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At the beginning of this century, the foundations of intersection theory were 
severely questioned. Van der Waerden took a constructive position in this de
bate. He gave rigorous proofs and justifications of some nineteenth-century 
methods, and found illustrative counterexamples to the sufficiency of some 
proposed definitions. In this paper we sketch three topics in intersection 
theory to which Van der Waerden contributed: Bezout's theorem, the prin
ciple of conservation of number, and the use of the length of a local ring as 
intersection multiplicity. 

1. BEZOUT'S THEOREM 
Consider in the plane the cubic C given by 

FIGURE 1. A transversal and a non-tranversal intersection 

y - x2 ( x - 1) = 0 

and the line L defined by y = 0. The intersection C n L consists of the two 
points P = (0, 0) and Q = (1, 0), where bothy - x2 (x - 1) and y are zero. 
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At P the line L is tangent to C and at Q the intersection is transversal: the 
tangents to C and to L do not coincide. Counting the transversal intersection 
with a multiplicity i( Q; C · L) = l and the intersection where the tangents meet 
with a multiplicity i(P; C · L) = 2, we obtain 

degC · degL = i(P;C · L) +i(Q;C · L). 

This is an example of a general theorem in intersection theory named after 
Bezout. We will briefly describe the objects which appear in the theorem in 
its full generality. The ambient space in which things happen, is the projective 
space pn of dimension n. One can think of pn as the affine vector space A" 
together with a natural notion of a hyperplane pn-l at infinity. For instance, 
parallel lines in A 2 intersect in P 2 transversally at infinity. As a model for pn, 
one can take all lines through the origin in An+l, and we denote by (x0: ... : xril 
the point in pn representing the line through (xo, ... ,xn) E An+l - {O}. In 
pn live algebraic sets. Such an algebraic set is defined as the set of points 
where some polynomials are zero. It can have several irreducible components, 
for instance C' n L consists of two components. Each component has a certain 
dimension. We will call the dimension of an algebraic set the maximum of the 
dimensions of its irreducible components. In algebraic geometry the notion of 
an algebraic set has been generalised to that of a scheme [4]. Let us consider 
two algebraic sets X and Y in pn, defined by sets of polynomials I and J 
respectively. The intersection X n Y, i.e. the set of common points, is defined 
as the set where all the polynomials of I and J are zero. 

The theorem of Bezout relates the degree of the intersection X n Y with 
that of X and Y under the condition that the intersection is proper (i.e. has 
minimal dimension). For the degree, we give here a geometric description. Let 
L be a linear subspace of pn of dimension n - dim X. Suppose that it intersects 
X properly and transversally, then the degree of X is the number of points in 
the intersection 

degX = #LnX. 

These conditions on L are satisfied by almost all linear spaces of this dimension, 
and we will call such an L in general position with respect to X. 

The general theorem of Bezout takes into account that each irreducible com
ponent Z of the intersection X n Y has a certain intersection multiplicity 
i(Z; X · Y). The theorem says that 

degX · degY =I: i(Z; X · Y) degZ, 

where Z runs through the irreducible components of X n Y. Denoting the 
formal sum I;i(Z; X ·Y)[Z] by X ·Y, we can restate the theorem in a handsome 
formula 

deg X · deg Y = deg X · Y. 

This formula can be further generalised to the intersection of several varieties 
X i, ... , Xr. Although Bezout 's name is attached to this general version, it is 
in fact due to VAN DER WAERDEN [12]. Bezout's original statement [l] only 
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concerns the case where r = n and each Xi is a hypersurface, i.e. an algebraic 
set defined by one polynomial and therefore of dimension n - 1. 

In this article we touch upon some other topics in intersection theory where 
the work of Van der Waerden has been influential. Many nineteenth-century 
geometers (especially from Italy) worked with great virtuosity and geometric 
insight in algebraic geometric intersection theory. They used some basic princi
ples that were plausible, but proved neither according to some of the standards 
of that time, nor according to modern standards. The debate about the validity 
became stronger at the beginning of the twentieth century. Also Hilbert was 
concerned, and he expressed this in one of his list of twenty three problems for 
the coming century. In his early work about the lack of rigour Van der Waerden 
put on firm grounds the notions of intersection multiplicity and of the principle 
of conservation of number. Having these tools, it is straightforward to prove 
Bezout's theorem in its full generality. 

2. PRINCIPLE OF CONSERVATION OF NUMBER 

An interesting application of the theorem of Bezout is in the field of enumerative 
geometry: the study of varieties that satisfy some geometric conditions. Let us 
have a look at a typical but simple problem, and at the way it was solved in 
the nineteenth century: How many conics (in the plane} are tangent to a given 
smooth cubic and pass through 4 given points (all in general position}? 

FIGURE 2. A conic passing through four points and tangent to a cubic 

The idea is to look at the parameter space of all conics. This is a P 5 since we 
have six monomials whose coefficients determine the conic and one degree of 
freedom in the homogeneity factor (a non-zero scalar multiple of a polynomial 
defines the same conic as the polynomial). The points representing conics that 
satisfy a condition like passing through a point or a condition like being tangent 
to a curve, form a hypersurface in P 5 . So by Bezout's theorem, the number of 
conics satisfying all conditions can be determined as the product of the degrees 
of the hypersurfaces. 

CHASLES [5] was the first to notice that such a hypersurface representing a 



172 Leendert J. van Gastel 

FIGURE 3. Similar situation according to the principle of conservation of num
ber 

condition on conics, can be written in terms of two "fundamental classes": µ of 
the conics passing through a point, and v of the conics being tangent to a line. 
The first has degree 1 and the second has degree 2. Chasles knew that the 
condition of being tangent to a cubic can be written as 6µ + 3v, so the answer 
to the above question is 

µ · µ · µ · µ · (6µ + 3v) = 6µ 5 + 3p4 v = 6 · 1 + 3 · 2 = 12. 

How did Chasles determine the decomposition into fundamental classes of 
the condition of tangency to a cubic'? For such a question, nineteenth cen
tury mathematicians often used the prinC'iple of conservation of number. This 
principle says that if such a condition is changed in a continuous way (e.g. by 
varying the cubic) and the number of solutions stays finite, then the number 
of solutions does not change. The intuition behind this principle was probably 
the same as we have for the fact that a continuous function with discrete values 
is constant on a connected component. In the case of the condition of tangency 
to a cubic, one can vary the cubic to obtain three lines with three points of 
intersection. Each line leads to a v-term, each point to a double JL-term. 

Schubert was able to extend this calculus of conditions to great height. His 
claim was that any condition of any codimension on a parameter space could be 
decomposed into fundamental classes. Therefore the problems of enumerative 
geometry reduce to finding the number of intersections of the fundamental 
classes with the family. This method was applied to all kinds of parameter 
spaces, not only pn. 

One of the most famous numbers that Schubert computed is the number of 
twisted cubic space curves that are tangent to 12 given quadric surfaces (in 
general position): 

5819539783680. 

It took more than a century to verify this number [7]. Now history has shown 
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that almost all numbers that Schubert computed are correct. However, at that 
time, many people were not convinced that the methods were sound. 

Hilbert devoted one of his problems for the 20th century to this dispute. His 
15th problem reads: 

"To establish rigorously and with exact determination of the limits of 
their validity those geometrical numbers which Schubert especially has 
determined on the basis of the so-called principle of special position, or 
conservation of number, by means of the enumerative calculus developed 
by him. 

Although the algebra of today guarantees, in principle, the possibility of 
carrying out the processes of elimination, yet for the proof of the theorems 
of enumerative geometry decidedly more is requisite, namely, the actual 
carrying out of the process of elimination in the case of equations of 
special form in such a way that the degree of final equations and the 
multiplicity of their solutions may be foreseen." 

In 1975, when the status of all problems of Hilbert was reviewed, Kleiman was 
asked to report on the progress on the 15th problem. He wrote: 

"The foundations of the calculus were first secured for all applications by 
Van der Waerden [13]. [ ... ] Van der Waerden saw that the (simplicial) 
topological intersection theory, developed by Lefschetz (1924, 1926) from 
some ideas of Poincare and Kronecker, has all the necessary generality 
and rigor. In topological intersection theory, each algebraic set of the 
parameter variety is assigned a cohomology class. Continuously varying 
the set yields another set with the same cohomology class; in other words, 
the two sets are homologically equivalent. If two algebraic sets are in 
general position, then their intersection is assigned the (cup) product of 
their cohomology classes and their union is assigned the sum. Therefore, 
if several algebraic sets in general position intersect in a finite number 
of points, the number is conserved when the parameters of the sets are 
varied continuously because the number is equal to the degree of the 
product of the assigned cohomology classes and the classes are invariant; 
in other words, homological equivalence implies numerical equivalence. 
If the sets are defined by the conditions of an enumerative problem, it 
follows that the number of figures meeting the conditions is conserved 
when the parameters of the problem are varied continuously. [ ... ] This is 
a rigorous justification of the principle of conservation of number within 
the context of an interpretation of the calculus of conditions by means 

of the calculus of algebraic cohomology classes." 

Apart from justifying the principle of conservation of number and thus sav
ing much of nineteenth-century work, the importance of this work of Van der 
Waerden lies also in the fact that it is an illustrative example of how topological 
methods can be applicable and useful in algebraic geometry. 

3. LENGTHS AND MULTIPLICITIES 

Van der Waerden contributed also to another - related -- problem in inter-
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section theory. The way of defining the multiplicity i(Z; X · Y) of a component 
Z of a proper intersection X n Y had been disputed since the end of the nine
teenth century. Commonly, the length of the local ring OxnY,Z was taken as 
the intersection multiplicity (it works well in the case of plane curves). VAN 
DER WAERDEN [12] showed that this definition turns out to be wrong in the 
general case. Let us have a look why this goes wrong in an example in the 
projective 4 space over the complex numbers. The length of the local ring is 
here just the dimension of the local ring seen as a vector space over C. 

Take in P 4 the algebraic set Y consisting of the union of two planes Li : x = 
y = O and L 2 : z = w = 0. The algebraic set Y is defined by the equations 
xz = xw = yz = yw = 0. We intersect Y with X defined by x - z = y - w = 0. 
These objects meet only at the origin. With help of the principle of conservation 
of number, it is easy to see that the multiplicity of the origin is 2 (just move 
X to get a transversal intersection with both L1 and L2). But for the length 
of the local ring, we get three, since 

C(x,y,z,w)/(xz,xw,yz,yw,x - z,y-w) 

C(x, y, z, w)/(z2 , zw, w2 , x - z, y - w) 

C(z,w)/(z2 , zw, w2 ) 

C EB zC EBwC. 

In the dispute over intersection multiplicities, Severi defended the Italian 
school of geometers with the following dynamic definition: move the varieties 
X and Y, for instance with use of a general projective transformation, such 
that the intersection is proper and transversal, then i( Z; X · Y) is the number of 
components in which Z splits (see the summary in [10]). This definition had not 
been generally accepted because of its lack of rigour. But Van der Waerden [11] 
showed it is essentially correct, by developing a good notion of the degeneration 
of varieties, and hence a good notion of multiplicity. He published this in 1927 
in the Mathematische Annalen. It was a key point in his work on Bezout's 
theorem (Mathematische Annalen, 1928 [12]) and on the justification of the 
principle of conservation of number (Mathematische Annalen, 1930 [13]). 

In Van der Waerden's definition of multiplicity the group PGLn+l of all 
projective transformations in pn is used, which is a non-local object that pre
vents generalisations to the local situation. This was not a problem with the 
diagonal construction, that later, in a fundamental book on algebraic geome
try [14], Weil introduced for the intersection of two varieties X and Y in the 
affine space An. Consider two copies of An, the first with variables x 1 , ... , Xn 

and the second with Y1, ... , Yn· In the Cartesian product An x An lies the 
product X x Y and also the diagonal L!. defined by X1 - Y1, ... , Xn - Yn. It is 
easily seen that 

x n Y = .L!. n (X x Y), 

and if X n Y is proper, then L!. n (X x Y) is proper too. Thus it suffices to 
define multiplicities for the right hand side. The advantage is that the space 
L!. is a complete intersection, i.e. defined by dim An x An - dim.£!. equations. 
This makes the situation easier to handle from a geometric point of view, since 
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A can be moved by varying the defining equations, but also from an algebraic 
point of view, because the ideal of A is generated by a regular sequence which 
becomes a system of parameters in the local ring OxxY,Z· 

Meanwhile, CHEVALLEY (2) gave a definition of multiplicity in the setting of 
a complete local ring based on the algebraic side of the diagonal construction. 
SAMUEL [8] generalized this to the more general setting of any primary ideal 
in a noetherian local ring. Later SERRE [9) gave an explanation why the intu
itiv~ definition with the length does not work: also lengths of some modules 
Tori ( 0 x,z, Oy,z) interfere, which measure nil potents in the local ring 0 xnY,z. 

Nevertheless, the idea of the length of a local ring for a multiplicity was not 
completely absurd. But the obvious choice for the local ring was not the correct 
one. It took quite some time before a length of some other local ring associated 
in a geometric way to the intersection, appeared as an intersection multiplicity. 
We will try to show some of the concepts of an intersection theory that was 
developed by FULTON and MACPHERSON [3]. These concepts lead to a way of 
defining the intersection multiplicity as the length of a local ring. 

For a variety V of dimension n the group Zk V of cycles of dimension k is 
the free abelian group on subvarieties of dimension k in V. There is a so-called 
rational equivalence relation on Zk V, which is roughly defined by stating that 
two varieties are rationally equivalent if they can be deformed into each other 
with a parameter running through a P 1 . By taking the rational equivalence 
classes, one obtains the Chow group Ak V. If V is non-singular and projective, 
then for any [X) E Ak V and [Y] E A1 V, there is an intersection product 
X ·YE Ak+l-n V. This defines a ring structure on A. V = ffik AkV. 

Fulton and MacPherson define for any subvarieties S and S' of a variety V 
an intersection product S · S' if S is regularly embedded in V. (The algebraic 
set S of V of codimension d is called regularly embedded if it is locally cut out 
by d equations.) In the case of V non-singular, we can drop the condition on 
regularity, because the diagonal is then already regularly embedded in V x V, 
so we can pass to the diagonal construction intersecting S' = X x Y with the 
diagonal A. This intersection product is a rational equivalence class living on 
the algebraic set Sn S' (which is in general smaller than V). An essential 
ingredient in their theory is the "normal cone." 

The geometric idea is the following: since S is regularly embedded, there 
exists a vector bundle representing all normal directions to S: the normal 
bundle N 8 V. Now we stretch V by "blowing up along S," and in this way we 
deform V to the normal bundle NsV of Sin V [3]. 

This process leads to a deformation of S <-+ V into the embedding of the 
base in the normal bundle S <-+ Ns V. A subvariety S' of V deforms in this 
process to a normal cone Csns'S. The intersection product S · S' can be 
defined as S · Csns,S', where the second time S is the base (zero section) 
of the normal bundle. This last intersection is interesting: it turns out one 
can take here the length of the local ring of C sns' S' along S n S' to get the 
right notion of intersection multiplicity. Apparently, after the deformation 
to the normal bundle, the object representing normal directions has lost the 
information which is too particular to the local situation, and has become stable 
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under movements of the algebraic sets. 
We illustrate this with the previous example. Since the embedding of X in 

P 4 is regular, we do not need to pass to the diagonal, but can work with the 
intersection of X and Y directly. The normal bundle of X in P 4 has rank two, 
so the fibre over the origin is 2-dimensional. In the deformation, the two planes 
are both pushed to that fibre, so the normal cone consists of a plane counted 
twice. Hence the length of the local ring at the origin is two. 

FIGURE 4. Before the deformation to the normal bundle 

FIGURE 5. After the deformation to the normal bundle 

So in a sense the circle is closed: the length of the local ring after the defor
mation to the normal bundle equals the intersection multiplicity. 

Although the concepts and definitions are now generally accepted and no 
longer disputed thanks to Van der Waerden and others, intersection multiplic
ities are still intriguing. The computability is an issue: just write down an 
intersection which is not trivial, and try to compute the components and the 
multiplicities. 



A Cross Section of Intersection Theory 177 

REFERENCES 

1. E. BEZOUT, 1979, Theorie generale des equations algebriques, Pierres, 
Paris. 

2. C. CHEVALLEY, 1958, Les classes d'equivalence rationelle, I, II, 
Seminaire C. Chevalley, 2e annee, Anneaux de Chow et Applications, 
Seer. Math. Paris. 

3. W. FULTON, 1984, Intersection Theory, Ergebnisse der Math. 3, Bd. 2, 
Springer-Verlag, Berlin Heidelberg New York. 

4. R. HARTSHORNE, 1977, Algebraic Geometry, Graduate texts in math. 52, 
Springer-Verlag, Berlin Heidelberg New York. 

5. S.L. KLEIMAN, 1980, Chasles's enumerative theory of conics: a 
historical introduction, in Studies in algebraic geometry, Math. As
soc. Amer. Stud. Math. 20, 117-138. 

6. S.L. KLEIMAN, 1976, Problem 15: Rigorous foundation of Schubert's cal
culus, Proc. Sympos. Pure Math. 28, Amer. Math. Soc. 445-482. 

7. S.L. KLEIMAN, S. STROMME, S. XAMBO, 1985, Schubert's number 
5819539783680 of twisted cubics, Proc. Conf. Rocca di Pappa. 

8. P. SAMUEL, 1951, La notion de multiplicite en algebre et en geometrie 
algebrique, J. Math. Pures Appl. 30, 159-274. 

9. J.-P. SERRE, 1965, Algebre Locale, Multiplicites, Leet. Notes in Math. 11, 
Springer-Verlag, Berlin Heidelberg New York. 

10. F. SEVERI, 1939, Uber die Grundlagen der algebraischen Geometrie, Abh. 
Math. Sem. Hamburg Univ. 13, 101-112. 

11. B.L. VAN DER WAERDEN, 1927, Der Multiplizitiitsbegriff in der algebrais
chen Geometrie, Math. Ann. 97, 756-774. 

12. B.L. VAN DER WAERDEN, 1928, Eine Veralgemeinerung des Bezoutschen 
Theorems, Math. Ann. 99, 497-541. 

13. B.L. VAN DER WAERDEN, 1930, Topologische Begriindung des Kalkiils der 
abziihlenden Geometrie, Math. Ann. 102, 337-362. 

14. A. WEIL, 1946, Foundations of Algebraic Geometry, Revised and enlarged 
edition, Publ. 29, 1962. 


