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Abstract

This paper defines the class of càdlàg functional marked point processes (CFMPPs). These
are (spatio-temporal) point processes marked by random elements which take values in a
càdlàg function space, i.e. the marks are given by càdlàg stochastic processes. We generalise
notions of marked (spatio-temporal) point processes and indicate how this class, in a sensible
way, connects the point process framework with the random fields framework. We also show
how they can be used to construct a class of spatio-temporal Boolean models, how to construct
different classes of these models by choosing specific mark functions, and how càdlàg functional
marked Cox processes have a double connection to random fields. We also discuss finite
CFMPPs, purely temporally well-defined CFMPPs and Markov CFMPPs. Furthermore, we
define characteristics such as product densities, Palm distributions and conditional intensities,
in order to develop statistical inference tools such as likelihood estimation schemes.
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1 Introduction
Point processes [Cox and Isham, 1980, Daley and Vere-Jones, 2003, 2008, Karr, 1991, Van Lieshout,
2000, Møller and Waagepetersen, 2004, Stoyan et al., 1995], which may be treated as random
collections of points falling in some measurable space, have found use in describing an increasing
number of naturally arising phenomena, in a wide variety of applications, including epidemiology,
ecology, forestry, mining, hydrology, astronomy, ecology, and meteorology [Cox and Isham, 1980,
Daley and Vere-Jones, 2003, Karr, 1991, Møller and Waagepetersen, 2004, Ripley, 1981, Schoenberg
and Tranbarger, 2008, Schoenberg, 2011, Tranbarger and Schoenberg, 2010].

Point processes evolved naturally from renewal theory and the statistical analysis of life tables,
dating back to the 17th century, and in the earliest applications each point represented the occur-
rence time of an event, such as a death or an incidence of disease (see e.g. [Daley and Vere-Jones,
2003, Chapter 1] for a review). In the mid-20th century interest expanded to spatial point pro-
cesses, where each point represents the location of some object or event, such as a tree or a sighting
of a species [Cressie, 1993, Diggle, 2003, Ripley, 1981, Stoyan et al., 1995]. More recent volumes
have a strong emphasis on spatial processes and address mathematical theory [Daley and Vere-
Jones, 2008, Gelfand et al., 2010, Van Lieshout, 2000, Schneider and Weil, 2008], methodology
of statistical inference [Van Lieshout, 2000, Møller and Waagepetersen, 2004], and data analysis
in a range of applied fields [Diggle, 2003, Ripley, 1981, Baddeley et al., 2000, Illian et al., 2008],
although the distinction between these three areas is far from absolute and there are substantial
overlaps in coverage between the cited references.

The classical model for temporal or spatial point processes is the Poisson process, where the
number of points in disjoint sets are independent Poisson distributed random variables. Alternative
models for spatial point processes ([Cressie, 1993, Chapter 8] or [Møller and Waagepetersen, 2004])
grew quite intricate over the course of the 20th century, and among the names associated with these
models are some of the key names in the history of statistics, including Jerzy Neyman and David
Cox. Today, much attention is paid to spatio-temporal point processes, where each point represents
the time and location of an event, such as the origin of an earthquake or wildfire, a lightning strike,
or an incidence of a particular disease [Tranbarger and Schoenberg, 2010, Vere-Jones, 2009].

The intimate relationship between point processes and time series is worth noting. Indeed,
many data sets that are traditionally viewed as realisations of point processes could in principle
also be regarded as time series, and vice versa [Cox and Isham, 1980, Tranbarger and Schoenberg,
2010]. For instance, a sequence of earthquake origin times is typically viewed as a temporal point
process, though one could also store such a sequence as a time series consisting of zeros and ones,
with the ones representing earthquakes. The main difference is that for a point process, a point
can occur at any time in a continuum, whereas for time series, the time intervals are discretised.
In addition, if the points are sufficiently sparse, one can see that it may be far more practical
to store and analyse the data as a point process, rather than dealing with a long list containing
mostly zeros. By the mid 1990s, models for spatial-temporal point processes had become plentiful
and often quite intricate.

A probabilistic view of spatio-temporal processes, in principle, can just regard time as one more
coordinate and, hence, a special case of a higher-dimensional spatial approach. Of course, this is not
appropriate for dynamic spatially referenced processes, as time has a different character than space.
There has been a lot of recent work on spatio-temporal models, and a variety of ad hoc approaches
have been suggested. Processes that are both spatially and temporally discrete are more naturally
considered as binary-valued random fields. Processes that are temporally discrete with only a small
number of distinct event-times can be considered initially as multivariate point processes, but with
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the qualification that the temporal structure of the type-label may help the interpretation of any
inter-relationships among the component patterns. Conversely, spatially discrete processes with
only a small number of distinct event-locations can be considered as multivariate temporal point
processes, but with a spatial interpretation to the component processes. The other more common
end is considering processes that are temporally continuous and either spatially continuous or
spatially discrete on a sufficiently large support to justify formulating explicitly spatio-temporal
models for the data.

A marked point pattern is one in which each point of the process carries extra information
called a mark, which may be a random variable, several random variables, a geometrical shape,
or some other information. A multivariate or multi-type point pattern is the special case where
the mark is a categorical variable. Marked point patterns with nonnegative real-valued marks are
also of interest. A spatial pattern of geometrical objects, such as disks or polygons of different
sizes and shapes, can be treated as a marked point process where the points are the centres of the
objects, and the marks are parameters determining the size and shape of the objects [Ripley and
Sutherland, 1990, Stoyan and Stoyan, 1994].

Marked point patterns raise new and interesting questions concerning the appropriate way to
formulate models and pursue analyses for particular applications. In the analysis of a marked point
pattern, an important choice is whether to analyse the marks and locations jointly or conditionally.
Schematically, if we write X for the points and M for the marks, then we could specify a model
for the marked point process [X,M ]. Alternatively we may condition on the locations of the
points, treating only the marks as random variables [M |X]. In some cases, we may condition on
the marks, treating the locations as a random point process [X|M ]. This is meaningful if the
mark variable is a continuous real-valued quantity, such as time, age or distance. The concept
of marking refers to methods of constructing marked point processes from unmarked ones. Two
special cases, independent and geostatistical markings, are among the known simple examples of
marking strategies and are often used in practice. However, these markings are not able to model
density-dependence of marks, the case where the local point intensity affects the mark distribution.

One important situation is where the marks are provided by a (random) field – geostatisti-
cal/random field marking. A random field is a quantity Z(u) observable at any spatial location u.
A typical question is to determine whether X and Z are independent. If X and Z are independent,
then we may condition on the locations and use geostatistical techniques to investigate properties
of Z. However, in general, geostatistical techniques, such as the variogram, have a different in-
terpretation when applied to marked point patterns. In this context, the analysis of dependence
between marks and locations is of interest. [Schlather et al., 2004] defined the conditional mean
and conditional variance of the mark attached to a typical random point, given that there exists
another random point at a distance r away from it. These functions may serve as diagnostics for
dependence between the points and the marks. Another way to generate non-Poisson marked point
processes is to apply dependent thinning to a Poisson marked point process. Interesting examples
occur when the thinning rule depends on both the location and the mark of each point.

Despite the relatively long history of point process theory, few approaches have been considered
to analyse spatial point patterns where the features of interest are functions (i.e. curves) instead
of qualitative or quantitative variables. For instance, an explicit example is given by the growth-
interaction process [Comas, 2009, Comas et al., 2011, Cronie, 2012, Cronie and Särkkä, 2011, Cronie
et al., 2013, Renshaw and Comas, 2009, Renshaw et al., 2009, Renshaw and Särkkä, 2001, Särkkä
and Renshaw, 2006], which has been used to model the collective development of tree locations
and diameters in forest stands. Moreover, [Illian et al., 2006] consider for each point a transformed
Ripley’s K-function to characterise spatial point patterns of ecological plant communities, whilst
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[Mateu et al., 2008] build new marked point processes formed by spatial locations and curves
defined in terms of LISA functions, which define local characteristics of the point pattern. They
use this approach to classify and discriminate between points belonging to a clutter and those
belonging to a feature. The study of such configurations permits to analyse the effects of the
spatial structure on individual functions. For instance, the analysis of point patterns where the
associated curves depend on time may permit the study of spatio-temporal interdependencies of
such dynamic processes.

Functional data analysis describes and models data based on curves [Ramsay and Silverman,
2002, 2005]. This theory considers each curve as an observation rather than a set of numbers
[Ramsay and Silverman, 2002]. Therefore, functional data analysis together with point process
theory provides the theoretical framework to analyse point patterns with associated curves. The
use of functional data analysis has already been considered to analyse geostatistical data involving
functions instead of single observations. For instance, [Delicado et al., 2010, Giraldo et al., 2010,
2011] develop new geostatistical tools to predict unobserved curves representing daily temperature
throughout a year, and analyse a data set consisting of daily meteorological measurements recorded
at several weather stations of Canada. However, the use of functional tools in point pattern analysis
is limited to just a few references and none of them provides new second order characteristics.

It is clear that there is a wealth of approaches in the theory of spatial point processes. However,
the large number of derived spatial point process approaches and methods reduces significantly
when handling a spatio-temporal structure in combination with such associated marks. Our aim
here is to propose a new class of (spatio-temporal) functional marked point processes, where the
marks are random elements which take values in a càdlàg function space. The reason for this
choice of function class is its generality and flexibility, and thus its ability to accommodate a
variety of different models and structures. With this new setup, we generalise most of the usual
notions of (spatio-temporal) marked point processes, hence providing a unifying framework. In
addition, we indicate how this framework in a natural way unifies the frameworks of marked point
processes and random fields, and we indicate a geometrical interpretation which connects this
framework with (spatio-temporal) Boolean models. We develop characteristics such as product
densities, Palm distributions and (Papangelou) conditional intensities, as these play a significant
role in both theoretical as well as practical aspects of point process analysis. We also we discuss
different explicit marking structures and give a thorough description of the statistical framework
when the marks are sampled discretely.

The paper is structured as follows. Section 2 presents the new class of càdlàg functional marked
point processes, both in its spatial and spatio-temporal versions. Here also some geometric inter-
pretations are discussed. Some motivating examples and connections with other spatio-temporal
frameworks are given in Section 3. Section 4 develops certain point process characteristics, such
as product densities and Papangelou conditional intensities, which are needed for the development
of the statistical theory underlying these processes. Section 5 discusses certain specific marking
structures, which may be considered within this framework. The point process characteristics
are particularised to Poisson, Cox, temporally well-defined, finite and Markov càdlàg functional
marked point processes in Section 6. Finally, in Section 7, the scenario where the functional marks
are sampled discretely is covered.
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2 Càdlàg functional marked point processes
We here describe the construction of two types of point processes, where the second type is a spatio-
temporal version of the first type. Heuristically, the first type may be described as a collection
Ψ = {(Xi, (Li,Mi))}Ni=1 of Euclidean spatial locations Xi with associated function-valued marks
Mi and auxiliary marks Li, i.e. random parameters/variables with the purpose of controlling Mi.
For the second type we further add a random temporal event Ti to each point of Ψ so that the
point process Ψ may be described as the collection Ψ = {((Xi, Ti), (Li,Mi))}Ni=1. Note that the
extra parentheses here are meant to emphasise which part is the space-time location and which
part is the mark.

We start by defining the two product spaces on which these two types of point processes are
defined. We then continue to define the two types of point processes Ψ as random measures on
these two spaces.

2.1 Notation

Let the underlying probability space be denoted by (Ω,F ,P). Due to the inherent temporally
evolving nature of the functional marks and/or the spatio-temporal point process part, at times
we will further consider some filtration FT and thus obtain a filtered probability space (Ω,F ,FT,P).
We let Z+ = {1, 2, . . .} and N = {0} ∪ Z+, and let PN denote the power set of {1, . . . , N}.

For any x, y in d-dimensional Euclidean space Rd, d ≥ 1, we denote the Euclidean norm by
‖x‖ = (

∑d
i=1 x

2
i )

1/2 (or sometimes |x|) and the Euclidean metric by dRd(x, y) = ‖x − y‖. Given
some topological space X , we will call X a csm space if it is a complete separable metric space, and
as usual we will denote the Borel sets of X by B(X ). Given Borel σ-algebras B(Xi), i = 1, . . . , n, we
denote the product σ-algebra by

⊗n
i=1 B(Xi) and by B(X )n if Xi = X , i = 1, . . . , n. For measures

νi(·) defined on B(Xi), i = 1, . . . , n, we write
⊗n

i=1 νi(·) for the product measure and we write νn
if the measure spaces are identical. We will denote Lebesgue measure on (Rd,B(Rd)) by ` and
use both

∫
G
f(x)`(dx) and

∫
G
f(x)dx interchangeably to denote the integral of some measurable

function f : Rd → R, with respect to ` and G ⊆ Rd. When we need to emphasise the dimension
of the space on which we apply `, we write e.g. `d to denote Lebesgue measure on Rd.

For any set A, we let 1A(a) = 1{a ∈ A} denote the indicator function of A and |A| will
denote the related cardinality (it will be clear from context whether we consider the norm or
the cardinality). Given some measurable space Y, we let δy(·) denote the Dirac measure of the
measurable singleton {y} ⊆ Y and sometimes this notation will also be used for Dirac deltas. As
usual, a.s. will be short for almost surely and a.e. will be used for almost everywhere.

Throughout, by a kernel we understand a family µ = {µ(x,A) : x ∈ X , A ∈ F} such that, for
a fixed x ∈ X , µ(x, ·) is a measure on some σ-algebra F and µ(·, A) is a measurable function for
a fixed A ∈ F . When µ is a kernel such that each µ(x, ·) is a probability measure on F , we call µ
a family of regular (conditional) probabilities.

2.2 The state spaces

The spaces X, T, A and F below will be used as underlying spaces in the construction of (spatio-
temporal) càdlàg functional marked point processes. For instance, as we shall see, a spatio-temporal
càdlàg functional marked point process will be defined as a marked point process with ground space
X× T and mark space A× F.
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2.2.1 The spatial ground space

Turning now to the purely spatial domain, throughout we will assume that it is given by some
subset X ⊆ Rd, d ≥ 1, with Borel sets B(X). Hereby, when we construct our point processes, each
point of the point process will have some spatial location x ∈ X. We note that the most common
assumption here is that X = Rd. However, if X 6= Rd or X 6= ±[0,∞)d we will require that X
is compact in order to make it csm (note that this includes the case of identifying the sides of a
(hyper)rectangle in order to construct a torus). When this is the case Ψ becomes a finite point
process.

2.2.2 The temporal ground space

In the case of spatio-temporal point processes we also consider the temporal interval domain T ⊆ R,
which contains a point’s (main) temporal occurrence/event time t ∈ T (in some applications t
symbolises e.g. a birth/arrival time). Note that T ∈ B(T) ⊆ B(R) and usually T = [0, T ∗] ⊆
{0} ∪ R+ = [0,∞).

2.2.3 The auxiliary mark space

Being marked point process models, at times we need to connect some auxiliary variable to each
point of the process. Such auxiliary information may possibly represent one of the following things.

1. A classification of type: Let A = Ad = {1, . . . , kA}, kA ∈ Z+, i.e. each auxiliary mark will be
of discrete type. Note here that the resulting (spatio-temporal) point process models will be
of multivariate type [Daley and Vere-Jones, 2003, Van Lieshout, 2000]. The metric chosen
is dA(l1, l2) = |l1 − l2|, l1, l2 ∈ A and the Borel sets are given by PkA .

2. Continuous auxiliary information: Let A = Ac ⊆ RmA for some mA ∈ Z+ (usually A =
[0,∞)). This corresponds to e.g. some additional temporal information, such as a lifetime,
which possibly controls the behaviour of the functional mark. Here the metric dA(·, ·) on A
will be given by the Euclidean metric ‖ · ‖.

3. The combination of the above: Let A = Ad×Ac, with the metric dA(l1, l2) = ‖l12−l22‖+|l11−
l21|, (l1, l2) = ((l11, l12), (l21, l22)) ∈ A2. Note that case 2 may be considered superfluous since
we here simply may let kA = 1, whereby each auxiliary mark will take values in {1} × Ac.

Note that under each of the proposed metrics, the corresponding space becomes a csm space and
we denote the Borel sets by B(A).

2.2.4 The functional mark space

In a functional marked point process, a (functional) mark may represent an array of things, ranging
from e.g. some feature’s growth over time to some function describing spatial dependence. In order
to accommodate a large range of models and applications, we choose to allow for the functional
marks to take values in a Skorohod space (see e.g. [Billingsley, 1999, Ethier and Kurtz, 1986, Jacod
and Shiryaev, 1987, Silvestrov, 2004]).

More specifically, consider some T ⊆ [0,∞), with T ∗ = sup T (with T ∗ = ∞ if T = [0,∞)),
and consider the function space

F = DT (R) = {f : T → R|f càdlàg},
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which is the set of càdlàg (right continuous with existing left limits) functions f : T → (R, dR(·, ·))
(see e.g. [Billingsley, 1999]). Consider now the collection Λ of all strictly increasing, surjective and
Lipschitz continuous functions λ : T → T , λ(0) = 0, limt→∞ λ(t) = T ∗, such that

γ(λ) = sup
s,t∈T :t<s

∣∣∣∣log
λ(s)− λ(t)

s− t

∣∣∣∣ <∞.
Since (R, dR(·, ·)) is a csm space, by endowing F with the metric

dF(f, g) = inf
λ∈Λ

{
γ(λ) ∨

∫
T

e−u sup
t∈T
{dR(f(t ∧ u), g(λ(t) ∧ u)) ∧ 1}du

}
,

we turn it into a csm space [Ethier and Kurtz, 1986]. The Borel sets generated by the corresponding
topology will be denoted by B(F) and it follows that B(Fn) = B(F)n [Jacod and Shiryaev, 1987].
Consider now the following definition, given in accordance with [Silvestrov, 2004, 1.6.1].

Definition 1. A stochastic process X(t) = (X1(t), . . . , Xn(t)), n ≥ 1, t ∈ T , is called an n-
dimensional càdlàg stochastic process if each of its sample paths X(ω) = {X(t;ω)}t∈T , ω ∈ Ω, is
an element of Fn.

In light of this definition, we note that functions in F include e.g. sample paths of Markov
processes, Lévy processes and semi-martingales, as well as empirical distribution functions. We
further note that the space CT (R) = {f : T → R : f continuous} is a subspace of F and for these
functions dF reduces to the uniform metric d∞(f, g) = supt∈T |f(t)−g(t)|. In addition, the Borel σ-
algebra B(CT (R)) generated by d∞(·, ·) on CT (R) satisfies B(CT (R)) = {E∩CT (R) : E ∈ B(F)} ⊆
B(F) [Jacod and Shiryaev, 1987, Chapter VI]. For details on filtrations with respect to càdlàg
stochastic processes, see [Jacod and Shiryaev, 1987, Chapter VI]. Hence, we can accommodate e.g.
diffusion processes or some other class of processes with continuous sample paths (note also that
each space Ck

T (R), k ∈ N, of k times continuously differentiable functions is a subspace of CT (R)).

2.3 The spatial and spatio-temporal state spaces

Since both A and F are csm, by endowing M = A× F with the supremum metric

dM((l1, f1), (l2, f2)) = max{dA(l1, l2), dF(f1, f2)}, (l1, f1), (l2, f2) ∈M,

(or any other equivalent metric) M itself becomes csm [Daley and Vere-Jones, 2003, p. 377] and
its Borel sets are given by B(M) = B(A × F) = B(A) ⊗ B(F) (see e.g. [Bogachev, 2007, Lemma
6.4.2.]).

2.3.1 The spatio-temporal state space

Let G = X×T and endow it with the supremum norm ‖(x, t)‖∞ = max{‖x‖, |t|} and the supremum
metric

dG((x1, t1), (x2, t2)) = ‖(x1, t1)− (x2, t2)‖∞ = max{dRd(x1, x2), dR(t1, t2)},

where (x1, t1), (x2, t2) ∈ G, so that G becomes a csm space and B(G) = B(X×T) = B(X)⊗B(T).
We note that there are other possible equivalent metrics, which measure space and time differently
(this is needed since it is the defining property of spatio-temporal point processes). However, for
our purposes, this is the preferable choice.
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Remark 1. Note that if the scales of time and space need to be altered, we may rescale e.g. time
by letting ‖(x, t)‖∞ = max{‖x‖, β|t|}, β > 0. The current construction amounts to β = 1.

The resulting underlying measurable spatio-temporal space which we will consider is given by

(Y,B(Y)) = (G×M,B(G×M)) = ((X× T)× (A× F),B(X)⊗ B(T)⊗ B(A)⊗ B(F))

and we note that Y is a Polish space, as a product of Polish spaces. In fact, by endowing Y = G×M
with the supremum metric

d((x1, t1, l1, f1), (x2, t2, l2, f2)) = max{dG((x1, t1), (x2, t2)), dM((l1, f1), (l2, f2))},

Y itself becomes a csm space [Van Lieshout, 2000, p. 8].
Concerning G, for any (x, t) ∈ G and u, v ≥ 0, consider the cylinder set

(x, t) + Cv
u = (x, t) + {(y, s) ∈ G : ‖y‖ ≤ u, |s| ≤ v} (1)

= {(y, s) ∈ G : dRd(x, y) ≤ u, dR(t, s)} ≤ v}.

We see that in this metric space closed balls satisfy B[(x, t), u] = (x, t) + Cu
u .

Remark 2. We note that in many, if not most, cases it is desirable to set T = T so that T
describes the total part of time which we are considering for the constructed point process on Y.

2.3.2 The spatial state space

The same reasoning gives us the (explicitly) non-temporal space

(Y,B(Y)) = (G×M,B(G)⊗ B(M)) = (X× (A× F),B(X)⊗ B(A)⊗ B(F))

with G having underlying norm ‖ · ‖ and metric dG(x1, x2) = dRd(x1, x2). We see here that the
only temporal information present is found implicitly in each f = {f(t) : t ∈ T } ∈ F, provided
that t ∈ T describes time.

2.4 Reference measures and reference càdlàg stochastic processes

When constructing marked point processes, for various reasons, including the derivation of explicit
structures for different summary statistics, one has to choose a sensible reference measure νM for
the mark space (M,B(M)). For similar reasons one also usually considers some reference measure
νG on the ground space (G,B(G)). We here let the reference measure on (Y,B(Y)) be given by

ν(·) = [νG ⊗ νM](·) = [`⊗ [νA ⊗ νF]](·), (2)

where each component measure in ν governs the probabilistic structures of Ψ on G, A and F,
respectively.

Regarding the measure on G, we let it be given by Lebesgue measure `, where ` = `d if G = X
and ` = `d+1 = `d ⊗ `1 if G = X × T. This is the usual choice when constructing point processes
on Rd or spatio-temporal point processes on Rd × R (recall that the metrics are different).

Recall the different auxiliary mark spaces given in Section 2.2.3. Irrespective of whether A = Ad,
A = Ac or A = Ad × Ac, we let the auxiliary mark reference measure νA be given by some locally
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finite Borel measure on B(A), i.e. νA(D) <∞ for bounded D ∈ B(A). In Section 5.3 we discuss in
detail some possible choices for νA.

Turning to the functional mark space (F,B(F)), consider some suitable reference càdlàg stochas-
tic process

XF : (Ω,F ,P)→ (F,B(F)), (3)
Ω 3 ω 7→ XF(ω) = {XF(t;ω)}t∈T ∈ F,

where each XF(ω) is commonly referred to as a sample path/realisation of XF, and consider the
induced probability measure

νF(E) = P({ω ∈ Ω : XF(ω) ∈ E}), E ∈ B(F),

which will be the canonical reference measure under consideration. Note that the joint distribution
on (Fn,B(Fn)) of n independent copies of XF is given by νnF , the n-fold product measure of νF with
itself. Also, we may conversely first choose the measure νF and then consider the corresponding
process XF.

For reasons which will become clear, νF or XF should be chosen so that suitable absolute
continuity/change-of-measure results can be applied. More specifically, the distribution PX on
(Fn,B(Fn)), n ≥ 1, of some stochastic process X = {X(t)}t∈T ∈ Fn of interest should have some
(functional) Radon-Nikodym derivative fX with respect to νnF , i.e. PX(E) =

∫
E
fX(f)νnF (df) =

EνnF [1EfX ], E ∈ B(Fn) (see [Skorohod, 1967] for a discussion on such densities). In Section 5.2 we
discuss such choices further and we look closer at Wiener measure as reference measure, i.e. the
measure induced by a Brownian motion XF = W = {W (t)}t∈T .

2.5 Point processes

Having defined the state spaces for the two types of point processes defined here, we now turn to
their actual definitions.

Let (Y,B(Y)) be given by any of the two state spaces defined above. Furthermore, let NY
be the collection of all locally finite counting measures ϕ =

∑
y∈ϕ δy on B(Y), i.e. ϕ(A) < ∞

for bounded A ∈ B(Y) and denote the corresponding counting measure σ-algebra by ΣNY (see
[Daley and Vere-Jones, 2008, Chapter 9]). Note that in what follows we will not distinguish in the
notation between a measure ϕ ∈ NY and its support ϕ ⊆ Y whereby ϕ({y}) > 0 and y ∈ ϕ (or
|ϕ ∩ {y}| 6= 0) will mean the same thing for any y ∈ Y.

Definition 2. If Ψ : Ω → NY, ω 7→ Ψ(·;ω), is a measurable mapping from the probability space
(Ω,F ,P) into the space (NY,ΣNY), we call Ψ a point process on Y.

Denote further by N ∗Y the sub-collection of ϕ ∈ NY such that the ground measure ϕG(·) =
ϕ(· × M) is a locally finite simple counting measure on B(G) (simple means that ϕG({g}) ∈
{0, 1} for any g ∈ G). We note that the simplicity of the ground measure further implies that
ϕ({(g,m)}) ≤ ϕG({g}) ∈ {0, 1} for any (g,m) ∈ G×M.

Throughout, irrespective of the choice of G, for any ϕ =
∑

(g,l,f)∈ϕ δ(g,l,f) ∈ NY (where g ∈ G
and (l, f) ∈M) we will write ϕ+ z =

∑
(g,l,f)∈ϕ δ(g+z,l,f) to denote a shift of ϕ in the ground space

by the vector z ∈ G. This notation will, in particular, be used in the definition of stationarity.
Recalling Definition 1, we see that any collection of elements {(g1, l1, f1), . . . , (gn, ln, fn)} ⊆

Ψ consists of the combination of a) a collection of spatial(-temporal) points g1, . . . , gn ∈ G, b)
a collection l1, . . . , ln of random variables taking values in A, and c) an n-dimensional càdlàg
stochastic process (f1(t), . . . , fn(t)), t ∈ T , all tied together.
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2.6 Càdlàg functional marked point processes

Following the terminology and structure given in [Comas et al., 2011], we now have the following
definition.

Definition 3. Let Y = G × M = X × (A × F) and let Ψ : Ω → NY be a point process on
Y = X× (A× F). If Ψ ∈ N ∗Y a.s., we call

Ψ =
∑
y∈Ψ

δy =
∑

(x,l,f)∈Ψ

δ(x,l,f)

a (simple) càdlàg functional marked point process (CFMPP) on Y.

• If either A = Ad or A = Ad × Ac, with kA ≥ 2 different type classifications, we call Ψ a
multivariate CFMPP.

• If further Ψ a.s. takes its values in N f = {ϕ ∈ N ∗Y : ϕ(Y) < ∞} ⊆ NY, we call it a finite
CFMPP.

We note that through a unique measurable enumeration (see [Daley and Vere-Jones, 2008,
Chapter 9.1]), we may write

Ψ =
N∑
i=1

δ(Xi,Li,Mi), 0 ≤ N ≡ Ψ(Y) ≤ ∞,

for some sequence {(Xi, Li,Mi)}Ni=1 of random vectors, which geometrically corresponds to the
support of Ψ. Here Xi ∈ Rd represents the spatial location of the ith point, Li ∈ A its auxiliary
mark and Mi ∈ F its functional mark. Note that when Ψ is multivariate and A = Ad × Ac, to
emphasise this aspect we often write Li = (Li1, Li2). It should further be noted that by construction
the ground process (unmarked process)

ΨX(·) = ΨG(·) =
∑
x∈ΨG

δx(·) =
∑
y∈Ψ

δy(· × A× F),

with support ΨG = {Xi}Ni=1 ⊆ X, is a well-defined simple point process on X with ΨG(B) =
|ΨG ∩B| = Ψ(B×A×F) <∞ a.s. for bounded B ∈ B(X). Note that the dual notation ΨG = ΨX
is introduced for later convenience.

Remark 3. Implicitly in the definition of a CFMPP we assume that Ψ is simple (since Ψ ∈ N ∗Y
a.s.). Furthermore, if ΨF(·) := Ψ(X × ·) is locally finite, then ΨF becomes a well-defined point
process on F and we refer to ΨF as the associated mark space point process. However, we will not
necessarily make that assumption here.

As already noted, by construction the collection of marks ΨF = {Mi}Ni=1, Mi = {Mi(t)}t∈T ,
consists of random elements in F (functional random variables), which simply are càdlàg stochastic
processes with sample paths/realisations Mi(ω) = {Mi(t;ω)}t∈T ∈ F, ω ∈ Ω. As we will see, by
letting Mi be given by a point mass δf on (F,B(F)) we also have the possibility to consider marks
which are given by deterministic functions f .
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2.7 Spatio-temporal càdlàg functional marked point processes

We now turn to the case where we include the explicit temporal space T and, consequently, deal
with spatio-temporal CFMPPs. Recall that Y = G×M = (X× T)× (A× F).

Definition 4. Let Ψ : Ω→ NY be a point process on Y = G×M = (X×T)× (A×F). If Ψ ∈ N ∗Y
a.s., we call

Ψ =
∑
y∈Ψ

δy =
∑

(x,t,l,f)∈Ψ

δ(x,t,l,f)

a (simple) spatio-temporal càdlàg functional marked point process (STCFMPP) on Y.

• If either A = Ad or A = Ad × Ac, with kA ≥ 2 different type classifications, we call Ψ a
multivariate STCFMPP.

• When Ψ ∈ N f = {ϕ ∈ N ∗Y : ϕ(Y) <∞} ⊆ NY a.s., we call Ψ a finite STCFMPP.

A few things should be mentioned at this point. To begin with we note that we may write

Ψ =
N∑
i=1

δ(Xi,Ti,Li,Mi), 0 ≤ N ≡ Ψ(Y) ≤ ∞,

where all Xi ∈ Rd represent the spatial locations, Ti ∈ T the occurrence times, Li ∈ A the
related auxiliary marks and Mi = {Mi(t)}t∈T ∈ F the functional marks. In connection hereto,
an interesting feature which sets this scenario apart from the non-spatio-temporal CFMPP case
is that we here have a natural enumeration/order of the points, which is obtained by assigning
the indices 1, . . . , N to the points according to their ascending occurrence times T1 < . . . < TN .
Hereby the support may be written as Ψ = {((Xi, Ti), (Li,Mi))}Ni=1 = {(Xi, Ti, Li,Mi)}Ni=1. Also
here, when Ψ is multivariate and A = Ad × Ac, we sometimes write Li = (Li1, Li2).

We note further that, by construction, the ground process is a well-defined simple point process
on X× T, i.e.

ΨX×T(B × C) = ΨG(B × C) =
∑

(x,t)∈ΨG

δ(x,t)(B × C) = Ψ(B × C × (A× F)) <∞,

for bounded B × C ∈ B(X × T), with support ΨG = {(Xi, Ti)}Ni=1. However, at times it may
be useful to require that also ΨX = {Xi}Ni=1 and/or ΨT = {Ti}Ni=1 constitute well-defined point
processes.

Definition 5. Let Ψ be a STCFMPP.

• If ΨX(·) = ΨG(· ×T) = Ψ(· ×T×A× F) is simple and locally finite, i.e. the spatial part ΨX
of the ground process also constitutes a well-defined simple point process on X, we say that
Ψ is spatially grounded.

• Similarly, if ΨT(·) = ΨG(X × ·) = Ψ(X × · × A × F) is simple and locally finite, so that ΨT
constitutes a well-defined point process on T, we say that Ψ is temporally grounded.

To additionally ground Ψ spatially and/or temporally can be of importance for different reasons.
For instance, as we shall see, we may speak of three different types of stationarity of Ψ and when
Ψ is temporally grounded we may e.g. define conditional intensities, as considered by e.g. [Ogata,
1998, Schoenberg, 2004, Vere-Jones, 2009].

11



2.8 The point process distribution

In what follows, we only distinguish in the notation between CFMPPs and STCFMPPs when
necessary. Let Ψ be a (ST)CFMPP and let the induced probability measure of Ψ on ΣNY be
denoted by P , i.e.

P({ω ∈ Ω : Ψ(ω) ∈ R}) = P (R) =

∫
R

P (dϕ), R ∈ ΣNY .

Note that since Ψ is a simple point process on the csm space Y, P is completely and uniquely
determined by its finite dimensional distributions, i.e. the collection of joint distributions of
(Ψ(A1), . . . ,Ψ(An)) for all collections of bounded Ai ∈ B(Y), i = 1, . . . , n, n ∈ Z+, as well as
by its void probabilities v(A) = P(Ψ(A) = 0), A ∈ B(Y) (see e.g. [Van Lieshout, 2000, Chapter
1]).

2.9 Stationarity and isotropy

We next give the definition of stationarity which, irrespective of the choice of G, is the usual
definition for marked point processes, i.e. translational invariance of the ground process.

Definition 6. Let Ψ be a (ST)CFMPP.

• Then Ψ is stationary if Ψ + z
d
= Ψ for any z ∈ G.

• In the case of a STCFMPP, for z = (a, b) ∈ X× T, if stationarity only holds when b = 0 we
say that Ψ is spatially stationary and if it only holds when a = 0 we say that Ψ is temporally
stationary.

• Ψ is isotropic if it is stationary and, in addition, ΨG is rotation invariant with respect to
rotations about the origin 0 ∈ G.

We see e.g. that when Ψ is temporally grounded, temporal stationarity implies that ΨT is a
stationary point process on T. Note further that one often refers to Ψ as homogeneous if it is both
stationary and isotropic, and as inhomogeneous if it is not stationary.

2.10 Supports

Being a stochastic process, which may have zeroes on T , conditionally on ΨG and the aux-
iliary marks Li ∈ A, we may consider different types of supports for each functional mark
Mi = {Mi(t)}t∈T . We distinguish between the deterministic support supp(Mi) = {t ∈ T :
Mi(t;ω) 6= 0 for any ω ∈ Ω} and the stochastic support supp∗(Mi) = {t ∈ T : Mi(t) 6= 0}.
We note that supp∗(Mi) ⊆ supp(Mi) is a random subset of T and, moreover,

supp(Mi) =
⋃
ω∈Ω

{t ∈ T : Mi(t;ω) 6= 0} =
⋃
ω∈Ω

supp∗(Mi;ω).

For a STCFMPP Ψ, when Li ≥ 0 represents a (random) time and we condition on the Ti’s and
the Li’s, a natural construction would be to let Di = (Ti + Li) ∧ T ∗ and supp(Mi) = [Ti, Di) so
that Mi(t) = 0 for all t /∈ [Ti, Di). The interpretation here would be that Ti symbolises the birth
time of the ith point, Li its lifetime and Di its death time. Furthermore, we note that if e.g.
Mi(t) = 1[Ti,Di)(t)Wi((t− Ti) ∧ 0) for a Brownian motion Wi, then `1((supp(Mi) \ supp∗(Mi))

c) =
`1({t ∈ [0, Li) : Wi(t) = 0}) = 0 a.s. (see e.g. [Klebaner, 2005]). In the case of a CFMPP one could
similarly let supp(Mi) = [0, Li).
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2.11 Geometric representation and spatio-temporal Boolean models

Let Ψ be a STCFMPP where X ⊆ R2 and where each Mi a.s. takes values in the sub-space of
continuous functions on T . One possibility for interpretation is obtained by letting the disk (ball)
BX[Xi,Mi(t)] = {x ∈ R2 : dR2(Xi, x) ≤Mi(t)} with centre Xi and radiusMi(t) illustrate the space
occupied by the ith point of Ψ at time t ∈ T (with the convention that BX[Xi, r] = ∅ if r ≤ 0).
Hereby, at time t we may illustrate ΦM as the Boolean model (see e.g. [Stoyan et al., 1995])

Ξ(t) =
N⋃
i=1

BX[Xi,Mi(t)] =
⋃

(Xi,Ti,Li,Mi)∈Ψ:t∈supp∗(Mi)

BX[Xi,Mi(t)].

Consequently, Ψ may be represented by the collection

Ξ =

∫
T

Ξ(dt) =
N⋃
i=1

Ξi =
N⋃
i=1

{(x, y, z) ∈ R3 : z ∈ supp∗(Mi), dR2(Xi, (x, y)) ≤Mi(z)}

and we see that whenever supp(Mi) is bounded, each deformed cone Ξi a.s. is a compact subset
of R3. Figure 1 illustrates a realisation of such a random set Ξ. Hence, the cross section of Ξ
at z = t gives us Ξ(t) and in the context of e.g. forest stand modelling, we find that Ξ(t) gives
us the geometric representation of the cross section of the forest stand at time t, at some given
height (usually breast height). Note that when in addition `(X) <∞, depending on the form of the
functional marks, we may derive geometric properties such as the expected coverage proportion
π
`(X)

∑∞
n=0

∑n
i=1 E[Mi(t)

2]P(N = n) of X at time t (provided that the disks do not overlap).

Figure 1: A realisation of a random set Ξ.

3 Examples of (ST)CFMPPs
The class of (ST)CFMPPs provides a framework to give structure to a series of existing models
and it allows for the construction of new important models and modelling frameworks, which have
uses in different applications. Below we present a few such instances.
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3.1 Marked (spatio-temporal) point processes

Not surprisingly, (ST)CFMPPs generalise ordinary marked (spatio-temporal) point processes. To
see this, by considering the class Fc = {f ∈ F : f is constant}, we find that when Ψ a.s. is restricted
to the space G×(A×Fc), its functional marks become constant functionsMi(t) = ξi with (random)
values ξi ∈ R, i = 1, . . . N . Hereby, in the case of a CFMPP Ψ, Ψ̄ = {(Xi, Li,Mi(0)) : Xi ∈
ΨG} = {(Xi, Li, ξi) : Xi ∈ ΨG} gives us a classical definition of a marked point process (provided
0 ∈ supp(Mi)). Similarly, in the case of a STCFMPP Ψ, Ψ̄ = {(Xi, Ti, Li,Mi(0)) : Xi ∈ ΨG} =
{(Xi, Ti, Li, ξi) : Xi ∈ ΨG} gives the classical definition of a marked spatio-temporal point process.

Here, when Ψ is multivariate with, say, A = Ac, Li would be a discrete variable which describes
a point’s type and ξi would be the size of the quantitative mark. As a consequence Ψ̄ would become
multivariate.

A slightly more direct way of creating, say, a marked spatio-temporal point process Ψ̄ through
a STCFMPP is to let

Ψ̄(B × C ×D) = Ψ(B × C ×D × F) =
∑

(x,t,l,f)∈Ψ

δ(x,t,l,f)(B × C ×D × F),

B × C × D ∈ B(X) × B(T) × B(A) so that the ith mark is given by Li ∈ A. This is naturally
possible only if Ψ̄ constitutes a well-defined point process in its own right.

3.2 Spatio-temporal geostatistical marking and geostatistics with un-
certainty in the sampling locations

For classic marked point processes Ψ̄ = {(Xi,Mi)}Ni=1 one often speaks of geostatistical marking
[Illian et al., 2008]. This is the case where, conditionally on Xi, the marks Mi = ZXi

, i = 1, . . . , N ,
are provided by some random field Z = {Zx}x∈X. This may be regarded as sampling the random
field Z at random locations, provided by {Xi}Ni=1. Within the CFMPP-context this idea may further
be extended to the case of marks coming from a spatio-temporal random field Z = {Zx(t)}(x,t)∈X×T .

Definition 7. Consider a spatio-temporal random field Z = {Zx(t)}(x,t)∈X×T . If, conditionally on
ΨG and {Li}Ni=1, the marks of a (ST)CFMPP Ψ are given by Mi = {ZXi

(t)}t∈T , i = 1, . . . , N , we
say that Ψ has a spatio-temporal geostatistical marking.

We may also refer to this type of marking as sampling a spatio-temporal random field at random
spatial locations.

Given (dependent) random fields Zj = {Zj(x, t)}(x,t)∈X×T , j = 1, . . . , k, when Ψ is multivariate,
natural constructions include

• Mi(t) =
∑kA

j=1 1{Li = j}Zj(Xi, t), when A = Ad,

• Mi(t) = 1[Ti,Ti+Li2)(t)
∑kA

j=1 1{Li1 = j}Zj(Xi, t − Ti), when A = Ad × Ac = {1, . . . , kA} ×
[0,∞).

3.2.1 Geostatistical functional data

When observations have been made of a spatio-temporal random field, at a set of fixed known
locations xi ∈ X, i = 1, ..., n, one often speaks of geostatistical functional data. The class of related
data types comprise a broad family of spatially dependent functional data. For a good account of
these types of data, the reader is referred to [Delicado et al., 2010, Giraldo et al., 2010, 2011].
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Here, given some spatial functional process
{
Zx : x ∈ X ⊆ Rd

}
, we assume to observe a set of

functions, or rather spatially located curves, (Zx1(t), . . . , Zxn(t)) at locations xi ∈ X, i = 1, ..., n,
for t ∈ T = [a, b], which define the set of functional observations. Each function is assumed to
belong to a Hilbert space

L2(T ) = {f : T → R :

∫
T
f(t)2dt <∞}

with the inner product 〈f, g〉 =
∫
T f(t)g(t)dt. Moreover, for a fixed site xi, the observed data is

assumed to follow the model

Zxi(t) = µxi(t) + εxi(t), i = 1, . . . , n,

where εxi(t) are zero-mean residual processes and each µxi(·) is a mean function which summarises
the main structure of Zxi . For each t, we assume that the process is a second-order stationary
functional random process. That formally means that the expected value E[Zx(t)] = µ(t), t ∈ T ,
x ∈ X, and the variance Var(Zx(t)) = σ2(t), t ∈ T , x ∈ X, do not depend on the spatial location.
In addition, we have that

• Cov(Zxi(t), Zxj(t)) = C(h, t), where h = ‖xi − xj‖, for all t ∈ T and all xi, xj ∈ X.

• 1
2

Var(Zxi(t) − Zxj(t)) = γ(h, t) = γxixj(t), where h = ‖xi − xj‖, for all t ∈ T and all
xi, xj ∈ X.

Note that under the second-order stationarity assumption one may write 1
2

Var(Zx(t) − Zx+h(t)),
h = ‖xi − xj‖, for 1

2
Var(Zxi(t) − Zxj(t)). However, for clarity we do prefer the more general

formulation. Since we are assuming that the mean function is constant over X, the function
γ(h, t), called the variogram of Zx(t), can be expressed by

γ(h, t) = γxixj(t) =
1

2
Var(Zxi(t)− Zxj(t)) =

1

2
E
[
Zxi(t)− Zxj(t)

]2
.

By integrating this expression over T , using Fubini’s theorem and following [Giraldo et al., 2010],
a measure of spatial variability is given by

γ(h) =
1

2
E
[∫
T

(Zxi(t)− Zxj(t))2dt

]
(4)

for xi, xj ∈ X with h = ‖xi − xj‖. This is the so-called trace-variogram and it is used to describe
the spatial variability among functional data across an entire spatial domain. In this case, all
possible location pairs are considered.

Consider now the scenario where one would perform some geostatistical analysis, such as spatio-
temporal prediction [Giraldo et al., 2010], in a spatio-temporal random field when, in addition,
there is uncertainty in the monitoring locations xi, i = 1, . . . , n. Note that one then instead samples
the random field/spatial functional process Z at locations Xi = xi + εi, i = 1, . . . , n, where each
εi follows some suitable spatial distribution. Here the CFMPP framework is the correct one since
{Xi}ni=1 constitutes a spatial point process. Consequently, the above geostatistical framework
could be extended to incorporate such randomness in the sampling locations. In the deterministic
case, i.e. when εi ≡ 0, [Giraldo et al., 2010] proposed the estimator Ẑx0(t) =

∑n
i=1 λi(t)ZXi

(t) =∑n
i=1 λi(t)Mi(t), λi : T → R, i = 1, . . . , n, for the marginal random process {Zx0(t)}t∈T , x0 ∈ X.
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Assuming that theXi’s are in fact random, following [Giraldo et al., 2010], the associated prediction
problem may be expressed as

min
λ1,...,λn∈L2(T )

E
[∫
T

(Ẑx0(t)− Zx0(t))2dt

]
= min

λ1,...,λn∈L2(T )
E

∫
T

(
n∑
i=1

λi(t)Mi(t)− Zx0(t)

)2

dt


= min

λ1,...,λn∈L2(T )

∫
Xn

∫
T
E

( n∑
i=1

λi(t)Zxi(t)− Zx0(t)

)2
∣∣∣∣∣∣X1 = x1, . . . , Xn = xn

 dt
× jGn (x1, . . . , xn)

n!
d(x1, . . . , xn)

by Fubini’s theorem, where jGn (·) is the nth Janossy density of the ground process ΨG = {Xi}ni=1

(see Section 6.4). Hence, one obtains a geostatistical analysis based on CFMPPs.

3.3 LISA and LISTA functions

In the context of spatial point processes, [Collins and Cressie, 2001] developed exploratory data
analytic tools, in terms of Local Indicators of Spatial Association (LISA) functions based on the
product density, to examine individual points in the point pattern in terms of how they relate to
their neighbouring points. For each pointXi of the point process/pattern we can attach to it a LISA
function Mi(h), h = ‖Xi − x‖ ≥ 0, x ∈ X, which determines the local spatial structure associated
to each event of the pattern. These functions can be regarded as functional marks [Mateu et al.,
2007]. To perform statistical inference, which is needed for example in testing for local clustering,
[Collins and Cressie, 2001] developed closed form expressions of the auto-covariance and cross-
covariance between any two such functions. These covariance structures are complicated to work
with as they live in high-dimensional spaces.

If the ground point pattern evolves in time, i.e. if we have a spatio-temporal point pattern,
then we can extend the ideas of LISA functions to incorporate time in their structure. In this
case, local versions of spatio-temporal product densities provide the concept of LISTA surfaces
[Rodríguez-Cortés et al., 2014]. Attached to each spatio-temporal location (Xi, Ti) we now have
surfaces Mi(x, t), (x, t) ∈ X × T (i.e. with dimensions space and time). When we assume that
Mi(x, t) = Mi(h), h = dG((Xi, Ti), (x, t)), these surfaces can again be regarded as functional
marks. The LISTA surfaces provide information on the local spatio-temporal structure of the
point pattern.

3.4 The (stochastic) growth-interaction process

One of the models which has given rise to a substantial part of the ideas underlying the construction
of STCFMPPs is the growth-interaction process. It has been extensively studied in a series of papers
(see e.g. [Comas, 2009, Comas et al., 2011, Cronie, 2012, Cronie and Särkkä, 2011, Cronie et al.,
2013, Renshaw and Comas, 2009, Renshaw et al., 2009, Renshaw and Särkkä, 2001, Särkkä and
Renshaw, 2006]), mainly within the forestry context. However, its representation as a functional
marked point process has only been noted in [Comas et al., 2011, Cronie, 2012].

It is a STCFMPP for which the ground process ΨG is generated by a spatial birth-death process,
which has Poisson arrivals Ti, with intensity α > 0, and uniformly distributed spatial locations Xi.
Furthermore, the auxiliary marks are the associated holding times Li, which are independently
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Exp(µ)-distributed, µ > 0, and, conditionally on the previous components, the functional marks
are given by a system of ordinary differential equations,

dMi(t)

dt
= g(Mi(t); θ)−

∑
(Xj ,Tj ,Lj ,Mj(t))∈Ψ, j 6=i

h((Xi, Ti, Li,Mi(t)), (Xj, Tj, Lj,Mj(t)); θ),

i = 1, . . . , N , where t ∈ supp(Mi) = [Ti, Di), Di = (Ti + Li) ∧ T ∗. Here g(·) represents the
individual growth of the ith individual, in absence of spatial interaction with other individuals,
and h((Xi, Ti, Li,Mi(t)), (Xj, Tj, Lj,Mj(t)); θ) the amount of spatial interaction to which individual
i is subjected by individual j during [t, t+ dt].

As can be found in the above mentioned references, the usual application of this model is the
modelling of the collective development of trees in a forest stand; Xi is the location of the ith tree,
Ti is its birth time, Di its death time, and Mi(t) its radius (at breast height) at time t.

As one may argue that this approach does not sufficiently incorporate individual growth features
in the radial growth, [Cronie, 2012] suggested that a scaled white noise processes should be added
to each functional mark equation, i.e.

dM∗
i (t) = dMi(t) + σ(Mi(t); θ)dWi(t),

where W1(t), . . . ,WN(t), are independent standard Brownian motions and σ(·) is some suitable
diffusion coefficient. Here the noise would represent measurement errors and give rise to individ-
ual growth deviations. The resulting stochastic differential equation marked point process, the
stochastic growth-interaction process, was then studied in the simplified case where the spatial
interaction is negligible, i.e. h(·) ≡ 0.

3.5 Applications

Besides the applications mentioned previously, we here give a list of further possible applications
of (ST)CFMPPs, providing a wide scope of the current framework.

1. Modelling nerve fibres: Xi gives the location of the root of the nerve. A mark Mi (here
continuous) provides the shape of the actual nerve fibre and the related auxiliary variable is
given by Li = (Li1, Li2) ∈ Ac = [0,∞)× [0, 2π), where supp(Mi) = [0, Li1) and Li2 represents
a random rotation angle of Mi, which gives the direction of the fibre.

2. Spread of pollutant: Xi is the pollution location, Mi(h) gives us the ground concentration of
the contaminant at distance h = ‖Xi − x‖, x ∈ X, from Xi.

3. Modelling tumours: X represents (a region in) the human body, Xi is the location of the ith
tumour and Mi(t) its approximate radius at time t.

4. Disease incidences in epidemics: Each Mi(t) is a stochastic process with piecewise constant
sample paths (e.g. a Poisson process), which counts the number of incidences having occurred
by time t at epidemic centre Xi.

5. Population growth: Xi is the location of a village/town/city, Ti the time point at which it
was founded and Mi(t) its total population at time t.
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6. Mobile communication: Letting T = T , consider a STCFMPP Ψ where each Xi represents
the location of a cellphone caller who makes a call at time Ti, which lasts for Li ∈ Ac = [0,∞)
time units, i.e. the call ends at time Di = (Ti+Li)∧T ∗. Then the functionMi(t) = 1[Bi,Di)(t)
represents the phone call in question and the total load of a server/antenna located at s ∈ X,
which has spatial reach within the region B ⊆ X, s ∈ B, is Ns(t) =

∑N
i=1 1B(Xi)Mi(t).

Assuming that the server has capacity cs(t) at time t, it breaks down if supt∈T cs(t)−Ns(t) ≤
0. Note the connection with [Baum and Kalashnikov, 2001].

An extension here could be to let Mi(t) = ξi1[Ti,Di)(t) for some random quantity ξi =
ξi(Xi, Ti, Li), which represents the specific load that call i puts on the network.

4 Point process characteristics of (ST)CFMPPs
For a wide range of summary statistics, the core elements are the product densities and the intensity
function(al). We here derive these for (ST)CFMPPs under a few usual assumptions. In addition,
we define two further, highly important, building blocks for different statistics for point processes;
the Palm measures and the Papangelou conditional intensities.

Recall that for both types of processes the mark space is given by M = A× F and to provide
a general notation, which may be used to describe both CFMPPs and STCFMPPs, we write
Ψ =

∑
(g,m)∈Ψ δ(g,m) =

∑
(g,l,f)∈Ψ δ(g,l,f), where x = g ∈ G = X in the CFMPP case and (x, t) =

g ∈ G = X× T in the STCFMPP case.
Throughout, for different measures constructed, we will use the following measure extension

approach. When some set function µ(A) is defined for the bounded Borel sets A in some Borel
space (X ,B(X )), by assuming that µ(·) is locally finite, µ(·) becomes a finite measure on the ring
of bounded Borel sets. Hereby one may extend µ to a measure on the whole σ-algebra B(X ) (see
e.g. [Halmos, 1974, Theorem A, p. 54]).

4.1 Product densities and intensity functionals

We first consider the (factorial) moment measures and the product densities of a (ST)CFMPP Ψ.
The construction of the product densities paves the way for the construction of certain likelihood
functions and summary statistics.

We start by defining the factorial moment measures.

Definition 8. For any n ≥ 1 and bounded A1, . . . , An = (G1×H1), . . . , (Gn×Hn) ∈ B(Y), define

α(n)(A1 × · · · × An) = E

[∑ 6=

(g1,l1,f1),...,(gn,ln,fn)∈Ψ

n∏
i=1

1{(gi, li, fi) ∈ Ai}

]
,

where
∑6= denotes a sum over distinct elements. Note that α(n) may be extended to a measure on

the n-fold product σ-algebra B(Y)n =
⊗n

i=1 B(Y), the nth factorial moment measure.

Note that in the STCFMPP setting, Gi = Bi × Ci ∈ B(X× T) and Hi = Di ×Ei ∈ B(A× F),
i = 1, . . . , n.

Recall next the reference measure ν in (2) and assume that α(n) � νn, i.e. that α(n) is absolute
continuous with respect to the n-fold product measure of the reference measure ν with itself. This
leads to the definition of (functional) product densities.
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Definition 9. The permutation invariant Radon-Nikodym derivatives (measurable functionals)
ρ(n), which are defined by the integral formula

E
[∑6=

(g1,l1,f1),...,(gn,ln,fn)∈Ψ
h((g1, l1, f1), . . . , (gn, ln, fn))

]
= (5)

=

∫
Yn

h((g1, l1, f1), . . . , (gn, ln, fn))α(n)(d(g1, l1, f1)× · · · × d(gn, ln, fn))

=

∫
Y
· · ·
∫
Y
h((g1, l1, f1), . . . , (gn, ln, fn))ρ(n)((g1, l1, f1), . . . , (gn, ln, fn))

n∏
i=1

ν(d(gi, li, fi))

for any measurable functional h : Y→ [0,∞), are referred to as the nth product densities.

Note here that (5) is referred to as the Campbell theorem. Furthermore, ρ(n) is partly a (func-
tional) density on F, as discussed in Section 2.4. We note that, heuristically, the interpretation
of ρ(n)((g1, l1, f1), . . . , (gn, ln, fn))

∏n
i=1 ν(d(gi, li, fi)) is the probability of finding ground process

points in the infinitesimal regions dg1, . . . , dgn ⊆ G, with associated marks in the infinitesimal
regions d(l1, f1), . . . , d(ln, fn) ⊆ A× F.

Similarly to α(n) we may also define the nth moment measures

µ(n)(A1 × · · · × An) = E[Ψ(A1) · · ·Ψ(An)], A1, . . . , An ∈ B(Y), n ≥ 1.

Furthermore, since the intensity measure µ of a simple point process coincides with its first moment
measure and its first factorial moment measure, i.e.

µ(A) = E[Ψ(A)] = α(1)(A) =

∫
A

ρ(1)(g, l, f)ν(d(g, l, f)), A ∈ B(Y), (6)

we obtain a definition of intensity functionals for (ST)CFMPPs.

Definition 10. The intensity functional of a (ST)CFMPP Ψ is given by

λ(g, l, f) = ρ(1)(g, l, f).

Note that we use the term functional since the mapping λ : G×A×F→ [0,∞) takes a càdlàg
function f ∈ F as one of its arguments.

Turning to the ground process ΨG, through α(n) we may define the nth ground factorial moment
measure α(n)

G and its Radon-Nikodym derivative ρ(n)
G with respect to `n, the nth ground product

density.

Definition 11. When the measure

α
(n)
G (G1 × · · · ×Gn) = α(n)((G1 ×M)× · · · × (Gn ×M)),

is assumed to be locally finite, it becomes the nth factorial moment measure of the ground process
ΨG. When α

(n)
G � `n, we refer to the corresponding Radon-Nikodym derivative ρ(n)

G as the nth
ground product density.

The ground intensity measure is given by

µG(G) = E[ΨG(G)] = α
(1)
G (G) =

∫
G

λG(g)dg, G ∈ B(G), (7)

where λG(g) = ρ
(1)
G (g) is referred to as the ground intensity function.

We note that here α(n)
G (d(g1, . . . , gn)) = ρ

(n)
G (g1, . . . , gn)dg1 · · · dgn is interpreted as the infinites-

imal probability of finding points of ΨG in dg1, . . . , dgn ⊆ G.
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4.1.1 Product densities in terms of conditional mark distribution densities

The following observation regarding regular probabilities on the product spaces B((A×F)n), n ≥ 1,
which we state in the form of a lemma, will be exploited frequently.

Lemma 1. For any n ≥ 1, assuming that there exists some family

PM,n = {PM
g1,...,gn

(H1 × · · · ×Hn) : (g1, . . . , gn) ∈ Gn, H1 × · · · ×Hn ∈ B(Mn)}

of regular probabilities, it follows that for any (g1, . . . , gn) ∈ Gn and any (D1×E1), . . . , (Dn×En) ∈
B(A× F),

PM
g1,...,gn

((D1 × E1)× · · · × (Dn × En)) =

=

∫
D1×···×Dn

P F
(g1,l1),...,(gn,ln)(E1 × · · · × En)PA

g1,...,gn
(d(l1, . . . , ln)),

where PA
g1,...,gn

(·×· · ·×·) = PM
g1,...,gn

((·×F)×· · ·×(·×F)) and P F
(g1,l1),...,(gn,ln)(·×· · ·×·), l1, . . . , ln ∈ A,

are families of regular probabilities on (An,B(An)) and (Fn,B(Fn)), respectively.
Assume further that each PM

g1,...,gn
(·) has a density fM

g1,...,gn
(·) on (A× F)n with respect to (νA ⊗

νF)n = νnA ⊗ νnF . Then it follows that PA
g1,...,gn

(·) � νnA and P F
(g1,l1),...,(gn,ln)(·) � νnF for each of the

regular probabilities on B(An) and B(Fn), whereby there exist associated densities

fA,n = {fA
g1,...,gn

(·) : g1, . . . , gn ∈ G}, (8)

fF,n = {fF
(g1,l1),...,(gn,ln)(·) : ((g1, l1), . . . , (gn, ln)) ∈ (G× A)n}, (9)

on An and Fn, such that

fM
g1,...,gn

((l1, f1), . . . , (ln, fn)) = fF
(g1,l1),...,(gn,ln)(f1, . . . , fn)fA

g1,...,gn
(l1, . . . , ln)

for all (g1, . . . , gn) ∈ Gn and almost all (l1, f1), . . . , (ln, fn) ∈ A× F.

Proof. The existence of all PA
g1,...,gn

(·) and P F
(g1,l1),...,(gn,ln)(·), (g1, l1), . . . , (gn, ln) ∈ G×A, is a direct

consequence of [Daley and Vere-Jones, 2003, Proposition A1.5.III], since An and Fn are csm spaces
for any n ≥ 1.

Assuming that PM
g1,...,gn

(·)� νnA ⊗ νnF results in

PM
g1,...,gn

((D1 × E1)× · · · × (Dn × En)) =

=

∫
(D1×E1)×···×(Dn×En)

fM
g1,...,gn

((l1, f1), . . . , (ln, fn))
n∏
i=1

νA(dli)νF(dfi).

On the other hand, from the absolute continuity it clearly follows that PA
g1,...,gn

(·) � νnA and
P F

(g1,l1),...,(gn,ln)(·)� νnF , whereby

PM
g1,...,gn

((D1 × E1)× · · · × (Dn × En)) =

=

∫
(D1×E1)×···×(Dn×En)

fF
(g1,l1),...,(gn,ln)(f1, . . . , fn)fA

g1,...,gn
(l1, . . . , ln)

n∏
i=1

νA(dli)νF(dfi).

The two integrands are equal a.e..
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Next, through the above lemma, one finds that when the product densities exist, they may be
expressed through conditional probability densities on the different mark spaces.

Proposition 1. For any n ≥ 1, given that the nth ground factorial moment measure α(n)
G exists,

there exist regular probabilities

PM,n = {PM
g1,...,gn

(H) : (g1, . . . , gn) ∈ Gn, H ∈ B(Mn)},
PA,n = {PA

g1,...,gn
(D) : g1, . . . , gn ∈ G, D ∈ B(An)} � νnA, (10)

P F,n = {P F
(g1,l1),...,(gn,ln)(E) : (g1, l1), . . . , (gn, ln) ∈ G× A, E ∈ B(Fn)} � νnF , (11)

as indicated in Lemma 1. When ρ(n) exists, we can find conditional densities (8) and (9) such that

ρ(n)((x1, l1, f1), . . . , (xn, ln, fn)) = (12)

= fF
(x1,l1),...,(xn,ln)(f1, . . . , fn)fA

x1,...,xn
(l1, . . . , ln)ρ

(n)
G (x1, . . . , xn)

when Ψ is a CFMPP and

ρ(n)((x1, t1, l1, f1), . . . , (xn, tn, ln, fn)) = (13)

= fF
(x1,t1,l1),...,(xn,tn,ln)(f1, . . . , fn)fA

(x1,t1),...,(xn,tn)(l1, . . . , ln)ρ
(n)
G ((x1, t1), . . . , (xn, tn))

when Ψ is a STCFMPP. Hereby the intensity functional λ(g, l, f) turns into

λ(x, l, f) = fF
(x,l)(f)fA

x (l)λG(x) if Ψ is a CFMPP,
λ(x, t, l, f) = fF

(x,t,l)(f)fA
(x,t)(l)λG(x, t) if Ψ is a STCFMPP.

Proof. For fixed H1, . . . , Hn ∈ B(M) we have that α(n)((·×H1)×· · ·× (·×Hn))� α
(n)
G and (since

the underlying spaces are Borelian) a regular family PM,n of conditional regular probabilities on
B(M)n = B(A×F)n exists, as indicated in Lemma 1 (see e.g. [Stoyan et al., 1995]). An application
of Lemma 1 further gives us PA,n and P F,n.

By the existence of ρ(n), the underlying absolute continuity with respect to νn = (`⊗ νA⊗ νF)n

implies that α(n)
G � `n, whence

α
(n)
G (G1 × · · · ×Gn) =

∫
G1

· · ·
∫
Gn

ρ
(n)
G (g1, . . . , gn)dg1 · · · dgn

for any G1, . . . , Gn ∈ B(G). In addition, it follows that each member of PM,n is absolute continuous
with respect to (νA ⊗ νF)n, whereby an application of Lemma 1 gives us the specific structure of
the product densities.

The family PM,n is often referred to as the n-point mark distributions. We see here that each
P F

(g1,l1),...,(gn,ln)(·) in expression (11) is the distribution of some (mark) càdlàg stochastic process
{(M1(t), . . . ,Mn(t))}t∈T on (Fn,B(Fn)), which is absolutely continuous with respect to the refer-
ence measure νnF (i.e. the distribution of an n-dimensional version of the reference process XF),
with density (9). Furthermore, consider a STCFMPP Ψ for which we want to have supp(Mi) = Si
for some Si = Si(Xi, Ti, Li) ⊆ T , i = 1, . . . , N . Conditioning on ΨG, the auxiliary marks and
(Xi, Ti, Li) = (xi, ti, li), i = 1, . . . , n, it then clearly follows that fF

(x1,t1,l1),...,(xn,tn,ln)(f1, . . . , fn) = 0

if, for any i = 1, . . . , n, it holds that fi ∈ F \ {f ∈ F : supp(f) = Si}. Note that often a natural
choice for the supports is Si = [Ti, (Ti + Li) ∧ T ∗), Li ≥ 0, i = 1, . . . , N .
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4.1.2 Pair correlation functionals

Pair correlation functions are valuable tools for studying second order dependence properties of
spatial(-temporal) point processes and, as we shall see, they play a similar role for (ST)CFMPPs.

In light of Proposition 1, when λ and ρ(2) exist, we may define the pair correlation functional
of a (ST)CFMPP Ψ by

gΨ((g1, l1, f1), (g2, l2, f2)) =
ρ(2)((g1, l1, f1), (g2, l2, f2))

λ(g1, l1, f1)λ(g2, l2, f2)
(14)

=
fF

(g1,l1),(g2,l2)(f1, f2)fA
g1,g2

(l1, l2)

fF
(g1,l1)(f1)fA

g1
(l1)fF

(g2,l2)(f2)fA
g2

(l2)

ρ
(2)
G (g1, g2)

λG(g1)λG(g2)

=
fF

(g1,l1),(g2,l2)(f1, f2)fA
g1,g2

(l1, l2)

fF
(g1,l1)(f1)fA

g1
(l1)fF

(g2,l2)(f2)fA
g2

(l2)
gG(g1, g2).

We refer to gG(g1, g2) as the ground pair correlation function. Note that when G = X, gG(·) is the
usual pair correlation function, as can be found in e.g. [Baddeley et al., 2000, Stoyan et al., 1995],
and when G = X × T, gG(·) is a spatio-temporal pair correlation function, as defined in [Cronie
and van Lieshout, 2013, Gabriel and Diggle, 2009, Møller and Ghorbani, 2012].

4.2 Campbell and Palm measures

We next turn to the Palm measures of a (ST)CFMPP Ψ and, as usual, they are defined via the
Campbell measures.

For any R ∈ ΣNY and bounded A = G×H ∈ B(Y), we define

C!(A×R) = C!(G×H ×R) = E

 ∑
(g,l,f)∈Ψ∩(G×H)

1{Ψ \ {(g, l, f)} ∈ R}

 ,
which we can extend to a measure on B(Y)⊗ΣNY . We refer to this measure as the reduced Campbell
measure and since µ(A) = C!(A×NY) we see that C! � µ, with Radon-Nikodym derivative P !(g,l,f).
Hereby

C!(A×R) =

∫
G×H
C!(d(g, l, f)×R) =

∫
G

∫
H

P !(g,l,f)(R)µ(d(g, l, f))

=

∫
G

∫
H

P !(g,l,f)(R)λ(g, l, f)ν(d(g, l, f))

Definition 12. It is possible to choose a regular version of the family

{P !(g,l,f)(R) : (g, l, f) ∈ Y, R ∈ ΣNY},

the reduced Palm measures, such that P !(g,l,f)(R) is a measurable functional for fixed R ∈ ΣNY and
a measure on ΣNY for fixed (g, l, f) ∈ Y.

We often write P!(g,l,f) for the P !(g,l,f)-reversely induced probability measure on (Ω,F) and
E!(g,l,f)[·] for the associated expectation. Heuristically we interpret P !(g,l,f)(R) as the conditional
probability of the event {Ψ \ {(g, l, f)} ∈ R}, given Ψ ∩ {(g, l, f)} 6= ∅.
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The (non-reduced) Palm measures may be defined through their reduced counterparts as

P (g,l,f)(R) = P !(g,l,f)({ϕ ∈ NY : ϕ+ δ(g,l,f) ∈ R}), R ∈ ΣNY ,

and in relation hereto, the Campbell measure of Ψ is given by C(A × R) = E[Ψ(A)1R(Ψ)]. Note
that when Ψ is stationary, P !(g,l,f)(·) = P !(0,l,f)(·) and P (g,l,f)(·) = P (0,l,f)(·) for all (g, l, f) ∈ Y.

In accordance with [Van Lieshout, 2006], we also define the H-marked reduced Palm measure

P !g
H (R) =

1

[νA ⊗ νF](H)

∫
H

P !(g,l,f)(R)[νA ⊗ νF](d(l, f)), H ×R ∈ B(M)⊗ ΣNY , (15)

and we denote the corresponding expectation by E!g
H [·]. Note that the choice of name for P !g

H (·)
may be a bit misleading since it does not necessarily define a Palm distribution in the true sense.
One case, however, where this is indeed the case is when Ψ has a common mark distribution (see
Section 5.1).

We next consider the Campbell-Mecke formula and the reduced Campbell-Mecke formula, which
are central tools in the theory of point processes.

Theorem 1. For any measurable functional h : G×A×F×NY → [0,∞), the reduced Campbell-
Mecke formula is given by

E

 ∑
(g,l,f)∈Ψ

h(g, l, f,Ψ \ {(g, l, f)})

 =

∫
G×M

∫
NY

h(g, l, f, ϕ)P !(g,l,f)(dϕ)µ(d(g, l, f))

=

∫
G×M

E!(g,l,f) [h(g, l, f,Ψ)]λ(g, l, f)ν(d(g, l, f))

and the Campbell-Mecke formula is given by

E

 ∑
(g,l,f)∈Ψ

h(g, l, f,Ψ)

 =

∫
G×M

E(g,l,f)
[
h(g, l, f,Ψ + δ(g,l,f))

]
λ(g, l, f)ν(d(g, l, f))

(with the left hand sides being infinite if and only if the right hand sides are infinite).

Proof. The proof is standard (see e.g. [Van Lieshout, 2000, Theorem 1.5]). First we show that the
above expressions hold for h(g, l, f, ϕ) = 1{(g, l, f) ∈ G,ϕ ∈ R}, G × R ∈ B(G) × ΣNY . The rest
of the proof follows from standard arguments using linear combinations and monotone limits.

4.3 Marked Papangelou conditional intensities

Another important set of point process statistics, here defined in the context of STCFMPPs, are
the (marked) Papangelou kernels and the (marked) Papangelou conditional intensities. We will
see that the former, in particular, will play an important role in the statistical inference framework
constructed here.

By assuming that, for fixed bounded A = (B×C)×(D×E) ∈ B(Y), C!(A×·) is absolutely con-
tinuous with respect to the distribution P (·) of Ψ on ΣNY , we find that C!(A×R) =

∫
R

Λ(A;ϕ)P (dϕ)
for some kernel {Λ(A;ϕ) : A ∈ B(Y), ϕ ∈ NY}. This kernel may be extended to the B(Y)-setting,
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the so-called Papangelou kernel. If we assume that Λ(·;ϕ)� `⊗ νA, through Fubini’s theorem we
obtain

C!(A×R) =

∫
R

∫
(B×C)×D

λE(g, l;ϕ)dgνA(dl)P (dϕ) =

∫
(B×C)×D

E[1R(Ψ)λE(g, l; Ψ)]dgνA(dl)

for R ∈ ΣNY .

Definition 13. We refer to λE(g, l; Ψ), E ∈ B(F), as the E-functional marked Papangelou con-
ditional intensity.

Here λE(g, l; Ψ)dgνA(dl) may be viewed as the conditional probability of finding a point of Ψ
located in the infinitesimal set dg ⊆ G with mark in dl×E ∈ B(M), given all points of Ψ located
outside dg.

By additionally assuming that that all functional marked Papangelou conditional intensities
are absolutely continuous with respect to νF, i.e. assuming that C!(A×·)� ν, we obtain as Radon-
Nikodym derivatives the classical Papangelou conditional intensities λ(g, l, f ; Ψ) which may also
be defined, in integral terms, as the non-negative measurable functionals satisfying the Georgii-
Nguyen-Zessin formula, i.e.

E

 ∑
(z,l,f)∈Y

h(g, l, f,Ψ \ {(g, l, f)})

 =

∫
G×M

E [h(g, l, f,Ψ)λ(g, l, f ; Ψ)] ν(d(g, l, f))

for any non-negative measurable functional h : (G × M) × NY → [0,∞). Here, heuristically,
λ(g, l, f ; Ψ)ν(d(g, l, f)) is interpreted as the conditional probability of finding a point of Ψ in the
infinitesimal region d(g, l, f) ⊆ G ×M, given the configuration elsewhere, Ψ ∩ (d(g, l, f))c. Note
here that

E [h(g, l, f,Ψ)λ(g, l, f ; Ψ)]
a.e.
= E!(g,l,f) [h(g, l, f,Ψ)]λ(g, l, f) (16)

and E[λ(g, l, f ; Ψ)] = λ(g, l, f).

5 Mark structures
We now provide some examples of explicit mark structures, which may be considered when con-
structing (ST)CFMPP models. Note that

• multivariate (ST)CFMPPs (Sections 2.6, 2.7 and 5.3),

• usual marked (spatio-temporal) point processes (Section 3.1),

• spatio-temporal geostatistical marking (Section 3.2),

have already been covered previously in the text.
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5.1 Independent marks and common marginal mark distributions

In light of Proposition 1, whenever

P F
(g,l)(E) = νF(E), E ∈ B(F),

so that fF
(g,l)(·) ≡ 1, we say that Ψ has a common (marginal functional) mark distribution. Recalling

the reference process XF in (3), which has νF as distribution, we see that under a common marginal
functional mark distribution, Mi

d
= XF for all i = 1, . . . , N . Note that this is a univariate property.

One instance where this automatically holds is when Ψ is stationary.

Corollary 1. If Ψ is stationary then all marks (Li,Mi), i = 1, . . . , N , have the same marginal
distribution νA ⊗ νF.
Proof. Assuming that Ψ is stationary, we have that µG(G) = λG`(G), λG > 0. It now follows
that νA ⊗ νF is the uniquely determined probability measure on (M,B(M)) which satisfies µ(A) =
λG`(G)[νA ⊗ νF](H), A = G×H ∈ BY [Schneider and Weil, 2008, Thm 3.5.1.]. This implies that
λ(g, l, f) = λG, i.e. that fF

(g,l)(f) ≡ 1 and fA
g (l) ≡ 1.

Turning next to the multivariate distributions of the functional marks, we may impose different
levels of independence.

Definition 14. Whenever the regular probability distributions (11) satisfy

P F
(g1,l1),...,(gn,ln)(E1 × · · · × En) =

n∏
i=1

P F
(gi,li)

(Ei), E1, . . . , En ∈ B(F),

for any n ≥ 1, we say that Ψ has independent functional marks.
When Ψ both has independent functional marks and a common marginal functional mark dis-

tribution, we say that Ψ has randomly labelled functional marks, i.e., for any n ≥ 1 we have that
P F

(g1,l1),...,(gn,ln)(E1 × · · · × En) =
∏n

i=1 νF(Ei), E1, . . . , En ∈ B(F).

Here, through Proposition 1, we find that the pair correlation functional (14) satisfies

gΨ((g1, l1, f1), (g2, l2, f2)) =
fA
g1,g2

(l1, l2)

fA
g1

(l1)fA
g2

(l2)
gG(g1, g2).

Note that when Ψ has randomly labelled functional marks, M1, . . . ,MN are independent copies of
the reference process XF in (3). Furthermore, given that Ψ has independent functional marks, by
additionally assuming that the regular probabilities (10) satisfy

PA
g1,...,gn

(D1 × · · · ×Dn) =
n∏
i=1

PA
gi

(Di), D1, . . . , Dn ∈ B(A)

for any n ≥ 1, we retrieve the classical definition of independent marking [Daley and Vere-Jones,
2003, Definition 6.4.III] and consequently that of random labelling.

Remark 4. A weaker form of independent functional marking, conditionally independent func-
tional marking, may be obtained by assuming that

P F
(g1,l1),...,(gn,ln)(E1 × · · · × En) =

n∏
i=1

F F
(g1,l1),...,(gn,ln)(Ei), E1, . . . , En ∈ B(F),

for any n ≥ 1 and some family {F F
(g1,l1),...,(gn,ln)(E) : (g1, l1), . . . , (gn, ln) ∈ G × A, E ∈ B(F)} of

regular probability distributions.
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5.2 Functional mark reference measures and finite-dimensional distri-
butions

Recall from Proposition 1 the probability measures P F
(g1,l1),...,(gn,ln)(·) on (Fn,B(Fn)), n ≥ 1. By

assigning a specific structure to each P F
(g1,l1),...,(gn,ln)(·), or equivalently to νF and fF

(g1,l1),...,(gn,ln)(·),
we can determine what type of functional marks we may obtain. So far we have not discussed
specific choices for either of these components.

To indicate a few such choices, we start here by looking at how one could obtain deterministic
marks under the current setup. We then proceed to considering the case where νF is given by
Wiener measure (see e.g. [Mörters and Peres, 2010, Chapter 1] or [Skorohod, 1967, p. 2]) on
(F,B(F)). We stress that in the latter case, most of the ideas indicated may very well be applied
to, say, Poisson random measures (see e.g. [Klebaner, 2005, Jacod and Shiryaev, 1987]) or some
other Lévy process/semi-martingale generated random measure on (F,B(F)) (see e.g. [Jacod and
Shiryaev, 1987, Skorohod, 1967]). Note e.g. that in the Poisson case one would be able to generate
multivariate functional marks given by multivariate Poisson processes, a construction similarly to
[Crété et al., 2013]. This could likely be the required setup for Examples 4 and 5 in Section 3.5.
In order to keep the discussion below fairly compact, we will always assume that we may choose
a suitable filtered probability space (Ω,F ,FT,P) under which the constructions can made.

5.2.1 Point mass reference measures and deterministic functional marks

Consider some pre-defined deterministic function f ∗ : G × A × T → R such that all marginal
functions f ∗(g,l) = {f ∗(g, l, t)}t∈T , (g, l) ∈ G× A, are càdlàg functions. If we set

P F
(g1,l1),...,(gn,ln)(E1 × · · · × En) =

∫
E1

· · ·
∫
En

n∏
i=1

P F
(gi,li)

(dfi) =

∫
E1

· · ·
∫
En

n∏
i=1

δf∗
(gi,li)

(dfi)

for any n ≥ 1 and E1, . . . , En ∈ B(F) or, in connection to Lemma 1 and Proposition 1, under some
arbitrary reference measure νF,

fF
(g1,l1),...,(gn,ln)(f1, . . . , fn) = δ(f∗

(g1,l1)
,...,f∗

(gn,ln)
)(f1, . . . , fn),

we may create a (ST)CFMPP with deterministic marks Mi(t) = f ∗(gi, li, t), i = 1, . . . , N . Note
that this is the case when we consider e.g. the LISTA functions or the classical growth-interaction
process.

5.2.2 Wiener reference measures

Since for many applications it may be desirable to let each Mi follow some diffusion process for
t ∈ supp(Mi), we here consider a setup constructed by choosing νF as a Wiener measure (see
e.g. [Mörters and Peres, 2010, Chapter 1] or [Skorohod, 1967, p. 2]). More specifically, let the
reference process (3) be given by a standard Brownian motion XF = W = {W (t)}t∈T . This
process is generated by Wiener measure WF on CT (R) = {f : T → R : f continuous}. Noting
that CT (R) ∈ B(F), consider the reference measure νF(E) = WF(E ∩ CT (R)), E ∈ B(F), i.e. the
measure assigning probability 0 to discontinuous sample paths and standard Brownian motion
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probabilities to sample paths in CT (R). It now follows that

P F
(g1,l1),...,(gn,ln)(E1 × · · · × En) =

∫
E1×···×En

fF
(g1,l1),...,(gn,ln)(f1, . . . , fn)

n∏
i=1

νF(dfi)

=

∫
E1∩CT (R)×···×En∩CT (R)

fF
(g1,l1),...,(gn,ln)(f1, . . . , fn)

n∏
i=1

WF(dfi)

for E1, . . . , En ∈ B(F), with P F
(g1,l1),...,(gn,ln)(F× · · · × F) = 1.

We may next ask ourselves the adequate question how one would obtain explicit forms for
the densities fF

(g1,l1),...,(gn,ln)(·). To give an indication, assume that, conditionally on ΨG and the
auxiliary marks, we want to have (M1(t), . . . ,Mn(t)) given by, say, an n-dimensional diffusion
process (Y1(t), . . . , Yn(t)), t ∈ T . Then, under certain conditions, e.g. the Girsanov theorem (see
e.g. [Klebaner, 2005, Jacod and Shiryaev, 1987]) and the Cameron-Martin theorem [Mörters and
Peres, 2010] give rise to explicit explicit expressions for fF

(g1,l1),...,(gn,ln)(·). Furthermore, changing the
support of each Mi to some interval Ci ⊆ T can be obtained by multiplying the density by δΓi

(f),
where Γi = {f ∈ F : sup{supp(f)} = Ci}, i = 1, . . . , n, and/or by applying time-change/stopping
results to (Y1(t), . . . , Yn(t)) before applying e.g. Girsanov’s theorem. We note that such a setup
would be the underlying construction for the extensions discussed in Section 3.4.

5.2.3 Finite-dimensional distributions of the functional marks

As a distribution on the function space (Fn,B(Fn)), each P F
(x1,t1,l1),...,(xn,tn,ln)(·) is an abstract

and non-tractable object, despite that we sometimes may be able to explicitly define its density
fF

(g1,l1),...,(gn,ln)(·) with respect to some reference measure νnF . Hence, for all practical and mathemat-
ically explicit purposes we turn to the finite-dimensional distributions (fidis). For an informative
discussion on fidis for càdlàg processes, see [Silvestrov, 2004, 1.6.2].

Let Ψ be a STCFMPP and, conditionally on ΨG and the auxiliary marks, assume that we have
{(Xi, Ti, Li)}i∈I = {(xi, ti, li)}i∈I , I = {1, . . . , n}, and let

MI = {MI(t)}t∈T = {(M1(t), . . . ,Mn(t))|{(Xj, Tj, Lj) = (xj, tj, lj)}nj=1}t∈T .

It follows that P F
(x1,t1,l1),...,(xn,tn,ln)(·), the distribution of MI on (Fn,B(Fn)), is uniquely determined

by the fidis of MI [Silvestrov, 2004, Lemma 1.6.1.],

PMI
= {PMI(Sk)(A) : k ≥ 1, Sk = {s1, . . . , sk} ⊆ T , A ∈ B(Rn×k)}
= {P((MI(s1), . . . ,MI(sk)) ∈ A) : k ≥ 1, s1, . . . , sk ∈ T , A ∈ B(Rn×k)}.

Here we may also choose the sets A as products of half-open intervals (−∞, uij] ⊆ R, i = 1, . . . , n,
j = 1, . . . , k, where each (u1j, . . . , unj), j = 1, . . . , k, is a continuity point of the distribution
function corresponding to PMI(Sk)(·). Although we here have considered the STCFMPP case,
the CFMPP case is analogous. We now see that, conditionally on ΨG (and thereby N) and the
auxiliary marks, it follows that {Mi}Ni=1 is completely determined by the collection

⋃
I∈PN

PMI
.

If in addition PMI(Sk) is absolutely continuous with respect to `kn = `nk1 , the density of PMI(Sk)

will be denoted by

f s1,...,sk(g1,l1),...,(gn,ln)(u1, . . . , un) = f s1,...,sk(g1,l1),...,(gn,ln)

u11 · · · un1
... . . . ...
u1k · · · unk

 , (17)

where uij ∈ R, i = 1, . . . , n, j = 1, . . . , k.
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5.2.4 Markovian functional marks

In many cases it may be of interest to let the functional marks be given by Markov processes. This
is e.g. the case when each mark is given by some diffusion process.

Recall that, conditionally on Ψ and the auxiliary marks,

MI = {MI(t)}t∈T = {(Mi(t))i∈I}t∈T (18)

for any index set I ∈ PN . Define FMI
t = σ{MI(s)

−1(A) ∈ F : s ∈ T ∩ [0, t], A ∈ B(R)|I|} and
assume that the underlying filtered probability space (Ω,F ,FT = {Ft}t∈T,P) satisfies FMI

t ⊆ Ft
for any I ∈ PN . We say that Ψ has Markovian marks if each MI , I ∈ PN , constitutes a Markov
process, i.e., for s ≤ t,

P (MI(t) ∈ A|Fs) = P (MI(t) ∈ A|MI(s)) , A ∈ B(R)|I|.

Here we refer to PMI
t,s (A;MI(s)) = P (MI(t) ∈ A|MI(s)) as the MI-transition probabilities and

when there exist transition densities pMI
t,s (ut;us), ut, us ∈ Rn, with respect to `n, n = |I|, we find

that the densities (17) become

f s1(g1,l1),...,(gn,ln)(u1)
k∏
i=2

pMI
si,si−1

(ui;ui−1), u1, . . . , uk ∈ Rn. (19)

5.3 Auxiliary reference measures and multivariate (ST)CFMPPs

Turning next to the auxiliary mark space (A,B(A)) and its reference measure νA, which we have
assumed to be locally finite (the local finiteness allows us to appropriately construct kernels/regular
probabilities [Daley and Vere-Jones, 2008, Exercise 9.1.16]), recall from Section 2.2.3 that we either
let A = Ad = {1, . . . , kA}, A = Ac ⊆ RmA , or A = Ad × Ac, where kA,mA ≥ 1.

Note that in the first case, each mark Li ∈ Ad, i = 1, . . . , N , is a discrete random variable
and we may write Ψi =

∑
(g,l,f)∈Ψ∩G×{i}×F δ(g,f) =

∑
(g,f)∈Ψi

δ(g,f) for the restriction of Ψ to the
auxiliary mark set {i}, i = 1, . . . , kA. For this space we employ some finite measure νAd

as reference
measure, which implies that the regular probabilities (10) take the form

PA
g1,...,gn

(D1 × · · · ×Dn) =
∑
D1∩Ad

· · ·
∑
Dn∩Ad

fA
g1,...,gn

(l1, . . . , ln)νAd
(l1) · · · νAd

(ln),

so that each fA
g1,...,gn

(l1, . . . , ln) becomes a probability mass function/discrete probability density
function. On this space the most natural choice for νAd

is the counting measure νAd
(·) =

∑kA
j=1 δj(·).

At times we want to let the intensity functional of Ψi be given by λi(g, f) = λ(g, i, f)νA(i). Then,
when νAd

is the counting measure, νA(i) = 1 and λi(g, f) = fF
(g,l)(f)fA

g (i)λG(g). Note that if we do
not assume that the auxiliary marks are spatially dependent, we may simply let PA

g1,...,gn
(·) = νnA(·),

or equivalently fA
g1,...,gn

(·) ≡ 1, n ≥ 1.
Turning to the second alternative, each mark Li ∈ Ac becomes a (possibly) continuous mA-

dimensional random variable. Here some care should be taken. In most cases the natural can-
didate for the reference measure νAc would be Lebesgue measure `mA on (Ac,B(Ac)), whereby
fA
g1,...,gn

(l1, . . . , ln) would become a probability density function in the usual sense. However, at
times one must require that νAc is a finite measure, i.e. νAc(Ac) < ∞. This is e.g. the case when
we treat densities of finite (ST)CFMPPs with respect to Poisson processes (see Section 6.4). If Ac
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is a bounded subset of RmA , Lebesgue measure will suffice and we may rescale it into the uniform
probability measure `mA(·)/`mA(A). On the other hand, when Ac is not bounded, we choose νAc

as some probability distribution on (Ac,B(Ac)), to which the desired distributions of the Li’s are
absolutely continuous.

In the last scenario, where A = Ad × Ac, we simply let the reference measure be given by
νA(·) = [νAd

⊗ νAc ](·), the product measure of the two measures defined on the two spaces Ad

and Ac. Here each auxiliary mark has the form Li = (Li1, Li2) ∈ Ad × Ac. The discrete random
variable Li1 indicates which type 1, . . . , kA the ith point belongs to, whereas Li2 has the purpose
of, say, controlling the functional mark(s). Hereby, given that (Li1, Li2) = (li1, li2), i = 1, . . . , n,
the functional conditional densities (9) take the form

fF
(g1,l12),...,(gn,ln2)(·; l11, . . . , ln1), g1, . . . , gn ∈ G. (20)

Hence, given the spatial(-temporal) locations g1, . . . , gn ∈ G and l12, . . . , ln2 ∈ Ac, the functional
mark distributions may still vary, depending on which type each point i = 1, . . . , n is assigned.
Note that the Li2’s may be treated as random parameter vectors which control e.g. the supports
of the marks.

On the other hand, it may also be the case that ΨG = (Ψ1
G, . . . ,Ψ

kA
G ) is a multivariate spatial

point process on e.g. G = X, for instance a multivariate Cox process. As such, it may be treated as
the marked point process ΨG = {(Xi, Li1)}Ni=1, where Li1 indicates which Ψ1

G, . . . ,Ψ
kA
G a point be-

longs to. By additionally assigning functional marks and auxiliary marks {Li2}Ni=1 to ΨG, with the
latter possibly controlling the former through (20), we obtain a CFMPP Ψ = {(Xi, Li1, Li2,Mi)}Ni=1

where the Li1’s govern both the ground process and the functional marks.

Remark 5. Since each Li2 is a random variable, which works as a parameter in a stochastic
process, the current setup of (ST)CFMPPs connects naturally to a Bayesian stochastic process
framework.

5.4 Intensity-dependent marks

A step forward in the marking of stationary unmarked point processes is to allow the distributions
of the marks to be dependent on the local intensity, as suggested by [Ho and Stoyan, 2008] and
[Myllymäki and Penttinen, 2009] in the context of stationary log Gaussian Cox processes [Møller
et al., 1998, Møller and Waagepetersen, 2004]. This intensity-dependent marking assumes condi-
tional independence to hold for the marks, given the random intensity. Heuristically, these models
allow the marks to be large (small) in areas of low point intensity and small (large) in areas of high
intensity. For log Gaussian Cox process, intensity-dependent marking leads to a correlation of the
marks which is affected by the second-order property of the unmarked Cox process. The setup
in [Myllymäki and Penttinen, 2009] developed new marking models of such a generality that not
only the mean of the mark distribution but also its variance is affected by the local intensity, and
these models have been employed for the marking of log Gaussian Cox processes. In this context
it is interesting to test for mark independence and for dependence between marks and locations
[Grabarnik et al., 2011, Schlather et al., 2004].

In the current STCFMPP context we may extend these ideas further.

Definition 15. A STCFMPP Ψ with ground intensity λG(x, t) is said to have intensity-dependent
marks if, conditionally on ΨG and the auxiliary marks, the functional marks are given by Mi(t) =
λG(Xi, t), t ∈ T , i = 1, . . . , N .
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Note that this falls in the category of deterministic marks (see Section 5.2.1) and the cor-
responding point masses on (Fn,B(Fn)), n ≥ 1, may or may not depend on the auxiliary marks
(recall the discussion in Section 5.3). Moreover, as in the above mentioned references, larger marks
indicate where and when there is high intensity.

6 Specific classes of (ST)CFMPPs
Having defined a general structure for (ST)CFMPPs, we next turn to considering different specific
constructions. Since by the notion of a spatio-temporal point process is often meant a temporally
grounded point process, we look closer at temporally grounded (ST)CFMPPs and as a result
obtain a definition of functional marked conditional intensities [Cox and Isham, 1980, Daley and
Vere-Jones, 2003, Vere-Jones, 2009]. Furthermore, we look closer at finite (ST)CFMPPs, and then
in particular Markov (ST)CFMPPs [Daley and Vere-Jones, 2003, Van Lieshout, 2000]. However,
we start by defining (spatio-temporal) càdlàg functional marked Poisson and Cox processes [Daley
and Vere-Jones, 2003, Van Lieshout, 2000, Møller and Waagepetersen, 2004, Stoyan et al., 1995].

6.1 Poisson processes

Poisson processes, the most well known point process models, are the benchmark/reference models
for representing lack of spatial interaction.

Given a locally finite measure µ on B(Y), we let a (spatio-temporal) càdlàg functional marked
((ST)CFM) Poisson process Ψ, with intensity measure µ, be defined as a Poisson process on Y.
In other words, for any disjoint A1, . . . , An ∈ B(Y), n ≥ 1, the random variables Ψ(A1), . . . ,Ψ(An)
are independent and Poisson distributed with means µ(Ai), i = 1, . . . , n, provided Ai is bounded.
When Ψ has an intensity functional λ(·), i.e. when the intensity measure in (6) satisfies µ(A) =∫
A
λ(g, l, f)ν(d(g, l, f)), through Proposition 1 it follows that

ρ(n)((g1, l1, f1), . . . , (gn, ln, fn)) =
n∏
i=1

λ(gi, li, fi) =
n∏
i=1

fF
(gi,li)

(fi)f
A
gi

(li)λG(gi),

whereby the pair correlation functional satisfies gΨ((g1, l1, f1), (g2, l2, f2)) = 1. We note also that
through (16), since for all (g, l, f) ∈ Y the Palm measures satisfy P !(g,l,f)(·) = P (·), its Papangelou
conditional intensity satisfies λ(g, l, f ; Ψ) = λ(g, l, f). When Ψ is stationary, due to Corollary 1,
Ψ becomes randomly labelled and ρ(n)((g1, l1, f1), . . . , (gn, ln, fn)) = λnG > 0.

6.1.1 Ground Poisson processes

We next relax the Poisson process assumption slightly to only concern the ground process. More
specifically, we say that a (ST)CFMPP Ψ is a (ST)CFM ground Poisson process if its ground
process ΨG constitutes a simple Poisson process on G. Note that in light of Proposition 1,

ρ(n)((g1, l1, f1), . . . , (gn, ln, fn)) = fF
(g1,l1),...,(gn,ln)(f1, . . . , fn)fA

g1,...,gn
(l1, . . . , ln)

n∏
i=1

λG(gi),

where λG(·) is the ground intensity function. Note that here gG(g1, g2) ≡ 1, whereby the pair
correlation functional satisfies gΨ((g1, l1, f1), (g2, l2, f2)) = fA

g1,g2
(l1, l2)/(fA

g1
(l1)fA

g2
(l2)) if Ψ has in-

dependent functional marks and gΨ((g1, l1, f1), (g2, l2, f2)) = 1 if Ψ is independently marked.
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6.2 Cox processes

We here consider Cox processes (see e.g. [Stoyan et al., 1995, p. 154]) in the current context of
càdlàg functional marking. These are common and interesting models for spatial clustering. Recall
from (7) that µG is the ground intensity measure of a (ST)CFMPP.

Definition 16. Given a locally finite random measure ΛG on G, a (ST)CFMPP Ψ is called a
(spatio-temporal) càdlàg functional marked ((ST)CFM) Cox process (directed by ΛG) if the ground
process ΨG constitutes a ΛG-directed Cox process on G. In other words, conditionally on ΛG, ΨG

is a Poisson process with µG = ΛG.

We note that, conditionally on ΛG, Ψ becomes a (ST)CFMPP ground Poisson process. Hence,
a more suitable name for Ψ would possibly be (ST)CFM ground Cox process. Assume next that
the locally finite random measure ΛG(G) =

∫
G

Λ(g)dg is generated by an a.s. non-negative random
field Λ = {Λ(g)}g∈G, which consequently must be a.s. locally integrable. When G = X (CFM Cox
process), we may write Λ = {Λ(x)}x∈X and when G = X×T (STCFM Cox process) we may write
Λ = {Λ(x, t)}(x,t)∈X×T . For a (ST)CFM Cox process, in light of Proposition 1, the nth product
density is given by [Daley and Vere-Jones, 2003, Chapter 6.2.]

ρ(n)((g1, l1, f1), . . . , (gn, ln, fn)) = fF
(g1,l1),...,(gn,ln)(f1, . . . , fn)fA

g1,...,gn
(l1, . . . , ln)

n∏
i=1

E[ΛG(gi)],

whereby gG(·) ≡ 1 and its pair correlation functional becomes

gΨ((g1, l1, f1), (g2, l2, f2)) =
fF

(g1,l1),(g2,l2)(f1, f2)fA
g1,g2

(l1, l2)

fF
(g1,l1)(f1)fA

g1
(l1)fF

(g2,l2)(f2)fA
g2

(l2)
.

When Ψ is a (ST)CFM Cox process with spatio-temporal geostatistical marking (recall Def-
inition 7), i.e. Mi(t) = ZXi

(t) for some spatio-temporal random field Z = {Zx(t)}(x,t)∈X×T , we
may connect random fields and point processes simultaneously in two different ways; the driving
random field Λ ’from underneath’ and a random field Z ’from above’. This structure is simplified
when we consider intensity dependent marks (Section 5.4). In the current context this translates
into the following definition.

Definition 17. A STCFM Cox process Ψ with random intensity field Λ = {Λ(x, t)}(x,t)∈X×T is said
to have intensity-dependent marks if, conditionally on ΨG and the random field Λ, the functional
marks are given by Mi(t) = Λ(Xi, t), t ∈ T , i = 1, . . . , N .

6.3 Temporally grounded STCFMPPs and conditional intensities

The product densities are extremely useful tools and e.g. they allow for the development of an array
of different tools/statistics, useful for performing statistical inference of different kinds. There is,
however, one case which allows one to take a step further in this development and that is when
a STCFMPP Ψ is temporally grounded. More specifically, recall from Definition 5 that when a
STCFMPP Ψ is temporally grounded we may treat it as a temporal point process ΨT = {Ti}Ni=1

on T with marks {(Xi, Li,Mi)}Ni=1. This allows one to exploit the natural ordering of T and thus
exploit the more general theory of temporal stochastic processes, in particular that of cumulative
processes (see e.g. [Daley and Vere-Jones, 2003, 2008]).

It should be stressed that when Ψ is a CFMPP and X ⊆ R, by construction, the ground process
ΨG = {Xi}Ni=1 ⊆ R may also be treated as a temporal point process with marks {(Li,Mi)}Ni=1.
Naturally the ideas presented below still hold under this setup.

31



6.3.1 The temporal ground product densities

We first look closer at the behaviour of ρ(n)
G when Ψ is temporally grounded and for this purpose

we consider G1, . . . , Gn = (GS
1 ×GT

1 ), . . . , (GS
n ×GT

n ) ∈ B(G) = B(X)⊗ B(T).
Since Ψ is temporally grounded, ΨG may be treated as the temporal point process ΨT = {Ti}Ni=1

on T, with associated X-valued marks {Xi}Ni=1. Then, under the assumption of local finiteness, we
may extend

α
(n)
G,T (GT

1 × · · · ×GT
n ) = α

(n)
G ((X×GT

1 )× · · · × (X×GT
n ))

to become the nth temporal ground factorial moment measure of ΨT. Consequently, when we
additionally assume that α(n)

G,T � `n1 , where the Radon-Nikodym derivative ρ(n)
G,T is referred to as

the nth temporal ground product density, we may disintegrate α(n)
G with respect to some family

{PG,S
t1,...,tn(·) : t1, . . . , tn ∈ T} of regular conditional probability distributions on B(Xn). When we

further assume that PG,S
t1,...,tn � `nd , with density fG,St1,...,tn(x1, . . . , xn), we find that

α
(n)
G (G1 × · · · ×Gn) =

∫
G1×···×Gn

fG,St1,...,tn(x1, . . . , xn)ρ
(n)
G,T (t1, . . . , tn)

n∏
i=1

dxidti

and we write λG,T (t) = ρ
(1)
G,T (t) for the corresponding intensity. Note that when ρ

(n)
G exists,

ρ
(n)
G ((x1, t1), . . . , (xn, tn)) = fG,St1,...,tn(x1, . . . , xn)ρ

(n)
G,T (t1, . . . , tn).

Remark 6. When on the other hand Ψ is spatially grounded, ΨG may be described as a spa-
tial point process ΨX = {Xi}Ni=1 with T-valued temporal marks {Ti}Ni=1. Then, under analo-
gous assumptions and in an identical fashion, we may derive the spatial ground product density
ρ

(n)
G,S(x1, . . . , xn) and the corresponding family fG,Tx1,...,xn

(t1, . . . , tn) of densities for which the product
constitutes ρ(n)

G ((x1, t1), . . . , (xn, tn)), provided it exists. However, at least when d ≥ 2 (which is a
natural assumption), there is no natural ordering to be gained, whereby the temporal component is
absorbed into the auxiliary mark and we end up considering the usual CFMPP case.

It should be pointed out at this stage that not all STCFMPPs are temporally grounded.
E.g. when G = X × T = R2 × [0,∞), in the case of a Poisson process, we must require that
α

(1)
G,T (C) =

∫
C
λG,T (t)dt = µG(R2 × C) < ∞ for bounded C ∈ B(T) in order for ΨT to be a

well-defined point process on T. When Ψ is a finite STCFMPP this follows automatically.

6.3.2 Cumulative STCFMPPs and conditional intensities

Assume now that T ⊆ [0,∞) and consider some suitable filtered probability space (Ω,F ,FT =
{Ft}t∈T,P). Note that in this section we essentially follow the structure and notation of [Daley
and Vere-Jones, 2008, Chapter 14].

Define (MT,B(MT), νMT) = (X×A× F,B(X)⊗B(A)⊗B(F), `d ⊗ νA ⊗ νF) so that (Xi, Li,Mi)
takes values in (MT,B(MT), νMT), and define

ΨT(C,K) = Ψ(B × C ×D × E)

for C ∈ B(T) and K = B × D × E ∈ B(MT) which gives us the cumulative process ΨT : T ×
B(MT)× Ω→ [0,∞],

ΨT(t,K) = ΨT([0, t], K) =
N∑
i=1

1K(Xi, Li,Mi)1(−∞,t](Ti), t ∈ T. (21)
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We note that this, in fact, is a cumulative process in the sense of [Daley and Vere-Jones, 2008, p.
378] since ΨT(t,K) is monotonically increasing in t, for fixed K, and a locally finite measure on
B(MT) for fixed t. Consider further the history/filtration

Ht = σ({ΨT((s, t], K) : 0 < s ≤ t,K ∈ B(MT)}) ⊆ Ft (22)

and note that ΨT(t,K) becomes progressively measurable with respect to FT [Daley and Vere-
Jones, 2003, (A3.3.2)] and the so-called mark-predictable σ-algebra [Daley and Vere-Jones, 2003,
p. 379] is coarser than FT. Hence, since ΨT(t,K) is adapted to FT, we have a setup well enough
specified to accommodate all purposes/constructions considered below.

Consider next the compensator A(t,K) of ΨT, which is the unique (mark-)predictable cumula-
tive process A(t,K) such that, for each K ∈ B(MT), the process ΨT(t,K)−A(t,K) is a martingale
with respect to FT [Daley and Vere-Jones, 2008, Definition 14.2.III.]. Under the current setup, such
an A(t,K) exists uniquely and through it we may define a conditional intensity [Daley and Vere-
Jones, 2008, Definition 14.3.I.]. The conditional intensity is an FT-adapted process λ∗(t, (x, l, f);ω)
(we emphasise this by writing out the ω) which is measurable with respect to B(T)⊗B(MT)⊗F
and satisfying

A(t,K;ω) =

∫
(0,t]×K

λ∗(u, (x, l, f);ω)duνMT(d(x, l, f))

a.s. for all t ∈ T \ {0} and K ∈ B(MT). However, in order to explicitly define λ∗ we have to
consider the Campbell measure CΨT on T×MT × Ω, which is defined through the relations

CΨT(C ×K × F ) =

∫
F

ΨT(C,K;ω)P(dω), F ∈ F ,

for bounded C ∈ B(T) and K ∈ B(MT). By assuming that CΨT(·) � `1 ⊗ νMT ⊗ P, we find that
a predictable version of λ∗ is given by the corresponding Radon-Nikodym derivative [Daley and
Vere-Jones, 2008, Proposition 14.3.II.]

λ∗(u, (x, l, f);ω) =
dCΨT(t,K;ω)

d(`1 ⊗ νMT ⊗ P)

and this version coincides (except possibly on a [`1⊗ νMT ⊗P]-null set) with any other conditional
intensity defined through the integral equation above. Hereby the conditional intensity of the
ground process ΨG

T is given by

λ∗G(t;ω) =

∫
MT

λ∗(t, (x, l, f);ω)νMT(d(x, l, f)).

Lemma 2. The conditional intensity is given by

λ∗(t, (x, l, f);ω) = fF
(x,t,l)(f ;ω)fA

(x,t)(l;ω)fG,St (x;ω)λ∗G(t;ω),

with E[λ∗(t, (x, l, f))] = λ(t, x, l, f) = fF
(x,t,l)(f)fA

(x,t)(l)f
G,S
t (x)λ∗G(t), and

λ∗K(t;ω) =

∫
K

λ∗(t, (x, l, f);ω)[`⊗ νA ⊗ νF](d(x, l, f))

is the conditional intensity of ΨT(t,K).
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Proof. By [Daley and Vere-Jones, 2008, Proposition 14.3.II.], there exist regular probabilities
PMT
t (·) on B(MT) which are absolutely continuous with respect to νMT with densities fMT(x, l, f |t;ω)

such that λ∗(t, (x, l, f)) = fMT(x, l, f |t;ω)λ∗G(t;ω). By applying Lemma 1 we obtain the first
statement. Note further that since E[A(t,K)] = E[ΨT(t,K)] it follows that E[λ∗(t, (x, l, f))] =
λ(t, x, l, f), the intensity functional of Ψ. The last part follows from [Daley and Vere-Jones, 2008,
p. 392].

Note here that λ∗ depends on Ψ only through the history Ht and not the whole realisation
(emphasised by ω) so we consequently may write λ∗(·;Ht) or simply λ∗(·), which is more common
notation in point process literature. Provided that the limit exists, there exists a version of λ∗
such that

λ∗(t, x, l, f) = lim
∆↓0

E[Ψ(BX[x,∆]× [t, t+ ∆]×BA[l,∆]×BF[f,∆])|Ht]

`d(BX[x,∆])`1([t, t+ ∆])νA(BA[l,∆])νF(BF[f,∆])
,

where e.g. BF[f,∆] denotes the closed ball which is centred around f ∈ F with dF-radius ∆.
Note also that extensions where T = R are possible [Daley and Vere-Jones, 2008, p. 394].

However, since in most applications it is natural to assume that the temporal starting point is 0,
we do not choose to consider such a setup.

To give an example, recall Section 5.3 and assume that A = Ac = R. By [Daley and Vere-
Jones, 2003, Lemma 6.4.VI.] we may construct a STCFMPP Ψ where {(Ti, Li)}Ni=1 constitutes a
Compound Poisson process. This is done by letting ΨT be a Poisson process with intensity λG,T (t)
and fA

(x,t)(l) be the density of the underlying jump size kernel F (·|·). Note that in this construction
we allow for the jump sizes to be location dependent.

6.3.3 Total temporal evolution and Markovian functional marks

Here we may extend the concept of Markovian functional marks a bit. Let T = T and let
It = {i : Ti ≤ t}, t ∈ T, where It =

⋃
s≤t Is. Letting I = It in (18), we obtain MIt(s) = (Mi(s))i∈It ,

s ∈ T, i.e. the multivariate conditional mark process of all point observed by time t ∈ T. Note
also that when we assume that inf{supp(Mi)} = Ti, then It =

⋃
s≤t{i : s ∈ supp(Mi)}. Recall now

the history Ht in (22) and define FMt = σ{MIt(s)
−1(A) ∈ F : s ∈ T ∩ [0, t], A ∈ B(R)|Is|} so that,

if one were to study the simultaneous temporal evolution of the points and the marks, it should
hold that

F∗t = Ht

∨
FMt ⊆ Ft, t ∈ T,

for the underlying filtration FT = {Ft}t∈T. Hereby we may study the simultaneous evolution of ΨT
(or ΨG

T ) and MIt , i.e. the total temporal evolution. Note here that when Ψ has Markovian marks,
it follows that

P (MIt(t) ∈ A|Fs) = P (MIt(t) ∈ A|MIt(s))

for s ≤ t and A ∈ B(Rn).

6.4 Finite (ST)CFMPPs

Recall the definitions of finite CFMPPs and finite STCFMPPs given in Definitions 3 and 4, re-
spectively. Following [Daley and Vere-Jones, 2003, Chapter 5.3], we find that the distribution P
of a finite (ST)CFMPP Ψ is completely specified by its Janossy measures, Jn(A1 × · · · × An),
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A1, . . . , An ∈ B(Y), n ≥ 0, where
∑∞

n=0
1
n!
Jn(Yn) = 1. We assume that these have symmetric

densities with respect to the n-fold products νn of the reference measure in (2), i.e.

Jn(A1 × · · · × An) =

∫
A1×···×An

jn((g1, l1, f1), . . . , (gn, ln, fn))
n∏
i=1

ν(d(gi, li, fi)),

and we refer to these densities jn(·) as the Janossy densities. Here Y0 denotes an ideal point such
that Y0×Y = Y×Y0 = Y [Daley and Vere-Jones, 2003, Proposition 5.3.II.]. The interpretation is
that Jn(d(g1, l1, f1)× · · · × d(gn, ln, fn)) gives the probability of Ψ having exactly n marked points
in the infinitesimal ground-mark regions d(g1, l1, f1), . . . , d(gn, ln, fn) ⊆ Y and no points anywhere
else. We note here that by construction the ground process ΨG is also a finite point process, on
G, and its Janossy densities will be denoted by jGn , n ≥ 0.

Recalling the interpretation of ρ(n), it quickly becomes clear that there is a connection between
the product densities and jn. The fundamental difference between the two is that jn gives the
infinitesimal probability of having exactly n points at the specified marked locations and no points
anywhere else.

Lemma 3. For each n ≥ 1, recalling the conditional densities (8) and (9), the Janossy densities
satisfy

jn((g1, l1, f1), . . . , (gn, ln, fn)) = fF
(g1,l1),...,(gn,ln)(f1, . . . , fn)fA

g1,...,gn
(l1, . . . , ln)jGn (g1, . . . , gn).

Proof. We here see that the existence of all jn, n ≥ 1, implies that Ψ is regular in the sense of
[Daley and Vere-Jones, 2003, p. 247]. Hence, we find that ΨG is regular in its own right and
for any n ≥ 1, given ΨG = {g1, . . . , gn}, the conditional distribution of the marks has density
fM
g1,...,gn

(m1, . . . ,mn) on Mn = (A × F)n, with respect to (νA ⊗ νF )n [Daley and Vere-Jones, 2003,
Proposition 7.3.I.]. Hereby an application of Lemma 1 gives the desired result.

In the current setup, for any bounded G ∈ B(G) and any n ≥ 1, the local Janossy measure
Jn(·|G × M), i.e. the Janossy measure of Ψ ∩ (G × M), has a well-defined probability density
jn((g1, l1, f1), . . . , (gn, ln, fn)|G×M) with respect to νn, the local Janossy density [Daley and Vere-
Jones, 2003, p. 247]. We further call Ψ totally finite if G is bounded and we see that when Ψ is
totally finite, jGn (g1, . . . , gn) = jGn (g1, . . . , gn|G×M) may be treated as a local Janossy density.

Remark 7. This construction is equivalent to specifying Ψ through a) a family of discrete probabil-
ity distributions pn = P(Ψ(Y) = n) = P(N = n), n ∈ N, and b) a family of symmetric probability
measures Πn(A1 × · · · × An) = Jn(A1×···×An)

pnn!
, n ≥ 1 (so that J0(Y0) = p0) [Daley and Vere-Jones,

2003, Proposition 5.3.II.]. Hereby the density of Πn with respect to νn is πn(·) = jn(·)
pnn!

so that,
conditionally on N = n, πn(·) determines the multivariate distribution of the points of Ψ in Y.

6.4.1 Densities with respect to Poisson processes

Recalling Section 5.3, assume now that the auxiliary reference measure νA is finite on B(A). This
implies that νA ⊗ νF is a finite measure on B(M) = B(A) ⊗ B(F). Note that [νA ⊗ νF](A × F) =
νA(A)νF(F) = νA(A) and if νA is given by a probability measure, [νA ⊗ νF](A× F) = 1.

Let further Ψ∗ be a finite (ST)CFM Poisson process with ground intensity function λ∗, finite
ground intensity measure µ∗G, i.e. µ∗G(G) =

∫
G λ∗(g)dg < ∞, and intensity functional λ∗(g, l, f) =

fF
(g,l)(f)fA

g (l)λ∗(g). Denote the distribution of Ψ∗ on ΣNY by P∗.
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Assume next that Ψ is a finite (ST)CFMPP with distribution P on ΣNY and assume that
P � P∗, where the corresponding density will be denoted by pΨ(ϕ), ϕ ∈ NY. We may equivalently
and conveniently consider the supports of P and P∗, whereby we may define the density as pΨ :
N f → [0,∞), where N f = {{(g1, l1, f1), . . . , (gn, ln, fn)} ⊆ Y : n <∞} is the collection of all finite
subsets of Y (see e.g. [Daley and Vere-Jones, 2008, Van Lieshout, 2000, Møller and Waagepetersen,
2004]). Hereby (see e.g. [Van Lieshout, 2000, Chapter 2.3] and [Møller and Waagepetersen, 2004,
Chapter 6.6.1]) the density pΨ(·) satisfies

∫
N f pΨ(y)P∗(dy) = 1 and

P(Ψ ∈ R) =
∞∑
n=0

e−µ
∗
G(G)νA(A)νF(M)

n!

∫
Yn

1{{(g1, l1, f1), . . . , (gn, ln, fn)} ∈ R} ×

×pΨ((g1, l1, f1), . . . , (gn, ln, fn))
n∏
i=1

fF
(gi,li)

(fi)f
A
gi

(li)λ∗(gi)ν(d(gi, li, fi))

for R ∈ ΣNY , where

pΨ((g1, l1, f1), . . . , (gn, ln, fn)) = eµ
∗
G(G)νA(A)νF(M) jn((g1, l1, f1), . . . , (gn, ln, fn)) (23)

= eµ
∗
G(G)νA(A)νF(M) fF

(g1,l1),...,(gn,ln)(f1, . . . , fn)fA
g1,...,gn

(l1, . . . , ln)jGn (g1, . . . , gn)

through Lemma 3. Note also that the densities satisfy E[pΨ(Ψ ∪ {(g1, l1, f1), . . . , (gn, ln, fn)})] =
ρ(n)((g1, l1, u1), . . . , (gn, ln, un)) [Møller and Waagepetersen, 2007, (16)].

6.4.2 Markov (ST)CFMPPs

For (ST)CFMPPs there are many different ways in which one can describe (local) interaction
structures. One important specific construction in the current context, when Ψ is finite with
density pΨ, is the class of Markov (ST)CFMPPs.

Given a symmetric and reflexive neighbour relation ∼ on Y, we say that points (g1, l1, f1) ∈ Y
and (g2, l2, f2) ∈ Y are neighbours if (g1, l1, f1) ∼ (g2, l2, f2) and we define the neighbourhood
of (g1, l1, f1) as ∂({(g1, l1, f1)}) = {(g, l, f) ∈ Y : (g1, l1, f1) ∼ (g, l, f)}. In addition, we write
∂Ψ({(g1, l1, f1)}) = ∂({(g1, l1, f1)}) ∩Ψ.

Definition 18. Given a symmetric and reflexive relation ∼ on Y, we say that a (ST)CFMPP Ψ
is a Markov (ST)CFMPPs if, for all y such that pΨ(y) > 0,

a) pΨ(z) > 0 for all z ⊆ y,

b) for all (g, l, f) ∈ Y, pΨ(y ∪ {(g, l, f)})/pΨ(y) depends only on (g, l, f) and ∂Ψ({(g1, l1, f1)}).
If (g1, l1, f1) ∼ (g2, l2, f2) for all (g1, l1, f1), (g2, l2, f2) ∈ y, we say that y is a clique. By

writing c∼y = {z ⊆ y : z is a clique under ∼}, the Hammersley-Clifford theorem [Van Lieshout,
2000, (2.7)] states that there is a measurable interaction function φ : N f → [0,∞) such that
pΨ(y) =

∏
z∈c∼y

φ(z) if and only if Ψ is a Markov (ST)CFMPP. This is a more common way of
defining a Markov process. We may express b) in the above definition through the Papangelou
conditional intensity.

Lemma 4. A finite (ST)CFMPP with density pΨ with respect to a Poisson process Ψ∗ has a
Papangelou conditional intensity, which is given by

λ(g, l, f ;y) =
pΨ(y ∪ {(g, l, f)})

pΨ(y)

for (g, l, f) /∈ y ∈ N f and λ(g, l, f ;y) = 0 for (g, l, f) ∈ y.
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Proof. The proof exploits the Campbell-Mecke formula and the Georgii-Nguyen-Zessin formula. It
follows the exact steps of [Van Lieshout, 2000, Theorem 1.6], with obvious modifications for the
marks. That λ(g, l, f ;y) = 0 for (g, l, f) ∈ y follows since Ψ is simple.

For convenience we often write i ∼ j if (gi, li, fi), (gj, lj, fj) ∈ Ψ are neighbours. Note here that
a Markov STCFMPP Ψ may possess several different types of Markovianity:

1. Spatial Markovianity: e.g. i ∼ j if d(Xi, Xj) ≤ R, for some maximum range of interaction
R > 0.

2. Temporal Markovianity: e.g. i ∼ j if |Ti − Tj| ≤ R, R > 0.

3. Spatio-temporal Markovianity: e.g. i ∼ j if (Xj, Tj) ∈ (Xi, Ti) +CRT
RS

, RS, RT > 0 (recall the
cylinder sets Cv

u in (1)). For an example, see [Cronie and van Lieshout, 2013].

4. Functional mark Markovianity: see Section 5.2.4.

5. If Ψ is temporally grounded, the cumulative process ΨT in (21) may be a Markov process:
P(ΨT(t,K) ∈ ·|Fs) = P (ΨT(t,K) ∈ ·|ΨT(s,K)), s < t.

Note that for a Markov (ST)CFMPP we may define a type of local independent marking. For
cliques I1 = {i1, . . . , ik} and I2 = {1, . . . , n} \ I1 = {ik+1, . . . , in}, conditionally on ΨG, we let the
distribution PM

g1,...,gn
(·) of the marks {(Li,Mi)}ni=1 on (Mn,B(Mn)) satisfy

PM
g1,...,gn

(d(m1, . . . ,mn)) = PM
gi1 ,...,gik

(d(mi1 , . . . ,mik))PM
gik+1

,...,gin
(d(mik+1

, . . . ,min)),

i.e. the marks are independent if the points are not neighbours.

7 Discretely sampled functional marks
In many situations one might be interested in different characteristics of Ψ when the functional
marks {Mi}Ni=1 are only observed at times Sk = {s1, . . . , sk} ⊆ T , k ≥ 1, i.e. instead of whole
functional marksMi = {Mi(t)}t∈T we consider multivariate marks of the form (Mi(s1), . . . ,Mi(sk)),
i = 1, . . . , N . Recall that this e.g. is the case when we define a classical marked spatio-temporal
point process Ψ̄ = {(Xi, Ti, Li,Mi(0)) : (Xi, Ti) ∈ ΨG} = {(Xi, Ti, Li, ξi) : (Xi, Ti) ∈ ΨG} through
a (ST)CFMPP Ψ, i.e. S1 = {0}.

7.1 Functional mark sampled point process characteristics

We shall see that the expressions below play a crucial role in the statistical inference since they
form the basis for e.g. likelihood functions, when the mark-functions are sampled at discrete times
s1, . . . , sk.

In order to accommodate such a restriction we consider sets

ESk
Ui

= {f ∈ F : (f(s1), . . . , f(sk)) ∈ Ui ∈ B(Rk)}, i = 1, . . . , n, (24)

which give rise to sets A1, . . . , An = (G1 × (D1 ×ESk
U1

)), . . . , (Gn × (Dn ×ESk
Un

)) ∈ B(Y). Recalling
the reference stochastic process XF in (3), which has νF as distribution on B(F), note that

νF(ESm
Ui

) = P((XF(s1), . . . , XF(sk)) ∈ Ui).
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Hence, under this discrete sampling of the functional marks, through the sets ESk
Ui

most charac-
teristics are automatically transferred over to the fidis of the functional mark processes. Note e.g.
that if the reference process XF(t) = W (t) is, say, a standard Brownian motion, then νF(ESm

Ui
) can

be calculated explicitly as a product of (Gaussian) transition probabilities.

7.1.1 Functional mark sampled product densities

By considering sets of the form (24), we obtain an expression for the product densities under
Sk-sampling, the Sk-mark-sampled product densities.

Lemma 5. Under the assumptions of Proposition 1 and the existence of densities (17), the nth
Sk-mark-sampled product density is given by

ρ(n)
s1,...,sk

((g1, l1, u1), . . . , (gn, ln, un)) =

= f s1,...,sk(g1,l1),...,(gn,ln)(u1, . . . , un)fA
g1,...,gn

(l1, . . . , ln)ρ
(n)
G (g1, . . . , gn),

where u1, . . . , un ∈ Rk.

Proof. We may define the factorial moment measure with respect to Sk and U1, . . . , Un ∈ B(Rk),

α
(n)
Sk

((G1 ×D1 × U1)× · · · × (Gn ×Dn × Un)) = α(n)(A1 × · · · × An),

where A1, . . . , An = (G1 × (D1 × ESk
U1

)), . . . , (Gn × (Dn × ESk
Un

)) ∈ B(Y). We note that by setting
each Ui = Rk, we obtain α

(n)
Sk

= α
(n)
G , hence α(n)

Sk
� α

(n)
G . The family of regular probabilities on

B(A)⊗ B(Rn×k), which are the corresponding Radon-Nikodym derivatives, are clearly absolutely
continuous with respect to the probability measures PA,n in (10). Hereby, since ρ(n)

G and densities
(8) and (17) exist,

α
(n)
Sk

((G1 ×D1 × U1)× · · · × (Gn ×Dn × Un)) =

=

∫
G1×D1×U1

. . .

∫
Gn×Dn×Un

f s1,...,sk(g1,l1),...,(gn,ln)(u1, . . . , un)fA
g1,...,gn

(l1, . . . , ln)

× ρ(n)
G (g1, . . . , gn)

n∏
i=1

νA(dli)dgidui

and similarly, by directly assuming that α(n)
Sk
� `⊗ νA ⊗ `nk, we find that

α
(n)
Sk

((G1 ×D1 × U1)× · · · × (Gn ×Dn × Un)) =

=

∫
G1×D1×U1

. . .

∫
Gn×Dn×Un

ρ(n)
s1,...,sk

((g1, l1, u1), . . . , (gn, ln, un))
n∏
i=1

dgiνA(dli)dui,

which implies that the two integrands are equal a.e..

As a consequence, the pair correlation functional is given by

gΨ((g1, l1, f1), (g1, l2, f2)) =
f s1,...,sk(g1,l1),(g1,l2)(u1, u2)fA

g1,g2
(l1, l2)

f s1,...,sk(g1,l1) (u1)f s1,...,sk(g2,l2) (u2)fA
g1

(l1)fA
g2

(l2)
gG(g1, g2).

38



7.1.2 Functional mark sampled conditional intensities

Turning next to conditional intensities of Section 6.3, let U = U1 ∈ B(Rk) in expression (24), recall
Lemma 2 and define

λ∗Sk
(t, (x, l, U);ω) =

∫
E

Sk
U

λ∗(t, (x, l, f);ω)νF(df)

= fA
(x,t)(l;ω)fG,St (x;ω)λ∗G(t;ω)

∫
E

Sk
U

fF
(x,t,l)(f ;ω)νF(df)

= fA
(x,t)(l;ω)fG,St (x;ω)λ∗G(t;ω)P ∗Sk

(U |x, t, l),

which is well-defined since λ∗K(t;ω), K ∈ B(MT), exists. If additionally the probability measure
P ∗Sk

(·|x, t, l) is absolutely continuous with respect to `k(·), it follows that

λ∗Sk
(t, (x, l, U);ω) =

∫
U

f s1,...,sm(x,t,l) (u;ω)fA
(x,t)(l;ω)fG,St (x;ω)λ∗G(t;ω)du.

We refer to the integrand

λ∗Sk
(t, (x, l, u);ω) = f s1,...,sm(x,t,l) (u;ω)fA

(x,t)(l;ω)fG,St (x;ω)λ∗G(t;ω) (25)

as the Sk-mark-sampled conditional intensity.

7.1.3 Functional mark sampled Papangelou conditional intensities

Recall the E-functional marked Papangelou conditional intensities λE(g, l; Ψ) in Section 4.3. In a
similar fashion, one may define the marked Sk-mark-sampled Papangelou kernel

λSk(g, l, U ; Ψ) = λ
E

Sk
U

(g, l; Ψ), U ∈ B(Rk),

through the set ESk
U ∈ B(F). Note that λSk(g, l, U ; Ψ) may be viewed as the infinitesimal conditional

probability of finding a point of Ψ in dg ⊆ G with auxiliary mark in dl ⊆ A and functional markMi

such that (Mi(s1), . . . ,Mi(sk)) ∈ U , given all points of Ψ located outside dg. Conditionally on the
ith point of Ψ having spatial(-temporal) location g and auxiliary mark l, and conditionally on all
points j 6= i of Ψ, assume that λSk(g, l, ·; Ψ) is absolutely continuous with respect to the distribution
of (Mi(s1), . . . ,Mi(sk)) and assume that this distribution, in turn, is absolutely continuous with
respect to `k. Then the corresponding density (see expression (17)) is given by f s1,...,sm(g,l) (u), u ∈ Rm,
and consequently

λSm(g, l, U ; Ψ) =

∫
U

λSm(g, l, du; Ψ) =

∫
U

f s1,...,sm(g,l) (u)λSm(g, l, u; Ψ)du, (26)

where we note that f s1,...,sm(g,l) (u)λSm(g, l, u; Ψ)du may be interpreted as λSm(g, l, U ; Ψ) with U given
by the infinitesimal region du ⊆ Rk.

7.1.4 Functional mark sampled Janossy densities

A further important entity for the likelihood inference is the set of Janossy densities. By combining
Lemma 3 and Lemma 5, we find that the nth Sk-sampled Janossy density is given by

jSk
n ((g1, l1, u1), . . . , (gn, ln, un)) = (27)
= f s1,...,sk(g1,l1),...,(gn,ln)(u1, . . . , un)fA

g1,...,gn
(l1, . . . , ln)jGn (g1, . . . , gn),
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where ui = (ui1, . . . , uik) ∈ Rk, i = 1, . . . , n. In addition, from (23) we obtain that under the Sk
sampling the density of a finite (ST)CFMPP with respect to a Poisson process is given by

pSk
Ψ ((g1, l1, u1), . . . , (gn, ln, un)) = eµ

∗
G(G)νA(A)νF(M) jSk

n ((g1, l1, u1), . . . , (gn, ln, un)). (28)

7.2 Statistical inference

We now turn to the statistical inference for (ST)CFMPPs with discretely sampled functional
marks. Specifically, we consider a STCFMPP Ψ = {(Xi, Ti, Li,Mi)}Ni=1 with distribution Pθ0 ,
which belongs to some parametric family of models {Pθ : θ ∈ Θ}, and we here indicate how a few
estimation schemes may be defined to obtain an estimate θ̂ of θ0.

Note here that when we observe all of Ψ, but with functional marks sampled according to Sk =
{s1, . . . , sk} ⊆ T , and wish to find an estimate θ̂, we essentially consider the usual marked spatio-
temporal point process setup, where the marked point process under consideration is given by
Ψ̄ = {((Xi, Ti), (Li,Mi(s1), . . . ,Mi(sk)))}Ni=1. Assume that we observe Ψ̄ as {((xi, ti), (li, ui))}ni=1,
ui = (ui1, . . . , uik), within some compact space-time region WS ×WT ⊆ G. Given the imposed
probabilistic structures of the ground process and the marking, it may be possible to derive e.g.
a (pseudo)likelihood function. The literature on the subject is vast and good accounts can be
found in e.g. [Daley and Vere-Jones, 2003, 2008, Diggle, 2003, Gelfand et al., 2010, Illian et al.,
2008, Van Lieshout, 2000, Møller and Waagepetersen, 2004]. A quick indication of how one could
proceed is as follows.

• When Ψ is assumed to be spatially grounded (see Section 6.3), by consulting e.g. [Daley and
Vere-Jones, 2003] and recalling (25), we find that the log-likelihood function is given by

logL(θ) =
n∑
i=1

log λ∗Sk
(ti, (xi, li, ui))−

∫
WT

∫
WS

∫
A

∫
Rk

λ∗Sk
(t, (x, l, u))duνA(dl)dxdt

=
n∑
i=1

log f s1,...,sm(xi,ti,li)
(ui) + log fA

(xi,ti)
(li) + log fG,Sti (xi) + log λ∗G(ti)

−
∫
WT

∫
WS

fG,St (x)λ∗G(t)dxdt.

When we maximise logL(θ) with respect to θ ∈ Θ, we obtain a maximum likelihood estimate
θ̂. This is probably the most well-known likelihood estimation procedure for point processes.

• When Ψ is finite (and not temporally grounded), following e.g. [Van Lieshout, 2000, Chapter
3.7], through expressions (27) and (28), we obtain the likelihood function as

L(θ) = pSk
Ψ ((x1, t1, l1, u1), . . . , (xn, tn, ln, un))

∝ jSk
N ((x1, t1, l1, u1), . . . , (xn, tn, ln, un))

= f s1,...,sk(x1,t1,l1),...,(xn,tn,ln)(u1, . . . , un)fA
(x1,t1),...,(xn,tn)(l1, . . . , ln)jGn ((x1, t1), . . . , (xn, tn)).

By maximising L(θ) or logL(θ) with respect to θ ∈ Θ, we obtain a maximum likelihood
estimate θ̂.

• When Ψ is a Markov STCFMPP as defined in Section 6.4.2, it is completely specified by its
Papangelou conditional intensity. Hereby, through e.g. [Van Lieshout, 2000, Chapter 3.8],
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by recalling expression (26), we find that the pseudo-likelihood function is given by

PL(θ) = exp

{
−
∫
WS×WT×A

λSm((x, t), l,Rk; {(xi, ti, li, ui)}ni=1)[`⊗ νA](d(x, t, l))

}
×

n∏
i=1

f s1,...,sm(xi,ti,li)
(ui)λ

Sm (xi, ti, li, ui; {(xi, ti, li, ui)}ni=1)

and upon maximising PL(θ) or logPL(θ) with respect to θ ∈ Θ, we obtain a maximum
pseudo-likelihood estimate θ̂.

• For a finite Ψ, assume that we are able to estimate the parameters of the ground process
and the auxiliary marks in some suitable way. Conditionally on {(xi, ti, li)}ni=1, given some
parametric family {f(t; θ, n) = (f1(t; θ), . . . , fn(t; θ)) : t ∈ T , θ ∈ Θ} ⊆ Fn, n ≥ 1, of L2-
functions, when we sample the marks according to Sk, with a slight abuse of notation, we
obtain the least-squares estimator

θ̂ = arg minθ∈Θ

∫
T

k∑
j=1

δsj(t)
[
MI(t|ΨG, {Li}Ni=1)− f(t; θ, n)

]2
dt

≈ arg minθ∈Θ

∫
T

k∑
j=1

δsj(t) [MI(t|{(xi, ti, li)}ni=1)− f(t; θ, n)]2 dt

= arg minθ∈Θ

k∑
j=1

n∑
i=1

[(uij − fi(sj; θ, n)]2 ,

where we recall MI , I = {1, . . . , n}, from (18). The second (approximate) equality follows
since the observed marks are likely influenced by points falling outsideWS×WT . Note hereby
that this approach does not account for edge effects. To correct for edge effect in a setting as
the one above, [Cronie and Särkkä, 2011] suggested a few different approaches. The general
idea is to, successively and conditionally on {((xi, ti), (li, ui))}ni=1, simulate realisations on a
torus G, with WS ×WT ⊆ G, from the parametric model under consideration and then use
all simulated marked points falling in G \ (WS ×WT ) as the missing data in G \ (WS ×WT ).
Assuming that there are n∗ ≥ 0 simulated points falling in G\(WS×WT ), the estimator above
is adjusted by considering some parametric family {f(t; θ, n + n∗) : t ∈ T , θ ∈ Θ} ⊆ Fn+n∗

of functions and the estimator θ̂ becomes exact.

Note above that if theMi’s are Markov processes with existing transition densities, as described
in Section 5.2.4, then f s1,...,sk(x1,t1,l1),...,(xn,tn,ln)(u1, . . . , un), n ≥ 1, are given by products of the transition
densities found in expression (19).

7.3 Observable processes, thinning and parameter estimation

The above sampling structure, with spatio-temporally continuously sampled points and discretely
sampled marks, may be reasonable in certain situations. However, one may argue that if the
functional marks are sampled discretely, also the spatio-temporal ground process and possibly the
auxiliary marks should be sampled according to whether we are able to observe them at the sample
times Sk = {s1, . . . , sk}. Below we discus such a setup and indicate how the associated statistical
inference could be performed.
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In order to provide a mathematical structure which reflects such a sampling scheme, for a
STCFMPP Ψ consider the (modified) evaluation functional

πF
t [ϕ] = {(x, t, l, f(t)) : (x, t, l, f) ∈ ϕ}, ϕ ∈ NY, t ∈ T .

When considering certain types of real data, such as in the sampling described above, it is useful
to consider the observable process

ΨY
O(t) = πF

t [Ψ ∩ (X× T× A× {f ∈ F : t ∈ supp(f)})]
= πF

t [{(Xi, Ti, Li,Mi) ∈ Ψ : t ∈ supp{Mi}}]
= {(Xi, Ti, Li,Mi(t)) : (Xi, Ti, Li,Mi) ∈ Ψ, t ∈ supp{Mi}}.

Note that this corresponds to what we observe at time t, i.e. we treat a point of Ψ as observ-
able/present at time t only if its functional mark is non-zero. The definition is analogous for
CFMPPs.

Consider next the scenario where we sample the observable process at times s1, . . . , sk. A
typical data set which corresponds to this type of sampling could be e.g. a forest stand, where each
Xi represents the location of a tree, each Ti its birth time, and each (Mi(s1), . . . ,Mi(sk)) the sizes
(e.g. radius or height) of the ith tree, measured at s1, . . . , sm. We note that what we in fact are
observing is a location-dependent thinning of Ψ, i.e. for some measurable function p : Y → [0, 1],
each point (x, t, l, f) of Ψ is retained with the probability probability p(x, t, l, f). The product
densities of a thinned STCFMPP [Daley and Vere-Jones, 2008] are given by

ρ
(n)
th ((x1, t1, l1, f1), . . . , (xn, tn, ln, fn)) =

= ρ(n)((x1, t1, l1, f1), . . . , (xn, tn, ln, fn))
n∏
i=1

p(xi, ti, li, fi).

The correct choice of retention probability function to reflect the nature of the Sk-evaluated ob-
servable process is

p(x, t, l, f) = p(x, t, l, f ;Sk) = 1{Sk ∩ supp(f) 6= ∅}, Sk = {s1, . . . , sk},

Note that if the support of the ith functional mark of Ψ is given by supp(Mi) = [t, t + l) when
(Xi, Ti, Li,Mi) = (x, t, l, f), we set supp(f) = [t, t + l). Hence, we remove all unobserved points
which we do not observe at any of the sample times s1, . . . , sk.

Turning now to the characteristics corresponding to (ΨY
O(s1), . . . ,ΨY

O(s1)), consider first the
Sk-marked-sampled product densities in Lemma 5, which are needed since we also sample the
functional marks discretely. We find that their thinned versions are given by

ρ
(n)
Skth((x1, t1, l1, u1), . . . , (xn, tn, ln, un)) =

= f s1,...,sk(x1,t1,l1),...,(xn,tn,ln)(u1, . . . , un)fA
(x1,t1),...,(xn,tn)(l1, . . . , ln)ρ

(n)
G ((x1, t1), . . . , (xn, tn))

×
n∏
i=1

1{Sk ∩ supp(fi) 6= ∅}.

Under the assumptions of Proposition 1, when the product densities of all orders n ≥ 1 exist,
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through [Daley and Vere-Jones, 2003, Lemma 5.4.III.] we find that

jSkth
n ((x1, t1, l1, u1), . . . , (xn, tn, ln, un)) =

=
∞∑
j=0

(−1)j

j!

∫
X×T×A×Rk

· · ·
∫
X×T×A×Rk

×

× ρ(n+j)
Skth ((x1, t1, l1, u1), . . . , (xn, ti, ln, un), y1, . . . , yj)

j∏
i=1

[`d ⊗ `1 ⊗ νA ⊗ `k](dyi)

=
n∏
i=1

1{Sk ∩ supp(fi) 6= ∅}f s1,...,sk(x1,t1,l1),...,(xn,tn,ln)(u1, . . . , un)fA
(x1,t1),...,(xn,tn)(l1, . . . , ln)×

×
∞∑
j=0

(−1)j

j!

∫
G
· · ·
∫
G
ρ

(n+j)
G ((x1, t1), . . . , (xn, tn), g1, . . . , gj)

j∏
i=1

dgi

= f s1,...,sk(x1,t1,l1),...,(xn,tn,ln)(u1, . . . , un)fA
(x1,t1),...,(xn,tn)(l1, . . . , ln)jGn (g1, . . . , gn)×

×
n∏
i=1

1{Sk ∩ supp(fi) 6= ∅}.

Hence, the thinned Sk-sampled Papangelou conditional intensity λSm(xi, ti, li, ui; Ψ) is given by
1{Sk ∩ supp(fi) 6= ∅}λSm(xi, ti, li, ui; Ψ).

By further integrating out over A and/or T in the expressions above, we obtain equivalences
for

ΨX×F
O (t) = projX×F(ΨY

O(t)) = {(Xi,Mi(t)) : (Xi, Ti, Li,Mi(t)) ∈ ΨY
O(t)}

= {(Xi,Mi(t)) : (Xi, Ti, Li,Mi) ∈ Ψ, t ∈ supp{Mi}},
ΨX×A×F
O (t) = projX×A×F(ΨY

O(t)) = {(Xi, Li,Mi(t)) : (Xi, Ti, Li,Mi) ∈ Ψ, t ∈ supp{Mi}},

where e.g. projX×F(A) denotes the projection of A ⊆ X×T×A× F onto X× F. Note that such a
setup might be more realistic in most cases, since e.g. in a forest stand we do not actually observe
the birth times Ti, i = 1, . . . , N , of the trees.

Acknowledgements
The authors are truly grateful to N.M.M. van Lieshout (CWI, The Netherlands) for feedback,
ideas and proofreading. The authors are also grateful to to Aila Särkkä (Chalmers University of
Technology, Sweden) and Eric Renshaw (University of Strathclyde, U.K.) for ideas, discussions and
for introducing us to concepts underlying the field. This research was supported by the Netherlands
Organisation for Scientific Research NWO (613.000.809) and the Spanish Ministry of Education
and Science (NTN2010-14961).

References
A.J. Baddeley, J. Møller, and R. Waagepetersen. Non- and semi-parametric estimation of interac-
tion in inhomogeneous point patterns. Statistica Neerlandica, 54:329–350, 2000.

43



D. Baum and V.V. Kalashnikov. Stochastic models for communication networks with moving
customers. Information Processes, 1:1–23, 2001.

P. Billingsley. Convergence of Probability Measures. Wiley, 2nd edition, 1999.

V. Bogachev. Measure Theory. Springer, 2007.

L.B. Collins and N. Cressie. Analysis of spatial point patterns using bundles of product lisa
function. Journal of Agricultural, Biological, and Environmental Statistics, 6:118–135, 2001.

C. Comas. Modelling forest regeneration strategies through the development of a spatio-temporal
growth interaction model. Stochastic Environmental Research and Risk Assessment, 23:1089–
1102, 2009.

C. Comas, P. Delicado, and Mateu J. A second order approach to analyse spatial point patterns
with functional marks. Test, 20:503–523, 2011.

D. Cox and V. Isham. Point processes. CRC, 1980.

N.A.C. Cressie. Statistics for Spatial Data. Wiley, revised edition, 1993.

R. Crété, B. Pumo, S. Soubeyrand, F. Didelot, and Caffier V. A continuous time-and-state epidemic
model fitted to ordinal categorical data observed on a lattice at discrete times. Journal of
Agricultural, Biological, and Environmental Statistics, 18:538–555, 2013.

O. Cronie. Likelihood inference for a functional marked point process with cox-ingersoll-ross process
marks. arXiv, 2012.

O. Cronie and A. Särkkä. Some edge correction methods for marked spatio-temporal point process
models. Computational Statistics & Data Analysis, 55:2209–2220, 2011.

O. Cronie and M.N.M. van Lieshout. A J-function for inhomogeneous spatio-temporal point
processes. arXiv, 2013.

O. Cronie, K. Nyström, and J. Yu. Spatiotemporal modeling of swedish scots pine stands. Forest
Science, 59:505–516, 2013.

D.J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes: Volume I:
Elementary Theory and Methods. Springer Series in Statistics, 2nd edition, 2003.

D.J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes: General Theory
and Structure. Springer, 2nd edition, 2008.

P. Delicado, R. Giraldo, C. Comas, and J. Mateu. Statistics for spatial functional data: some
recent contributions. Environmetrics, 21:224–239, 2010.

P. Diggle. Statistical Analysis of Spatial Point Patterns. Hodder Education Publishers – Arnold,
2nd edition, 2003.

S.N. Ethier and T.G. Kurtz. Markov Processes: Characterization and Convergence. Wiley-
Interscience, 1986.

44



E. Gabriel and P. Diggle. Second-order analysis of inhomogeneous spatio-temporal point process
data. Statistica Neerlandica, 63:43–51, 2009.

A. Gelfand, M. Fuentes, P. Guttorp, and P. Diggle. Handbook of Spatial Statistics. Taylor &
Francis, 2010.

R. Giraldo, P. Delicado, and J. Mateu. Continuous time-varying kriging for spatial prediction of
functional data: An environmental application. Journal of Agricultural, Biological, and Envi-
ronmental Statistics, 15:66–82, 2010.

R. Giraldo, P. Delicado, and J. Mateu. Ordinary kriging for function-valued spatial data. Envi-
ronmental and Ecological Statistics, 18:411–426, 2011.

P. Grabarnik, M. Myllymaki, and D. Stoyan. Correct testing of mark independence for marked
point patterns. Ecological Modelling, 222:3888–3894, 2011.

P.R. Halmos. Measure Theory. Springer, 1974.

L.P. Ho and D. Stoyan. Modelling marked point patterns by intensity-marked cox processes.
Statistics & Probability Letters, 78:1194–1199, 2008.

J. Illian, E. Benson, J. Crawford, and H. Staines. Principal component analysis for spatial point
processes – assessing the appropriateness of the approach in an ecological context, pages 135–150.
Springer, 2006.

J. Illian, A. Penttinen, H. Stoyan, and D. Stoyan. Statistical Analysis and Modelling of Spatial
Point Patterns. Wiley, 2008.

J. Jacod and A. Shiryaev. Limit Theorems for Stochastic Processes. Springer, 1987.

A. Karr. Point Processes and Their Statistical Inference. CRC, 2nd edition, 1991.

F.C. Klebaner. Introduction to Stochastic Calculus with Applications. Imperial College Press, 2nd
edition, 2005.

M.N.M. van Lieshout. Markov Point Processes and Their Applications. Imperial College Press,
London, 2000.

M.N.M. van Lieshout. A J-function for marked point patterns. Annals of the Institute of Statistical
Mathematics, 58:235–259, 2006.

J. Mateu, G. Lorenzo, and E. Porcu. Detecting features in spatial point processes with clutter via
local indicators of spatial association. Journal of Computational and Graphical Statistics, 16:
968–990, 2007.

J. Mateu, G. Lorenzo, and E. Porcu. Detecting features in spatial point processes with clutter via
local indicators of spatial association. Journal of Computational and Graphical Statistics, 16:
968–990, 2008.

J. Møller and M. Ghorbani. Aspects of second-order analysis of structured inhomogeneous spatio-
temporal point processes. Statistica Neerlandica, 66:472–491, 2012.

45



J. Møller and R.P. Waagepetersen. Statistical Inference and Simulation for Spatial Point Processes.
Chapman & Hall/CRC Press, 2004.

J. Møller and R.P. Waagepetersen. Modern statistics for spatial point processes. Scandinavian
Journal of Statistics, 34:643–684, 2007.

J. Møller, A.R. Syversveen, and R.P. Waagepetersen. Log gaussian cox processes. Scandinavian
Journal of Statistics, 25:451–482, 1998.

P. Mörters and Y. Peres. Brownian motion. Cambridge University Press, 2010.

M. Myllymäki and A. Penttinen. Conditionally heteroscedastic intensity-dependent marking of log
gaussian cox processes. Statistica Neerlandica, 63:450–473, 2009.

Y. Ogata. Space-time point-process models for earthquake occurrences. Annals of the Institute of
Statistical Mathematics, 50:379–402, 1998.

J.O. Ramsay and B.W. Silverman. Applied Functional Data Analysis. Springer, 2002.

J.O. Ramsay and B.W. Silverman. Functional Data Analysis. Springer, 2nd edition, 2005.

E. Renshaw and C. Comas. Space-time generation of high intensity patterns using growth-
interaction processes. Statistics and Computing, 19:423–437, 2009.

E. Renshaw and A. Särkkä. Gibbs point processes for studying the development of spatial-temporal
stochastic processes. Computational Statistics & Data Analysis, 36:85–105, 2001.

E. Renshaw, C. Comas, and J. Mateu. Analysis of forest thinning strategies through the devel-
opment of space-time growth-interaction simulation models. Stochastic Environmental Research
and Risk Assessment, 23:275–288, 2009.

B.D. Ripley. Spatial Statistics. Wiley, 1981.

B.D. Ripley and A.I. Sutherland. Finding spiral structures in images of galaxies. Philosophical
Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 332:
477–485, 1990.

F.J. Rodríguez-Cortés, M. Ghorbani, and J. Mateu. On the expected value and variance for an
estimator of the spatio-temporal product density function. Submitted, 2014.

A. Särkkä and E. Renshaw. The analysis of marked point patterns evolving through space and
time. Computational Statistics & Data Analysis, 51:1698–1718, 2006.

M. Schlather, Ribeiro Jr., P.J., and P.J. Diggle. Detecting dependence between marks and locations
of marked point processes. Journal of the Royal Statistical Society B, 66:79–93, 2004.

R. Schneider and W. Weil. Stochastic and Integral Geometry. Springer, 2008.

F.P. Schoenberg. Consistent parametric estimation of the intensity of a spatial-temporal point
process. JSPI, 128:79–93, 2004.

F.P. Schoenberg. Introduction to Point Processes. Wiley, 2011.

46



F.P. Schoenberg and K.E. Tranbarger. Description of earthquake aftershock sequences using pro-
totype point processes. Environmetrics, 19:271–286, 2008.

S.D. Silvestrov. Limit Theorems for Randomly Stopped Stochastic Processes. Springer, 2004.

A.V. Skorohod. On the densities of probability measures in functional spaces. Proc. Fifth Berkeley
Symp. on Math. Statist. and Prob., 2:163–182, 1967.

D. Stoyan and H. Stoyan. Fractals, Random Shapes and Point Fields. Wiley, 1994.

D. Stoyan, W. Kendall, and J. Mecke. Stochastic Geometry and its Applications. John Wiley &
sons, West Sussex, 2nd edition, 1995.

K.E. Tranbarger and F.P. Schoenberg. On the computation and application of point process
prototypes. Open Applied Informatics Journal, 4:1–9, 2010.

D. Vere-Jones. Some models and procedures for space-time point processes. Environmental and
Ecological Statistics, 16:173–195, 2009.

47


	1 Introduction
	2 Càdlàg functional marked point processes
	2.1 Notation
	2.2 The state spaces
	2.2.1 The spatial ground space
	2.2.2 The temporal ground space
	2.2.3 The auxiliary mark space
	2.2.4 The functional mark space

	2.3 The spatial and spatio-temporal state spaces
	2.3.1 The spatio-temporal state space
	2.3.2 The spatial state space

	2.4 Reference measures and reference càdlàg stochastic processes
	2.5 Point processes
	2.6 Càdlàg functional marked point processes
	2.7 Spatio-temporal càdlàg functional marked point processes
	2.8 The point process distribution
	2.9 Stationarity and isotropy
	2.10 Supports
	2.11 Geometric representation and spatio-temporal Boolean models

	3 Examples of (ST)CFMPPs
	3.1 Marked (spatio-temporal) point processes
	3.2 Spatio-temporal geostatistical marking and geostatistics with uncertainty in the sampling locations
	3.2.1 Geostatistical functional data

	3.3 LISA and LISTA functions
	3.4 The (stochastic) growth-interaction process
	3.5 Applications

	4 Point process characteristics of (ST)CFMPPs
	4.1 Product densities and intensity functionals
	4.1.1 Product densities in terms of conditional mark distribution densities
	4.1.2 Pair correlation functionals

	4.2 Campbell and Palm measures
	4.3 Marked Papangelou conditional intensities

	5 Mark structures
	5.1 Independent marks and common marginal mark distributions
	5.2 Functional mark reference measures and finite-dimensional distributions
	5.2.1 Point mass reference measures and deterministic functional marks
	5.2.2 Wiener reference measures
	5.2.3 Finite-dimensional distributions of the functional marks
	5.2.4 Markovian functional marks

	5.3 Auxiliary reference measures and multivariate (ST)CFMPPs
	5.4 Intensity-dependent marks

	6 Specific classes of (ST)CFMPPs
	6.1 Poisson processes
	6.1.1 Ground Poisson processes

	6.2 Cox processes
	6.3 Temporally grounded STCFMPPs and conditional intensities
	6.3.1 The temporal ground product densities
	6.3.2 Cumulative STCFMPPs and conditional intensities
	6.3.3 Total temporal evolution and Markovian functional marks

	6.4 Finite (ST)CFMPPs
	6.4.1 Densities with respect to Poisson processes
	6.4.2 Markov (ST)CFMPPs


	7 Discretely sampled functional marks
	7.1 Functional mark sampled point process characteristics
	7.1.1 Functional mark sampled product densities
	7.1.2 Functional mark sampled conditional intensities
	7.1.3 Functional mark sampled Papangelou conditional intensities
	7.1.4 Functional mark sampled Janossy densities

	7.2 Statistical inference
	7.3 Observable processes, thinning and parameter estimation


