
THE DOUBLE COVERING OF THE QUANTUM GROUP SOg(3)t 

Mathijs S. Dijkhuizen 

A quantum analogue of the double covering of 80(3) by SU(2) is formulated and 
proved. Here the quantum group SOq(3) is defined by means of the R-matrix given 
by FRT for root systems of type B. An explicit basis for the deformed function 
algebra of SOq(3) is constructed as well as an algorithm to reduce any expression in 
the generators to a linear combination of basis elements. 

1. The adjoint group of SUq(2) 

We shall make use of both the language of Hopf algebras and that of quantum groups. We 
view a Hopf algebra A = O(G) as the algebra of polynomial functions on an (algebraic) 
quantum group G = Spec(A). Hopf *-algebras then correspond to real forms of quantum 
groups. A morphism efJ: G --+ G' of quantum groups resp. real quantum groups is by definition 
a morphism efJ: A' --+ A of Hopf algebras resp. Hopf *-algebras. In order to be able to 
distinguish formally between these two kinds of morphisms, we shall usually write efJ$ for the 
Hopf algebra morphism dual to the quantum group morphism efJ. 

We recall the definition of the quantum group SUq(2). Let q E IR, q #- 0. The algebra 
Aq = CJ(SUq(2)) is the complex unital associative algebra generated by a, (J, 1, 8 subject to 
the following relations: 

a(J = q[Ja, a1 = q1a, f31=1/3, (38 = q8/3, 18 = q81, 

6a - q-1 /3"! = 1, a8 - qf3"f = 1. 

(1.1) 

By using the diamond lemma one can prove that a linear basis of Aq is formed by the 
elements akf3llm (k, l, m ~ 0) and 8k;Jl1m (k ~ 1, l, m ~ 0). See [BJ, [Kl]. 

t This paper is in final form and no version of it will be submitted for publication elsewhere. 
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The comultiplication .6. and counit c are defined by: 

this being shorthand notation for .6.( a) = a ® a + f3 © 'Y etc. 
The antipode S and the Hopf alge~ra involution * are defined by 

s (O! (3) = ( 8 -q-1(3) 
'Y 8 -q'Y O! ' ( O! 13)* ( 8 

'Y 8 = -q-1(3 (1.3) 

Let· us recall that a mapping * : Aq ~ Aq is called a Hopf algebra involution if ( Aq, *) is a 
unital *-algebra such that .6. and c are *-homomorphisms. 

We recall that a (matrix) corepresentation of Aq is a matrix (tii) with coefficients in Aq 
such that 

.6.(t;i) = 2: t;k ® tkj, c{t;j) = 6;i· (1.4) 
k 

A corepresentation (t;;) is called unitary if tij = S(tii)· Corepresentations of Aq are also 
called representations of the quantum group SUq(2). The finite-dimensional representation 
theory of SUq(2) is known to be exactly analogous to the classical theory. With respect to 
a suitable basis the corepresentation of Aq corresponding to the adjoint representation of 
SU(2) is given by (see [Ko]): 

(1.5) 

It is easily checked that the subalgebra Bq of Aq generated by the matrix coefficients 
t;i of Adq is spanned by all ak(Jl,..r, okf3l'Ym such that k + l + m is even. Bq is obviously 
invariant under Sand *· Moreover, .6.(B9 ) C B9 ® Bq, since Bq is generated by the matrix 
coefficients of a corepresentation. We conclude that Bq is a Hopf *-subalgebra of Aq. The 
quantum group corresponding to Bq is called the adjoint group of SUq(2) and denoted by 
Ad(SUq(2)). 

We define an algebra anti-automorphism a of A9 and an algebra isomorphism r: Aq ~ 
Aq-1 by putting 

O' (a !3)::::; ( 8 -'Y) r (a /3) == ( 8 -(3). 
'Y {; -(3 O! ' 'Y 6 _, O! 

(1.6) 

It is obvious that a leaves Bq invariant and that r maps Bq onto Bq-1. On the generators 
tii the mappings (J and r are given by 

(1.7) 

T being shorthand notation for (t;;). Note that (J2 = r 2 =id and T(JTO" =id. 
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Table 1 

1. tut12 = s 2 t12t11 

t32t33 = s2t33t32 

t21 t11 = s-2 t11 t21 

t33t23 = s-2t23t33 

3. t11 t13 = s4 t13t11 

t31 t33 = s4 t33t31 

t33t13 = s-4 t13t33 

t31 t11 = s-4 t11 t31 

4. t22t11 = tut22 + (s-2 - s 2)t12t21 

t33t22 = t22t33 + (s-2 - s2)t23t32 

6. t21 t12 = t12t21 

t32t23 = t23t32 

8. t23t11 = s-2t11t23 + (s-2 - s 2)t13t21 

t33t21 = s-2t21t33 + (s-2 - s2)t23t31 

t32t11 = s- 2t11i32 + s-2(s-2 - s 2)t12t31 

t33t12 = s-2t12t33 + s- 2(s- 2 - s 2)t13t32 

10. t21t13 = s 2t13t21 

t31 t23 = s2t23t31 

t31t12 = s-2t12t31 

t32t13 = s-2t13t32 

14. t12t12 = -s2(s + s-1 )t13t11 

t21t21 = -s-2(s + s-1 )t11t31 

t32t32 = -s2(s + s-1 )t33t31 

t23t23 = -s-2(s + s-1 )t13t33 

15. t11t23 = -st12 + s 4t13t21 

l21 t33 = -St32 + s 4t23t31 

t11 t32 = -st21 + s 2t12i31 

t12t33 = -st23 + s2 t13t32 

17. tz1t32 = t31 + s 2t22t31 

t 12t23 = t13 + s 2t13t22 

19. t12t32 = s - st22 - s2(s + s- 1)t13t31 

t23t21 = s-1 - s- 1t22 - s-2 (s + s-1 )t13t31 

2. i12t13 = s 2t13t12 

t31t32 = s2 t32t31 

t23t13 = s-2 t13t23 

t31 t21 = s- 2 t21 ta1 

5. t23t12 = t12t23 + (s- 2 - s 2)t13i22 

t32t21 = t21t32 + (s- 2 - s2)t22ta1 

7. t22t13 = t13t22 

t31 t22 = t22ta1 

9. t22t12 = t12t22 + s( s2 - s-2)t1at21 

t32t22 = t22ta2 + s(s2 - s-2)t23t31 

t21t22 = t22t21 + s-1cs-2 - s2)t12t31 

t22t23 = t23t22 + s-1cs-2 - s2)t13t32 

ll. t33t11 = t11t33 + (s-s-1)t23t21 + (s-s-1)t12t32 

12. t31t13 = t13t31 

13. t21 t23 = s 2t23t21 + s( s-2 - s 2)t13t31 

t32t12 = s-2t12ta2 + s- 1 ( s 2 - s- 2)t13t31 

16. t23t22 = t23 - s-2 (s + s-1 )t13t32 

t22t21 = t21 - s- 2 (s + s- 1 )t12t31 

t12t22 = t12 - s2(s + s-1 )t13t21 

t22ta2 = t32 - s2(s + s- 1)t23t31 

18. tnt22 =tu+ s 2t12t21 

t22t33 = t3a + s2t23t32 

20. t11t33 = (1 - s 2) + s 2t22 + s4t13t31 

21. t22t22 = 2t22 - 1 + (s + s- 1 )2t13t31 
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Lemma 1.1 - The tii E Bq satisfy all the relations listed in Table 1 with s = q. 

In order to minimize the amount of calculation we use the symmetry inherent in the relations 
of Table 1. In fact, in a given cluster i, one can obtain all the relations by repeatedly applying 
a and r to the first relation of that cluster (in some cases one has to work modulo linear 
combinations of relations of clusters k < i). It suffices therefore to check only the first 
relation of each cluster. This is straightforward using ( 1.5) and ( 1.1). 

Theorem 1.2 - The t;j E Bq satisfy no other relations than those listed in Table 1 (s = q). 
A ·linear basis of the vector space Bq is formed by the elements 

(m,n2:0) 

tfati 2 t{it~1 t31 (m,j,n 2: 0, 0 ~ i,k ~ 1) (1.8) 

tfat~3tiA2t31 (m,j, n 2: 0, 0 ~ i, k ~ 1, i + j + k > 0) 

It is clear from (1.5) that the elements (1.8) span Bq· Their linear independence immediately 
follows from (1.5) and the fact that the elements a.kf3l'Ym (k, l, m 2: 0) and 6k/3l'Ym (k > 
O, l, m 2: O) are linearly independent in Aq. Let now D be the abstract algebra generated 
by the t;1 subject to the relations in Table 1. It follows from [l.l]t that there is a unique 
algebra homomorphism cj;: D -> Bq sending tii E D to tij E Bq· This homomorphism is 
surjective, since the tij generate Bq. We prove that the elements (1.8) span D. To this end, 
we introduce a total ordering on the generators by putting t13 < t12 < t11 < t23 < t22 < 
t21 < t33 < t32 < t31. We then order any two given monomials in the t;j by length and, 
if they are of equal length, lexicographically with respect to the above ordering on the tii. 
Inspection of the relations in Table 1 shows that all of them express a monomial j in the tij 
as a linear combination of monomials strictly less than j. This implies that any monomial 
in the t;i can be expressed as a linear combination of monomials t;, t;2 ••• t;n such that for all 
1 ~ j ~ n - 1 the monomial ti; t;J+, does not occur on the left-hand side of any equation in 
Table 1. It can be easily read off from the relations in Table 1 that the monomials satisfying 
this last condition are precisely the ones listed in (1.8). This proves that the elements (1.8) 
span D. So cj; maps a family of vectors that span D to a linearly independent family of 
vectors in Bq. This implies that cj; is injective, which concludes the proof of the theorem. 

The relations in Table 1 thus form a presentation of the algebra Bq. One easily derives 
from (1.5) and (1.3) that the involution * is given on the generators t;i by 

(1.9) 

Remark 1.3 - We use the terminology of [BJ. The semigroup ordering on the monomials 
in the tij defined in the proof of [1.2] clearly satisfies the descending chain condition and is 
compatible with the reduction system specified by Table 1. It follows from [1.2] (without 
actually resolving a single ambiguity!) that all the ambiguities are resolvable. Therefore, 
the diamond lemma applies and we get an algorithm to reduce any monomial in the t;1 to 

t Numbers between square brackets 0 ref~r to lemmas, propositions, theorems et'c. 
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its (unique) expression in terms of the basis elements (1.8). This algorithm can be easily 
implemented on a computer using a computer algebra package for symbolic manipulation. 
We found that the package Reduce (version 3.4) was best suited to our purposes. In this 
way, one can perform explicit computations in the algebra Bq that would have been tiresome 
to do by hand. 

We shall now briefly deliberate upon notions such as quantum subgroup, kernel and 
short exact sequence (cf. (PW]). 

Let A be a Hopf algebra. A subspace a is called a two-sided coideal if .6.(a) C A@a+a©A. • 
A subspace a is called a Hopf ideal if a is a ideal and an S-invariant two-sided coideal. If a 
is a Hopf ideal, then A/a naturally inherits a Hopf algebra structure from A. A quantum 
group H is said to be a quantum subgroup of G if O(H) is the quotient of O(G) by a Hopf 
ideal a, which is then called the defining ideal of H. So the quantum subgroups of a given 
quantum group G are in 1-1 correspondence with the Hopf ideals in O(G). 

Suppose rp: G-+ G' is a morphism of quantum groups and let rpl: O(G') -+ O(G) be the 
corresponding morphism of Hopf algebras. Define a to be the ideal in 0( G) generated by 
the image under rpl of ker(e:') c CJ(G'). It is trivial that a is a Hopf ideal. The quantum 
subgroup of G corresponding to a is called the kernel of the morphism rjJ and denoted ker( rjJ). 
A sequence of morphisms of quantum groups 

1 ___. H ~ G ..!..... G' ___. 1 (1.10) 

is called exact if rpl is injective and ii surjective, and if ker( ii) is the defining ideal of ker( rjJ). 
We now apply the above terminology to the adjoint group of SUq(2). We have a mor­

phism rp: SUq(2)-+ Ad(SUq(2)) such that rpl is the canonical injection. 

Proposition 1.4 - The ideal in Aq generated by ker(e1B.) is equal to the ideal generated 
by /3, '"f, Q 2 - 1, a - 6. 

Let us write a for the ideal generated by /3, -y, Q 2 -1, Q-O. It follows from (1.2) that ker(e) 
is spanned by the elements ak - 1, 8k - 1, ak f31'Ym, 8k f31'Ym (k ;:: 0, l+ m > O) and generated 
as an ideal by /3, '"f, Q-1, 8-1. So ker(e18.) is generated as ideal in Bq by a 2 -1, 82 -1, Q/3, 
a'"(, /3'Y, 6/3, 8'"(. This implies that a contains ker(e:18.). On the other hand, multiplying a 2 -1 
on the right by 8, we get a(a8) -6 = Q(l +q/3'"()-8 =a -6 +qQ/3'"(. Hence a~ 8 lies in the 
ideal generated by ker(e18• ). Multiplying a/3 on the left by 8, we obtain 8a/3 = /3 + q- 1 /32'"(. 

This implies that /3 lies in the ideal generated by ker(e:1B.)· One reasons similarly for 'Y· The 
assertion follows. 

The quotient A/a is generated by Q subject to the relation a 2 = 1. This implies that it 
is a two-dimensional Hopf *-algebra. In fact, A/ a is the Hopf *-algebra of functions on the 
finite group Z2. We now have proved: 

Theorem 1.5 - There is the following short exact sequence of quantum groups: 

1 ___. Z 2 -> SUq(2)-.!.... Ad(SUq(2)) -> 1. 

This justifies our writing Ad(SUq(2)) = SUq(2)/{1, -1}. 
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2. The quantum group SOq(3) 

We adopt the definition of SOq(3) given in [FRT] with the one exception that we add a 
determinant relation (see also [T2]) .. In fact, the quantum group defined in [FRT] is a 
quantization of Oq(3) and not of SOq(3). 

Let ( t;j) ( 1 :::; i, j :::; 3) denote a family of formal indeterminates and let C{t;j) denote 
the free associative unital complex algebra generated by the tij· It will be convenient to 
arrange the in determinates t;j in matrix form T = ( t;j). We can then define 9 x 9 matrices 
T1 resp. T2 with coefficients in the algebra C(t;j) by putting T1 = T ©I resp. T2 = I© T. 
Here I denotes the 3 x 3 identity matrix. 

Let e1, e2, e3 be the canonical basis of V = C3. Then V 0 V has the basis e; © ej 

( 1 :::; i, j :::; 3). Let e;j denote the linear endomorphism of V sending ei to e; and ek (k f=. j) 
to 0. Let q > 0, q f- 1. We define a linear endomorphism Rq of V 0 V or, equivalently, a 
9 x 9 matrix (Rfj,kl) with complex coefficients by putting: 

Rq = q L:>ii 0 e;; + e22 0 e22 + L eji 0 e;i+ 
i;Ci' i-:f:jd' 

+ q-1 L eii' 0 ei'i + (q - q- 1) L ejj 0 e;; - (q - q-1 ) L qP•-P3 ei'j © eii'. 

i;loi' i>j i>j 

Here i' = 4 - i and the sequence (pi) is defined as (p1,p2 ,p3 ) = (~,0,-~). Note that the 
matrix (R[j,kl) is symmetric and hence diagonalizable. Straightforward computation shows 
that the eigenvalues of Rq are q, -q- 1 , q- 2 and that a basis of eigenvectors for V 0 V is given 
by: 

Wq : el 0 ei, e3 © es 

qe1 ® e2 + e2 © e1, qe2 © e3 + e3 0 e2 
( i i ) I qe1 © e3 - q2 + q- 2 e2 0 e2 + q- e3 0 e1 

w _q-1 : e1 0 €2 - qe2 © €1' €2 ® €3 - qe3 0 e2 

e1 0 e3 + (q~ - q- ~)e2 0 e2 - e3 0 e1 

(2.1) 

We consider the two-sided ideal lq in C(t;j) generated by the relations (called commu­
tation relations) coming from the matrix equation 

(2.2) 

Equating the 9 x 9 coefficients on both sides yields the following explicit form for the defining 
relations of Iq: 

m,n m,n 
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Let v• denote the linear dual of V with dual basis ei. We define a linear mapping 
9: v· ® v· ® v ® v ....... C(t;j) by putting 

(2.3) 

Let R;: V* ® V* ..... v• ® v• denote the transpose of Rq. It is clear that it is diagonalizable 
with the same eigenvalues as Rq. Since the matrix (Rfj,kl) is symmetric, bases for the 
eigenspaces w; of R; are obtained by replacing e; by ei in (2.1). We now have: 

Proposition 2.1 - The ideal J9 is generated by the subspace Ee>.;<µ 8(W;® Wµ) ofC(t;i ). 

Let us write~ = 9 o (id 0 R9 - R; 0 id). On the one hand, lq is generated by the image of 
~ since ~(ei ® ej ® ek ® ei) = Emn R':nn,klt;mtjn - l:mn Rrj.mntmktnl· On the other hand, 
~(w; ® Wµ) = (µ- >.)9(W; ® Wµ)· We conclude that Iq is generated by E9>.;tµ 8(W; ® Wµ), 
since R; is diagonalizable. 

The quotient algebra M9 = C(t;i) / J9 is called the algebra of polynomial functions on 
the complex orthogonal quantum matrix space of rank 3. We indifferently write i;j for the 
generators in C(t;;) or their canonical images in Mq. 

There are unique algebra homomorphisms t!,,, : Mq ..... Mq 0 Mq and e : Mq ..... IC such 
that 

t!,,,(t;j)=:2);1<:®t1<:;, e(t;i)=8;i (i,j=l,2,3). 
k 

With these mappings M 9 becomes a bialgebra. 
We now define the quantized orthogonal exterior algebra Aq V to be the tensor algebra 

over V divided out by the ideal generated by the subspace W q = Wq EEl Wq-• C V 0 V. It 
follows from (2.1) that a basis of Wq is formed by 

I l 
e1 ® e1, e3 ® e3, (q?t - q-!l)ei ® e3 - e2 0 e2 (2.4) 

qei ® e2 + e2 ® e1, qe2 0 e3 + e3 ® e2, e1 ® e3 + e3 @ e1. 

So Aq V is the algebra generated by ei, e2, e3 subject to the relations 

e? = 0, e~ = O, e2e1 = -qe1e2, e3e2 = -qe2e3, e3e1 = -e1e3, e~ = (q~ - q-~)e1e3. (2.5) 

An application of the diamond lemma shows that Aq V is an 8-dimensional vector space with 
basis e;1 ••• e;,. (1 :s; i 1 < ... < in :s; 3). It can be shown that there is a unique algebra 
homomorphism 8: Aq V ....... Mq ® Aq V such that 

8(e;) =Lt;; @ei (i = 1, 2,3). 

The mapping 8 defines a left coaction of Mq on Aq V, i.e. it satisfies the properties: 

(t!,,, ®id) 08 =(id ®8) 08, (.o@id) 08 =id. 

It follows from (2.6) and (2.5) that there is a unique element detqT E Mq such that 

8(e1e2ea) = detqT ® e1e2e3. 

(2.6) 

(2.7) 

(2.8) 
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The equalities (2. 7) then imply that 

~(detqT) = detqT © detqT, e(detqT) = 1. 

An explicit expression for detqT is: 

detqT = t11t22t33-qt12t21t33 - qt11t23t32 + qt12t23t31 (2.9) 
+ qt13t21ta2 - q2t13t22ta1 - q(q! - q- ~ )ti2t22ta2· 

We introduce a 3 x 3 matrix C given by 

It satisfies C2 = I. The so-called orthogonality relations are: 

(2.10) 

It can be proved that the two-sided ideal Jq in Mq generated by the relations detq T = 1 and 
(2.10) is a biideal. We can now define the algebra Cq = O(SOq(3)) of polynomial functions 
on the quantum group S0q(3) as the quotient of Mq by the biideal Jq. Cq is a bialgebra by 
definition. It becomes a Hopf *-algebra by putting 

· ( t33 q-h2a q-1t13) 
s(T) = ctrc = qha2 ~22 q-h12 

qta1 q?Et21 tu 
(2.11) 

Theorem 2.2 - The algebra Cq is generated by the t;; subject to the relations listed in 
Table 1 with s = q!. 

The proof is completely elementary, although not entirely trivial, since one easily gets bogged 
down in a quagmire of relations. For this reason, we shall carefully indicate the line of 
reasoning to be followed, but not explicitly perform all the cii.lculatioris. The proof consists 
of two parts. 

We first prove that the linear span Zq of the relations (2.2) in the free algebr~ C(tij} is 
equal to the linear span of the relations (1) till (14) in Table 1 plus some extra relations (see 
below). To this end, we apply [2.1]. Let us identify V and v• via the bases (e;) and (ei). 
Under this identification W>. coincides with w;. It now follows from [2.1] that 

The following remark may be of use. If w: C( i;i} --> C(t;;} denotes the unique algebra 
homomorphism such that w(t;;) = t;; then w o B(W>. ® W") = B(Wµ. ® W>.). We use the 
bases of W q resp. Wq, W _q-i, Wq-2 given in (2.4) resp. (2.1). Let us call the basis vectors 
in (2.1) w; (1 ::::; i ::::; 9) and those in (2.4) w; (1 ::::; j ::; 6), in the order in which they are 
introduced. Thus, W1 = e1 © e1, w2 = e3 ® e3 etc. Straightforward calculation shows that the 
tensor products (in either order) of tli1 , iii2 and w6 , w1 (meaning w1 ® w6 , w6 © w1, w1 ® w7 , 
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W7 0 w1 , w2 0 W5 etc.) yield precisely the relations (1) and (2) in Table 1. Similarly, from 
the tensor products (in either order) of w4, w5 and w6 , w7 one derives precisely the relations 
(4), (5), (6) and (7). The relations coming from the tensor products (in either order) of 1li1, 
W2 and w8 together with the relations coming from the tensor products of w1, w2 and wg are 
easily seen to be equivalent to relations (3) and (14). The tensor products w4 0 ws, w5 ®.w3, 
W5 0 w6 and w3 0 Wg lead to the following four equations: 

qtut23 + q(q~ - q-~)t12t22 - qi13t21 + t21t13 + (q~ - q-~)t22i12 - t23t11 = 0 

(q~ - q- ~)tu t23 - q(q~ - q- ~)t21t13 - t12t22 + qt22t12 = 0 (2.12) 

t11t23 - qt21i13 + ti3t21 - qt23t11 
1 3 1 1 

q 2t11i23 + qt12t22 + q 2t13t21 + q- 2 t21t13 + i22t12 + q 2 t23t11 = 0. 

We can eliminate t23t 11 from the first and fourth equations of (2.12) by using the third 
equation. From the resulting two equations one can eliminate tu t23 by using the second 
equation of (2.12). One then obtains: 

from which one deduces (10.a). Resubstituting (10.a) in the first equation of (2.13) resp. the 
third equation of (2.12) one obtains (9.a) resp. (8.a). Using (9.a) and (10.a) we can rewrite 
the second equation of (2.12) as 

1 

tu i23 = -q 2 t12t22 - qt13t21, (2.14) 

and (8.a), (9.a), (10.a) and (2.14) are in fact equivalent to (2.12). In an exactly analogous 
way, one derives all the (other) relations of (8), (9) and (10) by using the tensor products 
W4 0 ws, iV5 0 ws, 1li5 0 w5, 1li5 0 w7, W3 0 Wg, W4 0 Wg and their images under the flip 
v 0 w ,_. w 0 v. The analogues of (2.14) are: 

1 

t21t33 = -q 2 t22t32 - qt23t31 
1 l 3 1 

t22b = (q 2 - q- 2 - q-'i)t12t31 - q- 2 t11t32 (2.15) 
1 1 3 l 

t23t22 = (q 2 - q- 2 - q- 2 )t13t32 - q- 'i t12t33. 

Finally, the tensor products w3 0 ws, iJ5 0 w8 , W5 0 wg and their images under the flip give 
rise to six equations which can be seen to be equivalent to the relations (11), (12), (13) plus 
the following relations: 

t23t21 = q- 1t12t32 + q-~(q- q- 1)t13t31 (2.16) 

t22t22 = t11t33 + (q! - 2q-~ )t12t32 + q-1t13t31. 

Summarizing, we have now proved that the relations (2.2) are equivalent to the relations (1) 
till (14) plus the relations in (2.14), (2.15) and (2.16). 

In the second part of the proof we shall make use of the terminology laid down in [B]. 
As generators we take the i;J. We order the monomials in the tiJ as in the proof of [1.2]. As 
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reduction system we take the relations (1) till (14) plus the relations in (2.14), (2.15) and 
(2.16). Note that this reduction system is compatible with the ordering of the monomials 
in the t;;. Given any relation u in the t;; we can first reduce it to an irreducible expression 
and then rewrite it in the form f = E, cd; where the f; are monomials strictly less than the 
monomial f. If q is of degree at most two the result of these two operations on u is uniquely 
determined. We call it the reduced form of()". It clearly is compatible with the ordering of 
the monomials in the t;;. If we apply this procedure to the orthogonality relations (2.10) we 

end up with a single relation: 
l 

t11t33 = 1 - qfi3t31 - q•t12t32. (2.17) 

We add (2.17) to our reduction system. Given any ambiguity, it either is resolvable or gives 
rise to a new relation which can be written in reduced form and added to the reduction 
system. Starting from the ambiguities t32t2at11 , t3at22t12, t3at21t11, t32t22t11, taat2at11 and 

t33t22t11 we get: 

t12t23t31 = t13t21 t32 

t12t23t32 = (q + l)t13t22t32 + q(q! + q-l)t13t23t31 
21 1 31 l l 

t11t22t32 = 2q (qi + q- 2 )t13t21t31 + q'I (q 2 + 2q- 2 )ti2t22t31 - q2 t21 (2.18) 

t12t21t32 = q(q! +q-~)t13t21t31 + (q + l)t12t22t31 

t12t22t33 = 2q2(qt + q-!)t13t23t31 + q~(q! + 2q-!)tiat22ta2 - q!t2a 

t11t22t33 = (q-! -q! -q&)t12t22t32 -qt13t22t31 - 2q(q-q-1)t13t21t32 + t22· 

We add these relations to our reduction system. The reduced form of the relation detqT = 1 
(see (2.9}) then becomes: 

l l 2( l _ 1) ( l - l) ( t12t22t32 = q'I - q'It22 + q q!I + q '.f t13t22t31 - 2q q• + q '.f t13t21t32. 2.19) 

We add (2.19) to our reduction system too. We then get new ambiguities t12t12t22t32 and 
t12t22t32ta2 from which one derives (16.c} and (16.d). We add these last two equations to 
our reduction system. (From now on, this will be done automatically every time we derive 
a new relation in Table 1.) The new (inclusion) ambiguities t11t22t32 and t12t 22 t33 then lead 
to (15.c) and (15.d). Since (2.19) is not irreducible anymore, we should rewrite it as: 

t13t21t32=(q+1)-l - q-1(q! + q-!)-1t12t32 + qt13t2~t31 - (q + l)-1t22· (2.20) 

The ambiguities t22ta2t21 and t21t22 t32 lead to (17.a) and then the ambiguity t13t21 t32 leads 
to {19.a). Using the new reduction rules (19.a), (16,c/d) and (15.c/d), one sees that the 
relations (2.17), (2.14), (2.15) and (2.16) can be rewritten as (20), (15.a), (15.b), (16.b), 
(16.a), (19.b) and (21) rflSpectively. The ambiguities t2at12t22 , tnt12t32 and t12 t32 t33 now 
lead to (17.b), (18.a) and (18.b) respectively. It is easy to see that the reduction rules (2.18) 
and (2.20) can now be discarded. This concludes the proof of the theorem. 

Corollary 2.3 - There is a unique algebra homomorphism xU: Cq2 ..... Bq such that 

(1 + q-2) ~ a,8 
1 + (q + q-1 ),B'Y 
-(1+q2)!6')' 
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The mapping x' is an isomorphism of Hopf *-algebras. 

It follows from [2.2] and [1.2] that xl is well-defined and bijective. That x' is a Hopf algebra 
morphism follows from the fact that Adq (see ( 1.5)) is a corepresentation. Finally, x' respects 
the *-operations because of (1.9) and (2.11). 

We identify SOq• (3) and Ad(SUq(2)) via X· We then have a morphism <jJ: SUq(2) --> 

SOq2 (3) (see above [1.4]) and [1.5] can be restated as 

Corollary 2.4 - There is the following exact sequence of quantum groups: 

During the winter school in Zdikov 0. Ogievetsky pointed out to me that the quantum 
analogue of the classical isomorphism A1 ,..., B1 had already been proved in [JO) in a more 
general context. In [Tl] a result similar to (2.3) was announced, but to my knowledge a proof 
of this claim has never been published. 
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