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Abstract. Groote and Vaandrager (5] introduced the tyft/tyxt format 
for transition system specifications (TSSs ), and established that for each 
TSS in this format that is well-founded, the strong bisimulation it induces 
is a congruence. In this paper, we construct for each TSS in tyft/tyxt 
format an equivalent TSS that consists of tree rules only. As a corollary 
we can give an affirmative answer to an open question, namely whether 
the well-foundedness condition in the Congruence Theorem of [5] can be 
dropped. These results extend to tyft/tyxt with negative premises and 
predicates. 

1 Introduction 

A current method to provide programming and specification languages with 
an operational semantics is based on the use of transition systems, advocated 
by Plotkin [7]. Given a set of states, the transitions between these states are 
obtained inductively from a transition system specification (TSS), containing 
transition rules. Such a rule, together with a number of transitions, may imply 
the validity of another transition. 

We will consider a specific type of transition systems, in which states are the 
closed terms generated by a single sorted signature, and transitions are supplied 
with labels. A great deal of the operational semantics of formal languages in 
Plotkin style that have been defined over the years, are within the scope of this 
format. 

To distinguish such labelled transition systems, many different equivalences 
have been defined, the finest of which is the strong bisimulation equivalence 
of Park [6]. In general, this equivalence is not a congruence, i.e. the equivalence 
class of a term f (p1, ... ,Pm.) modulo strong bisimulation is not always determined 
by the equivalence classes of the terms p;. However, congruence is an essential 
property, for instance, to fit the equivalence into an axiomatic framework. 

Several formats have been developed which ensure that the bisimulation 
equivalence induced by a TSS in such a format is always a congruence. A first 
proposal was made by De Simone [8], which was generalised by Bloom, Istrail, 
and Meyer [1] to the GSOS format. Next, Groote and Vaandrager [5] introduced 
the tyft/tyxt format, and proved a Congruence Theorem for TSSs in this format 
that satisfy a well-foundedness criterion. 

Up to now, it has been an open question whether or not well-foundedness 
is an essential ingredient of the Congruence Theorem. The requirement popped 
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up in the proof, but no counter-example was found to show that the theorem 

breaks down if well-foundedness were omitted from it. In this paper, we prove 

that the Congruence Theorem does hold for general TSSs in tyft/tyxt format, 

i.e. that the requirement of well-foundedness can be omitted. 

In fact, we will establish a stronger result, namely that for each TSS in 

tyft/tyxt format, there is an equivalent TSS consisting of 'tree rules' only. A 

tree rule is a well-founded rule of the form 

{ Zi ~ Yi I i E I} 

f(x1 ,. .. , Xrn) __::_. t 

where the Yi and the Xj are all different variables and are the only variables that 

occur in the rule, the z; are variables, f is a function symbol, and t is any term. 

Using terminology from [5], we can say that a tree rule is a pure and well-founded 

xyft rule. Since tree rules are well-founded, the reduction of tyft/tyxt format to 

tree format will immediately imply that the Congruence Theorem concerning 

the tyft/tyxt format can do without well-foundedness. 

Last summer, Rob van Glabbeek independently deduced the same result, 

which he announced in [3]. His proof is along the same lines as the one presented 

in this paper. 

The major advantage of our main theorem is that it facilitates reasoning 

about the tyft/tyxt format. Because often it is much easier to prove a theorem 

for TSSs in tree format than for TSSs in tyft/tyxt format. For example, this is 

the case with the Congruence Theorem itself. Another striking example consists 

of Theorems 8.6.6 and 8.9.l in [5]. With our result at hand, the complicated 

proof of the second theorem can be skipped, because now the second theorem 

follows immediately from the first one. 
About all TSSs in Plotkin style that have been defined over the years are well­

founded. So in this sense, the practical implication of removing well-foundedness 

from the Congruence Theorem for tyft/tyxt will probably be quite small. But 

this removal does increase considerably the convenience of applying the tyft/tyxt 

format, since the user no longer has to recall and check the complicated well­

foundedness criterion. 
Groote [4] added negative premises to tyft/tyxt, resulting in the ntyft/ntyxt 

format, and proved that the Congruence Theorem extends to well-founded TSSs 

in ntyft/ntyxt format. We will show that the reduction of tyft/tyxt rules to tree 

rules can be lifted to the positive part of rules in ntyft/ntyxt format, but a simple 

example will learn that this reduction cannot be applied to the negative premises. 

Again, we will find that the Congruence Theorem concerning the ntyft/ntyxt 

format can do without well-foundedness. 
Finally, Verhoef [9] has defined the panth format, which adds predicates to 

ntyft/ntyxt, and proved that the Congruence Theorem holds for well-founded 

TSSs in panth format. We will show that all our results extend to the panth 

format too. 

Acknowledgements. Chris Verhoef is thanked for useful comments, and spe­

cial thanks go to Rob van Glabbeek and Frits Vaandrager for suggesting some 

substantial improvements. 
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2 Preliminaries 

This section contains the basic definitions. 

2.1 The Signature 

In the sequel we assume a (single sorted) signature E, which consists of a set F 
of function symbols, together with their arities. Moreover, we assume an infinite 
set of variables V, 1 disjoint with F. 

Definition I. The collection 'lf'(E) of (open) terms is defined as the least set 
satisfying: 

- each variable from V is in 'lf'(L'), 
- if f E F has arity n, and t1, ... ,tn E 1l'(L'), then f(t1, ... , tn) E 'lf'(L'). 

A term is called closed if it does not contain any variables; the collection of closed 
terms is denoted by T(E). 

Definition 2. A substitution is a mapping O' : V ___. 'lf'(E). A substitution O' is 
extended to a mapping O' : 1l'(E) ___. 1l'(E) in the obvious way; the term a-(t) is 
obtained by replacing all occurrences of variables x in t by a-(x). 

2.2 Transition System Specifications 

In the sequel we assume a set of labels. An expression ~ with a a label denotes 
a binary relation between terms, and a pair t ~ t' is called a transition. A 
transition is called closed if it involves closed terms. 

Definition 3. A (transition) rule is an expression of the form 

t~t' 

with I an index set, the t.,, t~, t, t' terms and the ai, a labels. The expressions 
t.; ..!2.. t~ are called the premises, and t ~ t' the conclusion of the rule. The 
notion of substitution extends to transitions and rules as expected. 

A transition system specification (TSS) is a collection of transition rules. 

1 In several constructions we will assume the existence of 'fresh' variables, i.e. variables 
that have not yet been used in the construction. Some caution is needed to ensure 
the existence of such fresh variables at any time, but clearly this technical problem 
is not of a serious nature. 
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Definition 4. Assume a TSS R, and a rule of the form 

t ...!:... t' 

This rule is provable from R if there is a proof for it in R, which consists of 
an upwardly branching tree in which all upward paths are finite. Moreover, the 
nodes of the tree must be labelled by transitions, such that the root has label 
t ...!:... t', and for each node we have: 

- either the node has a label t; ~ ti for some i E I, and there are no nodes 
above it, 

- or the node has label u ___!!_.. u', and the nodes directly above it have labels 
Ii· 

Uj ~ uj for j E J, and there is a rule r E R and a substitution u such that 
u(r) equals 

1,. 
{ Uj -3...+ uj \ j E J} 

u ___!!_.. u' 

We say that a transition t ...!:... t' is provable from R, notation R \- t _!!:...., t', if the 
rule with no premises and conclusion t ...!:... t' is provable from R. 

Finally, we say that a rule r together with a substitution u deduces a tran­
sition t -!'.:...+ t' from R if all the premises of r under u are provable from R, and 
the conclusion of r under u results to t ...!:... t'. 

Definition 5. Two TSSs are (transition} equivalent if exactly the same closed 
transitions are provable from both. 

The proofs of the following two lemmas are left to the reader. 

Lemma 6. If all rules in S are provable from R, then all rules provable from S 
are provable from R. 

Lemma 7. A transition t _!!:...., t' is provable from R iff there is a ruler E R that 
deduces t _!!:...., t' from R. 

2.3 Strong Bisimulation 

Definition 8. Assume a TSS R. Two closed terms po, qo are R-bisimilar, no­
tation Po :=:.n. q0 , if there exists a symmetric relation B ~ T( E) x T( E) such 
that 

- PoBqo, 
- if pBq and R \- p _!!:...., p1 , then R \- q ~ q' and p' Bq' for some q'. 
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2.4 The Tyft/Tyxt Format 

In general, bisimulation equivalence it is not a congruence, i.e. it may be the 
case that p; =:_R. q; for i = 1, ... , n, but f(p1, ... , Pn) and f(q1, ... , qr1.) are not R­bisimilar. To deal with this problem, Groote and Vaandrager [5] have introduced the tyft/tyxt format. If a TSS is in this format, and it satisfies a well-foundedness 
criterion, then the bisimulation it induces is a congruence. 

Definition 9. A transition rule is a tyft rule if it is of the form 

{ t; ~ Yi I i E J} 

where the Xk and y; are all different variables. Similarly, a tyxt rule is of the form 

{ t; ~ Yi I i E I} 

x .-'.!:.... t 

with x and the y; all different variables. A TSS is said to be in tyft/tyxt format 
if it consists of tyft and tyxt rules only. 

Definition 10. Assume a set T = { t; ~ t; I i E I} of transitions. Its 'depen­dency graph' is a directed graph, with the collection of variables V as vertices, and with as edges the collection 

{ (x, y} I x and y occur in t; and t: respectively, for some i E I}. 

The set T is called well-founded if any backward chain of edges in its dependency graph is finite. A transition rule is well-founded if its collection of premises is so, and a TSS is well-founded if all its rules are well-founded. 

Example 1. Examples of sets of transitions that are not well-founded are 

- {y.-'.!:....y}, 
- {y1 ~ Y2, Y2 __.!!._., yi}, 
- {Yi+l .-'.!:....y, I i=D,1,2, ... }. 

The following Congruence Theorem originates from [5]. 

Theorem 11. If a TSS R is well-founded and in tyft/tyxt format, then =::!..R is a congruence. 

In the next section we will see that the requirement of well-foundedness in this theorem can be dropped. 
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3 Reducing Tyft Rules to Tree Rules 

The following lemma, originating from [5], indicates that we can refrain from 

tyxt rules. 

Lemma 12. For each TSS R in tyft/tyxt format, there is an equivalent TSS in 
tyft format. 

Proo f. Replace each tyxt rule r in R by a collection of tyft rules { r 1 If E F}, 

where each r1 is obtained by substituting f ( x1 , ... , xn) for x in r, with x 1 , ... , Xn 

variables that do not yet occur in r. The collection of tyft rules R' that is thus 

obtained is equivalent to R, because clearly for each proof in R' of a certain 

closed transition there is a proof in R of the same transition, and vice versa. D 

The next lemma will be crucial in the proof of the main theorem. 

Lemma 13. For substitutions (]' and p with (]' p = (]', there exists a substitution 
p such that: 

1. (J'p = (]'. 

2. pp= p. 
3. -p2 = p. 
4. If p(x) = x, then p(x) = x. 
5. If p"(x) is a variable for all n.?:: 0, then p(x) is a variable. 

Proof. Since (J'p = (]' 1 it follows that ap""(x) = a(x) for n.?:: 1. So the size of the 

p"'(x) (that is, the number of function symbols they contain) cannot grow beyond 

the size of a(x). Since pn+1 (x) is obtained from p"(x) by replacing variables by 

terms, pn+1(x) has at least the size of p"'(x). So for n sufficiently great, the terms 

pn(x) all have the same size. Hence, for such n, p""+ 1 (x) is obtained from p"'(x) 

by replacing variables by variables. 
Let W be the collection of variables y for which p"' (y) is a variable for all 

n ;::: 0. Define a binary relation ,...., on W by y rv z if pm (y) = pn ( z) for certain 

m and n. Note that rv is an equivalence relation. Under p, the elements of each 

equivalence class C S";; W are contracted to one variable from this class as follows: 

- If p(yo) =Yo for some Yo E C, then for ally E C pn(y) = Yo for some n. 

This implies p(y) :f. y for y E C\ {y0 }, so y0 is uniquely determined. We put 

p(y) =Yo for y E C. 
- If p(y) ::/= y for all y E C, then we just pick some y0 E C and put p(y) =Yo 

for y EC. 

By definition, for each y E W there are m and n such that p"'p(y) = pn(y). 

After applying (]' to both sides we get a p(y) = (J'(y) for y E W. 
Now consider any variable x, for which we define p(x) as follows. We already 

noted that for N sufficiently great all variables in pN ( x) are in W. We obtain 

p(x) by replacing each variable yin pN (x) by the contraction p(y) that has been 

selected just now. Clearly p(x) does not depend on the choice of N. 
Since ap(y) = (J'(y) for variables yin pN(x), we have ap(x) = apN (x) = a(x). 

And properties 2-5 follow immediately from the construction of p. D 
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The following simple example shows that Lemma 13 cannot do without the O'. 

Example2. Assume a function f of arity one, and define p(x) = J(x). Suppose 
that there exists a substitution p with pp = p. Then 

p(x) = pp(x) = p(f(x)) = f(p(x)) 

But j(p(x)) has greater size than p(x), so we have a contradiction. 

Definition 14. A tyft rule 

{ t; ~ Yi I i E I} 

J(x1, ... , x,,.) .-!?:.... t 

is said to be a xyft rule if all the t; are single variables. 

We shall now prove that the tyft/tyxt format reduces to xyft rules, which 
will be an intricate affair. Then a simple argument will learn that the tyft/tyxt 
format reduces even to tree rules. 

Theorem 15. For each TSS R in tyft/tyxt format, there is an equivalent TSS 
in xyft format. 

Proof. According to Lemma 12, we may assume R in tyft format. We shall prove 
R equivalent with the TSS S of xyft rules that are provable from R. According 
to Lemma 6, transitions provable from S are provable from R. We now show that 
a closed transition p ~ p' provable from R is provable from S, using ordinal 
induction to the length of a shortest proof P for p --'=-+ p' in R. 

First, assume that P has length one. Then apparently there is a rule T E R 
with no premises which conclusion results to p --'=-+ p' under a substitution O'. 

Since r has no premises, it is a tree rule, and r together with a deduces p --'=-+ p' 
from S. So Lemma 7 implies S f- p --'=-+ p'. 

Next, suppose that we have proved the case for a proof in R with length 
smaller than a, and let P have length a. We will construct from Pa sequence 
of proofs Qn in R for tyft rules rn that, together with a O'n, deduce p --'=-+ p' 
from S. Each Qn will be a sub-tree of P, where its nodes are furnished with new 
labels, which under 0'11. yield the original labels of P. The 'limit' of the Q.11• will 
be a proof Q in R for a xyft rule T that deduces p _.!!:._,. p' from S. 

Let ro E R together with a substitution <Yo constitute the last step in P. 
The premises of To under uo are all provable from R by a strict sub-proof of 
P, so according to the induction hypothesis these transitions are provable from 
S. Hence, To together with <Yo deduces p _.!!:._,. p' from S. Our proof Q0 for r0 in 
R consists simply of a bottom node labelled by the conclusion of r0 and upper 
nodes labelled by the premises of To. 

Next, suppose that we have constructed a proof Q,._1 in R for a tyft rule 
rn-1, which together with a O'n-1 deduces p _.!!:._,. p' from S. Let T,,._ 1 be of the 
form 

{ t.; ~ Yi I i E I} 

f(x1, ... , x,,,.)--'=-+ t 
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Let lo <;:: l be the subset of i's for which the term t, is not a single variable, but 

of the form g;( uil, ... , u;,,,J. 
The premises of r,,,_ 1 are labels of upper nodes in Qn-1 · Since Qn-1 is a 

sub-tree of P, the premises correspond with nodes in P. For i E 10 , let s; E R 
and T; together constitute the step in P to the node which corresponds with 
the premise t; _::;__., y;. Ordinal induction implies that the premises of s; under Ti 

are provable from S. To obtain Q.,,,, the rules s; will be imported into Q,,,_ 1 , so 
assume that each s; contains only fresh variables, to avoid name clashes. 

Since IJ'n-1 ( t; _::;__., y;) equals the label of the corresponding node in P, it 
follows that s; is of the form 

{tj ~ Yj I j E J;} 

with T;(x;k) = IJ'.,,,_1(u;k) and 1;(v;) = a,,_1(Y;). 
Let IJ'n be a substitution equal to IJ'n-1 for variables in Q,,,_1 and equal to 

the T; for variables in the s;. Moreover, define a substitution p,,, by: 

Pn(Xik) = Uik 
Pn(Y;) = V; 

p,,(x) = x 

Note that IJ'nPn = O'.,,,: 

for i E lo and k = 1, ... , m; 

for i E lo 
otherwise 

IJ'nPn(X;k) = IJ'.,..(u;k) = IJ'n-1(u;k) = T;(Xik) = O'.,,,(Xik) 
IJ'nPn(y.;) = IJ'n(v;) = T;(v;) = IJ'n-1(Y;) = O'n(Y;) 

So Lemma 13 indicates a substitution Pn with: 

l. IJ'nPn = IJ'n. 
2. P11.Pn = Pn .. 
3. f57,. = Pn .. 
4. If Pn(x) = x, then p,,(x) = x. 

Since PnPn = Pn, it follows that 

- ( ( ) u.; ) Pn g.i U;1, .. ., Uim.; __,. Yi , 

and so the rule p.,,, ( s i) is of the form 

{f!n(tj ~ Yj) I j E J;} 

Pn(t; ~ y;) 

We adapt Q.,,,_1 to a proof Qn in Ras follows: 

- For i E 10 , extend Qn-l above the node labelled by t; ~ Yi with new nodes 

that have labels tj ~ Yj for j E J;. 
- Apply Pn to all labels in the extended version of Q n-1 · 
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Since we have applied p.,,, to all the nodes in Qn-1, and since the new steps in 
Qn match with the rules p,,,(s;), it follows that Qn constitutes a proof in R for 
some rule rn. 

Due to property 4 of p,,, the rule rn has conclusion f(x1, ... ,x.,,,,) ~ Pn(t), 
b· 

and premises Pn(t;) ~Yi for i E I\Io and Pn(tj) ~ YJ for i E lo and j Eh 
Hence, rn is a tyft rule. And since a.,Jjn = an, it follows that rn together with 
an deduces p ~ p' from s. 

Finally, the property (J'nPn = (J'n ensures that an applied to Qn produces the 
original labels of P. 

In general, r n is not yet a xyft rule, because although we have removed from 
r,, all premises of r,._ 1 that do not have a single variable as left-hand side, we 
may have introduced other premises in rn that are of this form. Therefore, we 
repeat the construction above again and again, to obtain sequences { Qn}~0 
and {rn.}~0 and {an}';;,°=0 and {i5n};;'=1 , where Q.,,. is a proof in R for rn, and 
rn together with (]',,, deduces p ~ p' from S. 

We construct the limit Q of the proofs Qn. The tree structure of Q is simply 
the limit of the trees Q,,,; this is well-defined, because Qn incorporates Qn-1 · 
However, the labels of the nodes in Q cannot be determined so easily, because 
the labels in the Q.,, are not consistent; if a certain node in Qn-l has label l, 
then in Q,,, it is renamed to Pn(l). To resolve this complication, we need some 
extra machinery. 

If Pn(x) =f. x, then it follows from p;,. = Pn that x cannot occur in any term 
Pn(y). To obtain Qn, we have applied Pn at all its labels, so x does not occur in 
Qn. This implies p.,,,,(x) = x form> n. Hence, we can define a substitution pas 
follows: 

p(x) = Pn(x) if Pn(x) =f. x for some n 
p(x) = x otherwise 

Furthermore, let a be a substitution that equals a" for variables in Qn for all 
n. Since anf5n = (J'n for all n, we have (J'p =a. So according to Lemma 13 there 
exists a substitution p such that: 

1. ap=a. 
2. pp= p. 
4. If p(x) = x, then p(x) = x. 
5. If pn(x) is a variable for n 2': 0, then p(x) is a variable. 

Since pp = p, it follows that PPn = p for all n. 
Now we can determine the labels of Q. If a node has label l in Q.,,,_ 1, then 

in Q we furnish it with the label p(l). This definition does not depend on the 
choice of n, because although in Qn the label is adapted to p.,,(l), the equality 
pp.,,. = p ensures that the resulting label in Q would remain the same. 

Since Q is a sub-tree of P, each upward path in Q must be finite. And if a 
step in P matches with a rule s E R together with a r, then the same step in Q 
matches with s together with pr. Hence, Q is a proof in R for a rule r. 

We check that r is xyft. First, consider a premise of r. It was introduced 
in some rk and maintained in all subsequent r 11., so apparently in rk it had the 
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form z ~ Y, and jP'· ( z) is a variable for all n 2: 0. So according to property 5 

p(z) is a variable. Moreover, p,,,(y) = y for all n, so due to property 4 p(y) = y. 

Summarizing, the premise in r has the form p( z) ~ y with p( z) a variable. 

Clearly, the conclusion of r equals f(x 1 , .. .,xm.) ~ p(t) (where t is the right­

hand side of the conclusion of some r,,.). Sor is xyft. 

Since (j p = (1, the conclusion of r under O" results to p ~ p', and the premises 

of r under (1 are all provable from S. So according to Lemma 7 S I- p ~ p'. 0 

Although according to Theorem 15, the tyft/tyxt format reduces to the more 

restrictive xyft format, this is by no means an argument to abandon the tyft/tyxt 

format, because a simple TSS in tyft/tyxt format may take a much more compli­

cated form if it is described in xyft format. This is demonstrated by the following 
example. 

Example 3. Assume two functions a, b of arity zero, a function f of arity one, 

and a label l, and consider the TSS in tyft format that consists of the following 
two rules: 

l 

l 
a___, y 

a --->a 
a__!_., f(y) 

To describe this TSS in xyft format, we need an infinite number of rules: a __!_., 

f"'·(a) for n = 0, 1, 2, ... 
The auxiliary function symbol b is present to avoid that the TSS can be 

described by the single rule a__!_., x. 

Before proving our main theorem, first we define what is a tree rule. The 

following terminology originates from [5]. 

Definition 16. Assume a tyft rule of the form 

{ t; .:2.. y; I i E I} 

The variables that occur in this rule and are unequal to the x k and Yi, are called 

the free variables of the rule. A tyft rule is called pure if it does not contain any 

free variables. 

Definition 17. A tree rule is a pure and well-founded xyft rule. 

Theorem 18. For each TSS R in tyft/tyxt format, there is an equivalent TSS 

in tree format. 

Proof. According to Theorem 15, we may assume R in xyft format. We prove R 

equivalent with the TSS T of tree rules that can be derived from R. 
Since all rules in T can be derived from R, it follows from Lemma 6 that 

each transition provable from T is also provable from R. We check the converse, 

namely that a closed transition p --'.:...+ p' provable from R is provable from T. 
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Fix a rule r in R that together with a substitution <5 deduces p ~ P1 from 
R. Let r be of the form 

{ IJ.; I . I} Z;--; Yi i E 

Using ordinal induction, we may assume TI- <Y(z; ~ y.;) for i E I. 
We now construct from r a rule r' in T that deduces p ~ p1 from T, by 

removing all premises from r that are not well-founded or that contain free 
variables, and by replacing free variables in t by their values under <5. 

1. Remove each 'loop' in the premises of r, either of the form 

or of the form Yi+l ~ Yi with i = 0, 1, 2, ... 

2. Remove all premises z; ~ y; from the new rule for which z; is a free variable. 
3. Finally, replace each free variable z in t by <Y(z). 

Clearly, the resulting ruler' is a tree rule, and it is provable from R. Moreover, 
r' together with IJ' deduces p ~ p' from T. 0 

Since tree rules are well-founded tyft rules, Theorem 18 implies that the 
Congruence Theorem for the tyft/tyxt format can do without well-foundedness. 

Corollary 19. If a TSS R is in tyft/tyxt format, then +--+ n is a congruence. 

We give an example of a small TSS in xyft format that can only be described 
by infinitely many rules in tree format. 

Example 4. Assume two functions a, b of arity zero, a function f of arity one, 
and a label l, and consider the TSS in xyft format that consists of the following 
three rules: 

l 
a--> J(a) 

J(y) ~ J(y) 

To describe this TSS in tree format takes an infinite number of rules: f"'(a) _..!__, 

j"·(a) for n = 0, 1, 2, ... together with a~ f(a). 
l 

The extra rule a --+ f (a) prevents that the TSS can be described by the 
following two tree rules: 

l 
a--+ a 

l 
x--; y 

J(x) ~ J(y) 
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4 Extensions to Other Formats 

4.1 The Ntyft/Ntyxt Format 

Groote [4] has extended the tyft/tyxt format by allowing negative premises in the 

transition rules, which are expressions of the form t 4. A transition p __!':__. p' 

is provable from a TSS R if there exists a rule r in R of the form 

{t "·; , I . } { ~ 
i ---+ t; i E I u Sj ---r I j E J} 

f(xi, ... , Xm.) __!':__. t 

together with a substitution CJ, such that 

- R f- CJ( t; _.::::...,, ti) for i E I, 
11· 

- R fl CJ(sj)-!.... q for all q E T(E) and j E J, 

- the conclusion of r under CJ results to p __!':__. p'. 

Negative premises may give rise to 'contradictions', due to rules such as 

x-f 
ll. 

x---+ y 

Such contradictions are avoided by considering only TSSs that allow a stratifi­

cation, which ensures that for each rule of the TSS its conclusion is in a sense 

'greater' than its premises. For a formal definition of this notion we refer to [4]. 

Groote has deduced a Congruence Theorem for stratifiable, well-founded 

TSSs that are in the so-called ntyft/ntyxt format, which requires a transition 

rule to have premises of the form t _'!__, y and t ~ , and a conclusion of the 

form J(x1 1 ••• , Xm.) __!':__.tor x __!':__. t. Moreover, the variables at the right-hand side 

of the premises and at the left-hand side of the conclusion must all be different. 

Without any further complications, we can repeat the construction from the 

previous section to show that each stratifiable TSS in ntyft/ntyxt format is 

equivalent to a stratifiable, well-founded TSS with rules that have premises of 

the form z ~ y and t ~, and a conclusion of the form J(x 1 , ... , xw.) __!':__. t. 

Moreover, the variables at the right-hand side of the premises and at the left­

hand side of the conclusion are all different, and are the only variables that 

occur in the rule. As a corollary, we see that the well-foundedness condition in 

the Congruence Theorem for the ntyft/ntyxt format can be dropped. 

Corollary 20. If a stratifiable TSS R is in ntyft/ntyxt format, then +-> R is a 

congruence. 

We conjecture that in general, terms in negative premises can not be reduced 

to single variables, which is suggested by the following simple example in Basic 

Process Algebra (BPA). This formalism assumes an alphabet A, representing 

both a set of labels and a collection of functions with arity zero. Furthermore, 

it contains the functions + and ·, both of arity two, denoting alternative and 

sequential composition respectively. 
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Example 5. We add two functions f and g with arity one and a label ok to the 
signature of BPA, and extend the operational semantics by the following two 
transition rules. Fix an a E A. 

(L fL 

x ---+ YI YI ---+ Y2 f ( x) -'!!f. 
vk 

f(x)---+ a 
ok g(x) ---+a 

The extended TSS is stratifiable and in ntyft/ntyxt format. We conjecture that 
ok the premise f(x) ..::::;.+ cannot be reduced. 

An obvious attempt to delete the negative premise would be to replace the 
second rule by the following two rules. 

x --f x __!!:_, y y --f 
g(x) ~a ok g(x)---+ a 

However, this adapted TSS is not equivalent with the original one. For example, 
g(aa + ab) can do an ok transition in the new TSS, but not in the old one. 

4.2 The Panth Format 

Baeten and Verhoef [2] have extended the tyft/tyxt format with predicates, i.e. 
not only relations t __!!:_, t', but also predicates such as t __!!:_, v are allowed to 
occur in transition rules. The definition of strong bisimulation, Definition 8, is 
adapted accordingly by adding a third condition: 

- if pB q, then p __!!:_, J iff q __!!:_, J. 
Moreover, Verhoef [9] has extended the ntyft/ntyxt format with predicates such 
as t __!!:_, v and t ...!!:.f J. A Congruence Theorem holds for well-founded TSSs 
that are in the so-called panth format, which requires a transition rule to have 
premises of the form t ~ y and t ~ J and t ~ and t ~ J, and a 
conclusion of the form f ( xI , .. ., Xrn) __!!:_, t or x ~ t or f ( x1 , .. ., x,,,,) __!!:_, v or 
x __!!:_, V· Moreover, the variables at the right-hand side of the premises and at 
the left-hand side of the conclusion must all be different. 

Without any further complications, we can repeat the construction from the 
previous section to show that each stratifiable TSS in panth format is equivalent 
to a stratifiable, well-founded TSS, of which each rule has premises of the form 
z ~ y and z __!!:_, v and t -'4 and t -'4 -./, and a conclusion of the form 
f(xI,. . ., Xm) ~ t or f(xI ,. . ., Xm.) ~ V· Furthermore, the variables at the 
right-hand side of the premises and at the left-hand side of the conclusion are 
all different, and are the only variables that occur in the rule. As a corollary, 
we see that the well-foundedness condition in the Congruence Theorem for the 
panth format can be dropped. 

Corollary 21. If a stratifiable TSS R is in panth format, then ~R is a congru­
ence. 
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