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Abstract. This paper introduces a logic for a cla.ss of properties - in 
particular variable aliasing - used in static analysis of logic programs. 
The logic is shown to be sound, complete and decidable. Moreover, it is 
illustrated how this logic can be applied to automatize some parts of the 
reasoning when proving the partial correctness of a logic program. 

1 Introduction 

A number of properties of substitutions have been identified as crucial when 
analyzing the run-time behaviour of logic programs. They involve groundness 
and aliasing: for a substitution a, a variable x is said to be ground if xa does 
not contain variables; x and y are said to share, or to be aliasing if :r:a and ya have 
at least a variable in common. These properties are relevant in static analysis 
of logic programs. For instance, detection of groundness of certain variables of 
the program at run-time allows to improve efficiency, by using matching instead 
of unification. Also, if the arguments of two atoms at run-time do not share any 
variable, then they may be executed in parallel. 

Various assertional methods to prove the correctness and termination of a 
logic program incorporate these properties in the assertion language ([DM88], 
[CM91]; see [AM94] for an overview and comparison of various assertional meth
ods). These properties play an even more fundamental role in abstract interpre
tation of logic programs, where they are used to compute approximations of the 
set of all possible substitutions which can occur at each step of the execution 
of the program. The abstract interpretation approach, developed in (CC77] for 
data-flow analysis of imperative programs, has been successfully applied to logic 
programs (see (AH87] for a brief introduction to the major stages in the develop
ment of the field; see (CC92] for a survey on its applications to logic programs). 
Since both the problems of groundness and of sharing among program variables 
at run-time is undecidable, it remains a hard problem to find an abstract inter
pretation framework for the study of aliasing that is efficient and that provides 
an accurate analysis. 

We introduce a logic where the relation symbols var, ground and share are 
used to express the basic properties we intend to study and the logical operators 
/\ and ..., are used to express composite properties. Then the semantics of the 
resulting assertions consists of a set of substitutions, where /\ and ..., are inter
preted as set-theoretic intersection and complementation; the atoms var(t) and 
ground(t) are interpreted as the set of substitutions which map the term t to a 
variable and a ground term, respectively; finally the semantics of share(ti, ... , tn) 
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is the set of substitutions which map the terms t1, ... , tn to terms sharing some 
variable. A system of inference rules (used as rewrite rules) is introduced which 
allows the definition of a terminating procedure which decides truth (hence sat
isfiability) of assertions in the logic. As an example, we illustrate how this 
procedure can be applied to mechanize some parts of the reasoning when prov
ing the partial correctness of a logic program. 

In [CM92] unification in logic programming is characterized by means of 
a predicate transformer, where also the assertions of our logic are considered. 
Moreover, a number of rules occurring in the present paper (viz. the singleton 
rules of Table 1) are there implicitly used to simplify the form of an assertion. 
However, the problem of finding a complete axiomatization of these properties 
is not investigated. 

A formalization of groundness by means of a propositional logic has been 
given in [MS89). The propositional logic is used as an abstract domain, to analyze 
variable groundness in logic programs. That logic has further been studied in 
[CFW91]. However, to the best of our knowledge our contribution is the first 
rigorous study of those properties of substitutions expressed by groundness, var 
and aliasing together with their relationship. 

2 A Logic for Properties of Substitutions 

Syntax 

We shall consider terms containing variables. Formally, consider a countable set 
Var of variables. Let Fun be a set of functors with rank, containing a set Const 
of constants consisting of the functors with rank zero. The class Term of terms is 
the smallest set T containing Const UV ar and with the property that if t1 , ... , tn 
are in T and f E Fun has rank n then f ( t1, ... , tn) is in T. Then a substitution O" 
is a map from Var to Term such that its domain dom(O") = {x E Var I XO" "Ix} 
is finite. The definition of substitution is extended in the standard way to terms 
in Term, where for a substitution O" and a term t the term tO" is obtained by 
simultaneously replacing every variable x of t by the term XO". Moreover for a 
set S of terms and for a substitution O" we denote by SO" the set { tO" I t E S}. 
The set of substitutions is denoted by Subst. 

For a syntactic expression o, Var( o) denotes the set of variables occurring 
in o. Variables are denoted by v, x, y, z. Functors are indicated by f, g and con
stants by a, b, c. Terms are denoted by the letters r, s, t. The capital letter Sis 
used to denote a finite set of terms, while ISI indicates the cardinality of S. 

Properties are expressed by means of formulas called assertions. 

Definition 1. {Assertions) The set A of assertions is the smallest set A of 
formulas containing the atoms var(t), ground(t) for all terms t in Term, and 
share(S) for all sets S of terms in Term, and with the property that if</> is in 
A then -i<f; is in A, and if <f; and 'I/; are in A then </> /\ 'I/; is in A. 
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The notation <P V 1/; is used as a shorthand for -i( -i</J /\ -i'I/; ). Atoms and their 
negation form the class of literals, where a literal is denoted by L. 

Semantics 

An assertion <P is interpreted as a set [<P] of substitutions. Logical connectives 
are interpreted set-theoretically in such a way that set intersection and union 
correspond to /\ and V, respectively, while complementation (w.r.t. Subst) cor
responds to -i. Atoms are interpreted as follows: var(t) is the set of substitutions 
which map t to a variable, ground( t) is the set of substitutions which map t to a 
term containing no variables, and share( { t 1 , ... , t,1.}) is the set of substitutions 
which map t1, ... , tn to terms containing at least one common variable. 

Definition 2. (Semantics) 

[var(t)] ={a E Subst J ta E Var}; 

[ground(t)] ={a E Subst J Var(ta) = 0}; 

[share({s1,. . ., Sn})]= {a E Subst I n~=l Var(sia) i 0}; 

[</JA'!/;]= [<P] n ['!/;]; 
[-i</J] = Subst - [</J]. 

D 

If [<P] = Subst then <P is said to be true; if there exists a s.t. u E [<P] then 
<P is said to be satisfiable. Two assertions <P and 1/; are said to be equivalent if 
[<P] = ['!/;].Notice that share({t}) is equivalent to -iground(t). Therefore we 
will assume in the following that only atoms of the form share(S), with JSJ 2:: 2 
occur in an assertion. Moreover it is convenient to introduce the propositional 
constants true and false where [true] = Subst and [false]= 0. 

Assertions satisfy the classical replacement theorem. 

Theorem 3. Let 1/; be a sub-assertion of an assertion <,b. Suppose that 1/; is equiv
alent to .,P'. Let <P' be the assertion obtained replacing zero or more occurrences 
of 'lj; in </> by the assertion 1/;1• Then </> is equivalent to </>'. 

Proof. Easy, by induction on the number of connectives occurring in </J. D 

3 Axiomatization 

In this section, a system of axioms and inference rules is introduced, where all the 

rules are of a particular simple form $, where </> and 'lj; are assertions in A. The 

meaning of a rule is that <P and 'lj; are equivalent. Equivalence is required because 
rules will be used as rewrite rules: 'lj; will be replaced by </>. We shall apply then 
rules also to formulas that occur as subformulas of a larger formula. This will 
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still preserve equivalence because of Theorem 3. For instance, the application of 

the rule ~ to the formula 1/; V -iefJ produces the formula </> V -iefJ. 
The system is used to define, in the following section, a terminating procedure 

which reduces an assertion </> to true if and only if efJ is true. 
The following collection of general rules will be used to simplify the form of 
assertions. 

Gl true G2 -ifalse G3 efJ V •efJ G4 efJ V true 

We consider two other collections of rules, given in Tables 1 and 2: the single
ton rules which describe the semantics of an atom by investigating the structure 
of its arguments and the combination rules which describe the semantics of dis
junctions of literals. 

Notice that, in the singleton rules, k is greater or equal than 0. Moreover if 
k = 0 then V iE[l,k) rPi and J\e[l,k] rPi should be read as false and true, respec
tively. Moreover, in the combination rules S, 81 and S2 denote sets of variables. 

Sl false 
var(f(s1, ... ,sk)) 

S2 

S3 

/\ ground(si) 
iE[l,k] 

V share(S U {Si}) 
iE[l,k] 

share(S U {f(s1, ... , sk)}) 

Table 1. Singleton Rules 

Theorem 4. General rules, singleton rules and combination rules are equiva
lences. 

Proof. For the general rules the result follows direct from Definition 2. For a 
rule * we have to show that a substitution is in [efJ] if and only if it is in ['ljl]; 
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Cl •ground(x) V •var(x) 

C2 --.var x 
ground x V •var x 

C3 -.ground x) 
•ground x V var x 

C4 •ground x 
-.ground x V share SU x 

C5 --.ground(x) v--.share(S U {x}) 

C6 --.share(SU x}) 
ground x V -.share S U x 

C7 

CS share(S1) V --.share(S1 U 82) 

Table 2. Combination Rules 

for an axiom <P we have to show that every substitution is in [if>]. Let a be an 
arbitrary substitution. Notice that 

k 

Var(f(s1, ... , sk)a) = LJ Var(s;a). 
i=l 

Sl: f(s1, ... , sk)a is not in Var. 

(1) 

S2: From (1) it follows that Var(f(s1, ... , sk)a) = 0 if and only if Var(s;a) = 0 
for i E (1, k]. 

S3: From (1) it follows that n,es Var(sa)n Var(f(s1, .. ., Bk)a) =fa 0 if and only 
if nsES Var(sa) n Var(s;) =/; 0 for some i E (1, k]. 

C2: a E [ground(x)] implies Var(xa) = 0 which implies a E [•var(x)]. 
C6: a E [ground(x )] implies Var(xa) = 0 which implies a E [--.share(S U {x} )]. 
C7: If xa </. Var then the result follows immediate; if xa E Var then Var(xa) n 

nyES1 Var(ya) n n .. es2 Var(za) = 0 if and only if xa rt. nyES1 Var(ya) or 
xa rf_ n .. es2 Var(za). 

C8: If nyESi Var(ya) =/; 0 then a E [share(S1)]; if nyESi Var(ya) = 0 then 
nyES1US2 Var(ya) = 0 which implies a E [--.share(S1 u 82)]. 

j 
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Moreover it is easy to check that rules Cl and C3 can be derived from rule C2 
by straightforward set operations. Analogously, rules C4 and C5 can be derived 
from rule C6. These rules are useful in the following section. 

D 

4 Soundness, Completeness and Decidability of the Logic 

The system of rules introduced in the previous section allows to define a termi
nating procedure which applied to an assertion <f; yields true if and only if <f; is 
true. For technical reasons, it is convenient to have only one axiom, namely ( G 1): 
thus every other axiom cp is translated into the rule T. First, the singleton 

rules are used to reduce cp to a form called flat form; next the conjunctive normal 
form <f;1 /\ ... /\ <Pn is computed; finally every conjunct <Pi is reduced to a normal 
form by means of the combination rules and the general rules and the outcome 
true is given if and only if the resulting conjuncts are equal to true. 

4.1 Flat Form and Normal Form 

Definition 5. (Flat Form) An assertion is in fiat form if it does not contain 
any functors. 

For example the assertion share( {f (x), y}) /\ var( x) is not in fiat form (be
cause the term f (x) contains a functor) while the assertion -ivar(x )V(ground( x )/\ 
share({y,z})) is in fiat form. 
The (proof of the) following lemma provides an algorithm to transform an as
sertion in flat form. 

The following function size is used to prove that the algorithm terminates: 
size maps a term s to the natural number n, and is defined as follows: 

. ( ) _ { 1 if s E V ar 
sizes - 1 + I:~=l size(si) ifs= f(s1, ... , sn), n ::'.'.: 0, 

where I:~=l size( Si) is assumed to be equal to 0. 

Lemma 6. cp is equivalent to an assertion in fiat form. 

Proof. The flat form of cp is obtained by applying repeatedly the singleton rules 
to every atom occurring in <f;. The process terminates because the quantity 

(<P) _ { 0 if cp E {false, true} 
m - I:sES size( s) otherwise, 

where S is the union of the arguments of the literals which occur in <f; (thus 
counting multiple occurrences of terms only once; here an argument which is 
a term, say t, is identified with the singleton set { t}) decreases when a rule 
is applied to cp. It follows from Theorem 4 and Theorem 3 that the resulting 
assertion is equivalent to cp. o 
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Notice that from the proof of the previous lemma it follows that the flat form 
of an assertion computed using the singleton rules is unique modulo the order 
in which the literals occur in the assertion. 

We introduce now the class of assertions in normal form. 

Definition 7. (Normal Form) An assertion c/> is in normal form if cf> is in flat 
form and c/> = V~=l Li, n 2:: 1 such that either c/> is a propositional constant or <P 

does not contain any propositional constant, Li =/= Lj for i -:f; j and the following 
conditions hold: 

(a) if Li= --iground(x) for some i E [1,n] then x ~ Var(Lj) for every j =/= i; 
(b) if Li= ground(x) for some i E [1,n] then every other literal containing x 

is either equal to var(x) or it is of the form share(S U {x}); 
( c) if Li = -ivar( x) for some i E [1, n] then every other literal containing x 

is of the form *share(S U {x}) and at most one of them is of the form 
-.share(S U { x}) ( * denotes -, or a blank); 

( d) if Li = share(S) for some i E [l, n] then for every other literal of the form 
..., share(S') we have that S ~ S'. 

For example the assertion -iground(x)V var(x) is not in normal form (because 
condition (a) of the definition is not satisfied), the assertion share({x,y}) V 
-.share( { x, y, z}) is not in normal form (because condition ( d) of the definition is 
not satisfied) while the assertion -iground(x) V ground(y) V var(y) V share( {y, z}) 
is in normal form. 

The (proof of the) following lemma provides an algorithm to transform into 
normal form any assertion in flat form consisting of a disjunction of literals. 

Lemma8. Let c/> = Vie(l,n] Li. Suppose that c/> is in fiat form. Then <P is equiv
alent to an assertion in normal form. 

Proof. The normal form of if> is obtained as follows. For every variable x con
tained in if> the disjunction of literals of c/> containing x is considered and the 
combination rules are applied, using the general rules when applicable and using 
rule (G5) only a finite number of times. Notice that all the rules preserve the 
fiat form. The result will be either a propositional constant, by application of 
rules (G2), (G3), (G4), (G5), (G6), (Cl), (C5) and (C8); otherwise the result 
will not contain any propositional constant, by application of rules (G5) and 
(G6): moreover it will satisfy (a) by application of rules (Cl), (C3), (C4), (C5) 
and (G3), (G5) and (G8); it will satisfy (b) by application of rules (C2), (C6) 
and (G3), (G5) and (G8); it will satisfy (c) by application of rules (Cl), (C2), 
(07) and (G3),(G5) and (G8); finally it will satisfy (d) by application of the 
rules (G5) and (C8). 

The process terminates because by assumption rule (G5) is applied only 
finitely many times, and the application of every other rule decreases the number 
of connectives of the assertion. Finally, Theorem 4 and Theorem 3 imply that 
the resulting assertion is equivalent to </>. D 
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Notice that from the proof of the previous lemma it follows that the normal 
form of an assertion consisting of a disjunction of literals, computed using the 
general rules and the combination rules, is unique modulo the order in which 
the literals occur in the assertion. 

The following example illustrates the application of the axiomatization. 

Example 1. Consider the assertion </>: 

var(f ( w)) V ground(x) V •share( { x, y}) V •share( {y, z}) V •share( { z, w} )V 
share( {x, g(a, y), z} ). 

l. Application of rule (81) to var(f ( w)) yields 
false V ground(x) V •share( { x, y}) V •share( {y, z}) V •share( { z, w} )v 

share( { x, g( a, y ), z} ); 
2. application of rule (83) to share( { x, g( a, y), z}) yields 

false V ground(x) V •share( { x, y}) V •share( {y, z}) V -.share( { z, w} )v 
share({x,a,z})V share({x,y,z}); 

3. application of rule (83) to share( { x, a, z}) yields 
false V ground(x) V •share( { x, y}) V •share( {y, z}) V -.share( {z, w} )v 

false V share({x,y, z}), 
which is in fiat form. 

4. Application of rule (G5) yields 
ground(x) V -.share( { x, y}) V -,share( {y, z}) V •share( { z, w}) V falseV 

share( { x, y, z}) V false; 
5. application of rule (G6) yields 

ground(x) V -.share( { x, y}) V -,share( {y, z}) V •share( {z, w}) V falseV 
share( { x, y, z} ); 

6. application of rule ( G5) yields 
share( { x, y, z} )v ground(x )V•share( { x, y} )V•share( {y, z} )V•share( { z, w}) 

Vfalse; 
7. application of rule (G6) yields 

share( { x, y, z} )V ground( x )V•share( { x, y} )V•share( {y, z} )V•share( { z, w} ); 
8. application of rule (C6) to ground(x) V •share( {x, y}) yields 

share( {x, y, z}) V -.share( { x, y}) V -is hare( {y, z}) V -.share( { z, w} ), 

which is in normal form. 

4.2 Decidability Procedure 

The previous results are used to define the following decidability procedure. 

Definition 9. (Truth Procedure) The truth p·rocedure T P reduces an asser
tion </> as follows. First the flat form </>1 of </> is computed by means of Lemma 
6. Next </>1 is transformed (using standard methods) into a conjunctive normal 
form </>2 = 'l/;1 /\ ... /\'I/Jn, where every'!/;; is a disjunction of literals. Finally every 
'!/;; is reduced to normal form by means of Lemma 8 and rule (G7) is applied to 
the resulting conjunction as many times as possible. D 
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Thus <P is reduced by T P to a conjunction of assertions in normal form. We 
prove now that T P is correct and terminating. Let T P( <P) denote the outcome 
of T P applied to </J. 

Theorem 10. T P is a terminating procedure and T P( <P) is equal to true if and 
only if <P is equivalent to true. 

To prove the above statement it is necessary to assume that Fun contains a 
functor of rank 0 (i.e., a constant) and one of rank 2. If it is not the case, then 
we add such functors to the language. Moreover some preliminary results are 
necessary. First, an algorithm called Prod is defined: given as input an assertion 
1/J in normal form which is neither equal to true nor to false, Prod produces 
a substitution a such that a ff. [1/J]. This a is computed in a number of steps. 
After each step, the intermediate result (still called a) is applied to the resulting 
formula, called A( 7/1). Thus, two variables are used: a variable u which contains 
the part of the substitution actually computed and a variable A('f/J), which con
tains the assertion obtained from 'lj! applying a. Moreover in the algorithm we 
need to know which of the variables of A( 7/1) stem from the application of the 
computed a. For instance, suppose 1fJ = share({x,y}) and a= {x/f(z)}: then 
A( .,P) = share( {f(z ), y}) and z is a variable which stems from the application 
of a. Then to recognize these variables we assume that they are chosen from 
the set IVar = V ar \ Var( <P ). Variables of IVar are denoted by capital letters 
U, V, .... In the remainder of this section, the variables of IV ar occurring in a 
syntactic object o are called image variables, denoted by Ivar( o ), while the other 
variables occurring in o are called simply variables, denoted by Var( o ). Finally 
some other variables are used in the algorithm: for every literal L in .,P of the 
form --.share(S) for some S, a variable imL is introduced which either is equal 
to a image variable or is undefined. The role of these variables will be explained 
afterwards. Initially imL is undefined, and once imL is set to a particular image 
variable, it will never change. For a image variable U the notation U = imL 
means that imL is defined and that U is equal to (the value of) imL. 

The algorithm Prod is now defined as follows. Let g be a functor of rank 
2 and let a be a constant. Let g1 (t) denote the term g(t, t) and for n ~ 2 let 
9n(t1, ... , tn) denote the term g(t1, g( t2, ... , g(tn-1 7 tn) ... ) ). 

Initially A( 'lj!) is set to 7/1 and a is set to e, the empty substitution. The 
algorithm consists of the following sequence of three steps. 

1 For every variable x occurring in 7/1, perform the following sequence of actions: 
1.1 If the antecedent of (a) holds then set a to u U {x/a}; 
1.2 If the antecedent of (b) holds then set u to u U { x / gi( U)}, where U is 

a fresh image variable (i.e. an image variable not yet used); 
1.3 If the antecedent of (c) holds then set a to u U {x/U}, where: 

1.3.1 if a literal L of the form -.share( SU { x}) occurs in 1/J then either 
U = imL or, if imL is undefined, U is chosen to be a fresh image 
variable and imL is set to U; 

1.3.2 otherwise (i.e., if no literal of the form --.share(S U { x}) occurs in 
'lj!) U is a fresh image variable; 
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1.4 set A( 1/1) to A( 1/! )u. 
2 For every variable x occurring in A( 1/i ), perform the following sequence of 

actions: 
2.1 If L117, ... , Lmu are all the disjuncts of A( 1/!) of the form -is hare( S U 

{x} ), with m ~ 1, then set u to 17LJ {x/ 9m(Vi, ... , Vm)}, where Vi, .. . , Vm 
are distinct image variables such that: either Vi = imL; or, if imL; is 
undefined, Vi is chosen to be a fresh image variable and imL, is set to 
l/i. 

2.2 Set A(-iP) to A(1fi)u. 
3 For every variable x occurring in A( 1/i) set <T to O' U { x /a}. Set A( 1/!) to A( 'l,b )u. 

0 

Some explanation of the steps of the algorithm is needed: as already said, 
the aim of Prod, when applied to an assertion 1/i in normal form which is not 
a propositional constant, is to produce a substitution u which is not in the 
semantics [1/i] of 1/J. Such substitution is built incrementally, by binding each 
variable of 1fi to a suitable term. The first three subcases of step 1 are mutually 
exclusive, and correspond to the first three cases in the definition of normal form. 
Thus after step 1 is executed, literals of the form -.ground(x)u, ground(x)CT, and 
-ivar(x )u become false. Moreover the variables which are not yet bound by u 
occur either in literals of the form -ishare(S), or of the form share(S) or of the 
form var(x). Step 2 of Prod takes care of all the literals of the form -ishare(S): 
the variables of S are mapped by the substitution to terms having exactly one 
image variable in common. Finally step 3 of Prod takes care of all the literals of 
the form var( x )u or share( 8)17 which contain some variable. 

To avoid that in step 2 the variables of some literal of the form share(S') 
become bound to terms having some common image variable, it is sufficient (as 
will be proven in Lemma 14) that the image variables which are shared by the 
terms of distinct literals of the form -.share(S), be distinct. This is obtained by 
means of the variables imL, which fix once for all the image variable which will 
be shared eventually by all the terms of L. 

We illustrate now the application of Prod with an example. 

Example 2. Let 1/1 be the formula obtained in Example 1: 

share({x,y, z}) V -.share( {x, y}) V -ishare( {y, z}) V -ishare( {z, w} ). 

Since 1/i is in normal form, we can apply Prod. Let L1 denote -is hare( { x, y}), 
let L2 denote -ishare({y,z}) and let L3 denote -.share({z,w}). The values of 
the variables of Prod corresponding to one possible execution are given below, 
where only the initial and the final value of A( 1fi) are shown: 

1. Initialization: 
A(\b) = \b, u = e, imL, undefined for i E [l, 3]; 

2. Step 2, suppose Prod has chosen the variable y: 
u = {y/g(Vi, V2)}, imL1 =Vi, imL2 =Vi, im13 undefined; 
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3. Step 2, suppose Prod has chosen the variable x: 
O' = {y/g(Vi, Vi),x/g(Vi, Vi)}, imL1 =Vi, im12 = V2, imi3 undefined; 

4. Step 2, suppose Prod has chosen the variable z: 
O' = {y/g(Vi, Vi),x/g(Vi, Vi),z/g(V2, Vi)}, 
imi1 =Vi, imL2 = V2, im13 = V3; 

5. Step 2, suppose Prod has chosen the variable w: 
O' = {y/g(Vi, Vi),x/g(Vi, Vi), z/g(V2, Vi),w/g(Vi, Vs)}, 
im11 =Vi, imL2 = V2, im13 = V3; 

6. stop (all the variables of t/; have been considered): 
A( t/;) = -.share( {g(Vi, Vi), g(Vi, Vi)}) V -.share( {g(V1, V2), g(Vi, V3)}) V 

share( {g(Vi, Vi), g(Vi, Vi), g(Vi, Vi)}) V -.share( {g(Vz, V3), g(Vi, Vs)} ). 

Notice that Prod terminates because the number of variables occurring in a 
formula t/; is finite. Moreover O' is well-defined because the first three cases of 
step 1 are mutually exclusive and variables of type imL are distinct, as Lemma 
11 will show. To show that Prod is correct (i.e., that if Prod is applied to '1j; then 
the produced substitution a is not in [1/;]), we need some preliminary results. 
The following lemma states a crucial property of the variables of type im1. 

Lemma 11. Let im1 and imL' be two distinct variables of Prod. If im1 and 
imL' are defined then they are equal to two distinct image variables. 

Proof. Notice that imi is initially undefined and it becomes defined only when 
it is bound by Prod to a fresh image variable. D 

In the following lemma a property is proven to be invariant under the execu
tion of Prod. Notice that a is considered as a variable of the algorithm and that 
at every step of the algorithm, A('I/;) is equal to 1/;a, for a suitable value of O'. 
Therefore in the following a literal of A( 1/;) is sometimes denoted by LO', where 
L is the corresponding literal of t/; and er is the actual value of the computed 
substitution. 

Lemma 12. If x E dom(C7) and x occurs in m disjuncts oft/; of the form 
-.share(S), for some m;::: 1, then 

{ imL, if m = 1 and the antecedent of (c) holds, 
xa = gm( im11 , ••. , imLm) if m ;::: 1 and the antecedent of ( c) does not hold, 

where L1, ... , Lm are all the disjuncts of 1/; of the form --.share(S) such that 
x ES. 

Proof. Initially Prod satisfies trivially the property because er = e. Step 1 
preserves the property: for every variable x considered in that step, if the first 
or second subcase was applied then x does not occur in disjuncts of the form 
-.share(S); if the third subcase was applied then if imi was undefined then x 
is bound to one fresh image variable and imL is set to that image variable; 
otherwise (i.e., imi defined) x is bound to im1. Step 2 preserves the property 
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because, for every variable x considered in that step, x is bound to a term t such 
that: if m;?: 1 then t is 9m(Vi, ... , Vm), where for i E [l, m] if imL; was defined 
then Vi is equal to imi;i otherwise Vi is a fresh image variable and imL; is set 
to Vi. Finally step 3 preserves the property because the variables considered do 
not occur in disjuncts of the form -.share( S). D 

Lemma 13. If S s;;; dom( <T) is such that 

1. S ~ S', for every disjunct of 'lj; of the form -ishare(S'); 
2. for every x in S there exists a disjunct of '1j; of the form -.share( S') such that 

x ES'. 

Then n,.,es Ivar(x<r) = 0. 

Proof. From the hypothesis it follows that S contains at least two elements, i.e., 
S = { x1, ... , xn}, n ;?: 2. Then by Lemma 12 we have that for i E [1, n] 

{ 
imi•; if m; = 1 and the antecedent of (c) holds, 

X;<J' = 9m; (im L:;, ... , im L':.-i;) if mi ~ 1 and the antecedent of ( c) does not hold, 

where Lf;, ... , L;;; are all the disjuncts of '1j; of the form -.share(S') such that 
x; E S'. By 2 we have that m; ~ 1 for i E [1, n]. Suppose by absurd that 
n,.,es lvar(xq) is not empty. Then there exist Ji. ... , Jn such that for i E [1, n]: 
1 ~ Ji ~ mi and imL:1 = imL:2 = ... = imL~". Then by Lemma 11 it 

J1 J2 Jn. 

follows that L;i> Lh, ... , Lj,. are all the same literal, say L and xi, ... , Xn are 
all contained in L. This contradicts 1. D 

Lemma 14. Let share(S) be a disjunct of 'lj;. Suppose that Var(A('lj; )) = 0. Then 
n,.,es Ivar(X<J') = 0. 

Proof. From Var(A('lj;)) = 0 it follows that S s;;; dom(o"). If for some x ES, xu 
is obtained from step 1.2 or from step 3 of Prod then it is a term containing only 
one fresh variable or it is a constant. Then the result follows immediate (recall 
that !SI 2:: 2, by assumption). Otherwise every x in S occurs in a disjunct of 1/J of 
the form -.share(S'). Moreover since '1j; is in normal form then S Sf: S' for every 
disjunct of 1/J of the form -.share(S'). Then 1 and 2 of Lemma 13 are satisfied. 
Thus n,.,es lvar(xq) = 0. o 

Lemma 15. If L, with relation symbol var or ground, is a disjunct of A( 'lji) such 
that Var( L) = 0 then L is equivalent to false. 

Proof. Initially A( '1j;) satisfies the property because '1j; is in flat form, hence the 
argument of an unary atom is a variable. The application of step 1 transforms 
all literals of the form -.ground(x) (first subcase) or ground(x) (second subcase) 
or -.var(x) (third subcase) into an assertion equivalent to false. Finally step 2 
and step 3 transform all atoms of the form var(x) into an assertion equivalent 
to false. D 
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Theorem 16. Let t/l be an assertion in normal form. Suppose that t/J is not a 
propositional constant. Then the algorithm Prod applied to ?/; produces a substi
tution u which does not belong to [t/l]. 

Proof. Prod terminates when all the variables oft/; have been considered, hence 
Var(A(t/l)) becomes empty. Then the result follows by Lemma 12, Lemma 14 
and Lemma 15. o 

Proof of Theorem 10 
By Lemma 6, Lemma 8 and the fact that (G7) can be applied only a finite 

number of times, it follows that TP terminates. Suppose that TP(</>) = true. 
Then </> true follows from Lemma 6, Lemma 8 and Theorem 4. 

We prove the converse by contraposition. Suppose that T P( </>) is not equal 
to true. Then T P( </>) is a conjunction of assertions in normal form, none of them 
equal to true, since rule (G7) has been applied. If one conjunct of TP(</>) is 
equal to the propositional constant false then</> is equivalent to false. Otherwise 
consider a conjunct t/J of T P( </> ). Let u be the substitution produced by applying 
the algorithm Prod tot/;. Then by Theorem 16 it follows that u does not belong 
to [t/l]. Hence </> is not true. D 

5 Application 

We illustrate how the truth procedure T P can be applied to mechanize some 
parts of the reasoning when proving the partial correctness of a logic program. 
Partial correctness will here be described in terms of properties of substitutions 
that are the intermediate results of the computations of a logic program, starting 
with a certain class of goals, by associating an assertion to each program point 
before or after an atom in the body of a clause. The class of goals considered is 
described by means of a goal and an assertion, called precondition, which specifies 
the possible values of the variables of the goal. Then every clause h +- b1 ... b"' 
of the program is annotated with assertions h +-lo b1 Ii ... bn In, one assertion 
for every program point. An assertion associated with a program point is said 
to be a global invariant for the class of goals considered, if it holds every time 
a computation (of a goal of the considered class) reaches the correspondent 
program point. If the /i's are shown to be global invariants for the class of goals 
considered, then the annotated program is said to be partially correct (with 
respect to the class of goals considered and with respect to these assertions). 
For instance, consider the following (fragment of the) annotated Prolog program 
contained: 

cl: contained(empty,y) +- / 01 • 

c2: contained(node(xz,X,Xr) ,y) +-

[02 member(x,y) If2 contained(xz,y) /~2 containedCxr ,y) Jg2 • 

This program defines the binary relation contained, such that contained(t, 1) 

holds if t is a binary tree whose nodes are contained in the list l. The program is 
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used in [JL89] to illustrate the relevance of having information about aliasing of 
program variables at compile time. In particular, it is argued that the recursive 
calls in c2 may be executed in parallel if every time one of them is called, y is 
ground and x1 and Xr do not share. As an example, we show that contained 
satisfies this condition when the following class of goals is considered: g = +

contained(x ,y) with precondition I8 = var(x)/\ground(y). In this example, the 
program computes all the trees whose nodes are contained in the list described 
by the ground term y. To this end, we prove that contained is partially correct 
with respect to this class of goals and with respect to the following assertions 
associated with the corresponding program points. 

!01 = true, 
102 = var( xz, Xr) /\ -.share( { xz, Xr}) /\ ground (y ), 
Jf.2 = 182' 
I:].2 = var(xr) /\ -ishare({x1,xr}) /\ ground(y), 
I32 == -ishare( { Xz, Xr}) /\ ground(y ), 

where, for a relation symbol p which is equal to ground or var, p( x1 , ... , Xn) is 
used as shorthand for p(x1) /\ ... /\p(xn)· 

To prove the partial correctness of contained, we apply an inductive method 
informally illustrated as follows: let a be either (the atom of) g or an atom of the 
body of some clause of contained. Let Ii and 12 be the two assertions associated 
with the program points before and after a, respectively (in case a is the atom of 
g, assume that If= true is the assertion associated with the point after g).Let 
If denote an assertion obtained from Ii as follows: for all the variables x1 , ... , xk 
which could share with some variable occurring in a, replace x 1 , ... , xk with the 
fresh variables z1, ... , zk, and set the sequence ( x1, ... , x k) to be equal to an 
instance of (z1, ... , zk)· Consider a variant ci' : h' +- J0i' bi Jfi' ... bn J~i' of a 
(annotated) clause ci of the program, i E [1, 2], such that ci' has no variables in 
common with If ah 

1. For an arbitrary substitution a in the semantics of 11 consider the following 
conditions: a) ci' a is a variant of ci' having no variable in common with 
(Ii al2)cx; b) aa: and h'a are unifiable. If a) and b) are satisfied then show 
that CY./3 is in the semantics of J0i', where f3 is a fixed most general unifier of 
a<:Y. and h'. 

2. For an arbitrary substitution 8 in the semantics of the rightmost assertion 
J~i' of ci', consider the following conditions: a) 8 is in the semantics of If; 
b) for every variable x occurring in If but not in { x 1 , ... , x k}, x8 and ci' o 
have no variables in common; c) h' 5 and a5 are equal. If a), b) and c) are 
satisfied then show that o is in the semantics of 12 . 

Step 1 corresponds to showing that when an atom calls a clause then the leftmost 
assertion of the clause is satisfied. Step 2 corresponds to showing that when the 
execution of a clause is terminated, then the assertion after the atom that has 
called the clause is satisfied. The variables z1 , ... , zk of If represent the values of 
x1, ... , Xk before ci' is called. The call of ci' can affect the values of x1 , ... , xk, 
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which become instances of z1, ... , Zk. Notice that this is the only information 
about X1, •.. , x k given by If. Moreover, Ji together with condition b) of step 
2 are used to retrieve information about those variables occurring in I1 which 
do not share with any variable occurring in a. Finally, the equality in condition 
c) of step 2 is used to retrieve information about the variables occurring in a. 
Notice that the Prolog selection rule, which selects atoms in the body of a clause 
from left to right, is assumed. 

To describe step 1 syntactically, i.e., without referring to substitutions and 
most general unifiers, one can view the unification of a and h' as a function 
spa.,h' which maps a set of substitutions (the a's) into a set of substitutions (the 
-y's obtained by composing a with {3). This has been done in [CM92], where a 
set of substitutions is expressed by means of an assertion and the unification of 
two atoms is described by means of a predicate transformer. 

To describe step 2 syntactically, we define Ji as follows: 

I t ~ •n t(( ) ( )) /\I :r.:1,····"'k 1 - • S X1, ... ,Xk' z1, ... ,Zk lz1, ... ,Zk' 

where (x1, ... ,xk) denotes the sequence of elements of the set Var(fiaI2) \ Y, 
with 

Y = {y I Ii=> -ishare(y,x), for all x occurring in a}, 

and (z1 , ... , zk) is a variant of (x1 , ... , xk) consisting of fresh variables. Moreover, 
q,;:;:::;:: denotes the assertion obtained from <P by replacing every occurrence of 
Xi with Zi, for i E [1,k]. 
The semantics of the new assertions r = s and inst( r, s) is defined as follows: 

[r=s]={a I ra=sa}, 

[inst(r, s)] ={a I ra = sa/3 for some {3}. 

Using the function SPa.,h' and the above definition of If, one can formalize steps 1 
and 2 by means of the following implications, which are based on the assertional 
method of Colussi and Marchiori [CM91] (see also [AM94]). 

SPa.,h' (Ii /\ var( ci') /\ -ishare( ci', Ii aI2 U ci')) => I0i'; 

(Ii/ /\If/\ -.share(Y U {z1, ... , zk}, ci') /\a= h') => h 

where Y, z1 , ... , Zk and Ji are defined as above. 

CALL 

EXIT 

The assertion var(ci') /\ -ishare(ci1 , fial2 U ci') used in CALL expresses the fact 
that when ci1 is called, it is renamed apart. Notice that we have used here 
share ( o1 , o2 ) as shorthand for 

v share( { x, y} ), 
a:E Va.r( 01),y E( Var( 02)\ {:r.:}) 

for some syntactic objects o1, o2. Moreover, the notation var(o1) is used as 
shorthand for /\,, E Var( 01 ) var( x). 

So the proof that contained is partially correct reduces to the verification 
of a number of implications. The truth procedure T P can be used to mechanize 
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some of these tests. For instance, consider IJ.2 contained (x1, y) l!j,2 and the 
variant c2 1 of c2 obtained replacing x with x', for every variable x occurring in 
the atoms or in the assertions of c2. The following two implications are obtained: 

(a) xz = node(x;, x', x~) /\ y = y' /\ var(x', x;, x~, Xr) /\ ground(y)/\ 
-,share( { x;, x~}) /\ --,share(xr, { x;, x~, x'}) => 

var(x;, x~) /\-,share( {x;, x~}) /\ ground(y'); 
(b) -ishare( { x~, x;}) /\ ground(y') /\ inst(xz, z) /\ var(z, Xr) /\ -,share( { z, Xr} )/\ 

ground(y) /\ -ishare( {xr, y, z }, { x;, x~, x 1, y'} )/\ 
xz = node(x;, x', x~) /\ y = y1 => 

var(xr) /\-,share( { xz, Xr}) /\ ground(y). 

These implications contain the relation symbols= and inst which are not in the 
assertion language A of our logic (see Definition 1). Then (a) and (b) can be 
transformed in assertions of A as follows: 

(i) replace every assertion of the form inst(s, t) by the following conjunction: 

(ground(t) => ground(s)) /\ (var(s) => var(t)); 

(ii) replace every equality s = t by the following conjunction: 

(ground(s)-<=> ground(t)) /\ (var(s)-:::> var(t)) /\ (.....,ground(s) => share(s,t)). 

Notice that the transformations (i) and (ii) are sound, in the sense that the 
information about groundness and sharing given by the transformed assertion 
holds also for the original one. To show this formally, let A' be the smallest set 
A of formulas containing A, containing the atoms s = t and inst( s, t) for all 
terms s, t in Term, and with the property that if cp and 'l/; are in A then both 
'l/; /\</>and 'lj; V c/> are in A. Then the following result holds. 

Lemma 17. Let cp be an assertion in A'. Let ap(c/J) be the assertion of A obtained 
applying the transformations specified by (i) and (ii). For every assertion '1jJ of 
A if ap( </>) =? 'l/; is true then </> => 'l/; is true. 

Proof. </> => ap( </>) is true in A'. D 

Now, apply the transformation to the assertions (a) and (b) and apply the truth 
procedure T P t"O the resulting assertions (after having eliminated all the "=>" 
symbols using the equivalence </> => 'l/; = .....,</> V 'lj;). The outcome is true, as 
expected. Then from Lemma 17, implications (a) and (b) are true. 

6 Conclusion 

In this paper a logic has been introduced, which allows to model some relevant 
properties used in static analysis of logic programs, namely var, ground and 
share. Soundness, completeness and decidability of this logic have been proven. 
It has been illustrated how the truth procedure T P introduced to prove the 
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decidability of the logic can be applied to mechanize some parts of the reasoning 
when proving the partial correctness of a logic program. 

Another possible area of application of the results of this paper we intend to 
investigate is abstract interpretation. Our logic could be used as abstract domain 
in an abstract interpretation framework for the study of aliasing in logic pro
grams. This framework could be defined as follows: the logic is used as abstract 
domain and the axiomatization of the unification as predicate transformer sp, 
given in [CM92], is used to model unification. Since the assertion obtained by 
applying sp is not in general in the assertion language of the logic, one would 
have to provide a suitable approximation of the result. Alternatively, the logic 
can be used as abstract domain to approximate a suitable semantia for logic 
programs, as the one given in [CMM94]: since this semantics is based on a pred
icate transformer, an abstract interpretation framework can be defined, based 
on the theory given in [CC79]. We have the impression that the two approaches 
sketched above would provide information about aliasing and groundness with 
a high degree of accuracy; however they would be rather expensive, thus penal
izing the efficiency of the resulting analysis. 
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