
AL ~ropof Procedure for Extended
og1c rograms

Frank Teusink
Centre for Mathematics and Computer Science
P.O. Box 4079 1009 AB Amsterdam
The Netherlands
frankt@cwi.nl

Abstract

In (GL90], M. Gelfond and V. Lifschitz proposed to extend general to so
called extended logic programs, by adding strong negation. They proposed
answer sets as a semantics for these programs. However, this semantics uses
the notion of global consistency. The necessity of testing for global consis
tency makes finding a proof for a specific query w.r.t. a program as hard as
finding a complete answer set for that program. In this paper, we abandon
the idea of preserving global consistency and propose a modified transfor
mation from extended logic programs to general logic programs, based on
a semantics in which only local consistency is preserved. We use the no
tion of conservative derivability, as defined by G. Wagner in [Wag91], as a
proof-theoretic semantics for extended logic programs, and show that the
three-valued completion semantics of a transformed program is sound and
complete with respect to conservative derivability in the original extended
logic program. As a result, we can use any proof procedure for general logic
programs that is sound with respect to completion semantics, to answer
queries with respect to extended logic programs. We illustrate our proof
procedure by using it to prove queries with respect to an extended logic
program discussed in [GL90].

1 Introduction

Extended logic programs were introduced by M. Gelfond and V. Lifschitz
in (GL90], to overcome some problems in dealing with incomplete informa
tion. In this paper, we present a proof procedure for these extended logic
programs. The reason for developing this proof procedure is, that we want
to be able to compute answers to queries w.r.t. an extended logic program,
without first having to compute some intended model of that program.

The proof procedure we present is based on a transformation from ex
tended logic programs to general logic programs (this transformation differs
from the one defined by Gelfond and Lifschitz). We have chosen a transfor-

236

mational approach, because it enables us to profit from work done on proof
procedures for general logic programs. The transformation we propose im
plements the notion of conservative derivability as introduced by G. Wagner
in [Wag91]. As a result, for an extended logic programs without function
symbols, the three-valued completion semantics of a transformed program is
sound and complete with respect to the notion of conservative derivability
in the original extended logic program.

As a semantics for extended logic programs, Gelfond and Lifschitz defined
the so-called answer sets of an extended logic program. These sets are defined
in terms of the stable models of a derived general logic program, provided
the extended logic program is consistent. The proof procedure we define,
will be neither sound nor complete with respect to the answer set semantics.
The reason for our proof procedure not being complete is, that the problem
of testing whether a general logic program has a stable model is :El-complete
(see corollary 5.12 in (MNR92]). Consequently, no effective proof procedure
can be complete with respect to answer set semantics. The reason for our
proof procedure not being sound with respect to answer set semantics is, that
conservative reasoning is a form of paraconsistent reasoning, i.e. it allows us
to derive meaningful answers to queries w.r.t. inconsistent extended logic
programs, while the answer set semantics collapses in the case of inconsistent
extended logic programs; everything becomes true.

In the next section, we give a short introduction to extended logic pro
grams and introduce some notation used throughout the paper. Section 3
explains the notion of conservative reasoning. In section 4, we define the
transformation of an extended logic program P to a general logic program
Per, and prove that a query Q w.r.t. P is conservatively derivable from P
if and only if Q1 is a logical consequence of comp(Per), where Q1 is derived
from Q by some transformation. In section 5, we use SLDNF-resolution to
compute answers to queries w.r.t. an extended logic program discussed by
Gelfond and Lifschitz in [GL90]. Finally in section 6, we relate our transfor
mation to the one proposed by Gelfond and Lifschitz.

2 Preliminaries and notation

A general logic program is a finite set of clauses of the form

where, for i E [O .. n], Ai is an atom. Formulas of the form A or not A, where A
is an atom, are called literals. The negation used in general logic programs,
is interpreted as negation as (finite) failure: not A is true whenever one
fails to (finitely) derive A and not A is false if one can derive A (finitely).
However, in some cases it is useful to have a stronger notion of negation
(notation:,) , in which, A is true iff, A can be derived. This is called
strong negation. For this, Gelfond and Lifschitz introduced extended logic

programs. In extended logic programs, we use both negation as failure (not)
and strong negation(,..,,). So, wherever one could write an atom in a general
logic program, one can write an atom or a strongly negated atom in an
extended logic program. Thus, an extended logic program is a finite set of
clauses of the form

Lo +- Li, ... , Lm, not Lm+l• ... , not L,.

where, for i E (O .. n], Li is a literal (i.e. a formula of the form A or ,..,, A, where
A is an atom). Formulas of the form L or not L, where L is a literal, are
called extended literals. Note, that in a general logic program, a literal is of
the form A or not A, while in an extended logic program, a literal is of the
form A or ,..,, A. The +- in extended logic programs should not be read as
classical implication. Instead, clauses in an extended logic program should
be seen as inference rules.

We now want to give a justification for our choice of symbols for strong
negation and negation as (finite) failure. The symbol-, is generally used for
classical negation. Moreover, in general logic programs, negation as failure is
generally denoted by either•..,• or 'not'. In [GL90], 'not' is used for negation
as failure and •...,• is used for strong negation. In [Prz90], •,..,,• is used for
negation as failure and '..,' is used for strong negation. (In both [GL90]
and [Prz90] they refer to the second form of negation as classical negation.)
Finally, in [Wag93] '-' is used for negation as failure (or weak negation, as
it is called there), '""''is used for strong negation and'-,' is used for classical
negation. We use•...,• for classical negation,•,..,,• for strong negation and 'not'
for negation as failure. The use of •..,• for classical negation is standard.
Moreover, the second form of negation used in extended logic programming
differs from classical negation. Therefore, one should use a different symbol,
so why not follow [Wag93] and use '""''. Finally, for negation as failure, the
obvious choice is that between 'not' and '-'. We chose 'not', because it
seems to be more standard than '-'.

In this paper, we use A, A', Ai, .. . to denote atoms, L, L', Li, ... to denote
(extended) literals and F, G, H to denote formulas. We identify a sequence
L1, ••• , L,, of (extended) literals with the conjuction Li A .•. A Lk. More
over, we sometimes identify a conjuction F of (extended) literals with the
set of (extended) literals in F. For the sake of simplicity, we treat both nega
tions on (extended) literals as complement operators, i.e. L =not not Land
L =,..,,,..,, L. Note, that not and ,.., are not commutative, so we do not have
that not ,..,, not L =,..,, L.

For a logic program P (either general or extended), Bp denotes the Her
brand Base of P and Cp denotes the set of (extended) literals build from
atoms in Bp. An interpretation for Pisa subset of Cp (note that interpre
tations can be inconsistent). The set of ground instances of clauses in P is
denoted by ground(P).

238

3 Conservative reasoning

In [Wag91], G. Wagner introduces the notion of conservative reasoning as a
means to reason with inconsistent programs (he also introduces other sys
tems to deal with inconsistent programs, but in this paper we are only inter
ested in conservative reasoning). The system he proposes in this paper, uses
only strong negation. In [Wag93], he presents a system that incorporates
negation as failure (he calls it weak negation, and uses - to denote it), but
is more restricted in other aspects. In this section, we present a combination
of these two systems.

The language consists of the logical symbols A (and), V (or), ,.., (strong
negation), not (weak negation) and t (verum), predicate symbols, constants
and variables. We obtain this language by adding not to the language in
[Wag91] or V to the language in [Wag93]. Just like in [Wag91] and [Wag93],
the language does not contain function symbols. This restriction is necessary,
because we will define the derivability relation I- in terms of deduction rules;
the restriction ensures that the number of premises in the deduction rules
for ground literals are finite. As a consequence of this restriction, not every
extended logic program can be represented as a program in this language.

The definition of a program is the same as the definition of an extended
logic program. As a result, every extended logic program without function
symbols is a program in this system. This definition of a program is more
restricted than the definition in [Wag91], where the body of a clause is
an arbitrary formula. However, we are only interested in extended logic
programs, and therefore do not need arbitrary formulas in bodies of clauses.

The conservative derivability relation I- is defined by a natural deduction
system. The idea of conservative derivability is based on the idea of mutual
neutralization, i.e. {A, ,.., A} If A. Intuitively, this means that if both A and
,..., A can be 'proven', we discard all 'proofs' for both A and ,.., A. As a
result, we not only lose conclusions, but also gain new ones, because not A
and not ,.., A can be derived. Informally, PI- F means that the existential
closure of F can be proven in P without using inconsistent knowledge in P.
After introducing the deduction rules, we illuminate the idea of conservative
derivability by an example. The most important rules in this system are the
rules for deriving ground extended literals:

(l)

(not li)

3(L +- F) e ground(P) : PI- F
V("' L +- F) e ground(P) : P I- not F

p I- L

V(L +- F) e ground(P) : PI- not F
PI- not L

3("'L +- F) e ground(P): PI- F
PI- not L

The deduction rule(!) combines the notion of derivability by ground clauses

with the notion of mutual neutralization: P 1-- L if there exists a ground
rule for L whose body is conservatively derivable, provided that "'L is not
conservatively derivable. The deduction rules (not 11) and (not 12) state

the converse, i.e. P 1-- not L means that L is not conservatively derivable,
either because there does not exist a ground clause for L whose body is
conservatively derivable, or by mutual neutralization.

Furthermore, there are rules for deriving complex ground formulas:

(not not)
p 1-- F

PI- not not F

(/\)
P 1-- F,G

(not /\) Pr not F
Pl--F/\G P 1-- not (F /\ G)

(v)
p I- F

(not V)
P 1-- not F, not G

Pl--FVG P 1-- not (F V G)

Note that these rules only hold for ground formulas.

Example 3.1 Consider the program P1 with clauses p(a) +- and q(b) +-.

It is reasonable to deduce that P1 1-- p(x),q(x) (i.e. 3x p(x) and 3x q(x)),
but to deduce P1 1-- p(x) /\ q(x) (i.e. 3x p(x) /\ q(x)) by deduction rule(/\) is
clearly wrong. o

Finally, there is a rule for deriving complex non-ground formulas:

(3) P 1-- FB for some substitution (J

p I- F

and of course the rule to derive verum: 1-- t.

Example 3.2 Consider following program P2:

r +- t
P +- r
"'P +- r
q <--not p

We deduce P2 1-- r by (1) using 1-- t and P2 I- not "'r by (not li). Moreover,
we have by (not 12) (mutual neutralization) P2 1-- not p and P2 1-- not "'p.

Finally, we deduce P2 1-- not "'Q by (not 11) and P2 1-- q by (1). o

The derivability relation defined by these deduction rules differs from both

the system in [Wag91] and the system in [Wag93]. In contrast with [Wag91]
and in accordance with [Wag93], we can only derive "'F, if F is an atom.
This is reasonable, because we can use not to negate complex formulas.
Extending the derivability relation to strongly negated complex formulas is
beyond the scope of this paper. With this relation, we can derive non-ground
formulas. This can be done with the system in [Wag91], but not with the
system in [Wag93]. We need the derivability of non-ground formulas for the
soundness and completeness results in section 4.

240

4 The er transformation

The idea of our proof procedure is, to find out whether a goal is conserva
tively derivable from a program. If the goal is conservatively derivable, the
proof procedure should answer yes; otherwise, it should answer no. We de
fine our proof procedure in terms of a derived general logic program Per· The
three-valued completion of PCT will be sound and complete with respect to
conservative derivability in P (for extended logic programs without function
symbols). As a result, we are free to use any proof procedure for general
logic programs that is sound with respect to the three-valued completion
semantics, as a proof procedure for extended logic programs.

The idea of PCT is, to split the declaration of a predicate in P into a
positive and a negative part, just like Gelfond and Lifschitz did when trans
forming an extended logic program P into a general logic program P'. The
difference is, that we then combine these positive and negative declarations
of a predicate into a declaration of the original predicate, in a way that en
sures consistency of the derived program (with respect to "'i a general or
extended logic program is inherently consistent with respect to negation as
finite failure).

First, we present the transformation used by Gelfond and Lifschitz (the
transformed program P we define, is the program Gelfond and Lifschitz refer
to as P').

Definition 4.1 Let L be a language.

• The language L is the same as L, but

- without the logical connective "'' and

- with an additional predicate symbol "'p, for every predicate sym-
bol pin L.

• For a formula F in L, F is the formula in L that is obtained from F
by interpreting every combination ,....., p of the logical symbol ,...., and a
predicate symbol p as the predicate symbol ,....., p. If ,...., appears in F
other than in front of an atom, F is not defined.

• For a clause R of the form L ,__ F, R is the clause L ,__F.

• For a program P, P is the program {R IRE P}.

D

Note that Fis not always defined. However, by construction of the deriv
ability relation, the fact that F is not defined implies that P I- F does not
hold.

Definition 4.2 Let P be an extended logic program. PCT is the general logic
program such that

241

• for every clause A+-- F (resp. ""A+-- F) in P, PCf' contains the clause
AP +-- F (resp. A" +-- F), and

• for every atom A in P, Per contains the clauses A+- AP, not A" and
~+--A", not AP.

0

Note that B;; !;;; BPcr·
In the remainder of this section, we prove that comp(PCf') is sound and

complete with respect to conservative derivability in P, in the sense that
comp(Pcr) F3 3F iff P f- F. We cannot prove soundness or completeness
for arbitrary extended logic programs, simply because Wagner's definition
of a program does not provide for function symbols. So, the soundness and
completeness theorems are restricted to extended logic programs without
function symbols.

First, we need the following lemma, which proves that the least fixpoint
of the Fitting operator CI>Pcr (see [Fit85]) is 'sound' with respect to the con
servative derivability relation.

Lemma 4.3 Let P be an extended logic program without function symbols,
and let L be a ground extended literal in £p. Then, for all natural numbers
n, LE Cli"R implies P f- L. er

Proof: We prove the claim by induction on n. For n = 0, the claim holds
trivially, because Cl>~ = 0. Assume that, for all m less than n, L E Cl>'.ft
implies P f- L. First,e~e make the following observations: •r

1. AP E CI>P.,., where AP is ground, implies that there exists a A+-- Fin
ground(P) such that PI- F.

Suppose that APE Cl>P..r· By construction of PCf' and Cl>P,,., there exists
a formula F such that AP +- F in ground(Per) and F s;;; <PP.., for some
m less than n. By induction hypothesis, for all conjuncts LE F, P f- L
and therefore, by deduction rule (A), PI- F. Moreover, by construc
tion of PCf', A+- FE ground(P).

2. not AP E Cli"R , where AP is ground, implies that, for all A +- F in
er

groundP, PI- not F.

Suppose not APE CI>fi • By construction of Per and <PPcr• for every
formula F such that 0AP +- F is in ground(Pe.), not F n <PP.r =f:. 0, for
some m less than n. By induction hypothesis, for every AP +-- F in
ground(PCf') there exists an extended literal L e F such that P f- not L,
and therefore by deduction rule (not v), P f- not F. Moreover, by
construction of PCf', AP +--FE ground(()PCf') iff A+- FE ground(()P).
Therefore, for all A+-- Fin ground(P), P f- not F.

242

3. An E cl>}\ , where An is ground, implies that there exists a -A+- Fin
ground(P) such that P f- F.

The proof of this is a variant of the proof in 1.

4. not An E <I>P.r' where An is ground, implies that, for all, A+- F in
groundP, P f- not F.

The proof of this is a variant of the proof in 2.

Using these observations, we can prove the lemma. Suppose that LE il>'P.r·
There are two cases:

• L = A or L ="'A. By construction, Per contains exactly one clause
with conclusion L.
If L = A, this clause is of the form A +- AP, not An. Because A E il>'P.r,
AP, not An E <I>P.r· By observation 1, there exists a A+- F in P such
that PI- F. By observation 4, for all "'A+- Fin P, P f- not F. By
deduction rule (l), it follows that PI- A.

The case where L =""A is symmetric.

• L = not A or L = not ,..., A. By construction, Per contains exactly one
clause with conclusion not L.
If L = not A, this clause is of the form A+- AP, not An. Because
not A E <I>P.r we have that not AP E <I>P.r or An E <l>'P.r· Therefore, by
observations 2 and 3, for all A+-- Fin P, P f- not F or there exists a
,..., A <- F in P such that P I- F. Therefore, either by deduction rule
(not !1) or by deduction rule (not h), we have that P f- not A.

The case where L = not ""A is symmetric.

D

We now prove soundness and completeness of the er transformation.
For this, we use three-valued completion semantics (Kunen semantics) of
general logic programs, as proposed by K. Kunen in [Kun87]. One should
note, that the idea of (three-valued) completion semantics is, that negation
as finite failure in a general logic program P is characterized by classical
negation in comp(P). Thus, the negation used in comp(P) is -, instead of not.
In the following, we keep this conversion between negation as finite failure
and classical negation implicit, and will consistently use not in the context
of general logic programs and -, in the context of three-valued completion
semantics.

Theorem 4.4 (Soundness of the er transformation) Let P be an ex
tended logic program and let F be a formula in the language of P. Then,
comp(Per) Fa 3F implies P f- F.

Proof: Suppose that comp(Pcr) F3 3F for some formula Fin the language
of P. We prove that PI- F by induction on the complexity of F.

243

Suppose that F is a ground literal. Then 3F is also ground, and therefore
3F +-+F. So, comp(Pcr) f=a F. By theorem 6.3 in [Kun87], FE ill'R , for
some finite n. Because F is a ground literal, we conclude by lemma 4.3 that
P'r F.

Suppose that F is a ground formula. Then 3F is also ground, and
therefore 3F +-+F. We prove by induction on the structure of F that
P 'r F. Suppose that F = -.(G V H). Because comp(Per) f=a F, we have
that comp(Pcr) F=a ...,{}and comp(Pcr) f=a -.ii. By induction, it follows that
P 'r not G and P f- not H. Thus by deduction rule (notV), P 'r not (G V H).
For F equivalent to -.-.G, G /\ H, -.(G /\ H) or G V H, the proofs are similar.

Suppose Fis a non-ground formula. comp(Pcr) f=3 3F implies that, for
some ground instantiation 8, comp(Pcr) f=a F8. By induction, it follows that
P 'r FB. Thus, by deduction rule (3), P 'r F. D

Theorem 4.5 (Completeness of the er transformation) Let P be an
extended logic program. Let F be a formula in the language of P. If P 'r F
then comp(Per) F=a 3F.
Proof: P f- F implies that there exists a finite sequence Fi, ... , Fk = F of
formulas in the language of P such that, for all i E [Lk], Fi is the result
of applying one of the deduction rules for which, for every condition of the
form P f- F', F' =Fi. for some j less than i. Therefore, in order to prove
that comp(Per) f=a 3F, it is sufficient to prove for each of the deduction rules
that (in comp(Per)) the conclusion is implied by the conditions.

The only deduction rules that are less than straightforward, are (l),
(not li) and (not l2), the rules for deriving ground extended literals.

• Consider deduction rule (l). Suppose there exists a clause A+- F
in ground(P) such that comp(Per) f=a F. Then, there exists a clause
AP +- F in ground(Per), and therefore comp(Pcr) f=a AP. Moreover,
suppose that, for all clauses "'A+- Fin ground(P), comp(Pcr) f=a -..F.
Then, for all clauses An+- Fin ground(Pcr), comp(Pcr) f=a -.F. Thus,
by construction of comp(Pcr), comp(Per) f=3 -.An. Because comp(Per)
models Per and A+- AP, not An is in ground(Pcr), comp(Per) f=a A.

The case for deriving,.., A using (l) is similar.

• Consider deduction rule (not l!). Suppose that for all clauses A+- F
in ground(P), comp(Pcr) f=a -.F. Then, by construction of Per, for all
clauses AP +-Fin ground(Per), comp(Pcr) f=a -.F. Thus, by construc
tion of comp(Per), comp(Pcr) f=3 -.AP. Because A+- AP, not An is the
only clause in ground(Per) with conclusion A, comp(Per) F=a -.A.

The case for deriving not ,.., A using (not li) is similar.

• Consider deduction rule (not l2). Suppose that there exists a clause
"'A+- Fin ground(P) such that comp(Pcr) f=a F. Then, there exists

244

a clause An+- Fin ground(PC1') such that comp(PC1') f=3 F, and there
fore comp(Per) f=a An. Because A+- AP, not An is the only clause in
ground(Per) with conclusion A, comp(PC1') F=a -iA.

The case for deriving not ,..., A using (not l2) is similar.

0

Corollary 4.6 Let P be an extended logic program and let F be a conjunc
tion of extended literals.

(i) If() is an SLDNF computed answer substitution for Per U {F}, then,
for every substitution er, P I- F()u.

(ii) If Per U {F} has a finitely failed SLDNF-tree, then, for every substitu
tion(], PI- not Fu.

5 An example of using SLDNF-resolution

This section is dedicated to an example of using the transformation to answer
queries. For this we use the program presented by Gelfond and Lifschitz in
[GL90]. Consider the following program School:

Eligible(x) +- HighGPA(x)
Eligible(x) +- Minority(x), FairGPA(x)
"'Eligible(x) +-,...,, FairGPA(x)
Interview(x) +-not Eligible(x), not "'Eligible(x)
FairGPA(Ann) +-

"'HighGPA(Ann) +-

The general logic program Schooler consists of the following clauses:

and

EligibleP(x) +- HighGPA(x)
EligibleP(x) +- Minority(x), FairGPA(x)
Eligiblen(x) +-"'FairGPA(x)
InterviewP(x) +-not Eligible(x), not "'Eligible(x)
FairGP AP(Ann) +-

HighGPAn(Ann) +-

Eligible(x) +- EligibleP(x), not Eligiblen(x)
"'Eligible(x) +- Eligiblen(x), not EligibleP(x)
FairGPA(x) +- FairGPAP(x), not FairGPAn(x)
"'FairGPA(x) +- FairGPAn(x), not FairGPAP(x)
HighGPA(x) +- HighGPAP(x), not HighGPAn(x)
"'HighGPA(x) +- HighGPAn(x), not HighGPAP(x)
Interview(x) +- lnterviewP(x), not Interviewn(x)
"'Interview(x) +- Interviewn(x), not InterviewP(x)
Minority(x) +- MinorityP(x), not Minorityn(x)
"'Minority(x) +- Minorityn(x), not MinorityP(x)

245

Now, consider the query Interview(Ann). One of the SLDNF-trees for this
query (according to the definition of SLDNF-tree given in [AD92]) is:

Interview(Ann)

InterviewP (Ann),
not Interview"(Ann)

subs(T2)

I
InterviewP(Ann)

I
not Eligible(Ann),

not ""Eligible(Ann)
subs(T3)

I
not ""Eligible(Ann)

subs(T6)

I
0

succeed

Eligible"(Ann)

I
""FairGPA(Ann)

I
FairGPA"(Ann),

not FairGPAP(Ann)
subs(T5)

fail

Interview"(Ann)
fail

Ts :

Eligible(Ann)

I
EligibleP (Ann),

not Eligiblen(Ann)
subs(T4)

I
EligibleP(Ann)

~I
Minority(Ann), HighGPA(Ann) p,,,GrA··) I

MinorityP(Ann),
not Minority"(Ann),

FairGPA(Ann)
fail

Ts :

FairGPAP(Ann)

I
D

success

HighGPAP(Ann),
not HighGPA"(Ann)

fail

Ts:

""Eligible(Ann)

I
Eligible"(Ann),

not EligibleP(Ann)

I
rvFairGPA(Ann),
not EligibleP(Ann)

I
FairGPA"(Ann),

not FairGPAP(Ann),
not EligibleP(Ann)

subs(Ts)
fail

246

Here, subs(T;) denotes a "pointer" to the subsidiary tree T;.
As we can see, we get the same answer as Gelfond and Lifschitz got with

their answer set semantics. This is not very surprising. For a large class of
consistent extended logic programs, completion semantics for P and Per will
coincide. In the next section we will say more about this relation between
P and Per·

6 On the relation between P and Per
If we know that an extended logic program is consistent, the most intuitive
and simple translation is the ~ translation. Therefore, we would like the er
translation to coincide with the - translation for extended logic programs
that happen to be consistent.

First some good news: for consistent extended logic programs, the er
transformation is 'sound' with respect to the - transformation.

Lemma 6.1 Let P be a consistent extended logic program and let F be a for
mula in the language of P. Then, comp(Per) l=a F implies comp(P) l=a F.

Note that this lemma hold also for two-valued completion. In fact, it seems
reasonable to expect it to hold for any reasonable semantics for general
logic programs. A conjecture to this lemma is that, for consistent extended
logic programs, conservative derivability is sound with respect to answer-set
semantics.

We cannot prove the converse of this lemma, as shown in the following
example.

Example 6.2 Consider the extended logic program P3:

,...,q ..,_not q
q-

P3cr is the general logic program

qP ..,_
qn ..,_not q
q ..,_ qP, not qn
-q <- qn, not qP

For P3 we have that eomp(P) l=a q, but comp(Per) F3 -.q does not hold,
because after some unfolding we derive eomp(Per) l=s q +-+ -iq.

Clearly, the behaviour of P is more intuitive, and we would like Per to
mimic it. o

This somewhat counterintuitive behaviour with respect to consistent pro
grams also arises with the conservative derivability relation given in this
paper; we can derive neither P3 t- q nor Pa t- not q. The problem is, that

247

in the conservative derivability relation as defined in this paper (as well as
in the relations defined by G. Wagner in [Wag91] and [Wag93]), not is de
fined as negation as finite failure. Because, in P3 , "' q does not fail finitely
(there is a cyclic dependency between q and ,...., q), in this system not "" q
should not be derivable. A solution to this problem could be, to define a
conservative derivability relation in which not stands for negation as (possi
bly infinite) failure. In such a case, we would get P3 I- q and P3 I- not ,...., q.
We are quite confident that such a modified system for conservative reason
ing can be given, and that for such a system and for consistent extended
logic programs P, we can prove soundness and completeness of conservative
derivability with respect to three-valued completion of P.

With respect to such a modified conservative derivability relation, the
er transformation would no longer be complete. However, we can refine the
transformation by omitting the consistency check for those predicates for
which consistency can be proven.

Example 6.3 Consider program P3 . It is clear that the definition of q is
consistent. Therefore, a consistency check on q is superfluous. So, we refine
P.~cr to

qP <-

q n <-not q
q <- qP
"-'q <- qn

Clearly, q is a consequence of the completion of this program. 0

So, we could improve the behaviour of the transformed program by analyzing
the extended logic program and removing superfluous consistency checks in
the transformed program.

As a final remark on this problem, we would like to stress that we do
not advocate the use of the er transformation for program that are known
to be consistent. Instead, we are concerned with extended logic programs
for which it is not possible or practical to prove consistency beforehand.

Apart from a mismatch between the two translations with respect to
three-valued completion semantics, there is also a problem with using floun
dering SLDNF-resolution.

Example 6.4 Consider the extended logic program P4:

q(x) .__

P4cr is the general logic program

qP(x) <-

q(x) <- qP(x), not qn(x)
,.,,q(x) <- qn(x), not qP(x)

Now, consider the query q(x). For P4, this is a very simple query, which
simply should be answered by yes. But SLDNF-resolution on P4cr flounders.
0

248

Note that, although in this example P4 is a general logic program, the prob
lem also occurs in extended logic programs that are not general logic pro
grams.

This problem can be solved by using a form of constructive negation,
instead of SLDNF-resolution. For instance, W. Drabent presented SLDFA
resolution, which uses a form of constructive negation, in [Dra92] and proved
that this proof procedure is sound and complete with respect to three-valued
completion semantics. So, we can use the program transformation together
with SLDFA-resolution as a sound and complete proof procedure for ex
tended logic programs.

7 Conclusion

In this paper we presented a transformation from extended logic programs
to general logic programs. For this transformation we have proven that, for
extended logic programs without function symbols, the three-valued comple
tion semantics of a transformed program is sound and complete with respect
to conservative derivability in the original extended logic program. As a
result, we can use arbitrary proof procedures for general logic programs, as
long as they are sound with respect to three-valued completion semantics.
For instance, using the transformation together with SLDNF-resolution, we
get a proof procedure for extended logic programs that is sound with respect
to conservative derivability and using SLDFA-resolution we get a proof pro
cedure which is sound and complete with respect to conservative derivability.

The advantage of using a transformation from extended logic programs
to general logic programs, is that it gives us access to all results concerning
proof procedures for general logic programs. For instance, we do not need
to redo work on termination of goals.

The soundness and completeness result are restricted to extended logic
programs without function symbols. The reason for this is, that the notion
of conservative derivability is only defined for programs without function
symbols. We believe that the notion of conservative derivability can be
extended to programs with function symbols, and that with such an extended
definition, we will be able to generalize the soundness and completeness
result to extended logic programs with function symbols.

Aside from extending the conservative derivability relation to programs
with function symbols, it might be interesting to solve the second problem
mentioned in section 6, i.e. define a notion conservative reasoning in which
not stands for negation as (possibly infinite) failure. Once we have such
a system, we could use consistency analysis on the extended logic program
to optimize the transformed program by omitting superfluous consistency
checks, without losing soundness of the optimized general program w.r.t.
conservative derivability on the original extended logic program.

249

Acknowledgements

This paper was supported by a grant from SION, a department of NWO,
the Netherlands Organization for Scientific Research. I would like to thank
Krzysztof Apt for suggesting to me to look at proof procedures for extended
logic programs, for proof reading this paper and for giving valuable sugges
tions for improvement. Furthermore, I am grateful to the referees for their
valuable comments.

References

[AD92] Krzysztof R. Apt and Kees Doets. A new definition of SLDNF
resolution. Technical Report CS-R9242, Centre for Mathematics
and Computer Science, 1992. To appear in JLP.

[Dra92] Wlodzimierz Drabent. What is failure? an approach to construc
tive negation. Updated version of a Technical Report LITH-IDA
R-91-23 at Linkoping University, 1992.

[Fit85] Melvin Fitting. A Kripke-Kleene semantics for logic programs.
Journal of Logic Programming, 2(4):295-312, 1985.

[GL90] Michael Gelfond and Vladimir Lifschitz. Logic programs with
classical negation. In Proceedings of the International Conference
on Logic Programming, pages 579-597, 1990.

[Kun87] Kenneth Kunen. Negation in logic programming. Journal of Logic
Programming, 4:289-308, 1987.

[MNR92] V. Wiktor Marek, Anil Nerode, and Jeffrey B. Remmel. The stable
models of a predicate logic program. In Proceedings of the Joint
International Conference and Symposium on Logic Programming,
pages 446-460, 1992.

[Prz90] Teodor C. Przymusinski. Extended stable semantics for normal
and disjunctive programs. In Proceedings of the International Con
ference on Logic Programming, pages 459-477, 1990.

[Wag91] Gerd Wagner. Ex contradictione nihil sequitur. In Proceedings of
the International Joint Conference on Artificial Intelligence, pages
538-543, 1991.

[Wag93] Gerd Wagner. Neutralization and preemption in extended logic
programs. Technical Report Bericht Nr. 20/93, Freien Universitat
Berlin, 1993.

