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Introduction 

In a standard logical calculus the valuation of terms belongs firmly to the semantics of 
the language. Only the domain of these valuations is present in the syntax. In some 
cases, when we have names for all domain elements, the range of the valuations can 
also be identified as part of the language, but still the valuations themselves have no 
syntactic counterpart. On the other hand, for instance, in the LDS framework of [3], 
[4] assignments appear as statements within a proof-theoretic context. This occurs 
in the form of the 0-function which instantiates labels, but also in the 'CHOOSE 
u=sue' construction which occurs in the handling of pronouns. In this paper we 
will undertake a proof-theoretic investigation of a language which allows assignments 
as formulas of the language. This can be seen as part of the ongoing program of 
internalizing semantics into proof theory. Once assignment statements are admitted 
to the language, they become amenable to proof-theoretic manipulation. In particular, 
rules can be formulated to introduce, use, and eliminate them. 

In our calculus, assignments statements enter into a derivation as assumptions 
which assign values to 'expressive' variables. 

The first paragraph will introduce the language of assignment statements and ex
pressive variables. Expressive variables will be terms of the form vxc.p, where v is a 
variable binding term operator [1], x an individual variable and c.p a formula in which 
x occurs free. Assignment statements will be formulas of the form t := a where a, the 
value of the statement, is an individual constant standing for some domain element, 
and the term t, the argument of the statement, is some expressive variable. The ar
guments of assignment statements will incorporate the specific circumstances under 
which the statement has been introduced. Assignment statements always incorporate 
a choice: they assign a value to a (meta)variable. And this choice is made for a 
specific purpose. In this paper, assignment statements are introduced to handle the 
elimination of existential quantifiers. This reason for introducing an assignment is 
made explicit in the expressive (meta)variable. Once we have introduced the notion 
of a 'considered' choice to eliminate quantifiers, we may wonder whether we cannot 
describe a quantifier exhaustively in terms of assignment statements with the appro
priate argument. That is, can a quantifier be proof-theoretically described purely in 
terms of the assignments that are used to eliminate and introduce it? It will turn out 
that this is possible for a whole range of quantifiers. In this paper we will describe 
some indefinite quantifiers with the classical existential quantifier as 'top-element'. 
The quantifiers in this family differ essentially in their attention to dependencies. 

Dependencies between terms arise in sequences of choices, where the value of a 
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choice is used in the statement of the condition for a subsequent choice. In our calcu
lus, these dependencies are reflected in the syntactic structure of the terms involved: 
the conditions for previous choices are embedded in the condition for the present 
choice. In a standard logic these dependencies have no logical meaning: that is, in 
general we can find logically equivalent forms of a formula R( ti, ... , t,.,,) in which all 
possible variations of dependencies between ti, ... , t,.,, arise. 

The second paragraph will introduce the basic proof theory for assignment state
ments. Here we will concentrate on the ubiquitous notion of an arbitrary assignment. 
This semantic notion will have the proof-theoretic form of a dischargeable assignment 
statement. The inference rules introduced for assignment statements will be such that 
dependencies between terms are respected. 

The third paragraph then considers a treatment of the existential quantifier by 
means of assignment statements. We will first describe an interpretation of this 
quantifier which preserves dependencies. This logic will have all 'single quantifier' 
principles of the standard logic. Typically excluded are quantifier permutations. In 
order to get all standard principles for the existential quantifier we will extend the 
assignment logic with rules to give us movement of terms, creating fresh dependencies. 

The natural interpretation of assignment statements is by value assignment func
tions of a model. It is not the object of this paper to discuss the semantics of 
assignment statements. However, the discussion about the proof theory of assign
ment statements will occasionally be interrupted to supply semantic interpretations 
informally. For more details on the semantic of this logic and for proofs of some of 
the statements in this paper we refer to [7]. 

1 The language of assignment statements 

In this section we will introduce the first-order language we will be working with. It is 
a standard first-order language with some additional features. First of all, it contains 
a family of special terms, called 11-terms, which are associated with formulas of the 
language. Secondly, it contains a special binary predicate symbol':=', the assignment 
predicate. 

DEFINITION 1.1 (ALPHABET OF£) 

The alphabet of the language .C consists of 

1. a denumerably infinite set of individual constants a, b, c, ... (also a1, a2 , .• . ), 

2. a denumerably infinite set of individual variables u, v, w, x, y, z (also x1, x 2 , •• • ) 

3. a set of predicate symbols P, Q, R ... (also P1 , P2 .. . ), 
4. the logical symbols ...,, /\, V, -+, ++, V, 3 

5. parentheses ) and (. 

In addition to this classical alphabet, the language .C also has 

6. a set of variable binding term operators vi, v2 , ••• 

7. A binary predicate':='. 

DEFINITION 1.2 (£-TERMS) 

1. Individual constants and variables are terms 



1. THE LANGUAGE OF ASSIGNMENT STATEMENTS 225 

2. If c.p is an .C-formula, v a term binding operator and x a variable occurring free in 
c.p, then vxc.p is an v- term of .C. 

3. Only sequences defined by (1) and (2) are terms. 
A variable binding term operator ( vbto) v takes a variable and a .C-formula in which 

the variable occurs free, to give an .C- term. So, there is no vacuous quantification by 
v-binders. The family of v-terms for all operators v will be called identified terms, the 
formula <p in vxc.p will be called the identifier of the term. Whenever we fix a definite 
operator v., then the terms constructed by this operator will be called v.;-terms. 

DEFINITION 1.3 (£-FORMULAS) 

1. If Pisa k-place predicate symbol and t1 , ... , tk are terms, then P(t1 , ... , tk) is a 
formula 

2. If t is a closed N-term and t' an .C-term, then t := t' is an .C-formula. 
3. If c.p and 1/1 are .C-formulas, then so are -,c.p, ( c.p /\ 1/1), ( cp v 1/1), ( cp -+ 1/1), ( c.p tt 1/1) 
4. If c.p is an .C-formula and x an individual variable, then \:/xc.p and 3xcp are .C

formulas. 
5. Only sequences defined by (1)-(5) are .C-formulas. 

So the syntax of .C-formulas is the standard first-order syntax, with additional atomic 
formulas of the form t := t', so-called assignment statements. 

We assume familiarity with the notions of the scope of quantifiers and vbto's, the 
notion of free and bound variables, and the notion of a term t being free for a term t' 
in a formula cp. 

Identified terms 
An identified term consists of a specific vbto v binding a variable x which occurs in 
cp, the identifier of the term. This identifier gives the possibility to relate terms and 
formulas of the language, We will exploit this relation proof-theoretically to make 
explicit the relationships between the derivational properties of the quantifier rules 
and the proper terms they introduce and eliminate. Because v-terms may occur in 
formulas as well as other v- terms, an obvious relation of dependency between terms 
can be defined. 

DEFINITION 1.4 (SYNTACTIC DEPENDENCY) 

Let .N be the set of all v-terms, ViXC,O E N and t an .C-term. 

1. ViX'P immediately depends on t, notation ViXC,O « t, if t occurs in c.p not within the 
scope of a v-symbol/ 

2. vixc.p depends on t, notation vixc.p -< t, if there is some finite chain of immediate 
dependency steps from vxc.p to t. 

3. Ni.(c.p) is the set of all v.-terms occurring in cp. 

The dependency relation between terms mentions only occurrences of terms in other 
terms. The notion of subordination extends this relation between terms to include 
quantificational dependencies. 

DEFINITION 1.5 (SUBORDINATION) 

Let vixc.p, VjY'l/i E N then vixc.p is subordinate to Vjy'l/J, if VjY'l/i -< v;xc.p and some free 
occurrence of variable yin vxc.p is bound in VjY'l/i 
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So vyQ(y,x) is subordinate to vxR(x,vyQ(y,x)) and vyQ(y,vzT(z,x)) subordinate 
to vxR(x, vyQ(y, vzT(z, x))). 

In general, the dependency relation between terms reflects, the nesting of the choice 
conditions they represent, while the subordination relation reflects linkage of these 
conditions by means of variable sharing. The v-terms will function as expressive 
variables we introduce to eliminating quantifiers. The information such a variable 
should contain is reflected in the syntactic structure of the term. For instance, Hilberts 
epsilon terms excp [5),[6) can be seen as a triple 

(e, x, cp) 

of a control parameter 'e', a variable 'x' and a formula 'cp' in which x occurs free: 
excp then characterizes a variable x existentially bound in cp. Hilberts tau terms rxcp 
have the same shape, but use a different control parameter: in this case the variable 
x is universally bound in cp. These well-known terms where introduced to analyze 
quantificational structure of first-order formulas, but the general shape of identified 
terms allows us to introduce a variety of control parameters 

Assignment statements 
The syntax of the assignment predicate := has been stated as follows 

If t is a closed N-term and t' an £-term, then t := t' is an £-formula. 

Assignment statements can be complex or atomic. An atomic assignment state
ment is a formula of the form t := a, where a is an individual constant and t is 
a closed v-terms such that there is no closed 11-term t' with t -< t'. For example, 
exR(x, x) :=a, and exR(x, eyQ(x, y)) :=a are atomic assignment statements, while 
exR(x, eyQ(y, y)) := a, exR(x, eyQ(x, y, exP(x))) := a and exR(x, x) := eyQ(y) are 
not. Complex assignment statement can be built from atomic ones, and complex 
statements analyzed into atomic ones, by means of assignment rules. 

Assignment statements bring the assignments of values for expressive variables, v
terms, into the proof-theoretic realm. Such statements represent choice actions: in a 
statement vixcp := a a value is chosen for the term vixcp. The control parameter Vi 

determines in what way the a value of the choice is related to the choice condition 
cp(x).1 

Assignments statements internalize semantic assignment functions. This internal
ization requires the introduction of names for the choice values. By these names 
an natural dependency relation between assignment statements arises: once a choice 
value has been given a name, subsequent choices may use this name in the formulation 
of the choice condition. 

1The assignment 1te.tements resemble the 9 function of (3] which instantiates labels, but a.lso the CHOOSE label 
of the sa.me article, which relates pronouns to their a.ntecedent: CHOOSE u == sue. 
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2 Basic logic of assignment statements 

The logic of assignment statements is given by inference rules which relate assignments 
to v-terms, and allow assignment statements to interact with £-formulas, and in par
ticular with other assignment statements. These rules extend some standard natural 
deduction calculus for classical or intuitionistic logic, for instance [8]. There are two 
rules for v-terms in general. By IV, the value assigned to v-terms is independent of 

vxrp := t 
vyrp[y/x] := t 

vxrp := t Vx(<p(x) f-+ 'l/;(x)) 
Where y is free for x in rp. vx'lj; := t 

IV EQ 

FIG. 1. Rules for v-terms 

the identity of the bound variable. By EQ, 11-terms with logically equivalent identi
fiers become indistinguishable. Specific classes M of !Ii-terms arise by the addition 
of rules for specific vbto's Vi· 

There are two basic proof rules for assignment statements. 
The first rule, Rl, deals with the use of assignments The second rule, R2, deals 

<p ti := t2 

rp(t2 /t1] 

Provided t2 is free for 
t1 in rp 

Rl 

Provided t2 does not occur in t 1 , 

in :E or in any term in :E. 

R2 

FIG. 2. Basic Rules for Assignment Statements 

with discharge of assignment statements. An assignment can be discharged if it is 
'arbitrary': in order to discharge an assignment statement, no conclusion depending on 
an assignment should be based on some special property of the value of the discharged 
assignment statement. We can discharge an assignment statement if we can 'reverse' 
the corresponding substitution while maintaining derivationhood. 

Notice that, in R2, no restrictions are imposed on occurrences of t1 in :E. This 
implies that special properties of this term may be used. 

REMARK 2.1 
Assignment statements will be interpreted by value assignment functions of a model. 
The kind of function used will depend on the kinds of the terms involved. The 
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semantic interpretation of v-terms vx1.p takes place by choice functions <I> assigning 
domain elements to all subsets of the domain. The IV and EQ rules our sound and 
complete with respect to this interpretation. 

There are various choices for an interpretation of the truth of assignment statements 
on a model. Most straightforwardly, a statement t1 := t2 holds on a model M with 
respect to term valuation V M,4> if t1 and t2 are assigned the same value in M by 
V M, w. The soundness of Rl then follows from the standard substitution lemma. For 
R2, consider that under the conditions for discharge, a model M for the assumptions 
in I: need not interpret the term t 2 • Consequently, M can be expanded to a model 
interpreting t2. 

A second natural interpretation of the truth of t1 := t2 on a model is: t1 := t2 
holds on model M with respect to term valuation V M,4> if t 1 and t2 are assigned the 
same value in M by all extensions VM,4> of VM,\I> over the term t2. In this case the 
interpretation of inference rules has to proceed by evaluating the conclusion by an 
extension of the valuation function of the premises (see remark 2.8). 

Finally, a third interpretation goes as follows: t1 := t 2 holds on a model M with 
respect to term valuation V M,\I> if t 1 and t2 are assigned the same value in M by a 
t1-variant v.M,\I>' of VM,<1>· This interpretation will be required in paragraph 3.3. 

EXAMPLE 2.2 (SOME BASIC DERIVATIONS) 

The rule Rl gives us the standard well-definedness conditions for the internal assign
ments. Straightforwardly we have 

Exip(x, Ey'!j;) :=a Ey't/J := b 
f.X!.p(X, b) :=a 

So we have { Ex1.p(x, Ey1/>) := a, cy1/> := b} f- Rl cx1.p(x, b) := a 
In a classical context we can derive also {Exip(x, b) :=a, cy'lj; := b} f-Rl Exip(x, cy'!f;) := 
a, by 

[•cx1.p(x, Ey'!j;) := a](l) Ey'!/J := b 
-if.x<p(x, b) := a cxip(x, b) :=a 

J_ 

Ex1.p(x,Ex'!/J) :=a (-1) 

The rule R2 gives us then {Ey1,i; := b} f-Rl-R2 Ex1.p(x,c'lj;) := cx1.p(x,b) and {Ey'lj; := 
b} f--Ri-R2 EX<p(x,b) := Excp(x,Ey't/J). The syntactic dependency relation on assign
ment statements is translated into a dependency relation on the €-terms. 

Proof-theoretic dependency 
It can be clearly described under what circumstances constellations of assignment 
statements can and cannot be discharged. Let us assume that, in a derivation A 
of ip from :E, proper terms, and the terms t 1 , t2, t3 in :E occur only in assignment 
statements, then there are three constellations of assumptions preventing discharge. 

1. {ti := a,t2 :=a}. Neither of the assumptions can be discharged by R2 because 
the proper term occurs as value in the other assumption 

2. {ti(a) :=a}. No discharge by R2 is possible, because a occurs in t 1 (a). 
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3. {t1(a) := b, t2(b) := c, t3(b) :=a}. No discharge by R2 is possible because each 
proper term occurs in a term of an assumption. 

Assignments of the second kind will be called reflexive assignment statements. Sets of 
assignment statements of the third kind will be called circular. The conditions under 
which discharge is possible can be stated in terms of a syntactic dependency relation 
on assignment statements 

DEFINITION 2.3 (PROOF-THEORETIC DEPENDENCY) 

In a derivation 1). term assignment t 1 :=a immediately depends on assignment t2 := b, 
notation ti := a « t2 := b, if b occurs in <p. 

The assignment statement ti := a depends on t2 := b, notation t1 := a < t2 := b, if 
there is a sequence of immediate dependency steps relating t 1 := a to t 2 := b. 

If t1 := a« t 2 := b then we will also say that the term a immediately depends on 
term b in 1)., notation a « b. 

DEFINITION 2.4 (ASSIGNMENT STATEMENTS AND FUNCTIONS) 

Let 1). be a derivation with discharged and undischarged assumptions in :E. Then 

1. As a s; E is the set of assignments statements in 1).. 

Asa= {t := t' I :E f- t := t'} 
2. AA= {(t,a) It:= a E AsA}. 

Aa = {(t, a) I t :=a E Asa} 
3. For <pa formula occurrence in 1)., AsA(<p) is the set of assignment statements on 

which derivationally depends. 

For arbitrary sets As of assignment statements, not related to a derivation, we will 
consider the same sets, where As= {t := t' I As f- t := t'} and A and A are defined 
accordingly. Now the above conditions give the following lemma for the use of proper 
terms. 

LEMMA 2.5 (STRUCTURE OF ASSIGNMENTS) 

Let 1). be a derivation with assumptions in E. Let proper terms occur in :E only in 
AsA, then the elements of AsA('P) can be discharged at formula occurrence <p if and 
only if 

1. AA('P) is a many-to-one relation. i.e., if (t1,a), (t2,a) E AA(<p), then t1 = t2. 
2. The tuple (AA,<) is a strict partial order. 

Because of the first condition, given a tuple (t(a), a') E AA('P) we can always find 
at most a unique (t', b) E AA ( <p) such that b = a. I.e t(a) := b has at most one 
t' := a E AsA(<p). t has at most one «-successor for every term a occurring in t. 
Because of the uniqueness of «-successors, if all elements of a dependency closed AA 
can be discharged, then AA can divided in a family of functional dependency closed 
subsets: a family of internal assignments. 

This structure of assignments is common to all frameworks where proper terms are 
used. for instance in the restrictions put on the use of proper terms in Existential 
Instantiation and Universal Generalisation Frameworks [9], and this structure also 
occurs as an ordering on arbitrary objects in the models of [2]. 
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COROLLARY 2.6 (CONSERVATIVITY) 

Let E be a set of .C-formulas, 'I/; an .C-formula, both ':='-free, and let I- denote the 
derivability relation determined by some deduction system for classical logic, then 

E I-Rl-R2 'I/; :::} E I- 'I/; 

PROOF. Suppose E 1-Rl-R2 'I/; but E Ii 'I/; for E and 'I/; satisfying the condition of 
the proposition. Then £ U { -.'lj;} is classically consistent, and so has a model M. 
Because all assignment statements in the Rl-R2 derivation 6. of 'I/; from E have 
been discharged, At.. can be strictly partially ordered by <, and none of the values 
assigned in Ast.. occur in E or 'lj;. Consequently, the model M for E can be supplied 
with a strict partially ordered set of expansions interpreting every new proper term 
a for t := a E As.6. by the value assigned to t. Because none of the proper terms 
statements in Ast.. occurs in 'I/;, none occur in -.'lj;. Consequently M can be expanded 
to a model for EU Ast.. U {-.'lj; }. So E b'R1-R2 'lj;. I 

The partially ordered set of expansions in the above proof represents a a partially 
ordered set of internalizations of assignments of the model. Each expansion interpre
tating t := a can interpret t' for every assignment t' := b such that t' := b « t := a. 
Because b does not occur in any of the assignments already internalized, we can 
expand the present model over b. If As.6. has non-dischargeable assignment state
ments, matters are different. For instance, for a set of assignment statements like 
{t :=a, t'(a) :=a} we can expand a model, interpreting t, over a. Now this model 
interprets the term t(a), but t(a) :=a need not hold for arbitrary values of a. There 
is no guarantee that we can find an expansion internalizing the second assignment. 

In a derivation of an ':='-free conclusion from ':='-premises, the assignment state
ments arise only as instruments that can be discarded upon reaching the conclusion. 
The assignment statements embody arbitrary assignment of names to choice values. 
A Derivation 6. with conclusion cp such that Ast..(<p) is non-empty represents a specific 
choice of value: the conclusion <p follows only under the specific assignments present 
in As.6.(cp). This is the case, for instance when we want to assign the same value to 
different identified terms, or need circular sets of assignment statements. The next 
paragraph will show reasons for wanting such (sets of) assignments. 

Sets of assignment statements As determine 'internal' assignment functions A. 
A derivation in which all assignment statements have been discharged represents a 
derivation where arbitrary values haven been assigned: no matter what value we 
choose in the assignments, the conclusion follows. For this arbitrariness to hold none 
of the assumptions of the derivation may contain both the argument and the value 
of an assignment statement.2 If this is the case, then the internal assignments of 
the derivation can be interpreted by arbitrary external, i.e. semantic, assignment 
functions. 

The behavior of these functions as value assignments is characterized by the fol
lowing proposition: 

2Viola.tion of the restriction on the substituted term gives R(<D, t) l- R(x, :t) by the derivation. 

R(o:, t) [.: := t] 
R(t, t) 
R(o:, x) 
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PROPOSITION 2.7 
Let .6. be a derivation in classical first order logic extended by Rl. Let Asb. be a de
pendency closed3 set of assignment statements and let A' be a functional dependency 
closed subset of Ab., such that t 1 , E dom(A'). Then 

PROOF. Immediate from the derivations in example 2.2 and the fact that Asb. is 
dependency closed. I 

REMARK 2.8 
In a derivation .6. every formula occurrence <p is accompanied by a set As b. ( <p) of 
assignment statements on which it depends. Along a path r.p1 , ... , 'Pn in .6. the se
quence Asb.(rp1), ... ,Asb.('Pn) gives the development of an assignment function, and 
the model-valuation pair at a formula occurrence 'Pi can be read off from the model 
M for the assumptions of .6. and the assignment Ab. ('Pi). 

Let all assumptions of .6. and its conclusion be without individual constants. If all 
assignment statements in .6. have been discharged, and rp1 is an assumption of .6., then 
As b. ( <,01) and As b. (<,On) are empty. In this case the assignment statements occurring 
in the course of the derivation represent arbitrary assignments to the v-terms, and 
we can conclude that the conclusion holds on a model for the assumptions for every 
assignment of values to the v-terms. 

3 The existential quantifier 

In this paragraph we are going to put the assignment statements to use. As a case 
study, we will investigate the existential quantifier. First we define an elimination and 
introduction rule for the existential quantifier which require assignment statements 
involving Hilberts E-terms. We will explore how far the basic assignment rules get 
us in defining the classical quantifier. It will turn out that the basic rules alone give 
us only a rudimentary quantifier which does not allow for quantifier interactions. We 
will suggest two rules to extend the basic framework which give us the interaction 
principles of the standard quantifier. 

3.1 Elimination and introduction 

Our interpretation of the existential quantifier is guided by an example from [2). Ac
cording to this author, the paradigmatic form of reasoning with existential information 
is exemplified by the following move in a mathematical argument 

"There exists a bisector to the angle a. Call it B" 

In our language we can give a straightforward rendering of this form of reasoning by 
a combined use of assignment statements and €-terms. The formulation of this rule 
requires all components of the language. 

3 As~ is dependence closed if, whenever t1 := t2 E As A. and t1 -< tg, then there is a t4 such tha.t t3 := t4 E As~ 



232 A Proof-theoretic Treatment of Assignments 

The elimination rule 

eE-Rule 
3x<p ex<p := a 

<p[a/x] 

In the formulation of the eE-rule, 3x<p, "There is a <.p- er", is the major premise. The 
assignment statement exc.p := a, "Call it a", is the minor premise of the application. 
The major premise introduces a generic proper term in the proof discourse to which 
reference is possible in the subsequent proof (by 'it', or 'that <.p-er'). 

In the language this object takes the form of an e-term exc.p. The minor premise 
assigns a value a, the proper term to this object. In this rule, the formula <p[a/x] is 
a conclusion4 • Consequently, "There exists a bisector to the angle a. Call it a", has 
the conclusion: "So a is a bisector to angle a. 

Semantically, the assignment ex<p := a represents a 'friendly' choice of value to the 
variable x which has to satisfy c.p. Given the premise 3xc.p, such a friendly choice can 
find such an element. This justifies the conclusion. 

Proof-theoretically, notice that by the assignment exc.p := a, the proper term a 
proof-theoretically depends on all individual constants occurring in 3xc.p. By conse
quence, the conclusion c.p[a/x] of the eE-rule does not hold for arbitrary a satisfying 
<.p, but only for those that depend on the parameters in c.p: the existential quantifier 
ranges over dependent objects. The major premise of the eE-Rule, 3x<p tells us that 
there is an element dependent on the parameters in 3xc.p satisfying c.p. The minor 
premise gives a piece of dependency relation: a proper term a depending on the pa
rameters in exc.p. The conclusion then gives us the fact that this dependent element 
a satisfies <p. By consequence, the corresponding rule eliminating the proper term 
(introducing the existential quantifier) should not allow us to conclude 3xc.p from ar
bitrary <p[a/x]; we have to know that the term a in fact depends on the parameters 
in 3x<p. 

Putting the term defining rule, eE, and the second assignment rule, R2, together 
we get the following 

3xc.p [ex<p := a](l) 
c.p[a/x] 

e[exc.p/a] (-1) 

Because of the conditions on R2, the constant a does not occur in c.p, in ~ or in any 
term in :E. If a does not occur in e then we have the standard discharge conditions 
of the elimination rule for the existential quantifier. 

Properties of eE The eE-rule combined with the standard logical rules give us the fol
lowing interactions of e-terms, existential formulas and their assignment statements: 

1. {3xc.p, exc.p :=a} 1-.E c.p(a) 
Given that there are c.p-ers, then ex<.p is assigned a c.p-er as value. 

2. {exc.p :=a, •<p(a)} 1-.E •3xc.p 
If ex<.p is assigned a non-<.p-er as value, then there are no c.p-ers at all 

4 not a.n assumption a.a is the cue in applications of the standard (3E) rule. 
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3. f-eE 3xcp-+ Vy(excp := y-+ cp(y)) 
If there are cp-ers, then any value assigned to excp will be a r.trer. 

Combined use of eE and Rl gives us 

4. {3xcp, 'ljl(excp), excp :=a} f-eE 'ljl(a) /\ cp(a). 

Including also R2 we get 

1. f-eE 3xcp-+ cp(excp) 

These give universal demands for all models with value assignments interpreting the 
e-terms. 

The introduction rule 
Corresponding to the eE-rule which eliminates an existential quantifier, we have to 
formulate an introduction rule for this quantifier. The standard rule (3I), 

cp[t/x] 
3xcp 

where t should be free for x in cp. This rule allows us to conclude 3xcp for arbitrary 
t such that cp[t/x] holds. This reflects the interpretation of the existential quantifier 
in terms of non-emptiness of definable subsets. However, this rule is not symmetric 
to the elimination rule eE. The symmetric rule should only allow the conclusion cp(t) 
for terms t dependent on the parameters of 3xcp. We will consider the following 
introduction rule: 

DEFINITION 3.1 (THE d-RULE) 

cp[a/x] excp :=a 
3xcp 

From the fact that cp[a/x] holds and the fact that a is the value of some assignment 
to excp, we can conclude to 3xcp. 

If the premise cp depends on assumptions that do not contain a, then the assignment 
can be discharged. If this is not the case, then 3xcp cannot be concluded solely on the 
basis of cp[a/x]. Notice that this rule need not remove all occurrences of the proper 
term from the major premise 

R(x, a)[a/x] exR(x, a) := a 
3xR(x,a) 

By the d- rule we can abstract over some, but not all, occurrences of a given term 
in a formula. In this case we have to use a reflexive assignment statement. So this 
statement cannot have the status of an assumption. In derivations with the eE and 
d-rules, the object is to have the right assignment statements present to introduce 
existential quantifiers. In the above example the statement exR(x, a) :=a cannot be 
taken as an assumption if we want all assignment statements to be discharged at the 
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conclusion. Extending the basic eE-eI calculus with rules to derive fresh assignment 
statements will achieve this. 

The symmetry between the introduction and elimination rule has the curious conse
quence that the nature of the quantifier does not appear anymore from its introduction 
and elimination rule. The full load of determining the nature of the quantifier is is 
carried by the generic terms used in their application. 

REMARK 3.2 
Fore-terms the general choice functions evaluating v-terms satisfy: for all N E 'P(M): 

~(N) _ { m E N if N '# 0 
- m E M otherwise 

3.2 Pure term logic 

Starting from the premises "There is a bisector to angle a." "Call it a." we have 
concluded "So a is a bisector to angle a". Now we use this instance to show "a has 
property {". We retract the specific instance chosen and conclude: "There exists a 
bisector to the angle a. It has property f'. 

Finally, to get to standard, anaphor-free logic, we have to rid ourselves of 'it'. For 
instance, by concluding "There exists a bisector to angle a. So there exists a ~-er". 
In graphic form, we get the procedural nesting 

3x(/' 

(/'(€X(/'/Xj 

€X(/' :=a 
(/'[a/x] 

e 
€[ex<p/a] 

3x~ 

The outer box contains the first-order language without e-terms or individual con
stants. In this box the existential formulas consitute the antecedents for the e-terms 
in the middle box. In this box we find the pure term fragment of the language .C. 
I.e. the C formulas without quantifier symbols (in formulas or e-terms) and with
out individual constants. The terms in this box are assigned values in the deepest 
box. This box we leave by discharging the corresponding assignment statement. We 
leave the middle box by introducing the existential quantifier, i.e., setting up a fresh 
antecedent. 5 

In this calculus we can reduce all antecedents to logically equivalent anaphoric 
forms by the derivations 

3xcp (excp := a]{O) cp[excp/x] [excp := a](O) 
cp[a/x] cp(a/x] [excp := a] 

cp[excp/x] (-0) 3xcp 
3xcp (-0) 

6 A standard proof of conservativity of this calculus over first-order logic shows that everything that can be 
derived from the anaphoric framework based on non-anaphoric formulas can also be derived anaphor-free. 
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Consequently, f- 3xc.p ++ c.p[exc.p/x]. In fact, if we define a quantifier£, by exc.p =df 
c.p[exc.p/x] , then the assignment rules take over the role of the quantifier rules, given, 
of course, the specific interpretation of the e-terms. The Rl rule then eliminates 
e-terms and discharge is taken care of by R2. In pure assignment terms 

exc.p [exc.p := a](O) 
c.p[a/x] 

exc.p (-o) 

This is a correct derivation if the term a does not occur in c.p. Here the discharge of 
the assignment statement coincides with the introduction of the quantifier ex. 

By these rules, every e-free first-order formula is logically equivalent to a pure, 
quantifier-free, term form. 6 

We will concentrate on this defined existential quantifier and consider the rules 
necessary to turn this operator into the quantifier of standard logic. 

When we define the existential quantifier£ as exc.p =df c.p[exc.p/x], we have to show 
that the corresponding identity vyexc.p =df vyc.p[exc.p/x] for v-terms is well-defined. To 
show that this is the case we will derive vyexR(x, y) :=a++ vyR(exR(x, y), y) :=a. 

exR(x,y) [exR(x, y) := b](l) 
R(b,y) 

ExR(x, y) -+ R(b, y) 
exR(x, y) -+ R(exR(x, y), y)) (-1) 

and 

R(exR(x, y), y) [exR(x,y) :=b](l) 
exR(x, y) := b R(b,y) 

exR(x,y) 
R(exR(x,y),y)-+ exR(x,y) 

R(exR(x,y),y)-+ exR(x,y) (-1) 

The conclusion now follows with the EQ rule for v-terms. 
Introducing the existential quantifier by definition in this way, the full burden of 

determining the logical properties of the quantifier lies with the rules for e-terms and 
assignment statements. Each family of indefinite terms is determined by its set of 
rules. For instance, the 'critical formula' schema 

c.p[t/x]-+ c.p[exc.p/x] 

reduces the quantifier£ to 3 in one fell swoop [5]. For our purposes we will proceed 
more slowly 

DEFINITION 3.3 (INDEFINITE QUANTIFIERS) 

A variable binding term operator v determines a family of indefinite quantifiers if it 
satisfies the schema 

(c.p(vxc.p) V 1/J(vx'I/;)) ++ (c.p(vx(c.p V 1/J) V (1/J(vx(c.p V 1/J)). 

We will reserve the symbol 'e' for vbto's satisfying this schema. 

6 In this pa.per we will only dea.l with the existential quantifier. The universal quantifier will ta.ken to be the 
standard one. However, it is easy to determine the pure term form of dual of the qua.ntifler e. For I- -.£-.mcp ++ 
l"[•:z:~l"/:z:]. 
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Fore an indefinite operator, the corresponding quantifier satisfies ex(cpV'lj;) ++ excpV 
ex'l/J. To get such an operator we can give the following rules for assignments to 
e-terms This gives us the 'single quantifier' principles for the indefinite t:x. 

I1 
cp[a/x] excp :=a 

ex(cp V 7/J) :=a 
I2 

cp[a/x] ex(cp V 7/J) :=a 
excp :=a 

FIG. 3. Rules for Indefinite v-Terms 

EXAMPLE 3.4 (SOME TYPICAL PRINCIPLES) 

1. ex(cp /\ 1/J) -+ excp /\ excp 

(cp /\ 1/J)[ex(cp /\ 1/J)/x] 
(cp /\ 1/J)[ex(cp /\ 'l,b)/x] V (cp /\ -,1{;)[ex(cp /\ -,'l,b)/x] 

(cp /\ 1/;)[ex((cp /\'If;) V (cp /\ -icp))/x] V (cp /\ -i'l,b)[ex((cp /\ 'l,b) V (cp /\ -i'lf;))/x] 
( cp /\ 1/J) [excp /x] V ( cp /\ ...,1/J) [excp / x] 

2. ex(t:xcp -+ cp). 
Notice that we have cp[a/x],excp := a/ex('l,b-+ cp) :=a by I1 and the EQ rule. 
This gives 

(0)(1) 
e:i:(ip[ex<p/x] -+ ip) :=a 

[<,0(ex<p/x)(O) 

i,o[ex(i,o[exi,o/x]-+ <,0)/x] 
i,o[exi,o/x]-+ i,o[ex(i,o[exi,o/x]-+ i,o)/x] (-0) 
i,o[exi,o/x]-+ i,o[ex(ip[exi,o/x]-+ i,o)/x] (-1) 

3. excp /\ 1/J[excp/x]-+ ex(cp /\ 1/J). 

[ex<p := a)(l) 
\0 a/x 

This constitutes the extension of scope of an existential quantifier known from 
dynamic logics. Rl gives us already £xcp /\ 'l,b[excp/x] /\ excp := a -+ cp[a/x] /\ 
'lf;[a/excp]. Now the I2 rule supplies the relevant assignment ex(cp /\ 1/J) :=a (note 
that cp ++ ( cp /\ 1/J) V ( cp /\ -i'l,b)). 

REMARK 3.5 
In semantic terms, the rules I1 and I2 mean that the value range of a subset N of the 
domain M of M under the set of choice functions of model M is the union of the 
value ranges of its subsets. 

Limitations of the basic indefinite 
The quantifier ex defined by the rules I1and12 gives us an indefinite quantifier which 
behaves like the existential modality of the minimal modal logic. But the rules I1 
and I2 do not give us quantifier interaction principles of standard first-order logic. 
To see this we note the following. Every formula cp in the pure term language can 
be supplied with a structure (e(cp), -<'I') of all e-terms occurring in cp ordered by the 
syntactic dependency relation on e-terms. In the course of a Rl-R2 derivation with 
assumptions and conclusion in pure e-terms, the dependency relation among the terms 
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in a formula occurrence becomes a proof-theoretic one. That is, the dependencies can 
no longer be read from the syntactic structure of the terms, but derive from the proof
theoretic context; in particular, from the assignment statements that are assumptions 
to the formula occurrence. And the dependency structure in an Rl-R2 derivation of 
a formula is 'preserved': if an atomic subformula <p of the conclusion can be traced 
to an atomic subformula 'ljJ of an (undischarged) assumption, then the e-terms on 
corresponding predicate locations in <p and 'ljJ are dependency related in the same way 
to the remaining e-terms in that subformula.7 In particular we have the following 
lemma. 

LEMMA 3.6 
Let R( ti, ... , tn) and R( t~, ... , t~), be two quantifier free closed formulas, where every 
term ti, t~, for 1 ~ i ~ n, is quantifier free. Let f- denote the derivability relation 
determined by the assignment rules Rl,R2, the 11-term rules IV and EQ, and the 
e-Rules eE, d, 11 and I2, then, if I- (R(ti, ... , tn) ++ R(ti, ... , t~), then for all 1 ~ 
i,j ~ n ti ~ tj iff t~ ~ tj. 

On the other hand, quantifier interaction principles generally change dependency 
structure, so these will not be derivable by the calculus of the above lemma. Consider, 
for instance, a derivation of EyExR(x, y) from ExR(x,x): 

ExR(x,x) [exR(x,x) :=a] (1) 
R(a, a) exR(x, a) := a(2) 

ExR(x,a) eyExR(x, y) := a(3) 
EyExR(x,y) 

_...._____ 
In pure term formulation, this is a derivation of R(exR(x, eyExR(x, y)), eyexR(x, y)) 
from R( exR( x, x), exR( x, x)). A dependency arises in the conclusion that is absent 
in the assumption. We note that none of the assignment statements (1),(2), or (3) 
can be discharged. Semantically, this entails that only specific models for ExR(x, x), 
with the right kind of choice functions, are models for EyExR(x, y). 

In order to be able to derive the latter formula from the former we need rules to 
derive the reflexive assignment statement exR(x, a) :=a from the premises ExR(x, x) 
and exR(x,x) :=a. 

7To be more specific. Let L\. be a. normal Rl-R2 pure term derivation in which all assignment statements have 
been discharged and a.11 minimal formula are atomic. Consider a path 1T' in .0. of length n. ending in the conc:lusion. 
Let X:Tr be the rninimal formula occurrence R(ti, ... 1 tk) of 1T', We now identify with every node i of 1t' a formula 'Pi 
as follows. If the occurrence cp at node i of n is the major premise of an E-rule, then V'i is the sma.llest subformula 
of '{) such that Xn is a. subformula. of 'Pi. If cp is the conclusion of a.n introduction rule, then 'Pi is the largest 
subformula. of cp that ia a. subformula of Xn. 

Now consider the sequence CfJi, ... V'n of atomic formulas for path 11'. Let T(tpi} be the set of individual constants 
and •-terms occurring in 'Pi. The elements of 7(<p;) are mapped to the terms in 7('f1;+1) occurring at the same 

Rk location in 'Pi+l · The composition of these mappings relates 'il'l to 'Pn.. If all assignments statements in tJ.. 
have been discharged, then identifying terms by their predicate location gives an isomorphism between the .syntactic 
dependency structures of \01 and 'Pn: terms occurring at the same locations in 'Pl and 'l'n a.re in the same way 
syntactically related. 

To show this, the only hitch we have to overcome is the fa.et that, by applications of the double negation elimi
nation, only some occurrences of the argument of an assignment ata.tement may be eliminated in favor of the value. 
I.e., R(t, t), t :=a/ R(t, a) is allowed. In this situa.tion we get splitting up of the term t in t e.nd a (the cardinality 
of 'T('Pi+1) is larger than that of 'T(cp;)). However, becau&e all a.saignment statements in ai,. have been discharged, 
the different terms t and a must have been identified again (i.e. as t) at the conclusion. 
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3. 3 Subordination 

Whenever a set of assignment statements As has a circular subset C of cardinality n, 
we can derive from C n reflexive assignment statements of 'depth n'8 • 

{t1(a) := b,t2(b) := c,t3(c) :=a} f- t3(t2(t1(a))) :=a 

by the derivation 

ti(a) := b 
ts(c) :=a 

Conversely, from a reflexive assignment statement of depth n we can create a circular 
set of n elements 

{t1(t2(t3(a))) := a,t3(a) := b,b(b) := c} f-ti(c) :=a 

by 
ti(t2(t3(a))) :=a t3(a) := b 

ti(c):=a 

Notice that we have here circular proof-theoretic dependency, which cannot be reduced 
to pure syntactic dependency: the construction of €-terms does not allow this. There 
is no way in which, for instance, ExR(x, b) :=a and EyQ(a, y) := b can be reduced to 
an assignment statement with only E-terms. 

To get the full power of the classical existential quantifier we will need to have reflex
ive assignment statements available for E-terms. Because these are non-dischargeable 
as assumptions of a derivation, rules are required which allow us to derive them from 
well-founded sets of assignment statements. The rules we will suggest consist of 
an introduction and elimination rule for subordination. These rules apply only for 

SI 
cx<p excp := a 

ex( cp[x/ a]) := a 
SE 

f.x(cp[x/a]) Ex(cp[x/a]) :=a 
€X<p :=a 

FIG. 4. Subordination Rules 

EXcp E £, i.e., if the variable x actually occurs free in cp. 
With these rules, we can derive circular sets of assignments from well-founded ones. 

For instance, given £xR(x, EyQ(y, x)) we have by SE and Rl 

ExR(x, EyQ(y, x)) :=a 
ExR(x, EyQ(y, a)) :=a 

ExR(x, b) :=a 
EyQ(y, a) := b 

8 A circular assignm.ent statement has depth n if the value of the statement occurs in the argument in the scope 
of n v-:aymbols. 
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By eliminating subordination we create a circular set of assignment statements from 
{1, 2}, a well-founded set. Conversely circular sets allow us to introduce subordina
tion. Given ExR(x, eyQ(y, a)) we have by SI 

exR(x, b) :=a eyQ(y, a) := b 
t:.xR(x, t:.yQ(y, a)) :=a 
exR(x, eyQ(y, x)) :=a 

So we see an inti~ate relationship between subordination and circular sets of assign
ment statements. A special case of the SE-rule is the following 

extp(x, x) :=a 
extp(x, a) := a 

REMARK 3.7 
The soundness of these rules under the variant interpretation can be (informally) 
argued for as follows. Take assignment statement exR(x, x) := a and consider rule 
SE . A model M, <!> for 3xR(x, x) where this assignment statement holds will have 
I(a) = <J.>({b I M,<J.> I= R(b,b)[g]}). But it need not be that I(a) = VM,~(t:.xR(x,a)). 
However, because I(a) E {b I M, 4> I= R(b, a)[g]}, there will always be a exR(x, a)
variant <!>'of <P such that I(a) = V M,~' (exR(x, a)). The existence of such a variant is 
guaranteed on any model for 3xR(x, x) and exR(x, x) :=a. The truth of 3xR(x, x,) 
is essential. If this formula where false on a model, then V M,~ would assign an 
arbitrary element to exR(x, x), for instance I(a). But 3xR(x, a) might still be true 
on this model. In this case exR(x, a) cannot be assigned the value J(a): there is no 
variant of <P verifying t:.xR(x, a) :=a. 

Analogous argumentation shows the soundness of SI. 

Weakening of the existential quantifier 
Consider again weakening of existential quantifier. Now this is derivable by the as
signment rules Rl and R2, and SI and SE. 

ExR(x,x) [exR(x,x) :=a] (1) _ill_ (1), eyR(y, y) :=a 

R(a, a) exR(x,a) :=a 
ExR(x,a) eyExR(x, y) :=a 

EyExR(x,y) 
EyExR(x,y) (-1) 

In this case we can derive the necessary assignment statements. We get t:.xR(x, a) :=a 
from exR(x, x) := a by SE straightforwardly. For the premise eyExR(x, y) := a 
consider the derivation 

eyR(y, y) :=a 
eyR(a, y) :=a 

eyR(exR(x,a),y) :=a 
eyR(t:.xR(x,y),y) :=a 

eyExR(x,y) :=a 

exR(x, a) := a 

eyR(y,y) :=a follows from exR(x,x) :=a by the IV rule for v-terms. 
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Permutation of existential quantifiers 
Both SI and SE rules are necessary to get the standard quantifier permutations and 
weakenings. We derive [x[yR(x,y)--+ £y£xR(x,y) as follows 

exeyR(x, y) [ExeyR(x, y) :=:a] (1) (1, 2) 

eyR(a, y) [EyR(a, y) :=: b] (2) 

R(a, b) ExR(x,b) :=a (3) 
ExR(x, b) 

(1, 2) 

eyExR(x,y) := b (4) 
EyexR(x, y) 

EyExR(x, y) (-2) 
EyExR(x, y) (-1) 

If we have to assume (3) and (4), then [y[xR(x, y) follows only from 
{£x£yR(x,y),(1),(2),(3),(4)}, for none of these assumptions can be discharged at 
the conclusion. 

The subordination rules, however, allow us to derive permutation of existential 
quantifiers, by deriving (3),(4) from (1),(2). This derivation uses the theorem 

Here it is 

I- Vx(£yR(x, y) +-+ R(x, EyR(x, y)) 

Ex[yR(x,y) :=a (1) 
ExR(x, EyR(x, y)) :=a 
ExR(x,EyR(a,y)) :=a EyR(a,y) := b (2) 

ExR(x, b) :=a (3) EyR(a, y) := b (2) 
EyR(ExR(x, b),y) := b 
EyR(ExR(x, y), y) := b 
Ey[xR(x,y) := b (4) 

In fact, the subordination rules give us all standard permutations of quantifiers [7]. 
So to get the standard existential quantifier in pure term logic we have to supply the 
basic logic, which is characterized by dependency as a conversely well-founded strict 
partial order, with rules that derive circular dependencies. Derivations in which the 
rules SE and SI are used show the actual principles of movement which effect changes 
in the dependencies among terms. 

Movement 
A reversal of dependency involves more than is visible in the quantifier formulas 
[x[yR(x, y) and [y[xR(x, y). This becomes clear when the pure term equivalents are 
considered. We will follow the derivation of the permutation of existential quantifiers 
in pure term form. The assumption [x£yR(x, y) then corresponds to 

(i) R(ExR(x, f.yR(x, y)),€yR(ExR(x, EyR(x, y))), y)) 

a a 

b 
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and the conclusion £y£xR(x, y) to 

(iii) R(cxR(x, cyR(cxR(x, y), y)), cyR(cxR(x, y), y))) 

b b 

a 

In standard logic these forms are logically equivalent, i.e., interderivable. Standard 
logic does not respect the dependencies within an atomic formula. 9 In pure term form 
an atomic formula r.p determines a dependency structure (£(cp), -<). The basic rules of 
our calculus preserve this dependency: if f- (R(t1 , ... , tn) t+ R(t~, ... , t~), then ti -< tj 
iff t~ -< tj. Logical equivalence in this system is sensitive to dependency. Classical 
logic abstracts over the dependencies. Atomic formulas with different dependencies 
among their terms may have the same (truth-functional) meaning. The derivation 
of one atomic formula from an equivalent carrying a different dependency structure 
shows the mechanisms by which the changes in this structure are achieved. What 
happens in the derivation of (iii) from (i) is that we reach an intermediate form in 
which the dependency relation between the locations in R has been reversed, but the 
original, unlifted 'antecedent', is still present, embedded in the new term. There is a 
trace of liftings, of movement. 

The following derivation supplies, in pure term form, the reversal of the dependency 
between a and b. Given t:xR(x, cyR(x, y)) we have by SE and R2 

[cxR(x, cyR(x,y)) :::::: a](l) 
cxR(x, cyR(a, y)) :::::: a 

cxR(x, cyR(cxR(x, cyR(x, y)), y)) := cxR(x, cyR(x, y)) (-1) 

a a 

b 

The term cxR(x, cyR(x, y)) can be lifted. 10 The lifted form replaces the old one in the 
derivation reversing the dependency relation with respect to cyR(cxR(x, cyR(x, y)), y) 
(::::: b). 

a a 

(ii) R(cxR(x, cyR(cxR(x, cyR(x, y)), y)), cyR(cxR(x, cyR(x, y))i, y)) 

b b 

a 

(This corresponds to £xR(x, b) in the previous derivation). The dependency between 
a and b has reversed. Notice that the term a is the value of more than one constituent. 
By definition, this form is equivalent to £xR(x, cyR(€xR(x, 13.yR(x, y)), y)). But this is 
not by definition the same as £y£xR(x, y). To establish the latter we have to continue 

9 Notice that the location of the term in the formula R(x, y) does not change. So if we assume that the atomic 

predicate assigns 'roles' to its argument places, then only the dependencies between terms change, not the roles 

assigned to them. 
10 Here it is clear that the assignment predicate (:=) can not be interpreted as identity (=) 1 for 1 in 

the standard E-calculus, , under the standard interpretation of e-terms by choice functions 4>, the terms 

ExR(x, t:yR(E:i;R(::c, EyR(z, y )) and exR(x, EyR(x, y)) need not receive the same va.lue. However, there always is 

an t::a::R(a::, eyR(x, y))-variant ~1 of cf. which assigns these terms the same value. 



242 A Proof-theoretic 'Il-ea.tment of Assignments 

the derivation. The derivation of assignment statement (4) from (1),(2) gives us in 
pure term form 

,,....,.-., .-"---.. 
eyR(exR(x, y ),y) := ey(exR(x,eyR(x,y)),y) 

b 

This represents a lowering of terms (7). Substituting the argument of this assignment 
for its value in (ii) gives the desired conclusion 

(iii) R(exR(x, eyR(exR(x, y), y)), eyR(exR(x, y), y)) 

b b 
a 

Conclusion 

In the logic of assignment statements we have developed a system in which depen
dencies between terms are taken seriously. These dependencies can occur in syntactic 
and in proof-theoretic form. The deductive machinery of the calculus supplies us 
with means to eliminate syntactic dependecies in favor of proof-theoretic ones and 
vice versa. In this calculus the basic rules are sensitive to the dependencies: logically 
equivalent instances of the same predicate must carry the same dependency structure. 
To make logical equivalence insensitive to dependency, rules for movement have to be 
added to the system. In this calculus these rules take the form of subordination rules. 

In the set of term equivalents of first-order formulas, we can identify the base 
generated formulas as the ones that are derivable from first-order formulas by means 
of dependency preserving rules. The base generated formulas can be subjected to 
the subordination rules which effect movement of dependency. This identifies a set 
of transformational variants of the base generated formulas. Consequently, the logic 
of assignment statements suggests a proof-theoretic treatment of concepts central to 
linguistic theory. 
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