
Term Rewriting Properties of SOS
Axiomatisations

D.J.B. Bosscher

CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

e-mail: doeko©cwi. nl

Abstract. In [Aceto, Bloom and Vaandrager, '92] two strategies are
presented to produce axiomatisations of strong bisimulation equivalence
for languages whose operational semantics can be expressed in the GSOS
format of [Bloom, Istrail and Meyer, '90]. In [Aceto et al.] it is stated
that if the GSOS systems satisfy certain finiteness conditions, one of
these axiomatisations is strongly normalising and confluent. We show
that their claim as a whole is wrong, but prove confl.uency and weak
normalisation by presenting a normalising rewrite strategy. We can how­
ever prove strong normalisation for the axiomatisations of a decidable
class of such systems. The analysis of the term rewriting properties of
the axiomatisations is modulo the associativity and commutativity of the
choice operation.

1991 Mathematics Subject Classification: 68Q42,68Q55,68Q60,68Q65.
1991 CR Categories: D.l.3,D.3.l,F.3.2,1.2.2
Key Words and Phrases: Structural Operational Semantics (SOS), GSOS
format, bisimulation equivalence, process algebra, axiomatisations, term
rewriting.
Note: The author was sponsored by the ESPRIT Basic Research Action
7166, Concur2.

1 Introduction

Recent years have shown an enormous interest in formulating operational se­
mantics in the style of Plotkin's SOS [11]. Several formats have emerged which
allow the description of various programming languages and the properties of
these are studied extensively [3],(12],(4],[13]. One of these formats is the GSOS
format in which the operational semantics of many process calculi of interest can
be expressed (3].

In [1] two strategies are presented to derive automatically an axioma.tisa­
tion for bisimulation equivalence for languages whose operational semantics is
expressed in the GSOS format. This research gives an unambiguous method for
generating sound and complete axiom systems. The axiomatisations produced
by the strategies are often rather close to existing "human invented" axioma­
tisations. A practical application of this theory lies in the simplification with
the axioms, i.e. how certain operations can be eliminated. The authors claim
that the axioma.tisations produced by their so-called alternative strategy has

426

nice term rewriting properties: for a class of GSOS systems in which only finite,
non-cyclic transition systems can be expressed the axiomatisations are supposed
to be strongly normalising and confluent on closed terms. In this paper we will
show that their claim as a whole is wrong, but will show weak normalisation
and confiuency. We will show strong normalisation for the axiomatisations of a
decidable class of GSOS systems.

Term rewriting of SOS-style axiomatisations is of interest for the Concur2
project, which aims at the integration of tools and techniques for process al­
gebras. For a well-defined class of languages, axiomatisations can be generated
automatically, which can be turned into a term rewriting system at the drop of
a hat. The option simplify of the ECRIN-tool [8], which simplifies process terms
by means of user provided term rewriting rules, can be extended with a default
automatically generated alternative. The Process Algebra Manipulator [7] can
be equipped with an option to generate axiomatisations automatically from the
transition rules.

The organisation of this paper is as follows. In section 2 we will introduce the
GSOS format, the axiomatisation produced by the alternative strategy and two
finiteness conditions on GSOS systems used throughout this paper. In section
3 we will show how to turn the axioms into a term rewriting system and argue
briefly why we have to work modulo the associativity and commutativity of the
choice operation. In section 4 we will show that an (undecidable) class of GSOS
systems in which only finite, non-cyclic systems can be expressed, is weakly, but
not strongly normalising. We will do this by presenting a counter example and a
normalising strategy from which confiuency easily follows. In section 5 we limit
ourselves to a decidable subclass of these systems. We will show that with a
small proviso the term rewriting systems obtained from these axiomatisations
are strongly normalising. We end this paper with the conjecture that even this
last proviso can be dropped.

Interestingly enough all results were obtained without the theory of recursive
path orderings for rewriting modulo ac of [5]. Even more so, we do not know
how to obtain the strong normalisation result with this theory.

2 Preliminaries

For the reader unfamiliar with [1] we will give an overview of the alternative
strategy used to produce complete and sound axiomatisations for strong bisimu­
lation equivalence of finite GSOS systems. In this paper we will give no definitions
of (strong) bisimulation or notions from term rewriting. We think all these are
standard for which the reader is referred to e.g. [10] for bisimulation and [6] for
term rewriting.

Let us assume as input for the alternative strategy a GSOS system with
signature Ea. The result is an axiomatisation with a signature EA, which is
an extension of Ea with possible auxiallary operations and a set of axioms EA
over EA. The first output of the strategy is four axioms, called the FINTREE
axioms. FINTREE is an auxilliary language defined as a fragment of CCS [9]

427

expressing all finite, non-cyclic trees. It is defined inductively as 1. 0 E FINTREE
2. p1,P2 E FINTREE =>a ·p1,P1 +p2 E FINTREE. We will refer to choice(+),
action prefixing (a.) and 0 as FINTREE operations.

Definition 1. The FINTREE axioms are given by the following equations

x+y=y+x
(x+y)+z=x+(y+z)

x+x=x
x+O=x

(1)
(2)
(3)

(4)

The remaining GSOS operations are then divided in the three classes the
good, the bad and the ugly1 • For the good operations the strategy can generate
the axioms describing their behaviour. The other operations are linked with
copying and distinctifying axioms to good operations.

First each ugly operations is linked to either a bad or a good operation with
a so called copying axiom. "Copying" refers to the possible multiplication of
arguments going from left-to-right.

Definition 2. Let f E Ea be an ugly operation and A E EA an axiom of the
form

(5)

where x~ = Xj for some j, and r is a good or bad operation. Then A is called
a copying axiom.

In the proofs in subsequent sections we will use the maximum number an
argument is copied by a copy axiom.

Definition 3. Let cf : EA x N -+ N be a function defined as follows. Let
f E Ea and i EN. If f has no copy axiom in EA or i > ar(f) then cf(f,i) = 1.
If f has a copy axiom and i S ar(f) then cf(f, i) = p, if the argument x;
occurs p times in r(x~, ... , x~r(fc)). The maximum copy factor is defined as
max({cf(f,i)lf E Ea & i EN}).

Second all bad operations are linked to good operations with so-called dis­
tinctifying axioms.

Definition 4. Let f E EA be a bad operation and A E EA an axiom of the form

(6)

where all f;'s are good operations. Then A is called a distinctifying axiom.

1 We try keep from the reader technical SOS Definitions which are not necessary to un­
derstand this paper. The three classes are respectively smooth-discarding-distinctive,
smooth-discarding non distinctive, and non smooth and discarding, of which the Def­
initions can be found in [1].

428

In proofs in subsequent sections we need the (maximum) distinctivity factor
of operations.

Definition 5. Let df: EA_, N be a function defined as follows. If f has no dis­
tinctivity axiom in EA then df(f) = 1. If f(x1, ... ,xar(f)) = Ef=l f;(x1, ... ,Xar(f))
is a distinctivity axiom then df (f) = p. The maximum distinctivity factor df is
defined as max({df(f)lf E EA}).

Finally for all (introduced) good operations, axioms are generated describing
their interaction with the FINTREE operations. Intuitively the action axiom
describes the result after the process has taken one step.

Definition 6. Let f E EA be a good operation and A E EA an axiom of the
form

f(P1, ... ,Par(!))= a.C[x1' ... , Xar(f)], (7)

where P; is of the form a;.x;, x; or 0 and x; appears only in C[x1, ... , Xar(f)] if
P; ;;j:: 0. Then A is called an action axiom.

The distributivity axiom describes the interaction between GSOS operations
and the + operation.

Definition 7. Let f E EA be a good operation and A E EA an axiom of the
form

f(x1, ... , X; + y;, ... , Xar(f)) = f(x1, ... , x;, ... , Xar(f))
+ f(x1, ... ,y;, ... ,Xar(f))·

(8)

Then A is called a distributivity axiom.

The inaction axiom identifies the GSOS terms which have no behaviour with
the constant 0.

Definition 8. Let f E EA be a good operation and A E EA an axiom of the
form

(9)

where P; is of the form a;.x;, b;.x; + y;, x; or 0. Then A is called an inaction
ax10m.

The peeling axiom "peeles" of parts of a term, which cannot influence its
behaviour in any way.

Definition 9. Let f be a good operation and A E EA an axiom of the form

f(P1, .. ., b;.x; +Yi, ... , Par(!)) = f(Pi, .. ., y;, ... , Par(!)) (10)

where Pi is of the form ai .xi or Xj. Then A is called a peeling axiom.

429

Remark 2.1 The attentive reader may have noticed that we have specified
in some detail what the syntactical form is of the different axioms of the ax­
iomatisation. We have not specified which axioms are actually included in the
axiomatisation produced by the alternative strategy. A precise description can
be found in the original paper. However, twice we will make a subtle use of the
"completeness" in some sense of the axiomatisation. In Lemma 20 we will use
a fact for all smooth, distinctive and discarding operations f. A term t with
principal operation f, not a FINTREE operation, with all its arguments in head
normal form is an action, distributivity, (extra) inaction or (extra) peeling redex.
In Lemma 23 we will use that the axioms presented in this subsection are sound
with respect to strong bisimulation equivalence.

2.1 Well-foundedness

In (1) two different definitions of well-foundedness in the setting of GSOS are
developed. Semantic well-founded GSOS systems are a class in which it is only
possible to express finite, non-cyclic transition systems. We will translate these
notions to the setting of axiomatisations.

Definition 10. The axiomatisation of a GSOS system G is semantically well­
founded if for every term P E T(Ea) there is a term Q E FINTREE so that
P = Q is provable.

Since semantic well-foundedness of a GSOS system is in general not decidable,
a subclass of GSOS systems is identified which is decidable. Therefore the notion
of syntactic well-foundedness is introduced.

Definition 11. The axiomatisation of a GSOS system G is syntactically well­
founded if a function w : IJA --+ N exists so that the following conditions hold.

For each operation f which is the principal operation of a copying or distinc­
tifying axiom holds w(j) = w(r) and w(j) = w(f;) for all i.
For each action prefixing operation a. holds w(a.) ~ 1.
For each action axiom J(Pi,. . .,Par(f)) = a.C[xi, ... Xar(f)] the following con­
ditions hold.

• W(C[x1, ... ,Xar(f)]) s; w(j), if J(P1, .. .,Par(f)) has an argument
Pi = ai.Xi for some i,

• W(C[x1, .. .,Xar(f)]) < w(j), otherwise
where W: u(IJA) -> N is given by

W(x) = 0

W(f(P1,. . .,Par(!J)) = w(f) + Ef~inw(Pi)·

As is shown in the original article, the check for syntactic well-foundedness
comes down to the (decidable) problem of solving a linear system of diophantine
equations. It is proved there that syntactically well-founded GSOS systems which
are also linear, are semantically well-founded.

430

Definition 12. The axiomatisation of GSOS system G is linear iff for every
action axiom l hs = r hs E EA holds

- FV(rhs) ~ FV(lhs) and,
- every variable in l hs appears not more then once in r hs.

3 Term Rewriting with the Axioms

The subject of this article is the term rewriting properties of the axiomatisation
produced by the alternative strategy of [1]. In the previous section the axioma­
tisation is described in the detail needed for our purposes.

Rewriting with axioms starts with orienting the axioms of the previous sec­
tion from left-to-right, or right-to-left, for which we will use the term rulifying.
The TRS we will use will consist of the axioms 3 ... 10 oriented from left-to-right.
We do not include an associativity and commutativity rewrite rule, for reasons
we will explain later. The rewrite rules will be named after the axioms, i.e. action
rewrite rules, if they stem from action axioms, copy rewrite rules, if they stem
from copy axioms, etc.

For obvious reasons we have not oriented the FINTREE axioms x + 0 = x
and x+x = x as x - x+O and x - x+x, because then all terms lose the strong
normalisation property: s --+ s + 0 --+ (s + 0) + 0 To maintain confluency we
now have to introduce "extra" inaction and peeling rewrite rules, mimicking the
effect of the combination of the two FINTREE and inaction and peeling rewrite
rules, without unnecessary spoiling of rewriting properties.

Definition 13. Let f E EA be a good operation 2 • If f has an (extra) inaction
rewrite rule of the form

then

f(P1, ... , bp;i, ... ,Pa.r(f)) - 0

is an extra inaction rewrite rule. If f has a (extra) peeling rewrite rule of the
form

then

is an extra peeling rewrite rule.

2 We chose to be informal and not use a inductive definition or fixed point construction
to define the extra inaction and peeling rewrite rules.

431

The signature of a GSOS system, extended with the auxiliary operations
plus the collection of oriented axioms we will call (the TRS of) the rulified
axiomatisation, which we denote by < EA, RA >. Frequently we will use the
rulified axiomatisation without the action rewrite rules, which we will refer to
as the (TRS of) the non action rewrite rules.

We have not oriented the associativity and commutativity axiom for the sim­
ple reason that they cannot be oriented without losing the normalising property:
s + t --+ t + s --+ s + t ... Therefore we cannot use "ordinary" term rewriting,
but have to use the more complex rewriting modulo the commutativity of the
+. However, it is well-known that this is not enough for the associativity still
spoils the normalising property and so we have to work modulo the associativity
of the + as well. We will denote the commutativity and associativity axioms by
ac and the equivalence class of s under ac as [s]a.c·

Definition 14. If s, t E T(E) so that s E [s1]a.c, t E [t1]a.c and s1 --+ t' then
[s]a.c -+ac [t]ac·

In the sequel we will drop all subscripts ac.

4 Confl.uency and Weak Normalisation

In [1] is claimed that the rulified axiomatisation has nice term rewriting proper­
ties. The authors conjecture that the axiomatisation is strongly normalising and
confluent for GSOS systems which are so-called semantically well-founded. The
next small example disproves their claim: it shows a semantically well-founded
GSOS system with an axiomatisation produced by the alternative strategy which
is not strongly normalising. However, we will prove that a normalising strategy
exists which implies weak normalisation and confluency.

Example 1. Suppose G11 is the GSOS system which is the disjoint extension of
FINTREE with two operations f and g and only one rule

f(x) ~ g(f(a.y))

Then the action rule f(a.y) --+ a.g(f(a.y)) and inaction rule g(x) --+ 0 are
obtained by rulifying the axioms produced by the alternative strategy. G" is
semantically well-founded, as can be verified easily, but [f(a.O)] is not strongly
normalising modulo ac, because [f(a.O)]-+ [a.g(f(a.0))]--+ [a.g(a.g(f(a.O)))] ...

The following strategy however is normalising for the rulified axiomatisation
of a semantically well-founded GSOS system.

432

Definition 15. The strategy Normalise contracts redexes in the following way.

1. Contract all non action redexes.
2. Contract the outermost action redex surrounded 3 by the least number of

action prefixing operations.
3. Repeat until no redexes are left.

Remark. Notice that the strategy is non deterministic, e.g. the non action

redexes can be contracted in any order. Furthermore the strategy is Markov, in

the sense that there is no need to keep the history of the reduction.

To prove that Normalise is indeed normalising, we will first prove that all non

action rules decrease the weight of terms of some weight function. The weight

function was inspired by the one used in [2].

Definition 16. Let G be a GSOS system with rulified axiomatisation < EA, RA >.
Let w : Ea ~ N be a function which assigns a value to each operation. Let

·:EA--+ Ea be the origin function which is defined as Jc= Ji = J = f E Ea.

Let ?. : EA x N --+ N be a function which assigns the maximum copy factor
cf to every not tested index. If f has an action rewrite rule so that the i-th

argument off in the left-hand side is x; then 2(!, i) = cf, otherwise 2(!, i) = l.

The weight function I - I : T(EA) ~ N is defined as follows. Let f E EA and

s,s',s1, ... ,sar(f) E T(EA), then

101 = 2
is+ s'i = isi +is'!
ia.si = (cf + 2).isl
If (s1, · .. ,Sar(!)) I = 1 + lr(s1', ... , Sar(fc) ')I
lf(s1, ... , sarcn)I = 1 + L,~~V) ifi(s1, ... , sarcn)I

where s;' = Sj for some j.

if f has a copy axiom

if f has a distinctifying
axiom

if f "¥:- 0 is a constant

otherwise

Remark. That I - I is well-defined can be verified with an argument using
that the weight of a copy or a distinctifying redex, but a distinctifying redex is
calculated from a set of terms which are no longer copy or distinctifying redexes.

The reader may be blurred by the abundance of implicit functions in the

definition of I - 14 . The implicit functions ·,?. and constants cd, df are deter­
mined solely by the rulified axiomatisation, as one can easily verify. The implicit
function w depends only partially on the rulified axiomatisation.

3 We say that a subterm or a redex t 1 of a term t is .surrounded by an action prefixing
operation iff t has a subterm of the form a.C[t'], C[] possibly the trivial context.

4 The Definition of 1-1 could be simpler, if we chose to prove normalisation alone. We
will use its full strength in proving strong normalisation in section 5.

433

In this section we will restrict ourselves to the weight functions I - j, where
w = wo so that wo(f) 2: 3 for all f E EA·

We will start with some easy facts about I - I·

Lemma17. Let G be a GSOS system and< EA,RA > its rulified axiomatisa­
tion. If f E EA and s t= 0 E T(EA) then lsl > 2.

Proof. Trivial, since wo(f) 2'.: 3 for all f D

Lemma 18. Let G be a GSOS system and< EA, RA > its rulified axiomatisa­
tion. Ifs rewrites tot with a non action rewrite rule then lsl > ltl.

Proof. Let s = C[s'] where s' is a non action redex. We proceed by an
induction on the complexity of C[]. We will present one case of the Base Step,
which explains the use of wo. The induction step is straightforward.

Supposes= f(s1, ... , Sar(!)) is an (extra) inaction redex and ar(f) > 0, then

IJ(s1, ... ,sa,.(f))I = { Def. I'- I}
"°'~·ul I I

wo(f)L....;~1 •• > { wo(f);:::: 3, Lemma 17}
2 = { Def. I - I }
101.

Lemma 19. The TRS of non action rewrite rules is strongly normalising modulo
ac for closed terms.

Proof. It is a straightforward induction proof to verify that for all s' E [s],
is'i = lsi for all functions w. So we can extend I - I in a natural way to ac
equivalence classes by i[s]i =Is!- Now with Lemma 18 the result follows D

Second we prove the head normalisation property of Normalise. We say that
a term is in head normal form iff it is of the form E~1 ai .Pi.

Lemma20. Normalise is head normalising on closed terms for the rulified ax­
iomatisation.

Proof. Let s be a closed term of some GSOS system. We prove by an
induction on the complexity of s that Normalise is head normalising for [s]. The
Base Step is trivial. Let the Induction Hypothesis be that Normalise is head
normalising for [s1], .. ., [Sar(!)]· Let s = f (sr, .. ., Sar(!)) and the head symbol f
be the only marked symbol. The (marked) copies of this f will be introduced
solely by copy, distinctifying or distributivity rewrite rules.

First suppose that during the reduction an infinite number of marked f's
is created. From Lemma 19 we get that after a finite number of rewrite steps
all marked f's present in the reduct can no longer be head symbols of copy or
distinctifying redexes. So to create an infinite number of marked f's an infinite
number of distributivity redexes are contracted. With Ki:inig's Lemma this im­
plies that at least one of the arguments sr, .. ., Sar(!) has an infinite reduction,
which is not head normalising. Contradiction with the Induction Hypothesis.

434

Thus the number of marked f's created during the reduction with Normalise is
finite.

Now suppose the number of marked f's created is finite. At any time in
the reduction, the marked f's have a finite number of arguments, derived from
s1 , .. ., Sar(f). By the Induction Hypothesis these arguments (or their derivations,
to be more precise) are reduced to head normal form. Consequently after finitely
many steps the reduct is a sum of terms which are action or (extra) inaction
redexes (see Remark 2.1). With Normalise all (extra) inaction redexes are rewrit­
ten to the head normal form 0. The order in which action redexes are chosen in
step 2 of Normalise guarantees that all outermost action redexes are rewritten
to head normal form 0

Third a recursive application of the argument that Normalise is head nor­
malising implies normalisation.

Theorem 21. The strategy Normalise is normalising for the rulified axiomati­
sation of a semantically well-founded GSOS system.

Proof. Suppose towards a contradiction that there is an infinite ac reduction
with the strategy Normalise of some terms. Then by Lemma 20 we know that s

is reduced to the form L:7=l ai.P;, where the P;'s are reduced to the same form
ad infinitum. Now the reduct is not bisimilar to a FINTREE term. Contradiction
0

Example 2. As opposed to the reduction in Example 1 the contraction of the
outermost inaction redex is not postponed indefinitely long by the strategy Nor­
malise.

[f(a.0)] ~ {action}
[a.g(f(a.0))] ~ { inaction }
[a.OJ.

To state our main result we need one Lemma describing uniqueness of normal
forms. We omit the routine proof.

Lemma22. Ifs, t E FINTREE are strongly bisimilar and in normal form with
respect to the FINTREE rewrite rules then [s] = [t].

The uniqueness of normal forms together with the weak normalising property
gives us Church-Rosser.

Corollary 23. The rulified axiomatisation of a semantically well-founded GSOS
system is weakly normalising and Church-Rosser on closed terms.

Proof. Weak normalisation follows immediately from the existence of a
normalising strategy in Lemma 21. Now for the proof of Church-Rosser, suppose
[s] ~· [s'] and [s] ~· [s"]. By the soundness of the axiomatisation (see Remark
2.1) we know that s and s' are still strongly bisimilar. Then [s'] and [s"] are
rewritten with Normalise to bisimilar FINTREE terms, not having FINTREE
redexes. Now use Lemma 22 0

435

5 A Strongly Normalizing Subclass

The results in the previous section concerned semantically well-founded GSOS
systems, which is a non decidable property of GSOS systems. In (1] a decidable
subclass of semantically well-founded GSOS systems is defined called syntacti­
cally well-founded. In this section we will prove the strongly normalising property
of axiomatisations of these systems given a proviso: We will demand that a GSOS
system G which is syntactically well-founded with map w is (1) linear and has
(2) w(f) 2:: 1 for all f E Ea 5 .

The proof of strong normalisation comes down to proving that with the pro­
viso, action rules diminish the weight as well. In the previous section we saw that
the collection of all non action rules respects a weight function 1- lwa 6 . However,
in general I - lwo is not respected by action rewrite rules. Due to the possible
nested use of function symbols in the right-hand side of action rewrite rules,
there is an exponentiation, which spoils a decreasing of weight. To overcome this
problem, we will prove that based on the function w0 a new "exponentiation
proof'' map e can be constructed, so that all rewrite rules respect I - I e. The
idea is that we compute for all operations in the left-hand side of action rules a
new value, based on w 0 . The maximum of the right-hand sides is then assigned.
Because the values of operations depend on each other, we calculate the values
recursively.

The map A calculates the maximum values of the right-hand sides with a
minimal filling (i.e. O's) for a given weight function.

Definition 24. Let G be a GSOS system and w : Ea -+ N a function. Let
A : Ea -+ N be a function defined as follows. Let f E Ea, then

A(!)= max({w(f)} U {lrhs(xr := O, ... ,Xar(f) := O]lwlrhs E Rhs1 })

where Rhs1 is defined as

{rhs I r: lhs-+ rhs ERA is an action rule &
the principal operation of lhs is g & g = f}.

With the map w of a syntactically well-founded GSOS system and the aux­
iliary function A we can construct the "exponentiation proof' map e.

Definition 25. Let G be a syntadically well-founded GSOS system with map w
and< EA, RA> its rulified axiomatisatio,n. Let n be defined as max({w(f)lf E Ea}).
The functions e0 , ... , en : Ea -+ N are defined inductively as follows. Let f E Ea,
then e0 is defined as

eo(f) = (cf + 2).df.3.w(f)

5 Part 1 of the proviso seems reasonable enough, since it was proved in [1] that linear,
syntactically well-founded GSOS systems are semantically well-founded.

6 In this section we will mention explicitly which w is used in the Definition of I -1.

436

e;+1 (!) = e;(f) if w(f) ~ i
e;+1(!)=1 + maa:({Ae.; (g)lw(g) = w(f)}) otherwise.

Then e : EG - N is defined as e,..

Remark. To see that e is well-defined it is enough to notice that Ea is finite.

The proof that action rules respect I - le is very detailed. For clarity we have
extracted the following technical fact needed in the proof.

Lemma26. Let G be a GSOS system and e : Ee - N a function so that
e(f) 2:: 2 for all f. Let C[] be an n-ary context with n 2:: 1. Let s1, .. ., s,. E T(E),
then

Proof. By an induction on the complexity of C[].

Lemma27. Let G be a syntactically well-founded GSOS system with map w
and < EA, RA > its rulified axiomatisation. Ifs, t E T(EA) and s rewrites to t
with an action rule of RA, then Isle > ltle·

Proof. Let s = C[s1] where s1 is an action redex. The result follows with
an induction on the complexity of C[]. As before we omit the whole proof and
present only the Base Step, the rest of the induction is trivial. Let r : lhs -
rhs ERA be an action rewrite rule so that sis a head redex of r. By construction
of action rewrite rules, lhs is of the form

where P; is of the form a;.a:;, a:; or 0. Now let P be the set of indexes i so that
P; = a;.a:;, Q so that P; =a:; and R the rest (i.e. the O's). Let (3) P' be defined
as P n FV(rhs) 7 and likewise Q' as Q n FV(rhs). To prove that e is indeed the
requested function, distinguish two cases.

1. Suppose rhs contains an operation g so that (1) w(g) = w(f) (notice that
g E EG)· Because r is syntactically well-founded and w(!) 'f w(g) , rhs is
of the form

a.g(xi, .. ., x~r(g)),

where x~ = Xj for some j (maybe more then one, maximally cf times !).
Now it is crucial to realise that (2) for at least one index i, P; is of the form
a;.x;, which we will call i'. Now let s1 , •.• , sa.r(!) E T(EA), then s

7 Of course the set of indexes of the free variables is meant here.
8 We omit the explicit substitution [x1 = s1, .. ., Xa.r(f) = Sa.r(f)]·

437

l/(P1, .. ., P .. rcn)le =
e(f)'EiEP la; . .,;I.+ EiEQ c/.l.,d.+#R.IOJ. ?:

e(f)'EiEP(cJ+2>·l"'d•+ °L;eq c/.l"'d• > {(2), lxde ?: 2}
e{f).e(J)'E•eP-{i'}(c/+2).l:i:;l.+(c/+l).J:i:;i I.+ °L;eq c/.l:i:d. > { e(j} > df.(cf + 2)}
df.(cf + 2).e(])EieP c/.l:i:;I.+ E•eQ c/.l.,;I. ?: {(3)}

df.(cf + 2).e(])E•eP' c/.l:i:d.+ E,eq' c/.l.,;I. ?: {(1), df ?: df(g)}

df(g).(cf + 2).e(g)E•EP' c/·l"'•l 0 + EiEQ' c/.l:i:;I. ?:

la.g(x~, .. ., x~r(g)) le·

2. Suppose the right-hand side rhs of r contains no operation g so that w(g) =
w (}). Because G is syntactically well-founded, r hs contains also no opera­
tions g 1 , with w(g') > w(/) and so by Definition of e,

(4) e(/) ~ 1 + lrhs[x1 := O,. .. ,Xar(f) := OJle· Now the only interesting case
is if f is not a constant. Let s1, .. ., Sar(/) E T(E A), then 9

IJ(P1, .. .,P .. r(f))le =
e(/)E•eP la; 1.+ EiEQ c/.l:i:;l.+#R-IOI. ?:

e(/)'E•eP'uq• l:i:;I. > {(4), Lemma 26}

lrhs[x1, .. ., Xar(f)]le D

Now we have a weight function which is respected by all rewrite rules.

Lemma28. Let G be a linear, syntactically well-founded GSOS system with map
w, where w (!) ?: 1 for all f E Ea. Let < EA, RA > be its rulified axiomatisation.
Ifs rewrites tot with a rewrite rule of RA, then isle> !tie·

Proof. Notice that by construction of e, e(f)?: 3 for all f. Now use Lemmas
18 and 27 D

This results extends to rewriting modulo associativity and commutativity of
the + using the argument of Lemma 19.

Theorem 29. Let G be a syntactically well-founded GSOS system with map w,
where w(f) ~ 1 for all f E Ea. Then the rulified axiomatisation of G is strongly
normalising modulo ac on closed terms.

In the beginning of this section we presented the proviso for syntactically
well-founded GSOS systems. Although we have no proof for this at the moment,
we think that the demand w(f) ?: 1 can be dropped. Unfortunately our method
of proving a decreasing of weight for action rewrite rules then fails: using 0 as a
base in the exponentiation spoils the argument.

9 Same as 8.

438

Example 3. The condition w(j) 2:: 1 for all f excludes the (linear, syntactically
well-founded) GSOS system G which is the disjoint extension of FINTREE with
the rule

a
x-y

f(x) ~ f(f(y))

Then the rulified axiomatisation consists of the following rules,

f(a.x) = a.f(f(x))
f(x1 + x2) = f(xi) + f(x2)
f(O) = 0.

which can be proved SN.

Conjecture 30 The rulified axiomatisation of a linear, syntactically well-founded
GSOS system is strongly normalising modulo ac for closed terms.

Acknowledgement

I thank Frits Vaandrager for the idea, critical reading and the stimulating
discussions on this paper. I thank Wan Fokkink for his careful proof-reading.

References

1. L. Aceto, B. Bloom, and F.W. Vaandrager. Turning SOS rules into equations. In
Proceedings 7th Annual Symposium on Logic in Computer Science, Santa Cruz,
California, pages 113-124. IEEE Computer Society Press, 1992. Full version avail­
able as CWI Report CS-R9218, June 1992, Amsterdam. To appear in the LICS 92
Special Issue of Information and Computation.

2. G.J. Akkerman and J.C.M. Baeten. Term rewriting analysis in process algebra.
Report P9006, Programming Research Group, University of Amsterdam, 1990.

3. B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can't be traced: Preliminary
report. In Conference Record of the 15th ACM Symposium on Principles of Pro­
gramming Languages, San Diego, California, pages 229-239, 1988. Full version
available as Technical Report 90-1150, Department of Computer Science, Cornell
University, Ithaca, New York, August 1990. Accepted to appear in Journal of the
ACM.

4. J.F. Groote and F.W. Vaandrager. Structured operational semantics and bisim­
ulation as a congruence. Information and Computation, 100(2):202-260, October
1992.

5. J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of
equations. SIAM Journal of Computing, 15:1155-1194, 1986.

6. J.W. Klop. Term rewriting systems. In Handbook of Logic in Computer Science,
Volume II. Oxford University Press, 1992. To appear.

7. Huimin Lin. PAM: A Process Algebra Manipulator (Version 1.0). Report 4/93,
Computer Science, University of Sussex, Brighton, February 1993.

8. E. Madelaine, R. de Simone, and D. Vergamini. ECRINS V2-1, USERS MAN­
UAL, 1989.

9. R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, 1980.

439

10. R. Milner. Communication and Concurrency. Prentice-Hall International, Engle­
wood Cliffs, 1989.

11. G.D. Plotkin. A structural approach to operational semantics. Report DAIMI
FN-19, Computer Science Department, Aarhus University, 1981.

12. R. de Simone. Higher-level synchronising devices in MEIJE-SCCS. Theoretical
Computer Science, 37:245-267, 1985.

13. C. Verhoef. A congruence theorem for structured operational semantics with pred­
icates and negative premises. Computing Science Notes 93/18, Eindhoven Univer­
sity of Technology, 1993.

