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Abstract 

Insight is given into the conditions of derivative matrices to be inverted in point-relaxation methods for 1-D and 
2-D, first-order upwind-discretized Euler equations. Speed regimes are found where ill-conditioning of these 
matrices occurs; 1-D flow equations appear to be less well conditioned than 2-D flow equations. The ill-conditioning 
is easily improved by adding regularizing matrices to the derivative matrices. A smoothing analysis is made of point 
Gauss-Seidel relaxation applied to discrete Euler equations conditioned by such an additive matrix. The method is 
successfully applied to a very low-subsonic, steady, 2-D stagnation flow. 
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1. Introduction 

The present paper is a sequel to [1] and [3]. In [1] a basic multigrid solution method for 
steady, first-order upwind-discretized Euler equations was presented. In [3] some adaptations 
to this basic method were presented for high-supersonic (hypersonic) flow computations. In the 
present paper some necessary adaptations are presented for low-subsonic flow computations. 
By the latter adaptations, the range of Mach numbers over which the multigrid method can be 
applied successfully, is made as wide as necessary for practical purposes. Of course, in practice, 
first-order solution accuracy is insufficient. We know already that higher-order discrete equa­
tions can simply be solved by putting an additional iteration (a defect correction iteration) 
around the multigrid iteration (see e.g. [2]). The present paper is intended to complete the 
applicability of the multigrid method from [1,3]. 

In the zero-Mach-number limit, point-relaxation methods for solving first-order upwind-dis­
cretized Euler equations may suffer from ill-conditioning of the corresponding derivative 
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matrices to be inverted (i.e. the local, absolute-eigenvalue matrices, not the J acobians). To 
illustrate this, we start by considering the perfect-gas, steady, 1-D Euler equations 

df(Q) = 0 
dx ' 

with Q the conservative state vector 

Q = ( :u] , e = - 1- ~ + ~ u2 , 
y-1 p 2 pe 

and f( Q) the corresponding flux vector 

f(Q) = p;:p . )· 
pu(e+p/p) 

(la) 

(lb) 

(le) 

Linearization of (la) with respect to the conservative variables and, following [5], transforma­
tion from conservative variables Q to non-conservative (entropy) variables q, 

dq = ( (1/~:)dp ' (2) 

dp - c2 dp 

yields the analytically tractable form 

dq 
A dx = 0, 

A~ =~ =~ :~ ~ ( ~ ~ n 
df 

dQ 

dQ 

dq 
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For simplicity we assume A to be constant and proceed by considering a first-order upwind, 
cell-centered finite-volume discretization of (3a). Then the discrete equation in cell D; reads 

A+(q;-q;--1)+A--(qi+1-q;)=O, (4) 

with i running in the positive x-direction, and with A+ and A -- the matrices corresponding to 
the positive and negative eigenvalues of A: 

A+=RAA..:l'R,4 1, A--=RAA,4R,4 1• (5) 

With AA= diag(u - c, u, u + c) it follows that 

RA~(-i ~ il· (6) 

and hence for subsonic flow in the positive x-direction, 0 < u < c: 

A+=2_(~:~ ~:~ 
2 0 0 

u-c 
0 

(7) ~ l· 2u 

c-u 

Applying point Gauss-Seidel relaxation to find the solution qi of (4), for successively down­
stream and upstream relaxation sweeps, we get the iteration formulae 

I A l(q?+I -qr)= -A+(qI'-q;" __ +/)-A-(qf'+1 -qr), 

I A I( q?+2 - q?+l) = -A+( q;"+l -qr__+i1) _A-(qI'++l2 - q;"+l), 

with n the relaxation sweep counter and I A I the matrix to be inverted; 

u 
c 
0 

(Sa) 

(Sb) 

(9) 

Since I A I is symmetric, the condition number of I A I is determined by the ratio of its largest 
and smallest eigenvalues. For 0 < u < c, it follows 

A 1 A 1 = diag( c - u, u, u + c), 

:; ~------,---, 

0.5 

M 

Fig. 1. Condition of the exact, 1-D absolute-eigenvalue matrix as a function of the Mach number. 

(10) 
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.md so i A I has as condition over the entire subsonic flow regime 

·l+Ml+lvf) lul 
K 4 (M)=maxl~·l-M, M=7E(O,l), (11) 

see also Fig. I. The best condition occurs at M = i; K(M = t) = 3; singularities occur at M = 0 
and M = I. Hence, in 1-D, in the neighborhood of the static flow condition (M = 0), as well as 
in the neighborhood of the sonic flow condition (M = 1), one may expect very large (too large) 
solution changes in the case of very small right-hand sides only. 

In 2-D numerical practice, ill-conditioning of derivative matrices to. be inverted is not 
experienced in the neighborhood of M = I, but only near M = 0. To get some evidence of this 
we also analyze the 2-D case. With 0 < u < c, 0 < v < c, a square finite volume, and j as 
additional running index in the positive y-direction, the following iteration formula is derived 
for successive downstream and upstream relaxation sweeps: 

(I A I+ I BI)( qt/ 1 - qtJ) 

=-A+(q"- 11+1)-A-( n n) s+( n n+1) s-( n n) i,J qi-1,J qi+l,j-qi,j - Q;,j-qi,j-1 - Qi,j+l -qi,j, (12a) 

=-4•(qn+l_qn+l)-A-( n+2_ n+l)-B+( n+l n+l) B-( n+2 n+l) 
' . I,} 1-J.J qi+l,j Qi,j qi,j -qi,j-1 - Qi,j+l -qi,j 7 

(12b) 
with 

ll + c ll + c 0 0 u-c c-u 0 0 I u+c ll + c 0 0 1 A·= - A-=- c-u u-c 0 0 (13a) 1 0 0 2u 0 
, 

2 0 0 0 0 ' 
0 0 0 2u 0 0 0 0 

l' + c 0 1·+c 0 v-c 0 c-v 0 l 
B ... = - 0 21· 0 0 1 0 0 0 0 

2 1· +c 0 l' + c 0 ' 
B-= - (13b) 2 c-v 0 v-c 0 

0 0 0 2L' 0 0 0 0 
Thus, in 2-D the matrix to be inverted is 

2c u v 0 
I Al+ I BI =A ·-A-+B+-B-= ll u+c 0 0 

u 0 u+c 0 
(14) 

0 0 0 u +v 
When rotating in the flow direction, it follows: 

.t b s: = diag(u, ~c- ~vc2 + 4u2, u + c, 1c + t/c2 + 4u2 ), 
l-- A. • v 
' = u cos .µ + l' sm </>, <!> = arctan-

' u (15) 
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o.~ 

F. M 
1g. 2. Condition of the exact, 2-D absolute-eigenvalue matrix as a function of the Mach number. 

and thus 

( 
3 + V 1 + 4M 2 3 + h + 4M 2 ) I u I 

Kl A I +1 s I ( M) = max 2 M ' 3 - V 1 + 4 M 2 ' M = 7 E ( 0, 1), (16) 

see also Fig. 2. We see that in 2-D the singularity at M = 1 no longer exists, which explains why 
the solution method presented in [1] does not fail for transonic flow computations. The best 
condition occurs at M = t, K( t) = ~. 

In the remainder of this paper, we discuss possible fixes to the 1-D and 2-D ill-conditionings 
of the absolute-eigenvalue matrices (Section 2), analyze the multigrid smoothing properties of a 
favored fix (Section 3) and present some numerical results (Section 4). Our work differs from 
the conditioning work as reviewed in [6], in that in [6] the conditions of the Jacobians are 
improved, whereas here the conditions of the absolute-eigenvalue matrices are improved. 

2. Fixes to ill-conditioning of subsonic, absolute-eigenvalue matrices 

2.1. Trimming 2-D singular matrix 

For 2-D low-Mach-number flows, Eqs. (12a)-(12b) can simply be regularized by (locally) 
dropping the entropy-equation part, and by replacing it, in the case of e.g. (12a), by either the 
homentropic iteration formula 

n +I n _ ( n +I n ) ( n ) 2( n +I n ) _ Q s. · -s ·= P· · -p · - C.· P· 1· -p;1· - ' l ,} I ,} I ,j I,} I,} I, • 

(17a) 

or-alternatively-the incompressible formula 

n+I n n+l n 
S;,; - S;,J = Pi,i - P;,;· 

(17b) 

If the entropy equation is dropped from system (12a)-(12b), the corresponding derivative 
matrix to be inverted is reduced to 

( 
2c 

IAl+IBI= ~ 
u 

u+c 
0 

u ) 0 ' 
u +c 

(18) 
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~· ------

0.5 

M 

Fig. 3. Condition of the trimmed, 2-D, absolute-eigenvalue matrix as a function of the Mach number. 

with, again rotating in the flow direction, 

A d. ( 3 1 ,/ 2 4-2 - 3 I I 2 4-2 ) JAl+IBI= iag 2c-2vc + u , u+c, 2c+ 2vc + u , (19) 

and thus 

3+ Vl +4M 2 

KIAl+IBl(M) = 3 - h + 4M2 ' ME (0, 1), (20) 

see also Fig. 3. A difficulty in splitting off the singular part from the iteration formulae in the 
case of general subsonic flows is that it requires the introduction of a monitor for switching on 
and off homentropy or incompressibility, i.e. (l 7a) or (l 7b). Since rigorous formulae for setting 
thresholds for the monitors are hard to derive, we refrain from applying these reduced 
derivative matrices. 

2.2. Adding 1-D and 2-D regularizing matrices 

The 1-D absolute-eigenvalue matrix (9) can be regularized by adding a matrix R to it, 
leading to the approximate derivative matrix: 

IAIR=IAl+R. 
If we take 

-u 
0 
0 

(21) 

~ ~ ], 
0 c-u 

(22) 

for any constant a E (0, 1] the singularities at M = 0 and M = 1 are removed. Since I AIR is not 
symmetric, its condition number does not equal the ratio of its largest and smallest eigenvalues. 
Here we use the general formula K

1
AIR = 111 A IRllll I A IR 1ll. Taking the L00-norm as the matrix 

norm, for both R's in (22) we derive 

( 
1 +M 

K 1 A 1 ( M) = max ( ) , 
R a+ l-a M 

(1 +M)2 
) 

1-(l-a)M2 ' (23) 

ME (0, 1), a E (0, 1], 

---=~ .......... -----------
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0 0.5 

M 

Fig. 4. Condition of the through addition regularized, 1-D absolute-eigenvalue matrix, as a function of the Mach 
number. 

see also Fig. 4. For a= 1, I AIR is best conditioned over the entire subsonic Mach-number 
range, while the corresponding approximate derivative matrix I A I R will generally be rather 
close to the exact derivative matrix I A I. A convergence requirement to be satisfied is that the 
eigenvalues of I AIR are positive. This requirement is met by both R's from (22), for any 
a E (0, 1). 

In 2-D, where no sonic singularity exists, we may take the symmetric matrix 

R=a(~ ~ ~ ~ ], aE(O,l], (24) 

0 0 0 c-u-v 
to regularize (14). Thus, in 2-D we have the advantage that we remain closer to the exact 
derivative matrix than we do in 1-D. For the corresponding eigenvalue-matrix(\ A I+ I B \)R = 
I A I + I B I + R it follows that 

A . ( ( )- 3 i I 2 4-2 - 3 + ..!. I 2 + 4-2) <IAl+IBIJR=d1ag ac+ 1-a u, 2c- 2vc + u ,u+c,2c 2 VC u , 

and hence 

( 
3 + Vl + 4M 2 3 + h + 4M 2 ) 

K<IAl+IBl>R(M)=max 2(a+(l-a)M)' 3-/1+4M2 ' ME(O, 1), 

",~ :~~ ;11 
<>" 0.6--,~' 

N ,, = l I 
-·---·-·-,-"~~-~1 

2 

0.5 3 

M 

(25) 

a E (0, 1), 

(26) 

Fig. 5. Condition of the through addition regularized, 2-D absolute-eigenvalue matrix as a function of the Mach 

number. 
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see also Fig. 5. In the next section, for 2-D flows, we will investigate the multi-grid smoothing 
(high-frequency damping) properties of point Gauss-Seidel relaxation when additive condition­
ing is applied. For reasons of simplicity, smoothing properties are investigated for the 1-D 
equation. 

3. Smoothing analysis of additive conditioning 

Consider the downstream iteration formula 

c1A1 +R)(qr+ 1 -qn =-A+ (qr- q['_+/)-A-(qi+1 -qn, 

and the upstream formula 

c1A1 + R)(qr+ 2 - q:+ 1) = -A+( q:+ 1 - q;_+n -A-( q1++12 -qr+ 1 ), 

where R is the 1-D equivalent of the 2-D additive matrix (24): 

R-arn ~ c~J 
In order to investigate the smoothing properties, the local solution error 

and its Fourier form 

(27a) 

(27b) 

(28) 

(29a) 

5[' = vnei8' I e I E [ t'Tl"' 'TT" 1 (29b) 

are introduced, where q;' is the exact local solution, Dn the amplitude vector (D~, D2, D';) 
and eie the (scalar) mode. If the coefficient matrices in (27a) and (27b) are kept frozen, it 
follows from (27a) and (27b) for the corresponding amplification matrices Ldownstream and 

..A'upstream: 

Lctownstream = ((1 - e-i9 )A +_A-+ R)-\ -ei9A-+ R), 

Lupstream = (A +-(1 - ei9 )A-+ Rf 1(e-ieA+ + R). 

(30a) 

(30b) 

In both Adownstream and Aupstream the influence of a is confined to a single eigenvalue per 
matrix only: 

a(l -M) 
A (a)=-------

·"downsrre•m a(l -M) + (1- e-ia)M' 

a{l-M) + e-ieM 
A (a)=-----

·,,.upstr••m a(l -M) + M . 

It can be seen that for a = l, it still holds that 

i A_,down•tr••Jl)I:::;,; 1 and I A_.,.upstr••m{l)I:::;,; 1, 

(31a) 

(3lb) 

'v'!IJ!E [ tTI, '!T'), 't/ME(O, 1). (32) 
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We assume that a= 1 is an acceptable choice in 2-D as well. In the next section the 
conservative implementation of the 2-D additive conditioning is discussed and some numerical 
results are given for a 2-D stagnation flow. 

4. Application of additive conditioning 

4.1. 2-D conservative implementation 

If we discretize the steady, 2-D, conservative Euler equations by a first-order upwind, 
ceU-centered finite-volume method, and denote the numerical flux functions which approxi­
mate the cell-face fluxes in x- and y-direction (f(q;+ 112) and g(qi,j+ 112 )) by F(q;,j, q;+ 1) and 
G(q;,j, qi,j+ 1), respectively, the conservative upstream and downstream relaxation sweeps read: 

[ oF(qi~j• q[~1,J - 0F(qt_+1'.j, qI',j) h oG(qI',j, qi~j+J) h 
aqn. h;+l/2,j aqn. i-1/2,j + aqn. i,j+l/2 

l ,) I,] l ,] 

(33a) 

-F( n+I n+l)h F( n+l n+2)h +G( n+I n+l)h - qi-l,j' qi,j i-l/2,j- qi,j , qi+l,j i+l/2,j qi,j-1• qi,j i,j-1/2 

G( n+l n+2)h 
- qi ,j ' qi ,j + 1 i ,j + I /2 ' 

(33b) 

- - I ) 
where h;,j is a cell-averaged mesh width, e.g. h;,j = 4(h;_ 112,j + h;+ 1;2,j + h;,j-1/2+h;,j+1;2 , 
and where 

p 1 
0 0 c2 c 

pu u 
p 0 cz dQ c 

(34) 
dq 

pu v 
0 p cz c 

1 p(u 2 +u 2 ) 1 1 u 2 + v 2 

- +--pc pu pv c2 2 c 'Y - 1 2 
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0 

Fig. 6. Stagnation flow against a flat plate. 

\Vith ! 24) and a = L we get 

0 0 0 
c-u-c 

(35) 

0 0 0 

~~R =II() I o o 

(o o o 

u{ c - u - c) 
, 

c 
c(c-u-c) 

, 
c-

( u2 + £" 2)(c - U - L') 

../.:!. Numerical results 

A suitahk test case is steady, 2-D stagnation flow normal to a flat plate (Fig. 6). A favorable 

property of this test case is the direct availability of good approximate boundary conditions 

(because of the availability of an exact, incompressible potential flow solution, see e.g. [ 4, 

Chapter X]l. For computational efficiency, we only compute the half problem (x ~ 0). Note 

that exact solutions of subsonic flows tangential to a kinked wall have a singularity at the kink 

for all kink angles 8 except 8 = ~rr (see e.g. [7, Section 4.1]), which case is identical to the 

present normal stagnation flow. We introduce a reference speed wref' a reference density Pref 

and a reference Mach number /11/rd as the known quantities in the point (x,y) = (1,1). Then the 
ht)Undary conditions imposed are: 

• at the inflow boundary, assuming homenthalpy: 

Ii ( X. l) = H',dX. 

I'( x . I ) = - w,d . 

! w,~, y - i , 
c(x, I)= \i M-c +-'>-(w,~f-u 2 (x, l)-L' 2(x, 1)); 

V · rd -

(36) 

(37) 

(38) 
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Fig. 7. Convergence bchaviors of point relaxation, +: Mref = 0.1, X: M,er = 0.075. (a) Without conditioning. (b) With 
conditioning. 

• at the outflow boundary, assuming homentropy and homenthalpy: 

( 
y - 1 W 2 ( 1, y) )- y /( y- I) 

p(l, y) = 1 + -2- c2(l, y) Pt' 

where 

( 
y - } ) y /( y - I) 

P1 = 1 + -2-Mr~f Pref• 

• at the vertical-wall boundary: 

u(O, y) = O; 

• at the lower-wall boundary: 

u(x, 0) = 0. 

(39a) 

(39b) 

(39c) 

(39d) 

(40) 

(41) 

In Fig. 7 for two low-subsonic (though not yet very low-subsonic) values of Mref' we give the 

convergence behavior of the point relaxation in some arbitrary cell, at some arbitrary instant in 

the iteration process. (The residual considered is that of the energy equation.) From the results 

it appears that the additive conditioning does a good job. Though quadratic convergence is lost, 

the divergence which occurs at Mrer = 0.075 (Fig. 7(a)) has disappeared by application of the 

conditioning (Fig. 7(b)). In Fig. 8, convergence results are presented, as obtained by means of 

the conditioned relaxation method accelerated by nonlinear multigrid. (The residual considered 

is the L 00-norm of the energy equation's residual field.) The Mach-number sequence considered 

is: Mref = 0.5, 0.05, 0.005. Note that the method does not break down, but still converges in the 

very low-subsonic case Mret = 0.005. The decrease of convergence rates at decreasing Mach 

numbers that can be observed, is related to the decreasing entropy-error convection across 

domain boundaries. Fixing this would require the condition improvement of the Jacobians. As 
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2 4 6 8 10 0 2 4 6 10 0 2 4 6 8 10 

# NMG-cycles # NMG-cycles # NMG-cycles 

Fig. 8. Convergence behaviors of nonlinear multigrid iteration,+: h=l/8, X: h=l/16, *: h=l/32. (a) 
Mref = 0.5. (b) Mrd = 0.05. (c) Mrcr = 0.005. 

mentioned, a review of such techniques is given in [6]. (An early research paper in the context 
of single-grid, explicit time-stepping schemes is [8].) 

5. Conclusions 

Two methods have been proposed for removing singularities m local, absolute-eigenvalue 
matrices of upwind-discretized Euler equations: 

• elimination of the entropy-equation part from the exact, 2-D derivative matrix, 
• addition of a singular matrix (which is very close to the zero matrix) to the singular, exact 

derivative matrix. 

The first fix is insufficient in 1-D, and also has the drawback that its successful application 
requires tuning. The second fix works in all three dimensions, is free of tuning parameters and 
may remove the ill-conditioning without deteriorating too much the quadratic convergence rate 
of exact Newton iteration. The latter fix has been successfully applied to a steady, 2-D, 
low-subsonic stagnation flow. 
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