiy) J dy = z ln 1 + -- - ln 1 + -. + 2iy In q , . 

o z z e- 11 ' - 1 

1 00 (-z)-kJ.""sin(kylnq) 
= * - - ln q - 2 2: dy 

12 k=I k 0 e211y_J 

** 1 1 ~ -k [ 1 1 + qk 1 J = -- nq+ L., (-z) ---+-,--
12 k = 1 2k 1 - qk k- ln q 

-*** 1 1 1 ~ (-z)-k 1 ( 1) _ - - n q + - L., -2 ln 1 + -
2 12 lnqk=I k2 

(3.7) 

In * we used J~' (y dy/(e 2"Y -1 )) = !B2 = ~, m ** we used [ 4, formula 
3.911.2], and in *** we used 

= -~1n(1+~)-1n(-9..;q) . (3.8) 
2 z z c:t:C 

The infinite series in (3.6) and (3.7) are defined for z> 1. It is not difficult 
to show that the function F(z, q) satisfies 

F(zq, q)=F(z, q). (3.9) 

We call functions with this property q-periodic functions. The function 
F(z, q) has the Fourier series 
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-4 [ ln(l + e- 2ix) J 
F(z )=*-Im dx 

'q In q t exp(( -2n/ln q)(2x- i ln z))- 1 

- 4 00 
[ ( In z) f (4nk ) J =- I, Im exp -2nik-1 - In( cos x) exp -1 -x dx 

lnqk=I nq a nq 

~ [exp( - 2nik(ln z/ln q)) f sin x (4nk ) d J =** -2 L. Im --exp -x x 
k = 1 2nk a cos x ln q 

~ [.exp( - 2nik(ln z/ln q)) ~ (2n2k(2m + 1 ))] 
= - 2 L. Im z k L... exp ln 

k=I m=O q 

= I cos(2nk(ln z/ln q))' 
k = 1 k sinh(2n2k/ln q) 

(3.10) 

where the contour of integration Q looks like the contour Q in Fig. 3.1. In 
* we used ( 3.5) with the substitution t = ( + 2ix - In z )/ln q, and in ** we 
integrated by parts. Thus for z > 1 and 0 < q < 1 we have obtained the 
convergent expansion 

Eq(z) = ( -z; q) 00 

1 [1 1 (1 2 1 2 ) 1 = exp - ln z - - - n + - ln z - - In q 
(-q/z;q) 00 2 lnq 6 2 12 

~ cos(2nk(ln z/ln q) )] 
+ k1;:1 k sinh(2n2k/ln q) · 

( 3.11) 

It is not difficult to prove that ( 3.11) holds for I arg z I < n, and that the 
arg z j n limit of the right-hand side of ( 3.11) is the same as the arg z t - n 
limit. For large lzl the dominant part of (3.11) is exp(-! ln 2 z/ln q). The 
factor 1/( -q/z; q) 00 has the asymptotic expansion :L::'=o (-q/ztf(q; q)n, 
lzl>q, see (3.1). The infinite Fourier series, (3.10), is a fast converging 
series for larg zl < n - t?, with <5 > 0 fixed. As remarked earlier, (3.11) does 
not converge as qi 1. 

3.3. An asymptotic expansion for eq(z ). Taking z > 0 and replacing z in 
(3.11) by e;"z or by e-;"z, and using the Fourier series 

0< y<2n, (3.12) 
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we obtain for z > 0 

1 
-(-) = (z; q) 00 
eq z 

sin(n(ln z/ln q)) [1 1 ( 1 2 1 2 ) 1 =2 exp -lnz-- --n +-ln z --lnq 
(q/z;qLX) 2 lnq 3 2 12 

00 
( ( In z) (2n2k)/ (2n2k))] + k~ 1 cos 2nk In q exp In q k sinh In q . (3.13) 

It is not difficult to prove that (3.13) holds for larg zi ,,,; 2n, and that the 
arg z i 2n limit of the right-hand side of (3.13) is the same as the 
arg z l - 2n limit. Again, for large izl the dominant part of (3.13) is 
exp( - 4 In 2 z/ln q ). The factor 1/( q/z; q) 00 has the asymptotic expansion 
:L:_ 0 (q/z)"/(q; q)no lzl > q. The infinite Fourier series is a fast converging 
series for larg z\ < 2n - 8, with 8 > 0 fixed. Again, (3.13) does not converge 
as q j 1. 

3.4. Certain expansions for theta functions. In the previous subsections 
we have obtained expansions for the infinite products (z; q) 00 (q/z; q) 00 and 
( -z; q) 00 ( -q/z; q)oo- In this subsection we use these expansions for 
obtaining certain expansions for the theta functions. The theta functions 
have the well-known representation 

00 

.9i(-i ln z, q) = i L ( -1)" q((2n-l)/2l2z2n- l 

n= - ctJ 

00 

.92( - i In z, q) = L q((2n - l)/2)2z2n- l 

n= -oo (3.14) 

.9 ( · 1 ) ~ ,.2 2n * ( 2. 2) ( 2 . 2) ( q . 2) 
3 -l nz,q =n~oo q z = q,q ro -zq,q 00 -z2'q oo' 

n ( · 1 ) ~ ( 1 )n ,,2 2n * ( 2. 2) ( 2 • 2) ( q . 2) 
'1'4-l nz,q =n~oo - q z = q,q 00 zq,q 00 z2'q oo' 

where * follows from Jacobi's triple product identity, see [3]. Using (3.11) 
and (3.13 ), we obtain for 0 < q < 1 the expansions 



906 A. B. OLDE DAALHUIS 

1 w ( ( In z) + - In q + I: cos 2nk -1 -12 k=I nq 

(n2k)/ (n2k))] x exp In q k sinh In q , (3.15.a) 

? ? [ 1 (1 ? ? ) ,9 2(-ilnz,q)=(q-;q·)c"'exp -lnq 12 n-+ln-z 

1 ~ cos(2nk(ln z/ln q) )] 
+-lnq+ L., . , , 

12 k= 1 k smh(n-k/ln q) 
(3.15.b) 

.9 3 (-ilnz,q)=(q2 ;q2 L.oexp[- 1:q(i~n2 +1n2 z) 

1 1 ~ 1 )k cos(2nk(ln z/ln q) )] 
+- n q + L., ( - k . h( 'k/l ) ' 12 k= 1 sm n- n q 

(3.15.c) 

1 00 
( ( ln z) + - In q + I: ( - 1 )k cos 2nk -1 -12 k=I nq 

(3.15.d) 

Expansions (3.15.a) and (3.15.d) hold for larg zl ~ n, and the expansions 
(3.15.b) and (3.15.c) hold for larg zl ,:;;_ n/2. These four expansions can be 
used for numerical computations of the theta functions. A direct proof for 
these expansions uses Jacobi's transformation for theta functions. For 
.9 1(z, q) Jacobi's transformation reads 

fn- ( ln 2 z) ( In z ( n 2 
)) 91(-ilnz,q)=i'x/-=-lrrqexp -Inq 91 nlnq'exp lnq . (3.16) 

Now use Jacobi's triple product identity for the theta function on the 
right-hand side of (3.16), and some simple manipulations lead to the first 
expansion of (3.15). 

Remark. The results in this section overlap with the results in 
Littlewood [9]. Our result (3.11) is similar to [9, (2), p. 395], but the 
proof of (3.11) is new, and it can be used for other infinite products. In [9] 



ASYMPTOTICS FOR q-SPEC!AL FUNCTIONS 907 

a complete asymptotic expansion for ( -z; q)..,, is given, as lzl-> oc, which 
is valid for 0 < lql < 1. For a correct version of this complete asymptotic 
expansion see Chen et al. [2], where a result similar to (3.l ! ) is proven 
also. Our result (3.15.b) is similar to [9, (5), p. 400]. 

4. ASYMPTOTIC EXPANSIONS FOR THE HAHN-EXTON q-BESSEL FUNCTION 

4.1. The Hahn-Exton q-Bessel junction. This function has been 
thoroughly investigated by Swarttouw [12]. In this section we take 
0 < I qi < 1. The definition of this function is in terms of the 
q-hypergeometric 1 <!> 1 function. Let 

( 0 I ) 00 i~) 
1<1>1 q,z =I (-z)\ 

W k~o (w; q)k (q; q)k 
ZE IC, ( 4.1) 

then the definition of the Hahn-Exton q-Bessel function JJx, q2 ) reads 

(4.2) 

This function has many nice properties, which are analogues of properties 
of the Bessel function J,(x). We have taken q2 as the base, to make the 
notations easier. In [ 12] it is shown that a q-extension of Bessel's equation 
is the Hahn-Exton q-difference equation 

of whichf(x)=JJx, q2 ) is a solution. A second solution is J_v(xq~',q2 ). 

The Hahn-Exton q-Bessel function has the following qi 1 limit: 

( 4.4) 

4.2. An asymptotic expansion for Jv(x, q2 ). In Koornwinder and 
Swarttouw [7] it is proven that the symmetry relation 

w,zEC, (4.5) 
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holds. Thus with (4.2) we obtain 

J( 2) v(x2q2;q2)00 n, ( 0 I 2 2v+2) v x, q = x ( 2. 2) 1 'Y[ 2 2 q , q 
q,q co xq 

(x2q2. q2) oo q1( ;) 
=Xv ' oo ~ ( _ 2v + 2)k C 

(q2; q2) 00 k':o (x2q2; q2h (q2; q2)k q , XE . 

(4.6) 

The factor (x2q2; q2)00 is the function l/eq2(x2q2), for which we have 
derived an expansion in (3.13). The infinite series in (4.6) converges fast for 
large x. And from (x2q2;q2h/(x2q2;q2h+ 1 =(1-x2q2k+ 2)- 1 it follows 
that this series has an asymptotic property for x--. oo. The poles of 
1/(x2q2; q2)k at x = q-m, m E { 1, 2, .. ., k }, are removed by the zeros of 
(x 2q2; q2 )00' Note that (4.6) is also an asymptotic expansion for v--. oo. 

4.3. A derivation of the asymptotic expansion from the Hahn-Exton 
q-difference equation. The following method for obtaining asymptotic 
expansions for solutions of the difference equation ( 4.3) is inspired by the 
formal solutions substitution method (see [ 11, Chap. 7]) for obtaining 
asymptotic expansions for solutions of differential equations with irregular 
singularities. For obtaining a q-exponential part of a formal solution of 
(4.3), we first solve the equation h(x)=(q-J.-x2q 2 -v)h(xq), A.eC, which 
we call a reduced equation of ( 4.3 ). The simplest non-trivial solution of this 
reduced equation is x;.(x2q2 -v+J.; q2 )oo- This observation leads to the 
following representation of a solution of ( 4.3 ): 

A.eC. (4.7) 

Substituting (4.7) in (4.3), we obtain for g;,(x) the following q-difference 
equation: 

1- q).(q-v + qv) 
g;.(x)-g;,(xq)+ 1 2 2-v+J. g;,(xq) 

-xq 

q2). 
+ (1-x2q2-v+J.)(l -x2q4-v+J.) g;,(xq2) = 0. (4.8) 

Substituting the formal expansion 

( 4.9) 

in (4.8) and using 

1 1-q-2k q-2k 

(x2q4-v+-1; q2h = (x2q2-v+\ q2h+ 1 + (x2q2-v+A; q2h' 
( 4.10) 
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we obtain 

2k 
a __ q_ [( 2-2k A.( -v+ ')) 2). J 
k-l-q2k q -q q q ak-i+q ak-2, 

( 4.11) 

k=2, 3, ... 

We write 

q2k 

ak = ( 2. 2) rxk> 
q 'q k 

and with ( 4.11) we obtain that rx 1 = (1- q;·(q-v + q'))rx0 and 

( 4.12) 

k= 1, 2, ... 

(4.13) 

By induction with respect to k it is easy to prove that 

lak I::;:; (-M; lqJ 2 )k+ 1 laol::;:; ( -M; lqJ 2 ) 00 Ja0 J, (4.14) 

where M = Jq! \Ji).- 4 ( JqJ -\Rv + Jq! \liv) + 2 Jq! 29u- 4_ With (4.13) it follows that 
{rxkh=o,1, 2, ... is a bounded Cauchy sequence. Thus there is a constant 
C;. E IC such that akq- 2k converges to C;. as k--+ oo. It follows that for all 
A. E IC the expansion ( 4.9) converges. 

Substituting 

( 4.15) 

into the left-hand side of the q-difference equation (4.8), we obtain 

N N 1-q).(q-'+qv) N 
g;.(x)-g;.(xq)+ 1 2 2-v+A g;.(xq) 

-xq 

q2). 

+ (1 -x2q2-v+J.)(1-x2q4-v+A) g1(xq2) 

_(q-2(N+1)_1)aN+I+ q2).aN 

- (x2q2-v+\ q2)N+ 1 (x2q2-v+\ q2)N+ 2· 
(4.16) 

Thus the right-hand side of (4.16) converges to zero only when C;. = 0. 
Hence, only for those A., with C" = 0, the expansion ( 4.9) is a solution of 
the q-difference equation (4.8). The case that A.= ±vis one of the simplest 
cases with C;. = 0. Another example with C;. = 0 is A.= ± v - 2. 
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We obtain the two solutionsf+v(x) of (4.3), and it is easy to show that 
with the appropriate a0 , we- have f.(x)=Jv(x,q 2 ) and f_v(x)= 
J _v(xq-v, q2). 

4.4. Other solutions of the Hahn-Exton q-difference equation. In this 
subsection we start with the reduced equation h(xq) = (q_,_ - x 2q-v) h(x), 
A.EC. The simplest non-trivial solution of this reduced equation is the 
product x_,_/(x2q,\-v; q2 ) 00 • Our second formal solution is written in the 
form 

-A. 
- x 
f;_(x) = ( 2 ,\-v. 2) g,_(x). 

xq ,q oo 
( 4.17) 

With the method of the previous subsection, we obtain two new solutions 
of ( 4.3 ). The first new solution is 

xeC, ( 4.18) 

and the second new solution is J<!.~(xq-v, q2 ). 

The solution Jv(x, q2 ) of (4.3) has the asymptotic behaviour Jv(x, q2 )"' 

x>(x2q2; q2 ) 00 /(q2; q2 ) 00 as lxl -+ oo, and the solution J~2>(x, q2 ) has the 
asymptotic behaviour J~2>(x,q2 )-x-v(q2;q2 ) 00 /(x2;q2 )""' as lxl-+oo. 
With this behaviour for large lxl, and with the theory of the next subsec
tions, it follows that Jv(x, q2) and J~2>(x, q2 ) form a numerically satisfactory 
pair of solutions (see [11, §5.7] for an extensive treatment of this concept) 
of (4.3). Again, note that (4.18) is also an asymptotic expansion for v-+ oo. 

4.5. Second-order linear q-difference equations. A general second-order 
linear q-difference equation is of the form 

a(x, q) f(x) + b(x, q) f(xq) + c(x, q) f(xq 2 ) = 0. (4.19) 

We take as the q-W ronskian 

which is a slightly different q-Wronskian than the q-Wronskian introduced 
in [12]. It is not difficult to show that Wq/x(l -q) tends to the ordinary 
Wronskian if q j 1. Let f 1 and f 2 be solutions of ( 4.19), such that 
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Wq(f1(x), f 2(x)) is not identically zero. Then it follows that any solution 
f(x) of (4.19) can be written as f(x) = p 1(x) / 1(x) + Pi(x) f 2(x), with 

and 

which are q-periodic functions, that is, pj(xq) = pj(x). 
Note that for two solutions ft> j 2 of (4.19) we have Wq(f1(x), f 2(x)) = 

c(x, q)/a(x, q) Wq(f1(xq), f 2(xq)). Thus x1-+ Wq(f1(x), / 2(x)) is q-periodic, 
if and only if a(x, q) = c(x, q). 

4.6. The Wronskians of the solutions of the Hahn-Exton q-difference 
equation. With the last remark of the previous subsection it follows that 
for two solutions / 1 , / 2 of the Hahn-Exton q-difference equation ( 4.3 ), 
the Wronskian w(x) = Wq(f1(x), / 2 (x)) is q-periodic. Hence, w(x) = 
limk .... 00 w(xq±k), and we can compute the Wronskian from the expansions 
of/1(x) and/2 (x) at x=O or at x= oo. In [12] the Wronskian 

( 4.21) 

is obtained. Thus for v an integer, the Wronskian is identically zero. In 
[12] a q-analogue of the Bessel function Y.(x) is introduced, which is a 
solution of (4.3). It is defined by 

2 I'q2(v)I'qi(l-v)qv(v+l) 2 

Yv(X, q ) = I'q2( 1/2 - V) I'q2( 1/2 + V) Jv(x, q ) 

I'q2(v) I'q2(l -v) -v 2 ) 

- I'q2(1/2) I'q2(1/2) J -v(xq 'q ), <4·22 

and it has the limit relation 

The Wronskians 

lim Yv(x(l -q), q2)= Yv(x). 
qTJ 

qv(v-1)(1 _ q2) 
Wq(J.(x, q2), Yv(x, q2)) = I'q2(1/2) I'q2(l/2)' 

Wq(lv(x, q2), j~2l(x, q2)) = -q-v, 
Wq(J _v(xq-v, q2), J'!_~(xq-v, q2)) = -qv, 

are not identically zero, for all v EC. But 

Wq(J~2>(x, q2), J'!_~(xq-v, q2))=0, 

(4.23) 

(4.24) 

(4.25) 
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which follows from 

J~2l(x, q2) vl _ 2v (x2q-2v; q2) 00 (x-2q2v+2; q2) 00 
J~'..(xq-', q2) = q x (x2; q2)oo (x-2q2; q2)oo ' 

(4.26) 

which is q-periodic, and which can be obtained by using ( 4.5) in ( 4.18 ). 

4.7. A representation for J~2 >(x, q2 ) in terms of the functions J,(x, q2 ) and 
Y,(x, q2 ). In this subsection we find the unique q-periodic functions 
a(x, q) and b(x, q) such that 

(4.27) 

We substitute (4.27) in the second equation of (4.24), and we obtain 

( 4.28) 

To obtain a representation for a(x, q) we substitute (4.27) and representa
tion (4.22) in a(x, q)= Wq(J~2 l(x, q2 ), Y,(x, q2))/Wq(Jv(x, q2), Y,(x, q2 )) 

and we use (4.26). We obtain 

a(x ) =___(___ r .,i(v) I'q2(l - v) I'~2(1/2) 
'q 1- q2 r ql(l/2-v) I'q2(1/2 + v) 

q2vx-2• (x2q-2v; q2)c"' (x-2q2v+2; q2) 00 
---2 ( 2 • 2 ) ( _ 2 2 • 2 ) I'q2(v) I'q2(l -v). (4.29) 

1-q x ,q 00 x q ,q 00 

With representation (4.27) and some hard analysis it can be proven that in 
contrast to (4.4) and (4.8) the function J~2l(x(l-q), q2 ) does not converge 
as qi 1. 
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