
The Tyft/Tyxt Format Reduces to Tree Rules

Willem Jan Fokkink

CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

e-mail: Yan©cwi. nl

Abstract. Groote and Vaandrager (5] introduced the tyft/tyxt format
for transition system specifications (TSSs), and established that for each
TSS in this format that is well-founded, the strong bisimulation it induces
is a congruence. In this paper, we construct for each TSS in tyft/tyxt
format an equivalent TSS that consists of tree rules only. As a corollary
we can give an affirmative answer to an open question, namely whether
the well-foundedness condition in the Congruence Theorem of [5] can be
dropped. These results extend to tyft/tyxt with negative premises and
predicates.

1 Introduction

A current method to provide programming and specification languages with
an operational semantics is based on the use of transition systems, advocated
by Plotkin [7]. Given a set of states, the transitions between these states are
obtained inductively from a transition system specification (TSS), containing
transition rules. Such a rule, together with a number of transitions, may imply
the validity of another transition.

We will consider a specific type of transition systems, in which states are the
closed terms generated by a single sorted signature, and transitions are supplied
with labels. A great deal of the operational semantics of formal languages in
Plotkin style that have been defined over the years, are within the scope of this
format.

To distinguish such labelled transition systems, many different equivalences
have been defined, the finest of which is the strong bisimulation equivalence
of Park [6]. In general, this equivalence is not a congruence, i.e. the equivalence
class of a term f (p1, ... ,Pm.) modulo strong bisimulation is not always determined
by the equivalence classes of the terms p;. However, congruence is an essential
property, for instance, to fit the equivalence into an axiomatic framework.

Several formats have been developed which ensure that the bisimulation
equivalence induced by a TSS in such a format is always a congruence. A first
proposal was made by De Simone [8], which was generalised by Bloom, Istrail,
and Meyer [1] to the GSOS format. Next, Groote and Vaandrager [5] introduced
the tyft/tyxt format, and proved a Congruence Theorem for TSSs in this format
that satisfy a well-foundedness criterion.

Up to now, it has been an open question whether or not well-foundedness
is an essential ingredient of the Congruence Theorem. The requirement popped

441

up in the proof, but no counter-example was found to show that the theorem

breaks down if well-foundedness were omitted from it. In this paper, we prove

that the Congruence Theorem does hold for general TSSs in tyft/tyxt format,

i.e. that the requirement of well-foundedness can be omitted.

In fact, we will establish a stronger result, namely that for each TSS in

tyft/tyxt format, there is an equivalent TSS consisting of 'tree rules' only. A

tree rule is a well-founded rule of the form

{ Zi ~ Yi I i E I}

f(x1 ,. .. , Xrn) __::_. t

where the Yi and the Xj are all different variables and are the only variables that

occur in the rule, the z; are variables, f is a function symbol, and t is any term.

Using terminology from [5], we can say that a tree rule is a pure and well-founded

xyft rule. Since tree rules are well-founded, the reduction of tyft/tyxt format to

tree format will immediately imply that the Congruence Theorem concerning

the tyft/tyxt format can do without well-foundedness.

Last summer, Rob van Glabbeek independently deduced the same result,

which he announced in [3]. His proof is along the same lines as the one presented

in this paper.

The major advantage of our main theorem is that it facilitates reasoning

about the tyft/tyxt format. Because often it is much easier to prove a theorem

for TSSs in tree format than for TSSs in tyft/tyxt format. For example, this is

the case with the Congruence Theorem itself. Another striking example consists

of Theorems 8.6.6 and 8.9.l in [5]. With our result at hand, the complicated

proof of the second theorem can be skipped, because now the second theorem

follows immediately from the first one.
About all TSSs in Plotkin style that have been defined over the years are well­

founded. So in this sense, the practical implication of removing well-foundedness

from the Congruence Theorem for tyft/tyxt will probably be quite small. But

this removal does increase considerably the convenience of applying the tyft/tyxt

format, since the user no longer has to recall and check the complicated well­

foundedness criterion.
Groote [4] added negative premises to tyft/tyxt, resulting in the ntyft/ntyxt

format, and proved that the Congruence Theorem extends to well-founded TSSs

in ntyft/ntyxt format. We will show that the reduction of tyft/tyxt rules to tree

rules can be lifted to the positive part of rules in ntyft/ntyxt format, but a simple

example will learn that this reduction cannot be applied to the negative premises.

Again, we will find that the Congruence Theorem concerning the ntyft/ntyxt

format can do without well-foundedness.
Finally, Verhoef [9] has defined the panth format, which adds predicates to

ntyft/ntyxt, and proved that the Congruence Theorem holds for well-founded

TSSs in panth format. We will show that all our results extend to the panth

format too.

Acknowledgements. Chris Verhoef is thanked for useful comments, and spe­

cial thanks go to Rob van Glabbeek and Frits Vaandrager for suggesting some

substantial improvements.

442

2 Preliminaries

This section contains the basic definitions.

2.1 The Signature

In the sequel we assume a (single sorted) signature E, which consists of a set F
of function symbols, together with their arities. Moreover, we assume an infinite
set of variables V, 1 disjoint with F.

Definition I. The collection 'lf'(E) of (open) terms is defined as the least set
satisfying:

- each variable from V is in 'lf'(L'),
- if f E F has arity n, and t1, ... ,tn E 1l'(L'), then f(t1, ... , tn) E 'lf'(L').

A term is called closed if it does not contain any variables; the collection of closed
terms is denoted by T(E).

Definition 2. A substitution is a mapping O' : V ___. 'lf'(E). A substitution O' is
extended to a mapping O' : 1l'(E) ___. 1l'(E) in the obvious way; the term a-(t) is
obtained by replacing all occurrences of variables x in t by a-(x).

2.2 Transition System Specifications

In the sequel we assume a set of labels. An expression ~ with a a label denotes
a binary relation between terms, and a pair t ~ t' is called a transition. A
transition is called closed if it involves closed terms.

Definition 3. A (transition) rule is an expression of the form

t~t'

with I an index set, the t.,, t~, t, t' terms and the ai, a labels. The expressions
t.; ..!2.. t~ are called the premises, and t ~ t' the conclusion of the rule. The
notion of substitution extends to transitions and rules as expected.

A transition system specification (TSS) is a collection of transition rules.

1 In several constructions we will assume the existence of 'fresh' variables, i.e. variables
that have not yet been used in the construction. Some caution is needed to ensure
the existence of such fresh variables at any time, but clearly this technical problem
is not of a serious nature.

443

Definition 4. Assume a TSS R, and a rule of the form

t ...!:... t'

This rule is provable from R if there is a proof for it in R, which consists of
an upwardly branching tree in which all upward paths are finite. Moreover, the
nodes of the tree must be labelled by transitions, such that the root has label
t ...!:... t', and for each node we have:

- either the node has a label t; ~ ti for some i E I, and there are no nodes
above it,

- or the node has label u ___!!_.. u', and the nodes directly above it have labels
Ii·

Uj ~ uj for j E J, and there is a rule r E R and a substitution u such that
u(r) equals

1,.
{ Uj -3...+ uj \ j E J}

u ___!!_.. u'

We say that a transition t ...!:... t' is provable from R, notation R \- t _!!:...., t', if the
rule with no premises and conclusion t ...!:... t' is provable from R.

Finally, we say that a rule r together with a substitution u deduces a tran­
sition t -!'.:...+ t' from R if all the premises of r under u are provable from R, and
the conclusion of r under u results to t ...!:... t'.

Definition 5. Two TSSs are (transition} equivalent if exactly the same closed
transitions are provable from both.

The proofs of the following two lemmas are left to the reader.

Lemma 6. If all rules in S are provable from R, then all rules provable from S
are provable from R.

Lemma 7. A transition t _!!:...., t' is provable from R iff there is a ruler E R that
deduces t _!!:...., t' from R.

2.3 Strong Bisimulation

Definition 8. Assume a TSS R. Two closed terms po, qo are R-bisimilar, no­
tation Po :=:.n. q0 , if there exists a symmetric relation B ~ T(E) x T(E) such
that

- PoBqo,
- if pBq and R \- p _!!:...., p1 , then R \- q ~ q' and p' Bq' for some q'.

444

2.4 The Tyft/Tyxt Format

In general, bisimulation equivalence it is not a congruence, i.e. it may be the
case that p; =:_R. q; for i = 1, ... , n, but f(p1, ... , Pn) and f(q1, ... , qr1.) are not R­bisimilar. To deal with this problem, Groote and Vaandrager [5] have introduced the tyft/tyxt format. If a TSS is in this format, and it satisfies a well-foundedness
criterion, then the bisimulation it induces is a congruence.

Definition 9. A transition rule is a tyft rule if it is of the form

{ t; ~ Yi I i E J}

where the Xk and y; are all different variables. Similarly, a tyxt rule is of the form

{ t; ~ Yi I i E I}

x .-'.!:.... t

with x and the y; all different variables. A TSS is said to be in tyft/tyxt format
if it consists of tyft and tyxt rules only.

Definition 10. Assume a set T = { t; ~ t; I i E I} of transitions. Its 'depen­dency graph' is a directed graph, with the collection of variables V as vertices, and with as edges the collection

{ (x, y} I x and y occur in t; and t: respectively, for some i E I}.

The set T is called well-founded if any backward chain of edges in its dependency graph is finite. A transition rule is well-founded if its collection of premises is so, and a TSS is well-founded if all its rules are well-founded.

Example 1. Examples of sets of transitions that are not well-founded are

- {y.-'.!:....y},
- {y1 ~ Y2, Y2 __.!!._., yi},
- {Yi+l .-'.!:....y, I i=D,1,2, ... }.

The following Congruence Theorem originates from [5].

Theorem 11. If a TSS R is well-founded and in tyft/tyxt format, then =::!..R is a congruence.

In the next section we will see that the requirement of well-foundedness in this theorem can be dropped.

445

3 Reducing Tyft Rules to Tree Rules

The following lemma, originating from [5], indicates that we can refrain from

tyxt rules.

Lemma 12. For each TSS R in tyft/tyxt format, there is an equivalent TSS in
tyft format.

Proo f. Replace each tyxt rule r in R by a collection of tyft rules { r 1 If E F},

where each r1 is obtained by substituting f (x1 , ... , xn) for x in r, with x 1 , ... , Xn

variables that do not yet occur in r. The collection of tyft rules R' that is thus

obtained is equivalent to R, because clearly for each proof in R' of a certain

closed transition there is a proof in R of the same transition, and vice versa. D

The next lemma will be crucial in the proof of the main theorem.

Lemma 13. For substitutions (]' and p with (]' p = (]', there exists a substitution
p such that:

1. (J'p = (]'.

2. pp= p.
3. -p2 = p.
4. If p(x) = x, then p(x) = x.
5. If p"(x) is a variable for all n.?:: 0, then p(x) is a variable.

Proof. Since (J'p = (]' 1 it follows that ap""(x) = a(x) for n.?:: 1. So the size of the

p"'(x) (that is, the number of function symbols they contain) cannot grow beyond

the size of a(x). Since pn+1 (x) is obtained from p"(x) by replacing variables by

terms, pn+1(x) has at least the size of p"'(x). So for n sufficiently great, the terms

pn(x) all have the same size. Hence, for such n, p""+ 1 (x) is obtained from p"'(x)

by replacing variables by variables.
Let W be the collection of variables y for which p"' (y) is a variable for all

n ;::: 0. Define a binary relation ,...., on W by y rv z if pm (y) = pn (z) for certain

m and n. Note that rv is an equivalence relation. Under p, the elements of each

equivalence class C S";; W are contracted to one variable from this class as follows:

- If p(yo) =Yo for some Yo E C, then for ally E C pn(y) = Yo for some n.

This implies p(y) :f. y for y E C\ {y0 }, so y0 is uniquely determined. We put

p(y) =Yo for y E C.
- If p(y) ::/= y for all y E C, then we just pick some y0 E C and put p(y) =Yo

for y EC.

By definition, for each y E W there are m and n such that p"'p(y) = pn(y).

After applying (]' to both sides we get a p(y) = (J'(y) for y E W.
Now consider any variable x, for which we define p(x) as follows. We already

noted that for N sufficiently great all variables in pN (x) are in W. We obtain

p(x) by replacing each variable yin pN (x) by the contraction p(y) that has been

selected just now. Clearly p(x) does not depend on the choice of N.
Since ap(y) = (J'(y) for variables yin pN(x), we have ap(x) = apN (x) = a(x).

And properties 2-5 follow immediately from the construction of p. D

446

The following simple example shows that Lemma 13 cannot do without the O'.

Example2. Assume a function f of arity one, and define p(x) = J(x). Suppose
that there exists a substitution p with pp = p. Then

p(x) = pp(x) = p(f(x)) = f(p(x))

But j(p(x)) has greater size than p(x), so we have a contradiction.

Definition 14. A tyft rule

{ t; ~ Yi I i E I}

J(x1, ... , x,,.) .-!?:.... t

is said to be a xyft rule if all the t; are single variables.

We shall now prove that the tyft/tyxt format reduces to xyft rules, which
will be an intricate affair. Then a simple argument will learn that the tyft/tyxt
format reduces even to tree rules.

Theorem 15. For each TSS R in tyft/tyxt format, there is an equivalent TSS
in xyft format.

Proof. According to Lemma 12, we may assume R in tyft format. We shall prove
R equivalent with the TSS S of xyft rules that are provable from R. According
to Lemma 6, transitions provable from S are provable from R. We now show that
a closed transition p ~ p' provable from R is provable from S, using ordinal
induction to the length of a shortest proof P for p --'=-+ p' in R.

First, assume that P has length one. Then apparently there is a rule T E R
with no premises which conclusion results to p --'=-+ p' under a substitution O'.

Since r has no premises, it is a tree rule, and r together with a deduces p --'=-+ p'
from S. So Lemma 7 implies S f- p --'=-+ p'.

Next, suppose that we have proved the case for a proof in R with length
smaller than a, and let P have length a. We will construct from Pa sequence
of proofs Qn in R for tyft rules rn that, together with a O'n, deduce p --'=-+ p'
from S. Each Qn will be a sub-tree of P, where its nodes are furnished with new
labels, which under 0'11. yield the original labels of P. The 'limit' of the Q.11• will
be a proof Q in R for a xyft rule T that deduces p _.!!:._,. p' from S.

Let ro E R together with a substitution <Yo constitute the last step in P.
The premises of To under uo are all provable from R by a strict sub-proof of
P, so according to the induction hypothesis these transitions are provable from
S. Hence, To together with <Yo deduces p _.!!:._,. p' from S. Our proof Q0 for r0 in
R consists simply of a bottom node labelled by the conclusion of r0 and upper
nodes labelled by the premises of To.

Next, suppose that we have constructed a proof Q,._1 in R for a tyft rule
rn-1, which together with a O'n-1 deduces p _.!!:._,. p' from S. Let T,,._ 1 be of the
form

{ t.; ~ Yi I i E I}

f(x1, ... , x,,,.)--'=-+ t

447

Let lo <;:: l be the subset of i's for which the term t, is not a single variable, but

of the form g;(uil, ... , u;,,,J.
The premises of r,,,_ 1 are labels of upper nodes in Qn-1 · Since Qn-1 is a

sub-tree of P, the premises correspond with nodes in P. For i E 10 , let s; E R
and T; together constitute the step in P to the node which corresponds with
the premise t; _::;__., y;. Ordinal induction implies that the premises of s; under Ti

are provable from S. To obtain Q.,,,, the rules s; will be imported into Q,,,_ 1 , so
assume that each s; contains only fresh variables, to avoid name clashes.

Since IJ'n-1 (t; _::;__., y;) equals the label of the corresponding node in P, it
follows that s; is of the form

{tj ~ Yj I j E J;}

with T;(x;k) = IJ'.,,,_1(u;k) and 1;(v;) = a,,_1(Y;).
Let IJ'n be a substitution equal to IJ'n-1 for variables in Q,,,_1 and equal to

the T; for variables in the s;. Moreover, define a substitution p,,, by:

Pn(Xik) = Uik
Pn(Y;) = V;

p,,(x) = x

Note that IJ'nPn = O'.,,,:

for i E lo and k = 1, ... , m;

for i E lo
otherwise

IJ'nPn(X;k) = IJ'.,..(u;k) = IJ'n-1(u;k) = T;(Xik) = O'.,,,(Xik)
IJ'nPn(y.;) = IJ'n(v;) = T;(v;) = IJ'n-1(Y;) = O'n(Y;)

So Lemma 13 indicates a substitution Pn with:

l. IJ'nPn = IJ'n.
2. P11.Pn = Pn ..
3. f57,. = Pn ..
4. If Pn(x) = x, then p,,(x) = x.

Since PnPn = Pn, it follows that

- (() u.;) Pn g.i U;1, .. ., Uim.; __,. Yi ,

and so the rule p.,,, (s i) is of the form

{f!n(tj ~ Yj) I j E J;}

Pn(t; ~ y;)

We adapt Q.,,,_1 to a proof Qn in Ras follows:

- For i E 10 , extend Qn-l above the node labelled by t; ~ Yi with new nodes

that have labels tj ~ Yj for j E J;.
- Apply Pn to all labels in the extended version of Q n-1 ·

448

Since we have applied p.,,, to all the nodes in Qn-1, and since the new steps in
Qn match with the rules p,,,(s;), it follows that Qn constitutes a proof in R for
some rule rn.

Due to property 4 of p,,, the rule rn has conclusion f(x1, ... ,x.,,,,) ~ Pn(t),
b·

and premises Pn(t;) ~Yi for i E I\Io and Pn(tj) ~ YJ for i E lo and j Eh
Hence, rn is a tyft rule. And since a.,Jjn = an, it follows that rn together with
an deduces p ~ p' from s.

Finally, the property (J'nPn = (J'n ensures that an applied to Qn produces the
original labels of P.

In general, r n is not yet a xyft rule, because although we have removed from
r,, all premises of r,._ 1 that do not have a single variable as left-hand side, we
may have introduced other premises in rn that are of this form. Therefore, we
repeat the construction above again and again, to obtain sequences { Qn}~0
and {rn.}~0 and {an}';;,°=0 and {i5n};;'=1 , where Q.,,. is a proof in R for rn, and
rn together with (]',,, deduces p ~ p' from S.

We construct the limit Q of the proofs Qn. The tree structure of Q is simply
the limit of the trees Q,,,; this is well-defined, because Qn incorporates Qn-1 ·
However, the labels of the nodes in Q cannot be determined so easily, because
the labels in the Q.,, are not consistent; if a certain node in Qn-l has label l,
then in Q,,, it is renamed to Pn(l). To resolve this complication, we need some
extra machinery.

If Pn(x) =f. x, then it follows from p;,. = Pn that x cannot occur in any term
Pn(y). To obtain Qn, we have applied Pn at all its labels, so x does not occur in
Qn. This implies p.,,,,(x) = x form> n. Hence, we can define a substitution pas
follows:

p(x) = Pn(x) if Pn(x) =f. x for some n
p(x) = x otherwise

Furthermore, let a be a substitution that equals a" for variables in Qn for all
n. Since anf5n = (J'n for all n, we have (J'p =a. So according to Lemma 13 there
exists a substitution p such that:

1. ap=a.
2. pp= p.
4. If p(x) = x, then p(x) = x.
5. If pn(x) is a variable for n 2': 0, then p(x) is a variable.

Since pp = p, it follows that PPn = p for all n.
Now we can determine the labels of Q. If a node has label l in Q.,,,_ 1, then

in Q we furnish it with the label p(l). This definition does not depend on the
choice of n, because although in Qn the label is adapted to p.,,(l), the equality
pp.,,. = p ensures that the resulting label in Q would remain the same.

Since Q is a sub-tree of P, each upward path in Q must be finite. And if a
step in P matches with a rule s E R together with a r, then the same step in Q
matches with s together with pr. Hence, Q is a proof in R for a rule r.

We check that r is xyft. First, consider a premise of r. It was introduced
in some rk and maintained in all subsequent r 11., so apparently in rk it had the

449

form z ~ Y, and jP'· (z) is a variable for all n 2: 0. So according to property 5

p(z) is a variable. Moreover, p,,,(y) = y for all n, so due to property 4 p(y) = y.

Summarizing, the premise in r has the form p(z) ~ y with p(z) a variable.

Clearly, the conclusion of r equals f(x 1 , .. .,xm.) ~ p(t) (where t is the right­

hand side of the conclusion of some r,,.). Sor is xyft.

Since (j p = (1, the conclusion of r under O" results to p ~ p', and the premises

of r under (1 are all provable from S. So according to Lemma 7 S I- p ~ p'. 0

Although according to Theorem 15, the tyft/tyxt format reduces to the more

restrictive xyft format, this is by no means an argument to abandon the tyft/tyxt

format, because a simple TSS in tyft/tyxt format may take a much more compli­

cated form if it is described in xyft format. This is demonstrated by the following
example.

Example 3. Assume two functions a, b of arity zero, a function f of arity one,

and a label l, and consider the TSS in tyft format that consists of the following
two rules:

l

l
a___, y

a --->a
a__!_., f(y)

To describe this TSS in xyft format, we need an infinite number of rules: a __!_.,

f"'·(a) for n = 0, 1, 2, ...
The auxiliary function symbol b is present to avoid that the TSS can be

described by the single rule a__!_., x.

Before proving our main theorem, first we define what is a tree rule. The

following terminology originates from [5].

Definition 16. Assume a tyft rule of the form

{ t; .:2.. y; I i E I}

The variables that occur in this rule and are unequal to the x k and Yi, are called

the free variables of the rule. A tyft rule is called pure if it does not contain any

free variables.

Definition 17. A tree rule is a pure and well-founded xyft rule.

Theorem 18. For each TSS R in tyft/tyxt format, there is an equivalent TSS

in tree format.

Proof. According to Theorem 15, we may assume R in xyft format. We prove R

equivalent with the TSS T of tree rules that can be derived from R.
Since all rules in T can be derived from R, it follows from Lemma 6 that

each transition provable from T is also provable from R. We check the converse,

namely that a closed transition p --'.:...+ p' provable from R is provable from T.

450

Fix a rule r in R that together with a substitution <5 deduces p ~ P1 from
R. Let r be of the form

{ IJ.; I . I} Z;--; Yi i E

Using ordinal induction, we may assume TI- <Y(z; ~ y.;) for i E I.
We now construct from r a rule r' in T that deduces p ~ p1 from T, by

removing all premises from r that are not well-founded or that contain free
variables, and by replacing free variables in t by their values under <5.

1. Remove each 'loop' in the premises of r, either of the form

or of the form Yi+l ~ Yi with i = 0, 1, 2, ...

2. Remove all premises z; ~ y; from the new rule for which z; is a free variable.
3. Finally, replace each free variable z in t by <Y(z).

Clearly, the resulting ruler' is a tree rule, and it is provable from R. Moreover,
r' together with IJ' deduces p ~ p' from T. 0

Since tree rules are well-founded tyft rules, Theorem 18 implies that the
Congruence Theorem for the tyft/tyxt format can do without well-foundedness.

Corollary 19. If a TSS R is in tyft/tyxt format, then +--+ n is a congruence.

We give an example of a small TSS in xyft format that can only be described
by infinitely many rules in tree format.

Example 4. Assume two functions a, b of arity zero, a function f of arity one,
and a label l, and consider the TSS in xyft format that consists of the following
three rules:

l
a--> J(a)

J(y) ~ J(y)

To describe this TSS in tree format takes an infinite number of rules: f"'(a) _..!__,

j"·(a) for n = 0, 1, 2, ... together with a~ f(a).
l

The extra rule a --+ f (a) prevents that the TSS can be described by the
following two tree rules:

l
a--+ a

l
x--; y

J(x) ~ J(y)

451

4 Extensions to Other Formats

4.1 The Ntyft/Ntyxt Format

Groote [4] has extended the tyft/tyxt format by allowing negative premises in the

transition rules, which are expressions of the form t 4. A transition p __!':__. p'

is provable from a TSS R if there exists a rule r in R of the form

{t "·; , I . } { ~
i ---+ t; i E I u Sj ---r I j E J}

f(xi, ... , Xm.) __!':__. t

together with a substitution CJ, such that

- R f- CJ(t; _.::::...,, ti) for i E I,
11·

- R fl CJ(sj)-!.... q for all q E T(E) and j E J,

- the conclusion of r under CJ results to p __!':__. p'.

Negative premises may give rise to 'contradictions', due to rules such as

x-f
ll.

x---+ y

Such contradictions are avoided by considering only TSSs that allow a stratifi­

cation, which ensures that for each rule of the TSS its conclusion is in a sense

'greater' than its premises. For a formal definition of this notion we refer to [4].

Groote has deduced a Congruence Theorem for stratifiable, well-founded

TSSs that are in the so-called ntyft/ntyxt format, which requires a transition

rule to have premises of the form t _'!__, y and t ~ , and a conclusion of the

form J(x1 1 ••• , Xm.) __!':__.tor x __!':__. t. Moreover, the variables at the right-hand side

of the premises and at the left-hand side of the conclusion must all be different.

Without any further complications, we can repeat the construction from the

previous section to show that each stratifiable TSS in ntyft/ntyxt format is

equivalent to a stratifiable, well-founded TSS with rules that have premises of

the form z ~ y and t ~, and a conclusion of the form J(x 1 , ... , xw.) __!':__. t.

Moreover, the variables at the right-hand side of the premises and at the left­

hand side of the conclusion are all different, and are the only variables that

occur in the rule. As a corollary, we see that the well-foundedness condition in

the Congruence Theorem for the ntyft/ntyxt format can be dropped.

Corollary 20. If a stratifiable TSS R is in ntyft/ntyxt format, then +-> R is a

congruence.

We conjecture that in general, terms in negative premises can not be reduced

to single variables, which is suggested by the following simple example in Basic

Process Algebra (BPA). This formalism assumes an alphabet A, representing

both a set of labels and a collection of functions with arity zero. Furthermore,

it contains the functions + and ·, both of arity two, denoting alternative and

sequential composition respectively.

452

Example 5. We add two functions f and g with arity one and a label ok to the
signature of BPA, and extend the operational semantics by the following two
transition rules. Fix an a E A.

(L fL

x ---+ YI YI ---+ Y2 f (x) -'!!f.
vk

f(x)---+ a
ok g(x) ---+a

The extended TSS is stratifiable and in ntyft/ntyxt format. We conjecture that
ok the premise f(x) ..::::;.+ cannot be reduced.

An obvious attempt to delete the negative premise would be to replace the
second rule by the following two rules.

x --f x __!!:_, y y --f
g(x) ~a ok g(x)---+ a

However, this adapted TSS is not equivalent with the original one. For example,
g(aa + ab) can do an ok transition in the new TSS, but not in the old one.

4.2 The Panth Format

Baeten and Verhoef [2] have extended the tyft/tyxt format with predicates, i.e.
not only relations t __!!:_, t', but also predicates such as t __!!:_, v are allowed to
occur in transition rules. The definition of strong bisimulation, Definition 8, is
adapted accordingly by adding a third condition:

- if pB q, then p __!!:_, J iff q __!!:_, J.
Moreover, Verhoef [9] has extended the ntyft/ntyxt format with predicates such
as t __!!:_, v and t ...!!:.f J. A Congruence Theorem holds for well-founded TSSs
that are in the so-called panth format, which requires a transition rule to have
premises of the form t ~ y and t ~ J and t ~ and t ~ J, and a
conclusion of the form f (xI , .. ., Xrn) __!!:_, t or x ~ t or f (x1 , .. ., x,,,,) __!!:_, v or
x __!!:_, V· Moreover, the variables at the right-hand side of the premises and at
the left-hand side of the conclusion must all be different.

Without any further complications, we can repeat the construction from the
previous section to show that each stratifiable TSS in panth format is equivalent
to a stratifiable, well-founded TSS, of which each rule has premises of the form
z ~ y and z __!!:_, v and t -'4 and t -'4 -./, and a conclusion of the form
f(xI,. . ., Xm) ~ t or f(xI ,. . ., Xm.) ~ V· Furthermore, the variables at the
right-hand side of the premises and at the left-hand side of the conclusion are
all different, and are the only variables that occur in the rule. As a corollary,
we see that the well-foundedness condition in the Congruence Theorem for the
panth format can be dropped.

Corollary 21. If a stratifiable TSS R is in panth format, then ~R is a congru­
ence.

453

References

l. B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can't be traced: preliminary
report. In Proceedings 15th ACM Symposium on Principles of Programming Lan­
guages, San Diego, California, pages 229-239, 1988.

2. J.C.M. Baeten and C. Verhoef. A congruence theorem for structured operational
semantics with predicates. In E. Best, editor, Proceedings CONCUR 93, Hildesheim,
LNCS 715, pages 477-492. Springer-Verlag, 1993.

3. R.J. van Glabbeek. Full abstraction in structural operational semantics. In
M. Nivat, C. Rattray, T. Rus, and G. Scollo, editors, Proceedings 3'·d A MAST Con­
ference, Twente, The Netherlands, June 1993, Workshops in Computing, pages 77-
84. Springer-Verlag, 1993.

4. J.F. Groote. Transition system specifications with negative premises. In J.C.M.
Baeten and J.W. Klop, editors, Proceedings CONCUR 90, Amsterdam, LNCS 458,
pages 332-341. Springer-Verlag, 1990.

5. J.F. Groote and F.W. Vaandrager. Structured operational semantics and bisimula­
tion as a congruence. Information and Computation, 100(2):202-260, 1992.

6. D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, 5th GI Conference, LNCS 104, pages 167-183. Springer-Verlag, 1981.

7. G.D. Plotkin. A structural approach to operational semantics. Report DAIMI
FN-19, Computer Science Department, Aarhus University, 1981.

8. R. de Simone. Higher-level synchronising devices in MEIJE-SCCS. Theoretical Com­
puter Science, 37:245-267, 1985.

9. C. Verhoef. A congruence theorem for structured operational semantics with predi­
cates and negative premises. Report CSN-93/18, Eindhoven University of Technol­
ogy, Eindhoven, 1993.

