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Summary

Investment Decisions Under Uncertainties: A Case of Nuclear
Power Plants.

Shashi Jain

This thesis discusses the role of flexibility of decisions when investing in projects
that are affected by economic uncertainties. The theory of real options is exten-
sively applied in this thesis to value such investment decisions. Many investment
decisions can be considered as real options, as the investment opportunity gives
the right — but not the obligation — to undertake certain business initiatives, such
as deferring, abandoning or expanding a capital investment project. Real option
theory provides a framework to value the flexibility of decisions which cannot eas-
ily be evaluated using the traditional discounted cash flow (DCF) analysis. The un-
derlying numerical techniques used can be challenging as they involve finding an
optimal strategy, amongst several possibilities, for making decisions. In a liberal-
ized market, the input costs, the output costs, time duration of projects as well as
the discount rates involved can be stochastic which gives rise to multiple sources
of uncertainty when investing in real assets. Therefore, the associated numerical
problems to be solved often suffer from the so-called curse-of-dimensionality.

Valuing real options has similarity with pricing of financial options, especially Amer-
ican options. This thesis develops efficient pricing methods for American options
to value real options. Although the pricing methods developed in the thesis are
quite general and can be applied to a wide range of investment problems, the focus
of the thesis is on evaluating investment decisions related to nuclear power plants.

Although the prospects for nuclear power after the Fukushima accident are weaker
in some regions, globally, the nuclear power capacity is projected to rise in the New
Policies Scenario from 393 GW in 2009 to 630 GW in 2035 [39]. Most of these new
reactors are planned in non-OECD countries, for example India has seven reac-
tors under construction and has twenty new units planned; China aims to at least
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quadruple its nuclear capacity by 2020; and Russia has about 14 reactors planned,
some to replace existing plants, and by 2017 ten new reactors totalling at least 9.2
GWe should be operational [88].

The economics of nuclear power plants suffers from several sources of uncertainty
which makes their valuation using traditional methods difficult. On one hand, the
revenues from nuclear power plants can be uncertain due to fluctuating electricity
prices, while on the other hand in a deregulated market prudently incurred un-
foreseen capital costs can no longer be passed on to the end users. Generation IV
nuclear power plants are considered promising because their conceptual designs
include improved safety features and results in better fuel management. Some of
the Generation IV reactors can additionally benefit as they are small and medium
sized reactors (SMRs). SMRs provide greater flexibility in reactor order decisions as
they can be constructed in a sequential modular fashion. Sequential construction
allows for the possibility to delay or abandon the planned construction of future
modules if the economic conditions do not evolve favourably. The conventional
Gen III and Gen III+ reactors are designed to be large units, which enables them
to benefit from the economy of scale. An important question then is, how does
the economy of scale for the conventional large reactors compare with the flexi-
bility offered by SMRs. There is a need for advanced valuation methods for nuclear
power plants that do not only take into account uncertainties in their costs and rev-
enues stream, but also — values the flexibility — and provides an optimal strategy
for investment decisions.

The first half of the thesis is concerned with the development of efficient Monte
Carlo based numerical methods for pricing American options. As the underlying
problems for pricing real option problems and financial American options are sim-
ilar, the method developed here can be applied to both problems. Specifically, a
new pricing method called the stochastic grid method (SGM) is discussed in Chap-
ter 2. Although SGM suffers from drawbacks when pricing high-dimensional op-
tions, it serves as an important first step towards the development of a more robust
and efficient pricing method called the stochastic grid bundling method (SGBM).
Chapter 3 describes in detail SGBM and provides proofs related to the convergence
and bias of the results. The chapter also illustrates the method and demonstrates its
efficiency by considering different option types, such as basket options with upto
fifteen assets.

The second half of the thesis exploits the pricing methods developed in the first
half to evaluate investment decisions related to nuclear power plants. Chapter 4
develops the real option model for valuing modular constructions in finite decision
time horizon. Valuing modular investments for nuclear power plants is a pertinent
research question, owing to an increased focus of the industry and policy makers
towards the benefits of small and medium sized reactors (SMRs) when compared
to large units. The findings of this chapter are further employed in Chapter 5 to
evaluate more detailed and realistic investment decisions, such as benefits of con-
structing twin reactors, or effects of learning and uncertain lifetime of operation on
investment decisions.



Uncertainty in capital costs of nuclear power plants is one of the hurdles for the
success of the nuclear industry and calls for an improved decision making process
that can take into account these uncertainties. Chapter 6 deals with mitigating the
risks involved in the costs and revenues from nuclear power plants using diversifi-
cation. The outcome of the work described in this chapter is a decision making tool
that helps in determining a portfolio of nuclear reactors which has the minimum
risk (in terms of the variance of returns) for a given level of expected returns. The
decision tool takes into account uncertainties in construction costs, construction
duration, operation and maintenance costs, as well as uncertainties in the price
of electricity. The decision tool also provides, under the model assumptions, opti-
mal economic conditions to start the construction of different types of reactors, as
well as the economic conditions under which the construction of a nuclear reactor
should ideally be abandoned.

The stochastic simulation based method developed in the thesis is shown to ef-
ficiently price high-dimensional options, and under certain conditions also com-
pute their sensitivities. The thesis also demonstrates how the developed pricing
method can be used when valuing real options — particularly the option to delay,
the option to abandon and sequential modular options. Finally, the thesis pro-
poses a decision tool that provides, under model assumptions, an optimal policy to
invest in different types of nuclear reactors. The decision tool also helps in deciding
a reactor order fraction for nuclear power plants that minimizes, based on mean-
variance portfolio optimization techniques, the risk that arises from their uncertain
construction costs and revenues.






Samenvatting

Investeringsbeslissingen onder onzekere omstandigheden: een
casus over kerncentrales.

Shashi Jain

Dit proefschrift behandelt de rol van beslissingsflexibiliteit bij het investeren in pro-
jecten die beinvloed worden door economische onzekerheden. De theorie van re-
éle opties wordt uitvoerig toegepast om de waarde van zulke investeringsbeslis-
singen te bepalen. Veel investeringen kunnen worden beschouwd als reéle opties,
omdat de investering het recht — maar niet de verplichting — geeft om bepaalde
handelsinitiatieven te ondernemen, zoals het starten, stoppen, of uitbreiden van
een kapitaalinvestering. De theorie van reéle opties creéert een kader voor de waar-
debepaling van beslissingsflexibiliteit die niet gemakkelijk kan worden geévalueerd
met traditionele verdisconteerde geldstromenanalyse. De gebruikte onderliggende
numerieke technieken zijn niet-triviaal, omdat zij uit verschillende mogelijkheden
een optimale strategie voor het nemen van beslissingen moeten selecteren. In een
geliberaliseerde markt kunnen de opstartkosten, de opbrengsten, de tijdsduur van
het project en discontovoet stochastisch zijn, wat leidt tot meerdere bronnen van
onzekerheid bij het investeren. Daarom lijden de bijbehorende numerieke proble-
men onder de zogeheten vioek der dimensionaliteit.

Waardebepaling van reéle opties vertoont een gelijkenis met het prijzen van finan-
ciéle opties, in het bijzonder van Amerikaanse opties. In dit proefschrift worden
efficiénte methoden ontwikkeld voor het prijzen van Amerikaanse opties. De waar-
deringstechnieken die worden ontwikkeld zijn vrij algemeen en zijn toepasbaar op
een breed scala aan investeringsproblemen. Desalniettemin ligt de nadruk hier op
het evalueren van investeringsbeslissingen die gerelateerd zijn aan kerncentrales.
Ondanks het feit dat na het Fukushima-ongeluk de vooruitzichten voor kernener-
gie in sommige delen van de wereld zijn verzwakt is de projectie in New Policies
Scenario dat de capaciteit van kernenergie wereldwijd zal stijgen van 393 GW in
2009 tot 630 GW in 2035 [39]. De meeste van deze nieuwe reactoren staan gepland
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in niet-OECD landen. India heeft zeven reactoren in aanbouw en twintig meer ge-
pland; China streeft ernaar haar capaciteit aan kerncapaciteit minimaal te vervier-
voudigen v66r 2020; en Rusland heeft ongeveer veertien reactoren gepland: enkele
om huidige installaties te vervangen en vo6r 2017 moeten tien nieuwe reactoren
met tezamen 9.2 GWe operationeel zijn [38].

De economische waarde van kerncentrales is onderhevig aan een aantal onzekere
factoren, die de waardebepaling met traditionele methoden bemoeilijkt. Enerzijds
zal de opbrengst van de centrale onzeker zijn door fluctuerende elektriciteitsprij-
zen; anderzijds kunnen de gemaakte kosten in een gereguleerde markt niet langer
worden doorberekend aan de eindgebruiker. Generatie IV kerncentrales zijn veel-
belovend omdat hun conceptuele ontwerp betere veiligheidsmaatregelen bevat en
ze resulteren in beter brandstofbeheer. Sommige Generatie IV reactoren zijn kleine
en middelgrote reactoren (SMRs) en hebben daarom nog meer voordelen. SMRs
bieden namelijk grotere flexibiliteit in reactorbestellingsbeslissingen omdat zij op
een sequentiéle en modulaire wijze gebouwd kunnen worden. Sequentiéle con-
structie geeft de mogelijkheid tot uitstel of afstel van de geplande constructie van
verdere modules als de economische randvoorwaarden zich onfortuinlijk ontwik-
kelen. Anderzijds profiteren de Gen III en Gen III+ reactoren vanwege hun formaat
van schaalvergroting. Een belangrijke vraag is dan hoe de schaalvergroting voor
conventionele reactoren opweegt tegen de flexibiliteit van SMRs. Er is behoefte
aan geavanceerde waarderingsmethoden voor kerncentrales die niet alleen de on-
zekerheden in de ontwikkeling van kosten en baten in ogenschouw nemen, maar
ook de flexibiliteit waarderen en een optimale strategie voor investeringsbeslissin-
gen geven.

De eerste helft van dit proefschrift behandelt de ontwikkeling van efficiénte nu-
merieke technieken voor het prijzen van reéle opties op basis van Monte-Carlo-
simulaties. Omdat de onderliggende problemen voor het prijzen van reéle opties
en financiéle Amerikaans opties sterk overeenkomen, is de hier ontwikkelde tech-
niek toepasbaar op beide problemen. Specifiek wordt een nieuwe waarderings-
techniek, de Stochastic Grid Method (SGM), voorgesteld in Hoofdstuk 2. Ondanks
het feit dat SGM lijdt onder tekortkomingen bij het prijzen van hoog-dimensionele
opties, dient ze als een belangrijke eerste stap richting de ontwikkeling van een
robuustere en efficiéntere waarderingstechniek, de Stochastic Grid Bundeling Me-
thod (SGBM) genaamd. Hoofdstuk 3 beschrijft SGBM in detail en bevat bewijzen
omtrent de convergentie en zuiverheid van de resultaten. Het hoofdstuk illustreert
ook de efficiéntie van de techniek door het toe te passen op verschillende optiety-
pes, zoals opties op een mandje met tot vijftien aandelen.

Het tweede deel van dit proefschrift gebruikt de waarderingstechnieken van het
eerste deel voor het evalueren van de investeringsbeslissingen omtrent kerncen-
trales. Hoofdstuk 4 ontwikkelt een model met reéle opties voor de waardering van
modulaire constructies met een eindige tijdshorizon voor de beslissing. De waar-
dering van modulaire constructies is, als gevolg van een toegenomen focus van de
industrie en beleidsmakers op de voordelen van SMRs in vergelijking met grotere
centrales, een prangende onderzoeksvraag. De bevindingen van dit hoofdstuk wor-



den verder gebruikt in Hoofdstuk 5 voor het evalueren van realistischere investe-
ringsbeslissingen. Voorbeelden hiervan zijn de voordelen van de bouw van dub-
bele reactoren of de effecten van voortschrijdend inzicht en onzekere levensduur
op investeringsbeslissingen.

Onzekerheid in de kapitaalkosten van kerncentrales is een groot struikelblok voor
de nucleaire industrie en vraagt om een verbeterd beslissingsproces dat deze on-
zekerheid in beschouwing neemt. Hoofdstuk 6 behandelt het verdelen van risicos
in de kosten en baten van kerncentrales door gebruik te maken van diversificatie.
Het resultaat van dit werk is een techniek die helpt bij het bepalen van een port-
folio van kernreactoren met een minimaal risico (in termen van de variantie in de
opbrengst) bij een gegeven winstverwachting. De techniek neemt onzekerheden
omtrent constructiekosten, constructieduur, operationele kosten en onderhouds-
kosten in acht, alsmede onzekerheden in de elektriciteitsprijs. De techniek levert
00k, onder modelaannames, de optimale economische randvoorwaarden voor de
start van de bouw van verschillende reactortypes en ook de economische randvoor-
waarden waaronder de bouw idealiter wordt stopgezet.

De op stochastische simulatie gebaseerde rekentechniek in dit proefschrift is effi-
ciént voor het prijzen van hoogdimensionale opties en onder bepaalde voorwaar-
den ook voor het berekenen van gevoeligheden van de berekende waarden. Het
proefschrift demonstreert hoe de ontwikkelde waarderingstechniek gebruikt kan
worden bij de waardering van reéle opties — zoals de optie wanneer sequentiéle
modulaire centrales te bouwen. Tot slot stelt het proefschrift een techniek voor die,
onder modelaannames, een optimaal voorschrift voor het investeren in verschil-
lende types kernreactoren levert. De techniek ondersteunt ook beslissingen die het
risico als gevolg van onzekere bouwkosten en opbrengsten minimaliseert op basis
van variantiereductie optimalizatietechnieken.
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CHAPTER

Introduction

The global electricity demand is projected to more than double to over 30,000 TWh
annually by the year 2030. More than 70% of the increased energy demand will
come from developing countries, led by China and India [49]. Providing sufficient
energy to meet the needs of a growing world population without substantially im-
pacting the environment will be a daunting task.

There is currently 370 GWe of nuclear power capacity in operation around the world,
producing 3000 TWh each year — 15% of the world’s electricity — the largest share
provided by any non-greenhouse gas emitting source [88]. This reduces signif-
icantly the environmental impact of today’s electricity generation and affords a
greater diversity of electricity generation that enhances energy security. By the late
2000s, nuclear power was under serious consideration in over 45 countries which
did not yet have it. Nuclear power was being reconsidered in the developed na-
tions like US, UK, France, Finland. Energy from nuclear power plants was a central
component of the national energy policy in the fast growing developing economies
like India and China. China and India have a total of 34 new reactors under con-
struction and many more units planned in order to meet their future energy de-
mands [88]. This period saw, as it was termed in the press, a nuclear renaissance.

According to Kessides (2012) [50], the so called nuclear renaissance could be at-
tributed to:

* An extremely strong record of global nuclear operations, with no high-profile
incidents, for over two decades helped shift the perceptions about the envi-
ronment and health risks of the nuclear energy.

* There was a fading memory of the Three Mile Island and Chernobyl acci-
dents.

* High volatility in the fossil fuel prices called for an increased diversity in elec-
tricity generation, and
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¢ Increased public concern over the greenhouse gas emissions, meant that nu-
clear energy was one of the leading candidates to shoulder the increased fu-
ture energy demands.

The events in Fukushima however derailed the onset of a nuclear renaissance with
the focus back on the safety of nuclear power plants. These events are likely to
cause major regulatory changes thus further increasing the uncertainties in already
uncertain economics of the nuclear industry. It can be argued that the nuclear re-
naissance began faltering even before the unfolding of events at Fukushima. This
was due to the concerns over the large risks and uncertainties underlying the cost
elements of nuclear power. These risks and uncertainties were reflected in the wide
range of cost estimates for nuclear power plants. The cost overruns and schedule
delays of Finland’s new Olkiluoto plant and France’s Flamenville plant are rekin-
dling old fears about nuclear power being far too complex and costly. This raises
new questions about the viability of new nuclear plants, especially in deregulated
electricity markets.

Negative wholesale prices have become more common as European countries turn
to renewables, particularly Germany with its forced march away from nuclear power,
known as the Energiewende. Neighbours such as Poland and the Czech Repub-
lic complain that power surges from Germany are playing havoc with their grids
[79]. Across Europe a strange consequence of subsidised renewables is that some
governments now want to pay power companies to maintain the capacity to pro-
duce electricity from fossil fuels to ensure that backup power is available. More
perversely, Europe is burning more heavily polluting coal at the expense of cleaner
and more flexible gas. This is because coal is cheap, the gas market is far from lig-
uid and the carbon-emissions system is broken [79]. Therefore, in the longer term,
increasing concerns about the CO, emissions added to the need for electricity in
bulk without intermittency, may imply stronger prospects for nuclear power.

The future of nuclear power depends on resolving the issues of safety of operations,
safe management of radioactive wastes and measures to prevent proliferation (MIT,
2003)[26]. However, in a deregulated electricity market, the economics of NPPs
will also be an important determinant of nuclear energy’s role in the future global
energy mix. The focus of the thesis lies in the development of models that can assist
policy makers in taking decisions related to the economics of nuclear power plants,
while accounting for the uncertainties that affect the costs and benefits of nuclear
power plants. The underlying mathematical models used are generic which allows
the techniques used here to be applicable to a wide range of topics which require
stochastic optimization of decisions.

1.1 The Uncertain Economics Of Nuclear Power Plants

The costs of nuclear power can be categorized as:
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Figure 1.1: Cost profile of nuclear and combined cycled gas turbines (CCGT) based power plants.
Source DTI (2007) [25]

* Capital or construction costs — are incurred during the planning, licensing
and construction of a new nuclear power plant.

* Operations and maintenance costs — relate to the operations, management
and maintenance of a power plant and includes the planned maintenance,
labour, security, insurance, etc.

* Fuel costs— costs related to the back and front end fuel cycles.

* Decommissioning costs — relates to the decommissioning of the plant at the
end of its operating life and long-term disposal and management of radioac-
tive waste.

Figure 1.1 compares the cost breakup for a nuclear and a gas fired power plant.
Much of the uncertainty in the economics of nuclear power plants relates to the
construction or capital costs, which also is the most important component of the
total costs. On the other hand, nuclear power plants would be fairly insensitive to
the cost of fuel as it’'s a minor component of the total generating costs.

Kessides (2012) [50] identified the major reasons for the past escalation in construc-
tion costs of nuclear power plants as:

* Incorrect understanding of the economy of scale argument — the early cost
projections while taking into account the economy of scale, usually ignored
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the added costs that will be incurred due to increased complexity of larger
nuclear power plants.

* Construction before design completion often necessitated costly redesign and
significant construction delays which, with high interest rates, substantially
increased the cost of building.

* Unwieldy licensing process and increased regulatory requirements often chang-
ing in mid-course leading to construction delays.

* Non-uniform designs inhibited the exploitation of the economy of volume
principle and further compounded the complexity of the licensing process.

* Hesitant implementation of the remedial measures for emerging problems
and identified risks and constraints.

While the uncertainties in the costs can to some extent be dealt with by better man-
agement and planning of the construction of the nuclear power plants, it is still im-
portant to take these uncertainties into account while doing an initial cost-benefit
analysis of the plant. Real options may be used to estimate the value of keeping the
nuclear option open for a firm confronted with not only uncertain capital costs but
also uncertain fossil fuel, electricity, and carbon prices.

1.2 Reactor Generations

The nuclear reactors have been classified into different generations based on the
reactor design and also partly on the era in which they were constructed [33]. The
different generations of nuclear reactors, as shown in Figure 1.2 are:

* Generation I reactors: Generation I reactors were the initial designs built in
1950-1960s and were mostly early prototype of several designs [33].

* Generation II reactors: Generation II reactors are the commercial designs
built between the 1960s and 1990s [33]. Most of the reactors operational
right now belong to the Generation II type.

¢ Generation III reactors: Generation III and III+ reactors are evolutionary de-
veloped reactor designs largely based on the Generation II technologies but
incorporate several enhancements; such as improved fuel technology and
greater thermal efficiencies. Additionally, they have higher availability and
are designed for longer operating life (> 60 years) which vastly improves their
economics. Generation III reactors have improved safety features which re-
sults in reduced probability of core meltdown and have a greater resistance
to structural damage, for e.g. from impact of an aircraft. Advances to Gener-
ation IIT are underway, resulting in several (so called Generation III+) near-
term deployable plants that are actively under development and are being
considered for deployment in several countries [33].
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Figure 1.2: Reactor Generations [source: Generation IV roadmap ,2002 [33]]

Examples of Gen III reactors include the Advanced Boiling Water Reactor
(ABWR), the Advanced Pressurized Water Reactor (APWR), AP- 600 and the
enhanced CANDU 6. Examples of Gen III+ reactor designs include the Eco-
nomic Simplified Boiling Water Reactor (ESBWR), AP-1000, the European Pres-
surized Reactor (EPR), VVER-1200, APR-1400 (see Kessides, 2012 [50]).

A common feature for Gen IIT and Gen I1I+ reactors is that they are designed
to be large reactors so that they can benefit from the principle of the economy
of scale'.

¢ Generation IV reactors: Generation IV reactors represent a set of conceptual
nuclear reactor designs currently being researched, with the year 2030 be-
ing considered as their earliest possible deployment date. The Generation IV
reactor concepts are considered as revolutionary developed reactor designs
compared to Generations II and III reactors. They were chosen amongst sev-
eral innovative next generation designs with following goals in mind [33]:

- Sustainability :

Generate energy sustainably, and promote long-term availability of
nuclear fuel;

1n microeconomics, economy of scale stands for the cost advantages that a business obtains due
to expansion. There are factors that cause a producer’s average cost per unit to fall as the scale of output
is increased, mostly as fixed costs are spread out over more units of output. Often operational efficiency
is also greater with increasing scale, leading to lower variable cost as well.
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Minimize nuclear waste and reduce the long term stewardship bur-
den.

- Safety & Reliability :
Excel in safety and reliability;
Have a very low likelihood and degree of reactor core damage;
Eliminate the need for off-site emergency response.

— Economics :

Have a life cycle cost advantage over other energy sources;
Have a level of financial risk comparable to other energy projects.

- Proliferation Resistance & Physical Protection :

Be avery unattractive route for diversion or theft of weapons-usable
materials, and provide increased physical protection against acts of
terrorism.

With these goals in mind the following six concepts have been identified as
most promising: the very high temperature reactor (VHTR), the sodium cooled
fast reactor (SFR); the supercritical water reactor (SCWR), the gas cooled fast
reactor (GFR), the lead cooled fast reactor (LFR) and the molten salt reactor
(MSR) [33]. Recently Locatelli et al. (2013) [52] presented a comprehensive
overview of the Generation IV reactors, their main R&D areas, and their eco-
nomic perspectives. A few of the Generation IV reactor concepts, like the
VHTR are small and modular in nature. Small (< 300 MWe) and medium (
< 700 MWe) reactors (SMRs) are considered an attractive option as they can
benefit amongst others from the following facts :

- Modular construction : SMRs can be manufactured largely in a fac-
tory and delivered and installed module by module on site, bringing
down the construction costs by learning effects and reduced construc-
tion time. Reduced construction times also bring down the financing
costs and investment risks [62].

- Better siting options: Smaller reactors can be installed in remote loca-
tions that have little or no access to the grid, where large scale plants
cannot be accommodated [62].

- Investment flexibility: Modular construction of SMRs provides greater
flexibility of investment decisions, wherein, if the economic scenario,
such as the cost of electricity and its demand doesn’t turn out as an-
ticipated; or the cost of the modules is higher than expected, then in-
vestment in future modules can either be delayed or abandoned com-
pletely, without affecting the modules already ordered.

One of the recurring topics discussed in later chapters involves comparing
the economic benefits of flexibility for SMRs with the benefits of economy of
scale for large units.
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1.3 Real Options

In deregulated global electricity markets, the economics of nuclear power plants
will play a key role in the future decisions to build new reactors. The various cost
components of a nuclear power plant have several sources of uncertainties which
makes it difficult to garner a consensus on what will be the cost of a new nuclear
generating plant. Uncertain costs in a deregulated market makes the decision mak-
ing process even more difficult as it is no longer possible to pass on the unexpected
costs to the end users. When the costs and benefits of a project are uncertain, in
addition to the conventional net present value (NPV) approach, the use of real op-
tions can add significant information for better valuation of the project. Projects
with economic uncertainties should take into account the value of flexibility which
arises from the possibility of delaying the investment or in certain cases abandon-
ing the project at a future stage if processes underlying economic circumstances
turn unfavourable.

The real options approach for making investment decisions in projects with uncer-
tainties, pioneered by Arrow and Fischer (1974) [3], Henry(1974) [37], Brennan and
Schwartz (1985) [14] and McDonald and Siegel (1986) [57] became accepted in the
past decade. Dixit and Pindyck (1991) [27] and Trigeorgis (1996) [82] comprehen-
sively describe the real options approach for investment in projects with uncertain
future cash flows.

Real option analysis (ROA) has been applied to value real assets like mines (Bren-
nan and Schwartz (1985)), oil leases (Paddock, et. al (1988)), patents and R&D
(Schwartz (2002)). Pindyck (1992) [67] used real options to analyse the decisions
to start, continue or abandon the construction of nuclear power plants. Rothwell
(2004) [73] used ROA to compute the critical electricity price at which a new ad-
vanced boiling water reactor should be ordered in Texas.

Until recently, the valuation of investment projects was done exclusively using the
discounted cashflow method (DCF), which computes the net present value (NPV)
of a project, given a deterministic net cashflow structure, C;,, and a known dis-
count factor r as:

M C[

NPV = —_—
o QL+ 1)im

If the net cashflow, C;,, at time ¢, is positive, it indicates a cash inflow, while a
negative value indicates a cash outflow. It is assumed in the model that the net
cashflow at each of the M discrete time steps is known exactly. More often than
not, investment projects are affected by multiple uncertain factors, that make it
difficult to predict accurately the cashflows at future time steps. Additionally, DCF
excludes the role of future management decisions — that can be made in the lieu of
emerging information during the lifetime of the project — on the future cashflow
structure.
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Real option analysis can serve as an indispensable tool when the project valuation
involves:

e Option to delay : Irreversible investments decisions that are affected by un-
certain market conditions can benefit from the inherent value of the option
to delay the investment. As more information is revealed with time, the man-
agement can choose to invest, if market scenarios turn positive, or not under-
take the project if conditions turn otherwise. The value of this option is de-
rived from the flexibility of the firm to optimally choose the time point when
it makes the investment decision.

* Option to abandon : Investors, especially in projects which involve significant
R&D, can benefit from the flexibility that arises from the option to abandon
the project in the future.

* Growth option : Growth options have a strategic value and are particularly
relevant for projects that are not profitable in themselves but might open up
more lucrative possibilities in the future. Investment decisions that are made
sequentially are often examples of growth options. For example, investing
in new oil production capacity first involves an investment for exploration
followed by the development of the wells. The first sequence of investment
derives its value from the fact that it can lead to the possibility of the second
phase of more profitable investment.

* Option to switch : The option derives its value from the flexibility of switching
the inputs and outputs depending on the market conditions.

A factor common to the above list is the flexibility of decisions which can alter the
future cashflow structure. Real options allow us to compute the value that arises
from flexible decisions if they are made optimally in the future. To briefly introduce
the real option valuation technique we take a simple toy example discussed in Dixit
and Pindyck (1994) [27].

The objective of the example is to evaluate an irreversible investment decision into
a widget factory. It is assumed that the factory can be set up immediately and will
cost a fixed amount K = $1600. Once set up, the factory produces a widget a year
for eternity. The present cost of the widget is $200, but may go up to $300 and
down to $100 with probability, g = 0.5 and (1 — g), respectively. For this example it
is assumed that the price will remain constant after the first year (see Figure 1.3).
Also for simplicity it is assumed that risks involved are diversifiable, which allows
the future cashflows to be discounted using the risk-free rate of interest, which is
taken as 10 percent for this example.

A DCF analysis of the investment, which cannot take into account the value of flex-
ibility of delaying the investment decision, will value the project as:

X300 2100
NPV = -1600+200+0.5 ) —|+05( > — |, 1.1
a2y (L) =y (L)
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Py = $200
(1-q)

P, =$100 —> P;=%$100 —

Figure 1.3: Price of widgets for two periods problem.

which is equal to $400. As the NPV of the project is positive, according to a DCF
analysis the investment should be made immediately. However, if we include the
flexibility of delaying the investment, the value of the project undertaken at the next
time step if the widget prices go up would be,

x 300
NPV =-1600+| )_ =$1700,
1o (L1)m

while if the widget prices go down, the value of the project will be

< 100
NPV =-1600+| ) ———|=-$500.
12 (11)m

If the decision to construct the factory can be delayed up to the next time step ac-
cording to an optimal decision the project will be undertaken only if the price of
widgets goes up. To decide whether the project should be undertaken now or at the
next time step, we compare the cashflow obtained when the decision to invest is de-
layed until the next time step and the optimal policy is followed in the future; with
the one obtained if the factory is set up immediately. Therefore, if the investment
decision is delayed until the next time step, the net present value of the project will
be:
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Figure 1.4: Price of widgets for three periods problem.

)}

= (LD

=$773,

~1600 (°° 300 )
+

while if the factory is set up immediately the NPV of the project would be given by
Equation (1.1), i.e. $400. As the NPV for the factory, if the decision to set it up is
made at the next time step, is greater than if it is set up immediately; for the present
example it is more profitable to delay the investment decision. The inherent value
of flexibility to delay the investment decision for this case is equal to $373.

The real option pricing problem can however be difficult due to the following rea-
sons:

¢ The above problem can become more challenging if the uncertainty in the
costs of widgets is not limited to the first time step. Figure 1.4 depicts the
above problem extended to three time steps, with the price of the widget be-
ing uncertain for the first two time steps. The problem then is to determine
when it may be optimal to invest:

1. invest immediately;

2. wait a year and then invest if the price has gone up; but never invest if
the price has gone down;

3. wait a year and invest if the price has gone up, but if it went down wait
another year and invest if it then goes up;

4. wait two years and only invest if the price has gone up both times;
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5. never invest.

An optimal strategy to invest here can be determined following Bellman’s dy-
namic programming principle which is described for a more general problem
in Section 1.4. In general there could be multiple time steps and the optimal
investment strategy would then have to be chosen from several realized pos-
sibilities.

* In amore practical application the widget price wouldn't just go up and down
to some discrete states but can with a positive probability attain any ( gener-
ally positive ) value.

* Another practical challenge involved in the real option valuation of projects
is that projects are usually affected by multiple sources of uncertainty and that
makes the problem a high-dimensional one. In the above example, not only
the price of the widgets could be uncertain, but also the cost of setting up
the factory, the time it takes to set up the factory, the number of years the
factory will operate, the discount factor etc. Use of lattice, binomial tree- or
finite-difference based methods may therefore be unsuitable for real option
valuation, when there are more than three sources of uncertainties, as these
methods suffer from the curse of dimensionality.

As most real options have a so-called early-exercise feature, the pricing problem
involved is similar to that of their financial counterparts, namely the American op-
tions. To develop a suitable pricing model for real options it is then natural to study
the pricing methods used for financial options, especially the American options
and their discrete time versions — the Bermudan options.

1.4 Bermudan Options

An option is a financial contract which enables its buyer to buy an asset at a future
time for a predetermined price. A Bermudan option is an option where the buyer
has the right to exercise at a set (discretely spaced) of times. This is intermediate
between a European option which allows exercise at a single time, namely expiry
and an American option, which allows exercise at any time. With an increasing
number of exercise opportunities Bermudan option values approach the value of
an American option.

Bermudan options can broadly be categorized into call- and put- options. A Bermu-
dan call option gives the buyer the right, but not the obligation to buy an asset from
the seller of the option at a certain pre-specified dates (between the issue and ex-
piry date) for a certain price (the strike price). The seller has an obligation to sell
the asset to the buyer if the buyer so decides. The buyer pays a fee for this right,
which is the value of holding the option. A put option on the other hand gives the
buyer the right, but not the obligation, to sell an asset at certain pre-specified dates
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(between the issue and maturity) for a certain price (the strike price) to the seller of
the option.

The real option example discussed above can be seen as as a Bermudan call option,
with the strike price equal to the cost of setting up the plant and the cashflow from
selling up the widgets as the asset price. If on the other hand the cost of setting up
the plant was uncertain while the price of widgets were known and constant then
the problem would be similar to a Bermudan put option.

Pricing of Bermudan options especially for multi-dimensional processes is a chal-
lenging problem owing to its path-dependent settings. As discussed above, the tra-
ditional valuation methods, such as lattice and tree-based techniques are often im-
practical in such cases due to the curse of dimensionality and hence are used only
in the low-dimensional cases. In recent years many simulation-based algorithms
have been proposed for pricing Bermudan options, most of which use a combina-
tion of Monte Carlo simulations and dynamic programming to estimate the option
price.

Dynamic Programming Formulation

In order to compute the value of a Bermudan option we are required to find an op-
timal policy to make early exercise decisions. Such a policy can be obtained by fol-
lowing Bellman'’s optimality principle, wherein an optimal solution is found starting
from the final time step and then recursively moving backwards until we reach the
initial time step, where at each time step the optimal decision is determined.

The dynamic programming formulation for the Bermudan option pricing problem
is defined here. A complete probability space (2, %, P) and finite time horizon [0, T]
are assumed. Q is the set of all possible realizations of the stochastic economy
between 0 and T. The information structure in this economy is represented by
an augmented filtration %; : t € [0, T], with &, the sigma field of distinguishable
events at time ¢, and P is the risk-neutral probability measure on elements of &. It is
assumed that %; is generated by W;, a d-dimensional standard Brownian motion,
and the state of economy is represented by an %;-adapted Markovian process, S; =
(S},...,S?) € RY, where 7 € [to=0,...,tm,...,tar = T]. Let hy := h(S;) be an adapted
process representing the intrinsic value of the option, i.e. the holder of the option
receives max(h,0), if the option is exercised at time . With the risk-free savings
account process B; = exp( fot rsds), where r; denotes the instantaneous risk-free
rate of return, we define
By,

Dtm = B_
Im+1

The special case where r; is constant is considered. The problem is then to com-
pute

h(S;)
Vi (St,) = maxE [—] )
T Br
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where 7 is a stopping time, taking values in the finite set {0, 1, ..., T}. The value of
the option at the terminal time T is equal to the product’s pay-off,

Vr(St) =max(h(St),0). (1.2)

The conditional continuation value Q;,,, i.e. the expected pay-off at time 11, is
given by:
th(stm) :Dtm[E[Vth(sth)lstm] ‘ (13)

The Bermudan option value at time ¢, and state S;,, is given by
Vi, (St,) = max(h(Sy,), Qs, (St,)). (1.4)

We are interested in finding the value of the option at the initial state S, i.e. V;,(Sy,).

The Least Squares Method

One of the most widely used simulation based methods for pricing Bermudan op-
tions was proposed by Longstaff and Schwartz in 2001 called the least squares method
(LSM) [53]. As LSM serves as an important reference model for comparing results
throughout the thesis, the method is summarily described here.

Success of the LSM can be attributed to the reformulation of the dynamic program-
ming principle, described above, in terms of the optimal stopping time rather than
in terms of the value process. The LSM approximates the continuation value at
each time step, given by Equation (1.3), using a least-squares regression jointly with
the cross-sectional information provided by Monte Carlo simulation. By compar-
ing the estimated continuation values with the immediate exercise values, the op-
timal exercise decision is identified. This procedure is repeated recursively going
backwards in time. After discounting the obtained cashflows to time zero, the price
of the Bermudan option is computed. Therefore, the dynamic programming for-
mulation given by Equations (1.2) to (1.4) is rewritten in terms of optimal stopping
times, denoted by 7, as:

=T,
{T(tM) \ (1.5)

T(tm) = tml(q,, (S,)<h(Se,)} T TUm+1)l(q,, (s1,)>h(S,)p M<M-1

The problem is then to compute the continuation value by,

By,
Qt,,(S¢,) =E h(Sz(1,,11))184,, | -

T(tm+1)

In LSM this computation is done by simulating independent copies of sample paths,
{84 (n),...,8,(m}, n=1,...,N, of the underlying process S;, all starting from the
same initial state S;,. The continuation value is then approximated moving back-
wards in time as,

K
Q1 (St, (M) = Y ay,, (K)Pi(Ss, (),
k=0
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which satisfies,

By,

1 Y -

argmin — )_ | h(Sz(t,,1) (M) = Qy4,, (S[m(n))|2. (1.6)

Aty n=1 Brtmn)

Here ¢ = (¢, ..., k)’ forms an orthogonal basis. The basis functions are usually
polynomials of the state variables. The option price is then given by:

h(sT(tl))

Vi (Se) =E [ Bri
Longstaff and Schwartz (2001) [53] suggest that using only in-the-money paths for
the regression step, given by Equation 1.6) helps improving the result. Although,
the LSM is simple to implement and computationally efficient, the approximated
continuation values at the intermediate time steps are generally noisy and result
in a sub-optimal early exercise policy. The improvements suggested in the litera-
ture to the original LSM, to obtain a better early exercise policy, such as boundary-
distance-grouping and use of nested-simulations, (see Broadie and Cao (2009) [15]),
make the method computationally expensive.

A contribution of this thesis is the introduction of the Stochastic Grid Bundling
Method (SGBM), which overcomes some of the drawbacks of LSM, while still be-
ing computationally competent.

1.5 Reading Guide

The thesis is divided into two parts, essentially. Part 1 deals with the development
of a fast and accurate pricing method for options with early exercise features, and
consists of the following chapters.

Chapter 2 introduces the Stochastic Grid Method (SGM) for pricing Bermudan op-
tions. Although this method has favourable characteristics, such as the estimated
continuation value in the intermediate time steps being less noisy when compared
to LSM, it is unsuitable for high-dimensional problems. However, it still plays an
importantrole in this thesis as it serves as a precursor to the stochastic grid bundling
method (SGBM), which employs and improves upon some of the techniques used
in SGM.

Chapter 3 introduces the Stochastic Grid Bundling Method for pricing Bermudan
options and fast approximation of their sensitivities to the underlying assets. The
method benefits from the two most popular approaches for Bermudan option pric-
ing methods, namely regression based methods and state-space partitioning based
methods. It uses regression for reducing the high-dimensional state space to a
low-dimensional space, which makes SGBM computationally efficient, while state-
space partitioning helps in better sampling of the conditional distribution, which
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makes the method more accurate. The efficiency of the method is demonstrated
through a sequence of numerical examples with increasing complexity.

Part 2 of the thesis is focussed on applications that involve optimal economic deci-
sions for nuclear power plants, with the optimal decisions made using the methods
developed in Part 1. It consists of the following chapters.

Chapter 4 discusses the value of flexibility that arises from the modular construc-
tion of small and medium sized reactors, SMRs, (according to IAEA, 'small’ refers
to reactors with power less than 350 MWe, and 'medium’ with power less than 700
MWe). SMRs benefit from flexibility of investment, reduced upfront expenditure,
enhanced safety, and easy integration with small sized grids. Large reactors on the
other hand have been an attractive option due to the economy of scale. The focus
of this chapter is to analyse the economic impact of flexibility due to modular con-
struction of SMRs, under different considerations of decision time, uncertainty in
electricity prices and constraints on the construction of units. For the real option
valuation SGM is used in this chapter.

Chapter 5 extends the findings of Chapter 4 to more realistic cases. Real option
analysis is used to compare different construction strategies, such as; constructing
twin units vs constructing two large reactors of equivalent size independently, or
modular SMRs which benefit from the learning effect and flexibility vs large reac-
tors that benefit from the economy of scale. This chapter also analyses the effect of
uncertain lifetime of operation for nuclear reactors, which could arise due to pos-
sible lifetime extension on one hand or premature permanent shut-down due to
unforeseen events on the other hand. For this chapter SGBM is used as the under-
lying stochastic optimization method.

Chapter 6 presents a decision-support tool, which takes into account the major
uncertainties in the cost elements of a nuclear power plant, to ultimately provide
an optimal portfolio of nuclear reactors. Capital costs, fuel, operation and mainte-
nance (O&M) costs, and electricity prices play a key role in the economics of nu-
clear power plants, where especially capital costs are known to be highly uncertain.
Different nuclear reactor types compete economically by having either lower and
less uncertain construction costs, increased efficiencies, lower and less uncertain
fuel cycles and O&M costs, etc. The proposed decision tool uses a holistic approach
that takes into account the key economic factors and their uncertainties to com-
pute an optimal portfolio of nuclear reactors. The portfolio so obtained, under the
model assumptions, maximizes the combined returns for a given level of risk or
uncertainty. The decisions are made using a combination of real option theory,
which uses SGBM as the underlying pricing method, and mean-variance portfolio
optimization.

Chapter 7 summarizes the findings from the other chapters and reflects upon the
broader implication of this research.
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CHAPTER

Pricing Bermudan Options Using
The Stochastic Grid Method

The contents of this chapter have appeared in [40]. The stochastic grid method
SGM, which serves as a basis for the SGBM, to be introduced in the next chapter, is
a dynamic programming based option pricing method which recursively computes
the option price, moving backwards in time. A functional approximation, obtained
using regression, of the option price at a given time step is used to compute the
option price at the previous time step. The dimensionality of the problem is recur-
sively reduced using the intrinsic value as a mapping function. Although numerical
results are given for high-dimensional problems, the error for SGM is shown to be
bounded for a one-dimensional problem.

Several simulation-based methods have been proposed to price options with early-
exercise features, which combine Monte Carlo path generation and dynamic pro-
gramming techniques to determine optimal exercise policies. The class of regression-
based methods has been developed by Carriere (1996)[20], Tsitsiklis and Van Roy
(1999)[83], containing the Least Squares Method (LSM) by Longstaff and Schwartz
(2001)[53] as its most prominent member. A detailed analysis of regression-based
methods can be found in Glasserman (2003)[34].

Another approach is based on approximating the transition probabilities using ei-
ther bundling, as in Tilley (1990) [81], partitioning, as in Barraquand and Martineau
(1997)[7] and Jin et al. (2007)[45], or quantization, as in Bally and Pages (2004)[5],
of the state space; or computing weights to approximate these conditional proba-
bilities, as in the stochastic mesh method Broadie and Glasserman (2004)[17].

Other than the above two approaches, there exist duality-based methods proposed
by Haugh and Kogan (2004)[36] and Rogers (2002)[71]. By a duality-based method
an upper bound on the option value for a given exercise policy can be obtained, by
adding a non-negative quantity that penalizes potentially incorrect exercise deci-
sions made by a sub-optimal policy.

SGM has certain advantages over existing methods. LSM [53], although compu-
tationally fast and simple to implement, uses a large number of paths to obtain a
good exercise policy. Also the number of basis functions required for regression
grows almost exponentially with the dimensions of the problem. SGM on the other

19
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hand can be used to obtain a good exercise policy using far fewer paths. The num-
ber of basis functions used in SGM is almost independent of the dimensions of the
problem. SGM uses sub-simulation when moments required to approximate the
transition density function are unavailable, which can make the method computa-
tionally rather expensive in this situation.

This chapter is organized as follows, Section 2.2 is devoted to the description of
the SGM. In Section 2.3 a basic error analysis for a one-dimensional problem is
reported and some of the results for the single asset case are discussed. In Section
2.4 the results for high-dimensional problems are discussed and compared with the
other available Monte Carlo techniques. Section 2.5 provides some conclusions,
and points out some of the limitations of the method.

2.1 Problem Formulation

A complete probability space (2, #,[P) and finite time horizon [0, T] are assumed
here. Q is the set of all possible realizations of the stochastic economy between
0 and T. The information structure in this economy is represented by an aug-
mented filtration %; : ¢ € [0, T], with &; the sigma field of distinguishable events
at time ¢, and P is the risk-neutral probability measure on elements of &. It is as-
sumed that &; is generated by W}, a d-dimensional standard Brownian motion,
and the state of the economy is represented by an %;-adapted Markovian process,
S =(S},...,8% e RY, where t € [to = 0,..., tm,..., tpr = T1. Let by := h(S;) be an
adapted process representing the intrinsic value of the option, i.e. the holder of
the option receives max(h;,0), if the option is exercised at time . With the risk-
less savings account process B; = exp( fot rs ds), where r; denotes the instantaneous
risk-free rate of return, we define

By,
Dy, =——.
Btm+1

The special case where r; is constant is considered. The problem is then to com-
pute

h(S;)
Vi (Sgy) = mTax[E [B—: )
where 7 is a stopping time, taking values in the finite set {0, t1,..., T}. The value of

the option at the terminal time T is equal to the product’s pay-off,
Vr(St) = max(h(St),0). 2.1

The conditional continuation value Qy,,, i.e. the expected pay-off at time f,,41, is
given by:

Qt,,(St,) =D, E[ Vi (St,0.1) 180, - (2.2)
The Bermudan option value at time £, and state S;,, is given by
Vi, St,,) = max(h(Sy,), Qs (Sy,,)). (2.3)

We are interested in finding the value of the option at the initial state S, i.e. Vy,(Sy,).
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2.2 The Stochastic Grid Method

The stochastic grid method (SGM) solves a general optimal stopping problem us-
ing a hybrid of dynamic programming and Monte Carlo methods. The method
first computes the optimal exercise policy and a direct estimator of the true option
price. The lower bound values are computed by discounting the pay-off obtained
by following this exercise policy. The details on how these bounds are obtained are
described in the sections to follow.

Method Details of SGM

A (Markovian) discretization scheme which is easy to simulate, e.g. the Euler scheme,
is used to generate N sample paths originating from the initial state S;,. When the
diffusion process appears in closed form, such as the case of the commonly used
multi-dimensional Black - Scholes model, the sample paths can be generated di-
rectly. The stochastic grid points S, (n), n=1,..., N, can be interpreted as the in-
tersections of the sample paths with a plane representing different intermediate
time steps t;,. Figure 2.1 shows the grid points for an option with two underlying
assets S, = (S}m, S%m) starting from the initial state S;, = (100, 100) at two different
time intervals, where one is closer to the initial time, while the other is closer to the
final exercise time T.

t<T t<s<T
250, 250,

A0 A0

ERE)
ERE)

0 100 20 %0 0 10 0 %
s S8

(@) (b)
Figure 2.1: Grid Points (30000 x 30000), Figure (a) at ¢, Figure (b) at s where t <s< T.

The value of the option at the expiration time f); = T will be equal to its pay-off
given by max(h(St),0). Only financial derivatives whose pay-off are an element of
the space of square integrable or finite variance functions are considered. Exam-
ples of h(S;) on multiple assets include, for a basket call option,

h(Sy) = (W S+ + wy St — X)),
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for an out-performance option
h(S;) = (max(S},...,S7) - &),

where £ is the option strike price.

Computing the Optimal Exercise Policy

The main obstacle in pricing Bermudan options using Monte Carlo methods is the
fact that the optimal exercise policy is not known. SGM computes the continuation
value at each grid point, starting from the grid points at the expiration time ty; = T
and moving backwards in time. The option is exercised if the immediate pay-off is
greater than the discounted continuation value.

The direct estimator is defined recursively starting with VT(ST) = max(h(S7),0),
andform=M-1,...,1, by
‘//\tm (Slm) = max(h(stm)’ Dtm[E [ztm+1 (g(sfm+1)’ Stm) |Stm]) 4 (24)

where,

Ztm+1 (g(stm+l)’stm) =t [Vtmﬂ (Stm+1 ) Ig(stm+1 )’ stm] : (25)
Mapping function g(-) maps the high-dimensional S;,,,, — space to alow-dimensional
g(Sy,,,,)— space.

E(Z,., (§(St,..),St,)|St,] represents the continuation value for S;,. Using iter-
ated conditioning it can be shown that,

[E ['E [Vtm+l (Stm+1) |g(stm+1)'stm] |Stm]
E[Zty011(8(81,,11),8,)1S1,,] - 2.6)

E[V,,.,(St,..)IS0,]

In the sections to follow we discuss how to approximate Z, ., (g(Ss,,.,),Ss,,) and
the choice of the mapping function g(-). Once the functional approximation,

Zt.,(8(84,.,),S1,), is obtained it can be used to compute the discounted continu-
ation value at the grid points for #,, and thus to make the optimal exercise decision,
i.e. exercise if the discounted continuation value is less than the immediate pay-off.

Parametrization of the option values

The continuation value at time t,, and state S;,,, i.e. Qy,(S;,) can be computed
from Equation (2.2). Instead of using the direct functional approximation of the
option price at t;;41, i.e. V4,,, (Ss,,,,) the law of iterated conditioning, i.e.

E[E(X|4]|A4) =E[X|A],



2.2. The Stochastic Grid Method 23

where # is the sub- o— algebra of ¢, is used to compute the continuation value.
Then, the continuation value can be written as (2.6).

In order to compute Qy,, (S;,,) from Equation (2.6) the functional form of
Zt., (884,,.1),St,) is required. At the expiration time, the option value is given by
Equation (2.1).

It is assumed that the unknown functional form of Z;,,., (g(S,..,),Ss,,) can be rep-
resented by a linear combination of a countable set of %, ,, -measurable basis
functions, where %, , is the information set at time f;;,41.

Similar to the regression-based algorithms (Tsitsiklis & Van Roy, 1999 [33], Longstaff
& Schwartz, 2001 [53]) SGM approximates the unknown functional form of
E([Vi,.1 St,0:1)18(St,.1),S1,, ] by projecting it on the first K(< co) polynomial basis
functions.

Remark 1. In the examples to follow the function Z,,, | (g(S¢,,.,),Ss,,) is approxi-
mated in SGM by Z,,., (§(St,,.,),S1,), as all the grid points at ty., generated from
source Sy, are used in the regression. The exercise policy obtained is still accurate as
shown by the numerical results (lower bound values). An improved approximation
will be based on a more sophisticated regression scheme, where grid points at t,, are
bundled based on proximity, and only those grid points at t,,+1 are used for regres-
sion to approximate Z,,,, (§(S4,,.,),St,,) that originate from the bundle containing
S:,.» discussed in the next chapter.

When Z,, ., (g(St,,.,),St,,) is approximated by Z,,, (g(S,.,),Ss,), an accurate
early-exercise policy is obtained when g(-) is equal to h(-). However, also other
choices of g(-) can be made. For other choices, it becomes important that the grid
points are bundled based on some nearest neighbour rules to get an accurate ex-
ercise policy. In the special case when g(-) is chosen to be constant, SGM with
bundling would very closely resemble the state space partitioning method by Jin et
al. (2007) [45].

We denote this approximation by Z{; .1 (8(84,,.1),S1). Equation (2.5) is approximated

over a set of K polynomial basis functions, as

K-1
Z),‘Iy(yH.] (g(stm+l)'st0) = [E [Vtm+1 (Stm+1)|g(sfm+l)’st0] = Z atm+l (k)¢k(g(strn+l))’
k=0
(2.7)
such that at each time step
N
r=min) |Z (884,.1):8%) = Vit St ) (2.8)

Arm 7

where {¢(: )}Ik(:‘o1 forms a set of basis functions, and r is the sum of squared residual
errors.
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This approximation can be justified if it is assumed that V;,,(S;,,) is an element of
the L? space of square integrable functions relative to some measure and therefore
can be written as the linear combination of basis functions. Rather than regressing
over the entire g(S;,,,,)— space better accuracy is obtained in SGM by piecewise
regression, as explained in Section 2.3 and shown in the specific examples to follow.

Mapping high-dimensional state onto single-dimensional g(-)— space

In an approach similar to Barraquand and Martineau’s SSAP method [7], the di-
mensionality of the problem is reduced by using g(S;,,,,) rather than the cross-
products of the underlying states (as in LSM [53]) for regression.

Figure 2.2 shows in a schematic diagram how dimension reduction works in SGM.
In order to compute the continuation value at S;,, directly, a high-dimensional
transition density function would be required, as shown in Figure 2.2(a). In SGM,
however, first the option value at #;,+ is projected on the g(S;,,,,)-space, see Figure
2.2(b). In other words, conditional expectation,

ElVi,.1 (St,.,)18(St,,.,)], is computed using the least squares regression. The con-
tinuation value is then computed using the tower property as explained in Equa-
tion (2.6), which involves a one-dimensional transition density function. When all
grid points at #,,+1 are used for regression, E [V(tmﬂ,stmﬂ)lg(stmﬂ),Sto] , is com-
puted instead of E [Vtmﬂ (St,,.)18(St,,.1),St,, | - A better approximation is obtained
by bundling the grid points at f,, based on proximity and using only those grid
points at #,,+1 that originate from the bundle containing S;,,, for regression (see
the next chapter for details). However, it is found that in the case that all grid points
at t,, are in a single bundle, a very satisfactory exercise policy (as is reflected in the
lower bounds) can still be obtained when the mapping function g(-)— is of the form
of the payoff function for the problems considered.These latter results for higher-
dimensional problems are reported in the numerical section.

Boyle et al. (1997)[12] and Broadie and Detemple (1996) [16] show that the pay-
off value is not a sufficient statistic for determining the optimal exercise decision
for options on the maximum of several assets for SSAP. This argument however is
specific to the SSAP and does not apply to SGM. In the SSAP method the state space
is first mapped to the partitions (cells) along the pay-off space h(S;) and then the
same exercise decision is applied for all underlying states that fall into a particular
cell or partition. This results in seemingly far off state points (like (100,90),(100,100)
and (100,50)) to have the same exercise decision. In SGM first the exercise decision
is made for each underlying state S;,, (or grid point) at time step t,, and only then
the state space is reduced to g(S;,,).

In order to give a better intuition of the method and allay the concerns raised by
Boyle et al. [12], consider the same example given by them. Figures 2.3 to 2.6 show
the evolution of two asset prices S; = (S},S?) with two exercise time steps. The
option pay-off, h(S; = (S}, S%)) = g(S;) = max(S}, S?) and for convenience the risk-
free interest rate is taken to be zero. It is straight forward to see that the option value
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V(t+1)

E[V|g(S(t+1)]

a(.)

::; P(S(t+1)]S(t)

P(g(S(t+1))|S(t))

(@) (b)

Figure 2.2: Schematic diagram showing how dimension reduction works in SGM. The option value at
step ;41 is given, Figure (a) shows the conventional way of computing the continuation value at S¢,,,,
based on P(S¢,,, , 18t,,); Figure (b) shows how the continuation value is computed in SGM by means of
projection E[Vy,, ., (St,,,,1)18(St,,, )] onto g(-) and P(g(S¢,,,,;)ISs,)-

at fp is 11. The steps followed at each time step starting from the final expiration
time t, are

¢ Step 1: Compute the continuation value at each state point.

» Step 2: Make the exercise decision, based on the greater of immediate exer-
cise h(S;) or continuation value Q;(S;).

* Step 3: Regress the option value obtained over g(S;) = max(S}, $2), to be used
in the previous exercise time step (as one moves backwards in time) to com-
pute the continuation value.

e Step 4: In the previous exercise time step, compute the transition probability
from each state point to the g(-)- space in the next time step, i.e. P(g(Sy,,,,)!Ss,,).

e Step 5: Compute the continuation value Gtm (S¢,,) and the option value Vtm S¢,)
using Equation (2.4).

Focusing on the example, Figure 2.3 shows that at time £, the option values V4, (S, =
(14,2)) and V, (S;, = (2,14)) are 14 and V4, (S, = (4,2)) is 4. On regressing these val-
ues over max(S}, %) gives Z;,(g(Sy,) = 14,S,)) = 14 and Z,,(g(Sy,) = 4,S,) = 4 are
obtained, as shown in Figure 2.4. Moving to exercise time step ; first the transition
probability P[g(S,)IS;, ], is computed. In the present example the state S;, = (8,8)
transitions to g(S;,) = 14 with probability 1. Similarly, the conditional transition
probability for S;, = (8,4) equals P(g(S;,) = 4IS;, = (8,4)) = 1. Together with these
conditional transition probabilities and the approximation of the option values at
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1>, the continuation values for the state points at #; are computed. The continua-
tion value at S;, = (8,8) equals 14, computed by:

O\tl (Sl’l) = Zztz (g(sl’z) = xystg)‘I]:D(g(stz) = xlstl = (818))'
X

The continuation value at S;, = (8,4) is 4, as:

Qu(S1) =Y. Z,(g(Ss,) = x,84)-P(g(Sy,) = xSy, = (8,4)).
X

Figure 2.5 shows that the option value at S;, is the maximum of immediate exercise
and continuation, i.e. max(8,14) for §;, = (8,8) and max(8,4) for S;; = (8,4). Thus
it is optimal to exercise in state S;, = (8,4) and to continue in the state S;, = (8,8).
On regressing these values over max(S%l,S%), th (g(S¢,) = 8) value 11 is obtained,
as shown in Figure 2.6. Finally, for time step f, state (8,6) evolves to g(S;,) = 8 with
probability 1. Therefore, the conditional continuation value is 11, i.e.

Y 7, (8(S1) = %,84)-P(g(Sy,) = xIS;, = (8,6)) = 11,
X

and the option value Vto (Sz, = (8,6)) = max(8,11), which gives the correct value.

Although this example is over simplified, it gives a basic understanding of the ap-
proach. Figure 2.7 plots the shape of typical exercise regions for a Bermudan call
option on the max of two underlying assets obtained using SGM. The figures are in
agreement with those deduced by Broadie and Detemple (1996) [16]. Interestingly,
it can be seen, as was found by Broadie et al. that, prior to maturity exercise is not
optimal when the prices of the underlying assets are equal.

Computing the Continuation Value

The continuation value for grid point S;,, is the discounted conditional expectation
of the option values in the next time step f,,+1 given S;,,. This is given by,

th (Stm) = Dtm[E[Vtm+1 (Stm+1)|stm]-

As mentioned in Section 2.2 we first approximate the conditional expectation of the
option values at £;,+1 given g(S;,,,,) as a polynomial function of g(S,,,,), Equation
(2.7). The continuation value can then be approximated using iterated condition-
ing as

Q1,,(St,) = D1, E[ Z1,,,1 (8(S1,01),S10) IS0, | - (2.9)

Here Z,,,, is a polynomial function of the adapted process g(S;,,,,) and hence the
conditional probability density function P(g(S;,,.,)|Ss,) needs to be determined in
order to compute its expectation. Using (2.7), Equation (2.9) can be written as

K-1
Q1,,(Ss,,) =Dy, f (Zatm(k)gbk(g(stmﬂ)) dP(g(Ss,,,)I8s,).  (2.10)
Si,,, €21 k=0

There are three possibilities for computing P[g(S;,,,,)ISs,]1:



2.2. The Stochastic Grid Method

(Slf’SZ)

. V(2,14) = 14
2 2,14
.8) (2,14)
1
2
1 V(14,2) = 14
(8,6) (14,2)
1 V(4,2) =4
(8,4 (4.2)
to t1 to

Figure 2.3: Step I: Compute the option val-
ues at f» as function of (S%2 , S%Z)

(S1,52)
V = max(8,14)
3 —(8,8)
(8,6)
1 V = max(8,4)
G
to t1 to

Figure 2.5: Step III: Compute the option val-
ues at 71 as function of (S}1 s S%l)

27
(S1,52)
V(14) = 14
3 (88  h=14
(8,6)
1 V(4) =
? (8,4) h—
to t1 to

Figure 2.4: Step II: Map the option prices to
max(Sy,, 57,)

(Sl! 52)

(8,6)

to t1 to

Figure 2.6: Step IV: Map the option price to
max(Sy,, 57 )

1. The exact transition probability density function P(g(S,,,,)Ss,,) is known,
for example for a call or put on a single asset in the Black-Scholes framework,
a call or put on the geometric mean of d assets.

2. The transition probability density function P(g(Sy,,,;)!S:,,) is unknown, how-
ever, the moments of the distribution are known, for example for a call or put
on the Max or Min of d assets in the Black-Scholes framework.

3. The transition probability density function P(g(S,,,,)|Ss,) and its moments

are unknown.

Case 1 is the trivial case where the density function is already known. This case can
also be handled efficiently by Fourier techniques, particularly when the conditional
density function is not known but when the characteristic function (the Fourier
transform of the conditional density) is (Fang and Oosterlee (2008) [29]). Case 3
can be reduced to Case 2, by computing the moments with the help of Monte Carlo
sub-simulations. For each grid point at time step ¢, generate sub-paths until time
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Figure 2.7: Exercise regions for a max call option

tm+1 and compute the first four central moments, for the distribution of g(S;,,,,),
conditioned on S;,,. The computational effort required for such a sub-simulation
is of order O(Ng Ns), where Ng is the number of grid points and Ny is the number
of sub-paths simulated. In the examples considered, when sub-simulation was re-
quired, the computational time was a few minutes. The computational time can
further be reduced by using GPUs and generating sub-paths for a group of nearest
neighbour grid points, rather than for each one of them.

Once these moments for g(Sy,,.,) corresponding to the grid points at ;, are known,
the conditional density function f(x|S;,,) is approximated using the Gram Charlier
series (See Kendall and Stuart (1969) [48]). Given the moments of a distribution, the
Gram Charlier series approximates the density function f(x) as,

f(x)z\/zl_ﬂaexp —(xz_a’:)z [1+3T33H3(x;“)+;%H4(x;”)], 2.11)

where Hs3(x) = x*—3x and Hy(x) = x* —6x% + 3 are Hermite polynomials. k1 =y,
Ko = 02, K3 = Us, Kg = [ — 3p§ are the first four cumulants. More details about
computing the probability density function are given in the specific examples in
the sections to follow.

Convergence of Gram Charlier series

The convergence of the Gram Charlier series has been discussed by Milne (1929)
[60]. If a distribution satisfies the conditions given by Equations (2.16) and (2.17)
then Milne shows the order of convergence for Gram Charlier series approximation
of the distribution is O(n‘%), where n is number of terms in the series expansion.
Here we give some numerical results to show the effect of,
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¢ error in the moment estimates in the case of sub-simulation,

* non-random error in the Gram Charlier series approximation,

on the SGM estimator.

The effect of error in the moment estimates from sub-simulation is illustrated in
Figure 2.8. It plots the standard error for the direct estimator when an increasing
number of sub-paths are used. We plot the standard error vs ﬁ, where Ng is the
number of paths used in the sub-simulation. When the exact values of the higher
moments are used (as can be computed using the Clark algorithm), the standard er-
ror should be the intercept with the Y-axis of the fitted function (as it corresponds
to the case where Ng — 0o). We find that this is indeed the standard error for the di-
rect SGM estimator when we use the exact moments from the Clark algorithm. Also
we find that the mean of the direct SGM estimator and SGM lower bound values
obtained by sub-simulation are close to those obtained using the exact moments.

As the error from the Gram Charlier series is independent of the regression error,
we look at the case of a European option price for a max option on three assets. In
this case the error in the approximation of E [V(T, S7)lg(S T)] is zero. Then the error
in the option price is only due to the Gram Charlier series. We compare the results
with those from Boyle (1990) [13] as reference values.

Table 2.1 gives the max European call option values for a 3-d case, when the first
two, three and four moments are used in the Gram Charlier series. We find that
the error due to exclusion of higher moments while approximating the Gram Char-
lier series in the case of max option is significant only when the volatilities of the
underlying assets are not the same.

0.5

0.451

y = 8.7% +0.0081 —*-SGM estimator (se ]
— Linear fit

0.4r

Standard errror

~ | | 1 1 1 1
O01.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
1/v/Ns
Figure 2.8: Standard error vs LN for a Bermudan max call option with 10 equally spaced exercise

opportunities and 30000 grid points. The parameters are same as in Table 2.3 for 2 assets and Sy =
[100,100].
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Strike | Boyle | 2 moments | 3 moments | 4 moments
GC GC GC
30 16.703 16.705 16.700 16.705
40 9.235 9.249 9.251 9.237
50 4.438 4.375 4.458 4.439

Table 2.1: Buropean call option on max of 3 underlying assets: The results are compared with Boyle
(1990). The parameters are: So = [40, 40, 40], r =10%, p =0.9, T =1, 0 = [25, 30, 35] %.

Need for Peripheral Paths

It is noticed that in high-dimensional problems the exercise policy obtained is bet-
ter if additional paths are generated from points on the periphery of source point
S, This idea is not new and was originally proposed by N.S. Rasmussen (2005) [68]
as an improvement for the LSM, which he calls initial state dispersion where instead
of using the original initial state S, for generating the state variables one starts with
some fictitious initial time point —Tp < 0 and the original state for generating the
state variables. More recently, K.H. Kan et al. (2010) [46] propose a scheme to dis-
perse the points around the initial source point without starting from a fictitious
initial time point. In our examples however two additional point sources around
the initial point are used and an equal number of paths from these three source
points are generated.

Lower Bound Values

The solution from the SGM can be validated by computing the lower bound on
the option price, using the exercise policy obtained from it. To compute the lower
bound on the option price, we simulate a number of sample paths (fresh set of
paths should be used) originating from S, using the same discretization scheme.
The continuation value at the new grid points is then obtained using

Q:,(S:,) =Dy, E[Z,,.,(&St,..),S6)ISt, ],

where the functional approximations of the conditional option values
Z1,..(8(S4,,.1),S1,) are obtained by the SGM algorithm. For each sample path, the
first exercise period ¢, if it exists, is determined for which h(S;,) = (j,m (Ss,,). The
option is then exercised and its discounted pay-off is given by h(S;,,)/B;,. The
lower bound on the option price is then obtained as

h(Sz)
Bs

Vo =E : (2.12)

where T = min{t € [0, T] : @t(St) < h(Sy)}. The option value obtained by following
any exercise strategy is dominated by the optimal strategy. In other words, as the
option value is obtained by following a stopping rule 7 it gives a lower bound on the
true price (see Andersen and Broadie, 2004 [2]).
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Algorithm

The SGM algorithm is briefly summarized as:

* Step I: Generate N sample paths {S,...,S,,}, where [fp =0,...,fy = T] and
S:, € #4, all starting from initial state S;,. The paths are discretized in time
using some discretization scheme (e.g. Euler’s discretization scheme). The N
asset prices S;,, represent the grid points at #;,;

e Step II: Compute the option value for grid points at tj; = T as

Vr(St) = max(h(St),0);

e Step III: Compute the approximate functional form,

Z1(8(S1),S4,) =E[Vr(ST)Ig(ST),S1 ],

by regressing the option value at the grid points over polynomial basis func-
tions of g(St);

e Step IV: Perform the following steps for each exercise time ¢,, moving back-
wards in time, starting from f;;_; until one reaches #; to obtain the direct
SGM estimator value V,(Sy,) :

Compute the continuation value for grid points at ¢, using the func-
tional approximation of Z;,, ., (g(Ss,,.1),S%),

Qt(81,) = D, E [ Zt,,.1 (8(81,,1),810) 1S, ]
- Compute the option value for grid points at £, as
Vi, (St,,) = max(h(Sy,,), Qr,, (S1,,));

- Compute the functional approximation for the conditional expectation,
ie.
Z4,,(8(S1,),810) = E[ V2, (S1,)18(S1,,), 1,

by regressing the option value obtained at each grid point in ¢, over a
set of polynomial basis function of g(S;,,);

- Go to the previous time step (m = m—1).

» Step V: Using the exercise strategy obtained while computing the direct SGM
estimator. For each path (from a set of new paths) determine the earliest time
to exercise T = min{t € [0, T]: (jt(St) < h(Sy)}. Obtain the lower bound option

valueasE[%].
T
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2.3 Error Analysis for the Single Asset Case
A basic error analysis is performed for the single asset case. It can be readily seen
that for a single asset case for the choice of g(x) = x,

Ztmﬂ (g(strrwl)’sto) = Ztm+1 (g(stm+1)'stm) = Vtm+1 (Sferl)‘

SGM has two main sources of error in the penultimate exercise opportunity, i.e. at
tm=mMm-1- They are,

. €§m+l (g(Sy,,.,)): error in the approximation of

Ztm+l (g(stm-ﬂ)’sto) =E [Vtm+1 (Stm+1)|g(stm+l)’st0] ’

. e{m (8(S¢,,.,)ISs,): error in the approximation of the transition density func-
tion,
f(g(stm+1)|stm)

The approximation of the continuation value at ¢, is given by,

Q:,,(Ss,) = f(Zth (x,8g) +€7, . (D (f(xISg,) +€{m (xIS¢,))dx. (2.13)

The error in the estimation of the continuation value, e?m (St,,), thus comes from
errors in the approximation of Z;, ., (S4,,.,,Ss) and the transition density function
f(g(Ss,,,,)1Ss,). The error, e?m (St,,), can be split into an error due to approximation
of the transition density function, e?ﬂ{ (S:,,), and an error due to the approximation
Of Zyyy,, (€(S i), Sto), L& €2(Sy,), e

u

€2 (8y,,) f e (0Zy., (x,S)dx+ f ¢ (D[ (IS, dx

A

< f €] (01Z4y,, (x, S dx + f €%, I f(xISy,)dx  (2.14)

e (Sy,) +€% (Sp,). 2.15)

It is now shown that these two errors are bounded.

Error Due to Gram Charlier Approximation

Milne (1929) [60] showed that if f(x) satisfies a condition of the form

2 2

le® flx))—e f(xp)| < LIxy — Xol, (2.16)
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and if

xz
|xe® f(x)| <L, 2.17)

with L constant, then the error of a Gram-Charlier series as in (2.11) with #» terms is
bounded by

X2

If(x) = fa@)]:= e/ ()| < BLn e T, (2.18)

where B is a constant independent of n. Assuming that the conditions above are
satisfied the error in the continuation value due to the Gram Charlier approxima-
tion can be bounded by

2
€/ (Sy,) <BLn" % f e T 7, (x,Sy,)dx. 2.19)

Error Due to Parametrization of Option price

Zy,.,(8(84,.1),S4) is approximated by piecewise interpolation. If a single high-
degree polynomial is used for regression it can lead to significant errors if one of the
derivatives of Z;,,,, (g(Sy,,.,),Ss) is discontinuous. A robust alternative is to replace

the single high degree polynomial for regression in [xo, x,], here xo = mins,  (8(Ss,,,))
and x, = maxs,  (8(Ss,,,)), by several low-degree polynomials by appropriately
dividing the regression domain [xy, x,]. An extreme case of this would be to use a
linear polynomial to interpolate between adjacent data points. In such a case the
maximum error due to regression is bounded by

1 622[‘m+1 (xy St())

2
max -— |AZ,
X€[x0,%n] 2 0x?

(2.20)

4 z
max |Z;,,., (X,8¢) = Zs,,, (%,Ss) = €| max <
X€E[x0,%Xn]

where A denotes the largest space between interpolation points.

In practice, however, dividing the domain in upto six regions with four polynomial
basis functions for each region already gives a small regression error. The break
points for dividing the domain [xg, x,,] are chosen as the early-exercise point and

2

. . 0%Z; . 1(xSs) L. .
the critical points for t’"gflzto, Figure 2.9 compares the maximum and mean re-

gression error with different numbers of pieces (keeping the number of grid points
constant) and with different numbers of grid points (keeping the number of pieces
constant) for a call option on a single asset. It can be seen that for the same number
of grid points, significantly smaller errors in regression can be obtained using more
partitions.
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Figure 2.9: Maximum and average squared residual errors due to parametrization of the option price
when, (a) when the number of segments in the piecewise regression is constant = 6, (b) the number of
grid points used in the regression is constant = 10,000.

Assuming the conditions above are satisfied the error in the continuation value due
to parametrization of the option price is then bounded by

€2(Sr,) <l€?  max f fxIS,)dx (2.21)

Under the assumption that the conditions for convergence of Gram Charlier series
expansions are satisfied and a large number of local regression functions are used,
the error in the continuation value is bounded by

2
e?m (Sy,) < BLnz f e T Zy (X, Ss)dx + ez Imaxf f(xIS¢,)dx. (2.22)
x2
Here it is assumed that [e™ 7 Z; ., (x,S;,)dx is bounded.

Error Due to Recursion

From (2.22) the error in continuation value at t,, is bounded. At ¢, the error in the
option price V;,,(S;,,) can be determined using

Vtm (S¢,,)

max(Qy,, (S,) +€ (St,,), A(Sy,))
max(Qy,, (Sy,), 1(Sy,)) + €2 (Sy,,)1. (2.23)

IA

The continuation value at ¢,,_; will have an error described by

Qtpy Sty 1) < f (Z1,, (6, S1y) + €3, ()] + (€L (N (F(xISy,, ) +e] (dx.  (2.24)
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The additional term in Equation (2.24) when compared to (2.13), is the error due to
recursion, €p :

er< f €2 (I(f(xISy,_,) +e  (0)dx,

which is bounded by
er <max(ley (S,)).
m
It can be shown that the error due to recursion at time step fj is bounded by

e, <) max(le? (S,
m Stm

Numerical Results for Bermudan Put on a Single Asset

The error analysis for a put on a single asset is illustrated using numerical results,
where the risk-neutral asset price follows the stochastic differential equation

dSt:rStdt+0'Stth, (2.25)

r being the continuously compounded risk-free interest rate, o the annualized volatil-
ity. Here r and o are assumed to be constant. W; is the standard Brownian motion.

It is assumed that the option is exercisable a finite number of times (M) per year,
at a strike price of £, up-to and including the final expiration time 7. N sample
paths, {Sy,...,Sy,}, are generated using the closed form solution for SDE (2.25).
The asset values S;,, represent the grid points at .

Parametrization of the Option Value for a Single Asset

The option price at any time ¢, prior to the expiration time 7 is given by

Vzm (Stm) = maX(h(Stm), th (Stm))-

To compute the functional approximation of the option value at time ¢, the op-
tion values obtained at the grid points are regressed on polynomial basis functions
of g(8;,,) =S:,,. A piecewise least squares regression with one of the break points
at X, =8; , where S; is the early-exercise point, is performed. For better ap-
proximation the continuation region can be further divided into pieces with break
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points selected at the critical points for Z{:n (8+,,»S¢,). For the two segment case, we
regress the option value as

K-1 K-1
Z1,(81,,810) = Ligis<azz y 2 @1, (Y1880, )N+ gis, =z 1 ) af, (K)(1g(Se, )N,
k=0 k=0

(2.26)
with the coefficients a}m and a%m chosen so that residuals r; and r» are minimized,

rn= Inlin(l{g(stmkyt’;n} Z'me (Szm) - Ztm (g(Sr,,,), St0)|2) ’
a

m

I = mzin (l{g(stm)zggt’;n} Z | me (Szm) - Ztm (g(Sr,,,), St0)|2) .
atm
The first four polynomials (including the constant) are chosen as basis functions.
Increasing the number of basis functions does not significantly improve the ap-
proximation, however increasing the number of pieces does improve the solution.

Continuation Value for the Single Asset Case

In order to compute the continuation value for the grid points at ¢,,, using Equation
(2.9) the transition probability density function P(g(S;,,,,)IS:,,) is required. For a
single asset following a stochastic process given by Equation (2.25), the conditional
transition density function is given by

(r-%)arrovary)

P(g(Ss,,.,) = xIS¢,) =S¢, e P(Y =x"), (2.27)

where At = t;41 — tm, Y ~A(0,1) and

*

1
B oV At

Equation (2.10) can then be written as

lo (i)—(r—a—z)m]
& S, 2 '

R K* K=1
Qi Sy, = Dtm(f Y a; ((f(Y)Fap(Y)

—00 k=0

oo K-1
+ fK Y a2 (b(fkap)|, (2.28)
* k=0

where .
* 1 [l (|%trn+l|) ( OZ)A[]
= o —(r—— ,
oV At & St 2

(r-%arravary)

K

fY)=S8;,e

1 _r
d[F"(Y):\/?e 2 dY.
T
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Solving Equation (2.28) gives the continuation value at each grid point as

Q.,(S:,) =Dy,

K-1
Y of, (@, 00 -a, (ko (K* - kov/At)+ a%m(k))] . (2.29)
k=0

where ,
)
and
D(x) 1 1+erf(i)
2 vzl
In order to compute the value of &’ ;:n =|g((Sy,,)], the non-linear equation
h(St,) = Q¢,(St,), (2.30)

needs to be solved, where the value of Qy,, (S;,,), is obtained from Equation (2.29).
The value of &, can be approximated as,
m
%y, = max (|h(S,) s, )2, 8,,))
i.e., find the maximum value of the asset price for the grid points lying in the early-
exerciseregion, or alternatively the minimum value of the asset price for grid points
in the continuation region.

Results for Single Asset Put option

To illustrate the results, Table 2.2 reports the value of the early-exercise option im-
plied by both the COS method and SGM. The COS method with N = 219 terms in
the Fourier expansion is used to generate our reference values. The lower bound
values, which are obtained by following the exercise policy from SGM on a fresh set
of paths, are sometimes greater than the true option price. The lower bound val-
ues are taken as the mean of 30 simulation results. True lower bound values can be
obtained by computing the mean over a large number of simulation results.

The SGM estimates are based on 10000 (5000 plus and 5000 antithetic) paths using
50 exercise points per year, while the LSM estimates are based on 100000 (50000
plus and 50000 antithetic) paths. Figure 2.10 compares the SGM direct estimator
with the true option price for different numbers of grid points. Figure 2.11 com-
pares the lower bound values obtained from SGM with the lower bound from the
LSM algorithm for different numbers of paths. The exercise policy obtained using
SGM is better and more stable compared to the one obtained using LSM, as can be
deduced from the standard errors for the lower bounds for the two algorithms.The
direct estimator value converges fast to the reference price as the number of parti-
tions and grid points increase. The standard errors of the direct estimator are small
compared to those of the SGM lower bound values and much lower than those of
the LSM values.

The time taken for each simulation is a few seconds on a system with Intel(R) Duo-
Core 2.13 GHz processors and 2 GB RAM.
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Figure 2.10: SGM direct estimator with confidence interval for different numbers of grid points. The
regression is performed on 6 different pieces.
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Figure 2.11: Comparison between lower bounds and confidence interval obtained using the exercise
policy from SGM and LSM for different numbers of grid points (paths for latter).

2.4 Numerical results in high dimensions

This section illustrates the methodology by pricing Bermudan options on the max
of two, three and five assets, and a basket option on an arithmetic mean of four and
five assets. The underlying assets are assumed to follow the standard single and
multi-asset Black-Scholes model (geometric Brownian motion, GBM).

Bermudan Call on Maximum of d Assets

A Bermudan max-option is a discretely-exercisable option on multiple underly-
ing assets whose pay-off depends on the maximum among all asset prices. It is
assumed that the asset prices follow correlated geometric Brownian motion pro-

cesses, i.e.,
5

das; 5

—6=(r—q5)dt+05dW , (2.31)
St

where each asset pays a dividend at a continuous rate of gs. Wf ,6 =1,...,d, are
standard Brownian motions and the instantaneous correlation between W/ and



2.4. Numerical results in high dimensions 39

COS SGM SGM Closed
So | O T | Method Lower Direct LSM form
Bermudan | Bound(s.e) | Estimator(s.e) | (s.e) European
36 | 0.4 | 2 | 8508 8.512 8.509 8.488 | 7.700
(0.56) (0.010) (0.51)
38|04 |2 | 7670 7.665 7.670 7.669 | 6.979
(0.53) (0.011) (0.50)
40 | 0.4 | 2 | 6.920 6.913 6.919 6.921 | 6.326
(0.59) (0.011) (0.55)
42 | 0.4 | 2 | 6.248 6.252 6.246 6.243 | 5.736
(0.59) (0.013) (0.51)
44 | 0.4 | 2 | 5.647 5.632 5.642 5.622 | 5.202
(0.66) (0.014) (0.51)

Table 2.2: Comparison of the SGM direct estimator and lower bound values with the LSM and COS
methods results for a Bermudan put option on a single asset, where the option is exercisable 50 times
per year. The strike price of the put is 40, the short term interest rate is 0.06. The simulation for SGM
is based on 10000 (5000 plus 5000 antithetic) paths for the asset price process, and for LSM is based on
100000 (50000 plus and 50000 antithetic) paths. The standard error for the simulation (s.e) is in cents
while the option values are in dollars.

Wt] is p;j. Itis assumed that the option expires at time T and there are M equally
spaced exercise dates in the interval [0, T.

The method starts by generating N sample grid points (S}m, cee S‘Zm) at each time
step t,,, using the discretization scheme

1
s =80 exp (r—q5—§|ag|2)m+ Y oaWi | 1=6<d, (2.32)
l<k=d

where At = t,; — t;;—1. As explained in Section 2.2, for high-dimensional options
additional peripheral paths are required to obtain better lower bound values. In
the present example additional sample paths from two points around initial source
point S, the points selected as Sy, e939VAT gnd Sy e 0-10VAL are generated which
already significantly improves the lower bound values. The peripheral paths are
used only to obtain the exercise-policy from the direct SGM estimator and are not
used to obtain the lower bound values. Additional peripheral paths are required be-
cause in their absence the regressed function values around peripheral grid points
becomes a source of error.

The Clark Algorithm

In order to compute the continuation value for grid points at ¢, using Equation
(2.9), the transition probability density function P(g(S;,,,,)IS;,,) is required. For a
call on the max of d underlying assets, (g(S,,,,) = max(S%m+l ,...,S?Wl)), it is diffi-
cult to compute the exact transition density function. Like Boyle and Tse (1990) [13],
Clark’s algorithm is used to approximate the first four moments of this distribution.
The approximation of the transition probability density function can be obtained
from these moments using the Gram Charlier expansion [60].



40 Chapter 2. The Stochastic Grid Method

The Clark algorithm (1961) [22], calculates the first four moments of the maximum
of a pair of jointly normal variates as well as the correlation coefficient between the
maximum of the pair and a third normal variate. Let X; and X, have a bivariate
normal distribution, with means p; and p», and standard deviations o; and o>,
respectively. The correlation coefficient between the two is p. Y denotes the max-
imum of (X;,X). Let v; denote the ith non-central moment for the distribution of
Y, then

vi=wmP(a) +pp®(-a) +ap(a), (2.33)
vy = (U2 +02) 0 (@) + (15 +05) D (—a) + (1 + 12) agp (@), (2.34)
- (B 2 3 2
vs = () +31m07) D@ + (1 +3p203) D(-a)
+ (w1 + 2 + 413) a+ (207 + 0705 + 207
203020201050 - d050%) a ] d(@), (2.35)
ve = (p]+6piot+307)0(a)+ (s + 6505 +305) O(-a)

(3 + 2 + s + 13) a—3a (0 - 03)

+ap oy [3(‘71 —a(fzp) B (02—010)3]

a

+4'u203 [3 (az —aolp) _ (01 —aazp)3]}¢(a)' 2.36)

If X3 is arandom variable with normal distribution, and the correlation coefficients
between X3 and Xj, X, are p1, p2, respectively, then the correlation coefficient px, y
between X3 and Y = max(X;, X») is given by

x5y = [01910() + T2p2®(—a)] / (V2 —v2)2, (2.37)

where
a® = 0'% + ag —-20102p

gt
a

1 x2
¢(x) =(2m) 2 exp (—?)
D(x) =f o) dt.

Clark’s method can be used to obtain the exact moments of Y and its correlation
with X3, however, as the distribution of Y is not exactly normal, the method can be
only used to obtain the approximation of the first four moments of the maximum
of a set of d = 3 normal variates. If Xj, ..., X; are the d jointly normal variates, and
Y is the maximum of these d variates then by using the recursive scheme

Y; = max(Xy, Xp,..., Xj+1) =max(Y;_1, Xj+1)
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and applying Clark’s approximation at each step we can compute the approxima-
tion of the first four moments for the distribution of Y. It is easy to deduce how
Clark’s method can be used to obtain the moments for the minimum of d assets as
well (see Boyle et al. (1990) [13]).

Parametrization of the Option Value for Max Options

In order to compute the functional form of the option value at #;,+;, the option
values obtained at the grid points are regressed over the polynomial basis functions
of g(Sy,,,,). Piecewise regression, with the break points at &, = h(S; ), where
h(S;  )=Qy4,,,(S; ), isused. The regression scheme can be written as,

Im+1 Im+1
N K-1 1
Ztma1 (881,110,810 = ligs, <y 1}Zatm(k)(¢k(g(stnz+l)))+
m+ k:O
K-1

Ligs,,,, 227 1 2 @, (O@r(g(Sy,.,)),  (2.38)
m+ k:O

where ¢ are the basis functions. The coefficients @ and a% are chosen such that
residuals r; and r, are minimized,

n= Iglin (l{g(sth <Zp Z [Vipee: Stpar) = ztmﬂ (8(S¢,,41),S1) |2) )
1,

m

2= I(l;lzln (l{g(Sth)z%[:nH} Z |Vtm+1 (Stm+1) - Ztm-H (g(stm-ﬂ )’Sto) |2) .

tm
Aset of four (including the constant) Hermite polynomialbasis functions of g(S;,,,,)
are used for regression in our example.

Computing the Continuation Value for Max Options

With S, being a log-normal process given by Equation (2.32), it can be written as,

[FD (g(stm+l) = X|S[m) = [FD (lrglixd(s‘{’ﬂ+l) = X|Stm)
=P ( max (V] )= log(X)IStm), (2.39)
l<jsd '™

where Yt{n ,;»1 = j = d has a multivariate normal distribution. Using Clark’s algo-
rithm the first four moments of the random variable
yd

Im+1

)V

IRRRREY)

Y =max(V},

can be obtained. If x,,,' (1 < i < 4) are the first four cumulants of Y then using the
Gram Charlier Expansion the approximate probability density function of Y can

1
!
K1=H=H
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be written as Equation (2.11). The continuation value given by Equation (2.10) can
then be written as,

K* K-1
Q:,,Ss,) = Dtm( Y ay (K)gr(e)dP(Y =xIS;,,)
0 k=0
oo M—-1
s Y af (¢re)dP(Y =xISy,) |, (2.40)
* k=0

where K* =log(& ).

The term,
* M-1
Y. am¥pm(eM)dP(Y =xIS;,_,),
—00 m=0
where W (-) is polynomial basis function, can be written as the linear combination
of,
K*
f (™) dP(Y = xIS;,)),
—00

m=(0,...,(M-1)),and P(Y = x|S;,_,) is

g () e ()]

Here ¢(x) is,

1 2
(X)=—e 2.
RV
We need to compute,
K* X—u K3 X—[y Kg4 x-p
mx
f_oo(e )¢(T)[1+mH( - )+mH4( - )]dx. (2.41)
Equation (2.41) can be written as,
A[K*gb(x_e)[1+£H(x_”)+£H(x_u)]dx (2.42)
oo o 303 U g 40t g ' ’
where,
m202
A:e(ﬂm+ 2 )’
and
0= (u+mo?).

2
xy=0% = Mo = 1y
! i 13
K3 = lg — 3y iy + 210y
2 2 4
Ky = py —4plph —3uh” + 1251 " — 641y
where p,, is the i th non-central moment
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This can be written in a form easy to integrate,

s ol s ) (5 (Y

i
4 k
K4 4 G—p) (x—H)
_ 7 H ===
+4!(T4 gg (k)( o R Ty

using the property,

dx, (2.43)

X

f SV Hp(y)dy = —p(x) Hp—1 ().

Results for Bermudan Call on Max of several Assets

To illustrate the results Table 2.3 compares the results of a Bermudan max options
on 2, 3 and 5 underlying assets. The results reported in Table 2.3 are fairly remark-
able given the simplicity of the method. The values obtained by SGM are close to
the values reported in the literature. The number of paths required to obtain an
accurate exercise policy (as reflected by the lower-bound values) is far less than re-
quired to obtain the exercise policy for the reference methods. Also the time for
each simulation is less than a minute on a system with Intel(R) Duo-Core 2.13 GHz
processors and 2 GB RAM. The number of basis functions required for regression,
irrespective of the dimensions of the problem, is upto 4 (including the constant).
The exercise policy obtained using SGM, especially when the dimensions of the
problem are large, is farther from the optimal policy when compared to those ob-
tained using LSM, as can be inferred from the lower bound values.

Bermudan Put on Arithmetic Mean of d Assets

A Bermudan basket option is a discretely-exercisable option on multiple underly-
ing assets whose pay-off depends on the weighted average of the underlying asset
prices. It is assumed that the asset prices follow correlated geometric Brownian
motion processes given by Equation (2.31).

The payoff for this option is given by,
h(Sy) = H — (WSt +-++ wySY), (2.44)

subject to
d
Z ws=1.
5=1

The discretization and parametrization scheme for a Bermudan put on a basket is
the same as for a Bermudan call on the max of several assets. However, the case of
the basket option is used to show how the conditional continuation value can be
computed in the general case.
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So SGM SGM Binomial 95% CI 95 % CI
LB(s.e) | Direct (s.e) Value AB BC
n =2 assets
90 8.069 8.088 8.075 [8.053, 8.082] -
(0.026) (0.003)
100 | 13.892 13.900 13.902 [13.892, 13.934] -
(0.024) (0.004)
110 | 21.282 21.290 21.345 [21.316, 21.359] -
(0.028) (0.003)
n = 3 assets
90 11.228 11.253 11.29 [11.265, 11.308] -
(0.023) (0.003)
100 | 18.665 18.625 18.69 [18.661, 18.728] -
(0.031) (0.005)
110 | 27.463 27.413 27.58 [27.512, 27.663] -
(0.036) (0.006)
n =>5 assets
90 16.527 16.644 - [16.602, 16.655] | [16.620, 16.653]
(0.028) (0.005)
100 | 25.992 26.141 - [26.109, 26.292] | [26.115, 26.164]
(0.033) (0.006)
110 | 36.590 36.725 - [36.704, 36.832] | [36.710, 36.798]

(0.047) (0.005)

Table 2.3: Bermudan Max-Call options on 2, 3 and 5 underlying assets: The results are compared with
Andersen and Broadie (2004) [2] and Broadie and Cao (2008) [15]. The parameters are: K = 100,r =
5%, q=10%,p =0, T = 3,0 = 20%. There are ten exercise opportunities equally spaced in time. Values in
parentheses are standard errors. The total number of grid points at each time step was 30,000 with an
equal number of paths generated from the 3 source grid points (two peripheral and one initial point).

Computing the Continuation Value for Bermudan Basket Options

In order to compute the continuation value for grid points at t,, using Equation
(2.9), the transition probability density function P(g(S;,,,,)ISy,,) is required. For a
put on the weighted mean of d underlying assets, the exact transition density func-
tion is unknown. The moments for the distribution of g(S;,,,,) can be obtained us-
ing sub-simulations, which can be used to approximate the density function using
the Gram Charlier series (Equation (2.11)). For each grid point at ¢,,, sub-paths are
generated until the next time step #,,+1, and the first four non-central moments of
the distribution of g(S,,,,) so obtained are computed. In order to re-use the results
obtained for the Bermudan max option, the distribution P(log(|g(S;,,,,)) = xIS;,,)
is approximated, rather than determining P(|g(S,,.,)| = xIS;,,). The continuation
value is then given by Equation (2.40).

Results for Bermudan Basket Option

To illustrate the results Table 2.4 compares the results of a Bermudan put option
on 4 underlying assets. In order to compute the continuation value, Ns = 1000,
sub-paths are generated for each of the underlying assets. The computational ef-



2.5. Conclusion 45

fort increases linearly with the number of exercise opportunities M, the number of
paths N in the sub-simulations, and the dimension of the problem d. Although
computationally more expensive than the case where the moments of the distri-
bution can be computed analytically, this example shows a generic case when it
is not easy to compute the transition probability density or its moments directly.
The time taken for each simulation was a few (< 5) minutes. Table 2.5 compares
the results of a Bermudan put option on 5 underlying assets with those reported by
Bender et al. (2006). The LSM values and confidence intervals reported by Bender
et al. are close to our values.

So SGM SGM FFT LSM
LB(s.e) | Direct(s.e) | Value | (s.e.)

40 1.739 1.740 1.739 | 1.739
(0.37) (0.16) (0.08)

Table 2.4: Bermudan put option on arithmetic mean of 4 underlying assets: The results are compared
with CONV method of Lord et al. (2008) [54] and the LSM values. The parameters are: % = 40,r =
6%, q =2%,p =0.25,T = 1,0 = 20%. There are ten exercise opportunities equally spaced in time. Values
in parentheses are standard errors. The total number of grid points at each time step is 30,000 with equal
numbers of paths generated from the 3 source grid points (two peripheral and one initial point). For the

LSM algorithm there were 300,000 paths for each asset, and 18 basis functions.

So SGM SGM LSM BKS
LB(s.e) | Direct (s.e) (s.e) 95 % CI

90 | 10.000 10.000 10.000 | [10.000, 10.004]

(0.00) (0.00) (0.00)

100 | 2.134 2.141 2.163 [2.154, 2.164]
(0.012) (0.008) (0.001)

110 0.540 0.550 0.540 [0.535, 0.540]
(0.010) (0.006) (0.001)

Table 2.5: Bermudan put option on arithmetic mean of 5 underlying assets: The results are compared
with the intervals reported by Bender et al. (2006) [10] and the LSM values. The parameters are: £ =
100,r =5%,p =0, T = 3,0 = 20%. There are four exercise opportunities (including o) equally spaced in
time . Values in parentheses are standard errors. The total number of grid points at each time step is
3000 with an equal numbers of paths generated from the 3 source grid points (two peripheral and one
initial point). For the LSM algorithm there were 120,000 paths for each asset, and 24 basis functions.

2.5 Conclusion

This chapter presents the stochastic grid method for pricing and exercising Bermu-
dan options. SGM uses dynamic programming and linear least squares regression
for option pricing. One of the main achievements of the algorithm is its ability to
reduce a multi-dimensional problem to a single-dimensional setting, and yet avoid
some of the associated short comings as were discussed by Boyle et al. [12].
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SGM follows the same dynamic programming approach, by approximating the op-
tion price at exercise times f,,.; and moving backwards in time using the informa-
tion at #,,+1, to approximate the continuation value and hence the option price at
exercise step t,,;. SGM uses regression to approximate the conditional expectation
E [Vtm+1 (Stm+1)|g(stm+1rsto)] :

The regression in SGM differs from the LSM algorithm as SGM does not approxi-
mate the functional form of the continuation value, rather it uses regression to ap-
proximate the functional form of E[V;, ., (St,..,)18(Ss,..,),Ss, ] at the exercise dates

Im+1.

In SSAP [7] before pricing the option, the entire (i.e. at all time steps) state space
is reduced to a one-dimensional state (using the pay-off function as the mapping
function). Option pricing is then done on this reduced state space. This scheme
can result in an incorrect exercise policy as was shown by Boyle et al. [12]. In SGM,
the option price and exercise policy for grid points at ¢+ are first computed in the
high-dimensional space. This is followed by reducing the state space at t;,+,. The
continuation value at £, is then computed (by iterated conditioning) using a one-
dimensional probability density function, rather than multivariate distributions for
the transition S;,,,, 1S,

Despite its advantages, SGM suffers from following main disadvantages:

* SGM can be computationally expensive when sub-simulations are required,
especially when there are many early-exercise dates.

¢ The early-exercise policy obtained using SGM is sub-optimal when compared
to that obtained using LSM, especially in higher dimensions and results in
lower bound values which are farther away from the true price.

* SGM requires peripheral paths to improve the early-exercise policy, but the
approach to generate the peripheral paths is not well defined.

In order to show convergence of the SGM algorithm in high dimensions with an in-
creasing number of paths, the method should additionally include bundling for
more accurately computation of the conditional expectation given by Equation
(2.5). The next chapter introduces the Stochastic Grid Bundling Method, which,
although motivated by SGM, overcomes much of the drawbacks of the latter by use
of bundling or state space partitioning.



CHAPTER

The Stochastic Grid Bundling
Method: Efficient Pricing of

Bermudan Options and their
Greeks

The contents of this chapter have appeared in [41]. The Stochastic Grid Bundling
Method (SGBM) for pricing of Bermudan options with several underlying assets
is a hybrid of regression- and bundling- based approaches. It can be seen as an
improvement of SGM presented in Chapter 2. The method uses regressed value
functions, together with bundling of the state space to approximate continuation
values at different time steps. A high-biased direct estimator and an early-exercise
policy are first computed using SGBM. The early-exercise policy is then used to
determine a lower bound to the true option price. SGBM can also be used to com-
pute a duality-based high-biased estimator. Compared to LSM, the approximate
option values computed using SGBM, have lower numerical noise, not just at the
initial step but also at intermediate time steps; which makes it a good candidate for
computations that require option values at intermediate times steps (for example,
computing future exposures within the credit value adjustment, CVA context).

Efficient calculation of price sensitivities continues to be among the greatest practi-
cal challenges facing users of Monte Carlo methods in the early-exercise derivatives
pricing industry. Computing Greeks is essential for hedging and risk management,
but it typically requires substantially more computing time than pricing the deriva-
tive. A favourable property of SGBM is that it can be used to get fast approximations
of the sensitivities or Greeks of the option price, a feature illustrated through nu-
merical examples, upto fifteen-dimensional basket option problems.

The chapter is organized as follows. Section 3.1 describes the details of SGBM. In
Section 3.2 various numerical examples of increasing complexity are used to dis-
cuss various aspects of the method and finally Section 3.3 gives some concluding
remarks.

3.1 Stochastic Grid Bundling Method

The Stochastic Grid Bundling Method (SGBM), which is introduced here, is a simulation-
based dynamic programming method, which first generates paths forward in time,

47
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followed by determining the optimal early-exercise policy moving backwards in
time. The problem formulation used here is the same as stated in Chapter 2 (Sec-
tion 2.1).The steps involved in the SGBM algorithm, which are detailed in sections
to follow are:

Step I: Generating grid points

The grid points in SGBM are generated by simulating independent copies of sam-

ple paths, {S;,(n),...,S;,,(n)}, n=1,..., N, of the underlying process S;, all starting
from the same initial state S,,. The n-th grid point at time step #;,, is then S;,, (n), n =
1,..., N.Depending upon the underlying process an appropriate discretization scheme,
e.g. the Euler scheme, is used to generate sample paths. Sometimes the diffusion
process can be simulated directly, essentially because it appears in a closed form,

as an example, for the regular multi-dimensional Black-Scholes model.

Step II: Option value at terminal time

The option value at terminal time is given by:

VtM (StM) = maX(h(StM), 0)-

This relation is used to compute the option value for all grid points at the final time
step.

The following steps are subsequently performed for each time step, t,,;, m < M,
recursively, moving backwards in time, starting from ;.

Step III: Bundling

The grid points at t,,—; are bundled into %;,,_,(1),...,%;,,_, (v) non-overlapping
sets or partitions. Three different approaches for partitioning are considered in
this chapter, they are:

* k-means clustering algorithm,
* Recursive bifurcation,

* Recursive bifurcation of reduced state space.

These techniques are detailed in a subsequent section.
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Step IV: Mapping high-dimensional state space to a low-dimensional space

Corresponding to each bundle %;,, , (8), f=1,...,v, a parametrized value function

Z :R% x RK — R, which assigns values Z (Stm,afm) to states S;,,, is computed. Here
p

tm

a, € RX is a vector of free parameters'. The objective is then to choose, for each

t, and B, a parameter vector a? sothat

t m

Z(S,,ab Y= Vi, (S,

Step V: Computing the continuation and option values at #,,_;

The continuation values for S;,, ,(n) € %,,,_,(f), n=1,...,N, p=1,...,v, are ap-
proximated by

Qtps Sty (W) =ELZ(Sy,,, @f ISy, ()]

The option value is then given by:

Vit 84,1 (1) = max(h(Sy,_, (), Q,,., (St,,_, (M)).

Bundling in SGBM

SGBM employs bundling to approximate the conditional distribution using simu-
lation. Bundling in SGBM is used to cluster grid points based on proximity.

The distribution of S;,, conditional on the state S;,, , = X, can be sampled by simu-
lating paths from the state S;,, , = X until time step #;,. Such an approach, how-
ever, is computationally expensive, as the number of paths grows exponentially
over time. Another approach for sampling this distribution is to bundle the grid
points at #,,—1, using some measure of proximity, into v non-overlapping partitions,
and then using those paths that originate from the bundle that contains S, , = X
to sample S;,,. As will be shown in the discussions to follow, under our model as-
sumptions, with increasing numbers of paths and bundles, this sampled distribu-
tion approaches the true conditional distribution.

From here on, the bundle that contains S;,, , = X, where X be any point in R% or a
simulated grid point S;,,_, (n), will be indicated by %;,,_, (8), where fcanbe]l,...,v.

The different bundling techniques employed are first explained:

! The notation here is slightly different from that used in Chapter 2
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k-means clustering

Given N grid points, (S, ,(1),...,S,_, (N)), k-means clustering aims to partition
these N observations into v non-overlapping sets, %;,, , = {%:,_,(1),...,%B:,_, (V)}
so as to minimize the sum of squares within clusters, i.e:

v
; 2
argmin ) ) ISt () —pp 2],
Bryy_y P=1\Sy,,_ (WeBy, | (B)

where g is the mean of the points in %;,,_, ().

Lloyd’s algorithm (Lloyd 1982)[51] can be used to bundle the grid points using k-
means clustering. Briefly, the algorithm uses an iterative refinement technique,
where, given the initial guess of cluster means, yin, oo ,u(vl), the algorithm performs

the following two steps alternately:

Step 1 Assign grid points to the set whose mean is closest to it.

93(”

Im-1

(B) = (81,1 (1) : 111, (1) = pig) 111 S,y () = 17, V1 < j=< v,

where grid point S;,,_, (n) is assigned to only one bundle, even though it could
be assigned to more than one.

Step 2 Theresults have converged if the assignment of the grid points doesn't change
anymore from a previous iteration, else the centroids are updated for the new
clusters as: )

(I+1) _
Hg =20 g 2 Sty ().
%1, Pls,, ez )

Figure 3.1 shows the bundles obtained using the k means clustering algorithm for a
two asset case at a particular time step.

Recursive bifurcation

The aim of bundling in SGBM is to cluster grid points based on proximity and as
will become evident through numerical examples, it’s not so important how opti-
mally the grid points are allocated to the different bundles, therefore, a fast practical
scheme to do this is proposed here. To bundle the grid points, {S;,,_, (1),...,S,,_, (N)},
the following steps can be performed:

Step 1: Compute the mean of the given set of grid points, along each dimension,

1.e.
N

]
ps=— 8 (m,6=1,...4d.
Nn:l
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Figure 3.1: Bundling of grid points in a two-dimensional space using k-means clustering. The grid
points are bundled into 8 non-overlapping partitions.

Step 2: The grid points are bundled separately along each dimension. This is done
by dividing the grid points into 2 sets as:
A5 =184,.,(W): S} (M)>ps,n=1,...,N},
As =184, ,(m): S0 (M <ps,n=1,.,N}
whered =1,...,d.

Step 3: The 29 unique non-overlapping bundles are then obtained using the fol-
lowing intersections of these sets :

ggtm,l(l) = AiNnAyn...NnAg
%tm_l(z) = ZlﬂAgﬂ...ﬁAd,
By, ,3) = ANAxn...nAg, 3.1)
B, 21 = ANAn..nAg,

Step 4: Bundles %;,, ,(1),... can be split further, in the next iteration, again follow-
ing the steps above.

The number of partitions, or bundles, after p iterations, where each of the bundles
obtained is split further, would be equal to (2¢)”. Figure 3.2 shows an example of
bundling of grid points in a two-dimensional space. First, the single large bundle is
halved along each dimension, resulting in a total of four partitions. Then, each of
these partitions undergoes the same process, resulting in 16 partitions in the sec-
ond iteration, and 64 bundles in the third iteration. The number of computations is
linear in the total number of grid points, N, the number of dimensions, d, and the
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Figure 3.2: Bundling of grid points in a two-dimensional space. After the first bifurcation 4 bundles
are obtained. A second bifurcation for each of these 4 bundles results in 16 bundles and after the third
bifurcation 64 bundles are obtained.

number of iteration steps, p, which makes this method of bundling practical and
fast. However, this approach will be less attractive with increasing dimensions of
the problem, as the number of bundles obtained after each iteration would be too
large.

Recursive bifurcation of reduced state space

This method is motivated by the stratified state aggregation method by Barraquand
and Martineau (1995)[7], where rather than partitioning the actual state space in
which the value function resides, a reduced state space obtained by some mapping
function is partitioned. Like the authors of [7], the payoff is used as the mapping
function and the grid points are bundled based on proximity of the reduced state
space h(S;,,_,). The bundling scheme is then similar to the recursive bifurcation, ex-
cept that now the effective dimension d will be equal to 1. The number of bundles
obtained after p iterations in this case will be 2”.
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Assumption 1. S; ,m=1,...,M, is an everywhere dense set of R% valued vectors.

Furthermore, the probability density function of S;,, is assumed to be continuous
everywhere.

Assumption 2.

lim lim |9, (B)l—oo, m=2,...,.M, f=1,...,v.
V—00 N—oco

—

Definition 1.

1 N
LYN A, meySu, ).1g, @(Sh, (1)
Py (Sy, < YISy, , = X) 1= A=t SV e B2
L%, B

where, (S;,,_, = X) € By, ,(B).

When Assumptions 1 and 2 hold true, then

Proposition 1.

lim lim [Py(S,, < ISy, = X)=P(S, VIS, = X)|=0.

Proof for Proposition 1

The following definitions will assist us in the proof of Proposition 1.

Definition 2. Let x:= (x1,...,Xy) € ([Rd)v. A Borel partition cgﬁ(x), B=1,...,v of[Rd
is a Voronoi tessellation of x if, for every B {1,...,v}, Gp(x) satisfies

Cpx)clyeR | xp—y = min |y =x; I}
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Definition 3. Let X € L?R +(Q, ZF,P). The random vector
. v
X* = ﬁX:_l xﬁl%ﬁ(x) (X),

is called a Voronoi quantization of X.

When p:= (yy,..., lty) are the centroids obtained from the k-means clustering algo-
rithm then %;,, , () Cgﬁ (1) and

v
Sllflmfl = Z :uﬁl@[m_l(ﬁ) (Sty-1)s
p=1

where 1, (5)(S,_,) is the indicator function which returns 1if §;,,_, belongs to
the bundle 2,,,_, (B), and 0 otherwise.

Lemma 1. When Assumptions 1 and 2 hold, then

. . _QH
Jim lim IS, , -S|

=0,

Proof: We assume that in the limiting case, when the number of grid points, N,
and bundles, v, go to infinity, §fm_l to be an everywhere dense set of R valued
vectors. An intuitive explanation for the assumption is that for a finite N when
the number of bundles v are equal to N the bundle centroids would coincide with
the grid points, and will have the same distribution as the grid points. As, when
N goes to infinity, S;,,_, is an everywhere dense set of R4 valued vectors, then it
is safe to assume that when the number of grid points and bundles go to infinity,
the bundle centroids also constitute an everywhere dense set. It follows then by

Lebesgue dominated convergence theorem, || S;,,_, — S‘;m_l || goes to zero.

For the case of recursive bifurcation, we sketch the proof of Lemma 1 as following:

Assume that S;,, | = X belongs to bundle 23,,,_, (), which is bounded as follows

QBtm_l B) = {Stm_l [Smin < Stm_l < Smax!}-

Let € = max(| X — Sminl, | X — Smax|) be the maximum width of a given bundle. When
N goes to infinity, it is easy to see that the grid points can be recursively partitioned
until maximum width, €, of the bundle is less than an arbitrarily small €. Lemma 1
then follows from dominated convergence.
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Proof for Proposition 1

Event A is defined as A :={S;,,IS;,, < y}, and event B, is defined as (S;,, , = X) €
B, (B), e XH = Ugp.

As the distribution of S;,,_, is continuous everywhere, by the law of large numbers
we find,

B
mm:thitﬂ@.
N—oo N

Using Lemma 1 we have,

B
P@fohﬁﬁmmzynmﬂ—%ﬁ@. (3.2)

—00 N—oo N

Similarly, it can be shown that:

P((St, =N (S, , =X))

lim P(AN B)

V—00

. 1 X
S, Jin 5 2 1812y St (0013, 1 St ()

Again, assuming that the conditional distribution is continuous everywhere, we ob-
tain

. P(ANB)
P, S YISy, =X) = lim —or
2 2 1s,,<y(Se, (M)-1g, S, (1)
= lim lim 1 '
v—00 N—oco N|93tm_1(,3)|

Parameterizing the option values

As the dimension of the state space is usually large, the pricing problem becomes
intractable and requires the approximation of the value function. This can be achieved
by introducing a parametrized value function Z : R xRK — R, which assigns a value
Z(Sy,,, @) to state S;,,, where a € RX is a vector of free parameters. The objective is to
b

tm *®

choose, corresponding to each bundle f at epoch t,,—1, a parameter vector «
so that,
Vi, (81,) = Z(Sp,,, ah ),

This chapter follows Tsitsiklis and van Roy (2001)[83] in defining the approxima-
tion function. A basis function? that maps the state space from R? to R, is used to

2Basis functions are sometimes referred to as features



56 Chapter 3. The Stochastic Grid Bundling Method

approximate the value functions. For a particular problem it may be required to
define several basis functions, ¢1,...,¢k. Then, to each state S;,, a vector, ¢(S;,,) =
($1(St,,),---, 9K (Ss,)), of basis functions is associated. The vector of basis func-
tions is chosen such that it represents the most salient properties of a given state.

In our approximation Z (Stm,afm) depends on S;,, only through ¢(S;,,). Hence, for

some function f : RX x RK — R, we can write Z(8¢,, afm) = f($(Sy,), afm). Usually,
the basis functions ¢, are selected based on the problem and relies on human ex-
perience, as in the case of the least squares method (LSM) (Longstaff and Schwartz
(2001)[53]). The function f, which maps the option values onto the span of ¢, in
our discussion is restricted to the form:

K
ZSy,alh )= Y af (p(Sy,), (3.3)
k=1

i.e., the value function is a linear combination of basis functions. Define a weighted
quadratic norm || V., (Sy,,) Iz, as

I Vi, (St,,) = ( f V2 (S4,)d(m(Sy,)) 2,
S €R?

where 7(S;,,) is the conditional distribution of S;,,, with a conditional density func-
tion given by P(S;,,1%,,_, (B)). Here, it should be emphasized that 7 (S;,,) is the dis-
tribution of S;,, conditional on information S;,,_, € %, _, () and not conditional
on S;,, which is a major difference compared to SGM in Chapter 2. It is assumed
that | V4,,(Ss,,) lz< co. The problem is then to project the value function onto the
span of ¢1,...,¢k, which is characterized by:

K
argmin || Vz,, (Ss,) — > afm(kwk(srm) Il -

p =
o k=1

Exact computation of the above projection is not generally viable, however, it can
be approximated by sampling a collection of states S;,,, according to probability
measure P(S;,,|%;,,_, (B)). The approximate distribution 7(S;,,), of grid points S, (n),
whose paths originate from the bundle %;,,_, (8), would in the limiting case of the
number of paths N have a transition density function equal to P(S;,,1%;,,_, (B)), i.e.
limy—oo 7(Sy,) = 7(Sy,,). The projection (3.3) can now be approximated by:

K
ZSy,, @) 1= Y @ (kS (3.4)
k=1

and satisfies,

B, (B)] 2

K
argmin Y V;, Sy, ()= Y. @ (K)pi(Sy, ()| - 3.5)
k=1

Py} n=1
a,
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Proposition 2. Assume that Assumptions 1 and 2 hold, then it follows that,

lim || Z(S;,,a& )-Z(S;,,al ) ,=0.
N—oo m m

Proof: Convergence is by the law of large numbers.

To summarize, corresponding to each bundle 28, ,(f), a parametrized function
Z(S¢,, &fm) is computed using ordinary least squares regression, so that:

Vi Sty (M) = Z(Sy,, (), @h ) +eb | (3.6)

where S;,,_, (n) € %;,,_, (B).

Ordinary least squares gives us an unbiased estimator, and it is further assumed
that the following assumption holds:

Assumption 3. [E[efm IS¢, ,(M]1=0,8;, ,(n) € By, (B).

Function Z(S;,,, afm) can also be seen as the linear unbiased estimator of the con-
ditional expectation

Z(Sy,, af ) =E[V;,, (S5,)10(S,,), By, (B].

Proposition 3.

lim Z(Sy,,af ) =ElV, (84,)16(Ss,),St,,., = X].

Proof: As the number of sample paths N and bundles v go to infinity, Lemma 1
shows that the maximum distance between any two grid points within a bundle
approaches zero. Therefore, for the bundle %;,, , (8), that contains S, , = X, it
can then be stated that,

Hm E(Vy,,(84,)1¢(S,), Be, (B = EVi, (S4,)1¢(S0,), S, = X].
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Computing the continuation value

Using the parametrized option value function Z(S;,,, @f, ) corresponding to bundle
PBy,,_, (B), the continuation values for the grid points that belong to this bundle are
approximated by:

Qtps Stpy () = Dy, [ ELZ(Sy,,, @) VIS4, =Sy, ()], 3.7)

where S;,,_, (n) € %,,,_, (B). Using Equation (3.4), this can be written as:

th—l (Stm—l (I’l)) = Dtm,l[E

K
(Z afm(k)‘Pk(Stm)) IS¢, =S¢, (n)
=1

K
= Dy, Y @ (OE[@r(S,)IS,, =St (W] (3.8)
k=1

The vector of basis functions ¢ should ideally be chosen such that E [¢(S;,)ISs, , = X],
is known in a closed form, or has an analytic approximation. It is observed that h(-),

is usually an important basis function, and, as a rule of thumb, if analytic solutions

or approximations for a single time period European equivalent of an option are
available, then the Bermudan option pricing problem at hand can be solved effi-
ciently using SGBM. Examples are given in Section 3.2.

Theorem 1. When Assumptions 1 and 2 hold, then,
lim lim_ 1Qr,,_,(St,_) = Qs Sz, ) =0.

1
v—00 N—

Proof:

The continuation value, using the law of iterated conditioning, can be written as,

th_l (Srm_l =X) [E[Vtm (Stm)|stm_1 =X]

E[E[VL, (S1,)14(S¢,), S, = XISy, = X].

Using Propositions 2 and 3 it can then be stated that:

th—l (Stm_l = X)

lim E[Z(S;,,,a’ )IS,, , = XI, f=1,...,v
V—00 m

= lim lim E[Z(S,,,@) )ISy,., = X]

v—00 N—oo

= lim lim @rm_l S, =X0.

v—00 N—oo
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Definition 4. The direct estimator of the option values for the grid points at t;;,_1,
is defined as

Vi, (S, () =max(h(S,,_, (n),Qy,_, (S, (1)),

wheren=1,...,N.

Theorem 2. Under the condition that E[¢(Sy,,)IS;,,, = X] is known exactly, and
Assumption 3 holds, the direct estimator is biased high, i.e.

E[Vyy (Sty)] = Vi (Spy)-

Proof: The proofis by induction. At the terminal time V;,, (Sy,,) = V4, (St,,) = h(Sy,,),
for all §;,,. Take as induction hypothesis E[V;,, (S;,)] = V¢, (S;,,) for all S;,,. Now,

E(Vy,1 St = X)) E [max(h(stm L =X),E [Z(stm,oa’fmnstm_1 = X])]

R Y |

_ ax(h(X),[E[[E[(Vtm(stm)—et)|Stm1 H)
= max(h(X),E[E[E[V,(S,,)IS,]IS,,,, = X]])
> max(h(X),E[E[V;, 81,180, , = X]])

= max(h(X),E[V,, (Ss,)ISt,, = X])

Vtm—l (Stm 1 X)

The first step uses Equation (3.7), the second Jensen’s inequality and the third uses
Equation (3.6). The fourth step is based on Assumption 3 and uses the basic prop-
erty of a conditional expectation. The fifth step employs the induction hypothesis
and the sixth is again based on a basic property of the expectation.

Corollary 1. When Assumptions 1 to 3 hold, we have,
lim hm IVI0 (S1) = V5, (S =0

v—o00o N

Proof: The proofis an immediate outcome of Theorem 1 and the dynamic program-
ming formulation given by Equations (1.3) and (1.4).
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Lower bounds using path estimator

Once the early-exercise policy and direct estimator values have been obtained, an
estimator based on the simulated paths which is biased low can be developed. To-
gether, the high-biased direct estimator and the low-biased estimator, can generate
avalid confidence interval for the option price. In order to compute the low-biased
estimates, we generate a new set of paths S(n) = {S;, (n),...,S;,(n)}, n=1,...,Ny,
using the same scheme as followed for generating the paths for direct estimator.
Along each path, the approximate optimal policy exercises at,

T*(S(n)) = min{t,, : h(S;, (M) = Q;,, (S, (), m=1,..., M},

where Gtm (S¢,, (n)) is computed using Equation (3.8). The path estimator is defined
by v(n) = h(Sz+s(n))-

Theorem 3. A low-biased estimate, V, (Sy,), to the true option value, Vi, (Sy,), can

be computed as:
Ni

.1
YV, Sy = 1]1\5{1@ n; v(n) < Vi, (Sy,)-

Under the assumption that Proposition 1 holds, additionally it can be show that

ZtO (st()) - Vl’() (S[())- (3‘9)

The proof for the bias of the path estimator, i.e. Theorem 3, and the convergence
of the path estimator is the same as the proofs for the Theorems 3 and 4 in Broadie
and Glasserman (2001)[17].

Variance Reduction

The direct estimator to the option price usually has lower variance than the path
estimator, because the parametrized option value function at #,, uses basis func-
tions, ¢(S;,,), whose expectations, E[¢(S;,,)IS;,,_,], are either known, or an accu-
rate numerical estimate of them can be obtained. Therefore, ¢(S;,,) addition-
ally serves as a control variate. To elaborate further, our interest is in comput-
ing Q;, ,(X) = E[V,,,(S;,)ISs,,, = X1, when the expectation E[¢(S;,)IS;,, , = X],
is known. For simplicity, let's assume that the sample V, (S;, (1)),$(S, (1)), n =
1,...,N, is generated from S;,,_, = X. The usual procedure to form the controlled
estimator thfl (X) is (see Rasmussen 2005 [68] for details),

1 ~ K 1 X
— Y VS, ) =) an, ()| = > ¢r(Ss, (M) —Elpr(Ss,)ISs,, = X1|, (3.10)
N m=1 k=1 N n=1
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where a;,, (k) is chosen to solve:

2

1 N [ K
min — Z Vi St (1) = ( atm(k)(,bk(stm(n)) (3.11)
(]f[m Nn:1 k=1

Note that Equation (3.11) is the same as (3.5). Reordering Equation (3.10), gives us

N
2
n=1

- 1
Qs (X)

+
M= =l

K
VS, (m)- Y, atm(km(stm(m))
k=1

@, (OEPk(Se,)ISs, , = X]

k=1
1 N K

= =2 e, M+ Y, (WEPL(S,)ISs, , = X]
Nn:l k=1

= Q. (X),

where the mean of €;, (n) is zero as ordinary least squares gives us an unbiased
estimator. Therefore, the direct estimator can also be seen as controlled estimator.
The effectiveness of the procedure depends on the correlation of V;,,(S;,, (n)) and
¢Sy, ().

Computing the Greeks

An advantage of SGBM is that it can be used directly to approximate the first- and
second-order derivatives of the option price with respect to the underlying assets.
Existing methods for computing Greeks have been discussed in Glasserman(2004)[34],
and can broadly be classified into methods that employ finite-difference approxi-
mations, and methods that use information about the simulated stochastic pro-
cess to replace numerical differentiation by exact differentiation. The path-wise
derivative method and the likelihood ratio method belong to the second category,
and are found to be computationally more efficient than the finite-difference ap-
proach. Wang and Caflisch (2009)[87] propose a modified least squares method
for estimating the Greeks, and they report a performance comparable to the path-
wise method, the likelihood ratio method as well as the likelihood ratio and dual-
ity (LRD) method [47]. However, the choice of initial distribution is arbitrary, and
may have a significant effect in extreme cases. Other recent methods for comput-
ing the sensitivity of Bermudan options include, Belomestny et al. (2010)[8], who
use a regression-based approach for computing the Greeks; Capriotti and Giles
(2010)[18], who use the Adjoint method for computing the option price sensitiv-
ities.

The option delta is defined as,

5 0Viy(Sy)

= ,6=1,...,d,
T 982
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and can be computed as,

OViy(Su) _ o Vi) = Viy Suy) 5.12)
. o s :
I I A

r ! 0 d
where Sy, ={S;,..., S5 +x,..., 53 1

SGBM approximates Equation (3.12) by:

‘7[0 (§[0) - ‘71’0 (S[(])
=0 (89 +x) -8

ELZ(Sy,, &})IS1,] —EIZ(Sy,, @})ISy,]

N
Avs (3.13)

= lim

x—0 X
. E[ZK, @), (e(Ss,)80 ] ~E[TK, @} ()gx(S4,)IS1,
T X

K E[0rSs,)80 | ~E[¢k(S:,)180]
= lim ) @, (k) p

k=1

— i&l (k)a[E[(pk(Stm)'Sto]

P oSy, '

Attime fy, there is only one grid point, which is equal to the initial state S, so there
is just one bundle, i.e v = 1, at . As x can be arbitrarily small, it’s safe to assume
that S;, and Sy, will lie in this same bundle, and therefore the same approximation
Z(Sy, &%1) can be used to compute the continuation value for these two states. Ad-
ditionally, it is assumed that a}l is independent of S4,. Only the case when S, is

not in the early-exercise region is considered, as the case otherwise is trivial. The

OE[¢pr(Stp)ISsy] - . . . .
% is either known, or is computed using numerical methods.
]

SGBM can compute the delta (and similarly gamma) simultaneously with the di-
rect estimator, at no additional computational cost.

derivative

Proposition 4. Under the assumptions considered,
. . ~N1 1
lim lim |Azo _At0| =0.
(9]

1
v—00 N—

Proof: The numerator in the r.h.s. of Equation (3.13) approaches (3.12) in the limit-
ing case following Theorem 1.
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Duality

Haugh and Kogan (2004)[36] and Rogers (2002)[71] proposed the dual formulation
for pricing Bermudan options. For an arbitrary adapted super-martingale process
M, it follows that,

hr
Vie(Sg) = supE|—1Sy
T B;
hy
= suplk|— + . — M:|Sy,
T B‘[
h:
< My +Suplk | — - M;|Sy,
T BT
<

./%t0+[E

hy
mtax B__J%t |S[() )

t

which gives us the upper bound of the option price V,(S,). Thus, the dual prob-
lem is to minimize the upper bound with respect to all adapted super-martingale
processes, i.e.,

Va(S0)= inf 4ty +E

h
mtax(B—Z —%t) |st0]), (3.14)

where IT is the set of all adapted super-martingale processes. Haugh and Kogan
(2004)[36] show that when the super-martingale process, .#; in (3.14) coincides
with the discounted option value process, V%?’), the upper bound Vto (S¢,) equals
the true price for the Bermudan option. This suggests that a tight upper bound
can be obtained by an accurate approximation of V;(S;), i.e. by defining .#; so that
when the approximate option price, V;(S;), coincides with the exact price V;(S;),

M equals the discounted process %?’). An obvious choice for .#; is then:

'/%[0 :Ztg(st(l)’ (315)

V S ) S
'/M[m+1 = '/%tm + tmg( tm“) — Qt';( tm) .
Im

Im+1

(3.16)

Therefore, corresponding to each simulated path, the martingale .#; is constructed
as,

Vit St (1) Q1,, (S, (1)
Bfm+1 Bt ’

My (1) = My, (0) +

m

The upper bound, V,O, corresponding Equations (3.15) and (3.16) is then given by
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Set1:

S}, =40, K =40,r=0.06,0 =0.2, T =1, M = 50.

Set2:

9 =40, K =40, =0.06, g5 =0,05=0.2, p;; =0.25, T =1, M = 10.
Set3:

9 =100, K =100, r = 0.05, g5 =0.1, 05 = 0.2, p;; =0.0, T =3, M = 9.

Table 3.1: Parameter values used in the examples.

_ h
Vi (St,) E [max(—t —J%I) |st0]
t \ By

_ 1 & h(S; (1))
- Nnglmtax(lg—t_“%f(n))’te[to""’tM]-

In the limiting case, as the number of paths and bundles go to infinity, the approxi-
mations V;, (S,,) and Q;,,_, (S, ,) approach their corresponding exact values and
then V,(S,) will coincide with V4 (S,). Through numerical examples it becomes
evident that in case of SGBM, with an increasing number of paths and bundles,
tight upper bounds can be obtained without the need of sub-simulation.

3.2 Numerical experiments

This section illustrates the performance of SGBM by pricing different types of Bermu-
dan options. By means of numerical examples the rate of convergence of the option
price, when different bundling schemes are used, is compared. The computational
performance of SGBM is also compared against the standard LSM [53] for different
options. Numerical results are used to show that the direct estimator has a signifi-
cantly lower variance when compared to the path estimator.

All underlying assets follow the standard single and multi-asset Black-Scholes model
(geometric Brownian motion, GBM). For the examples considered, unless specified
otherwise, N = 50,000 paths are used for computing the direct estimator and the
early exercise policy and Ny = 200,000 paths for computing lower bounds using
the path estimator. In case of the k-means clustering algorithm, first a set of 5000
training paths is used to obtain the optimal centroids corresponding to each bun-
dle. The code for SGBM is implemented in MATLAB and the computations were
performed on an Intel(R) Quad-Core 2 GHz processor with 4 GB RAM.

The parameter sets used for the different problems are listed in Table 3.1
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Experiment with bundles

This section discusses by examples the role of bundling in computing the option
price. First, with a basic Bermudan put on a single asset is considered, followed by
high-dimensional options with different types of payoffs.

Bermudan options on single asset

Consider a Bermudan put on a single asset, where the risk-neutral asset price fol-
lows the stochastic differential equation

dS;:rStdt+USrth, (3.17)

r being the continuously compounded risk-free interest rate, o the annualized volatil-
ity (both chosen to be constant), W; is the standard Brownian motion. The option
is exercisable a finite number of times per year, M, up-to and including the final
expiration time f); = T. As basis functions ¢¢(S;,,) = S’t‘w‘ll, where k =1,...,4, are
used.

The continuation value, as given by Equation (3.8), requires us to compute

E[x(S1,)1S1,,, (0] =E (84,7184, ()] K =1,....4.

These moments can be written down as:

)

(k-1)o? _ k
E (Stm)k|stm71(n)] :(Stm,l(n)e(H 2 )(tm lm—l))

which can be simply computed. The convergence of the two bundling schemes,
i.e. k-means clustering and recursive bifurcation and their corresponding compu-
tational times are compared. Figures 3.3(a) and (b) show the convergence with an
increasing number of bundles for the two methods. A highly accurate option ref-
erence price is computed using the COS method [29]. Figure 3.3(c) compares the
total computational time, i.e. the combined time taken to compute the direct es-
timator as well as the path estimator using the two bundling approaches. Rapid
convergence with increasing bundles for lower computational time makes recur-
sive bifurcation the preferred method in this case.

Geometric Basket Option

Consider the pricing of a Bermudan option on the geometric average of several
assets. As is well known, it is possible to reduce this problem to a one-dimensional
problem, which can then be priced accurately using the COS method [29], thus
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Figure 3.3: Option price for a put on a single asset, corresponding to different numbers of bundles
used, when (a) recursive bifurcation scheme is used and (b) k-means clustering is used to partition the
state space. Parameter set 1 in Table 3.1 is employed. The reference option value is 2.3140. (c) total
computational time, i.e. time to compute the direct estimator plus time to compute the path estimator.

providing a benchmark result for the algorithm. A geometric average put option on
d assets has intrinsic value:

d
h(Ss,) = K- ([] S5
6=1

The asset prices are assumed to follow correlated geometric Brownian motion pro-

cesses, i.e.
5

das? 5
F=(r—%)dt+05dw , (3.18)
t

where each asset pays a dividend at a continuous rate of gs. Wf ,0=1,...,d, are
standard Brownian motions and the instantaneous correlation coefficient between
X i
W/ and W} is p;;.
As logical basis functions,
d k-1
S\ 1
$eSs,) = [([IS704| L k=1,...,5,
5=1

are used here.
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The continuation value, as given by Equation (3.8), requires us to compute,

.
E[¢x(St,)IS5, (] =EI([] S )T 1Sy, , (W], k=1,....5.
5=1

These moments can directly be computed as:

_ (k=162 k-1
E[px(Ss,)ISs, , (m)] = (Ptm_l(n)e(“‘(k‘;) ,)m)

where,

1

d a 1 d o2 1 4 (4a 2

Pt (M = (HS?,,,_I(")) vﬁ=EZ(T-%-76)r52=ﬁZ(Zczzaq)'
5=1 6=1 p=1\g=1

C being the Cholesky factor of the covariance matrix and C,— matrix element p, g.

Figure 3.4 shows the convergence of the direct estimator and path estimator with
an increasing number of bundles for the different bundling schemes for a five-
dimensional problem. For the recursive bifurcation of the reduced state space, the
geometric average of the asset prices is used to map the high-dimensional state
space onto a single-dimensional space, which is then partitioned using the recur-
sive bifurcation. Partitioning of the reduced state space leads to better convergence
when compared to the other two bundling approaches. Additionally, unlike recur-
sive bifurcation of the high-dimensional state space, which results in 32 bundles
in the first bifurcation itself, recursive bifurcation of the reduced state space has a
greater flexibility on the choice of the number of bundles that can be created.

Figure 3.4(d) compares the computational time corresponding to different num-
bers of bundles and the bundling schemes used. While for all three schemes the
option price is computed within a few seconds, the recursive bifurcation appears
to be computationally most efficient.

Figure 3.5(a) compares the convergence for a geometric basket on 15 assets, when
k-means clustering and recursive bifurcation of reduced state space were used for
bundling. Figure 3.5 (b) gives the corresponding total computational time for the
two methods. Recursive bifurcation is not used for this case as even with one iter-
ation of the method 2'° bundles would be obtained, and a significant number of
these bundles will not contain sufficient number of grid points.

Table 3.2 compares the results with LSM for the 10 and 15 assets cases. The re-
sults for SGBM correspond to 32 bundles, generated using the different bundling
schemes. The standard errors for the direct estimator are much lower than those
of the path estimator, even though 4 times more paths are used for computing the
path estimator. The variance reduction factor, i.e. ratio of variance of path estima-
tor to the direct estimator ranges between 50 to 100. The LSM results are also quite
good for this test case.



68 Chapter 3. The Stochastic Grid Bundling Method

1.46) Bifurcatios 1.46) — Direct Estimator
True Price th Estimator
1.44 1.44 —True Price
1.42 1.42 1
@ 14 :
1.38| 1
1.36] 1.36| 1
1.34] 1.34
5 10 15 20 25 30 0 5 10 15 2 25 30
Bundles v Bundles v
(a) (b)
1.46 —Direct Estimator 105 —Recursive Bifurcation 1
Path Estimator 100 Recursive Bifurcation
|—True Price —k-means clustering
1.44
9.5
o
= 85"
8
% 8
E
F 7.5-
7+
6.5
o
| . . , , . 550 ; | , , | |
0 5 10 15 20 25 30 5 10 15 20 25 30
Bundles v Bundles »
(©) (d)

Figure 3.4: Option value for a put on geometric average of five assets, when (a) recursive bifurcation
in high-dimensions is used and (b) recursive bifurcation on the reduced state space is used, (c) k means
clustering is used, to partition the state space. (d) gives the total computational time (recursive bifur-
cation 2 is recursive bifurcation of reduced state space). Parameter set 2 from Table 3.1 is used. The
reference option price is 1.3421.
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Figure 3.5: (a) Option value for a put on geometric average of 15 assets, when k-means clustering and
recursive bifurcation of the reduced state space (RB2) are used for bundling. (b) Total computational time
for the two approaches. Parameter set 2 from Table 3.1 is used. The reference option price is 1.1190.
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Direct estimator | Path estimator | Computation Time

(s.e.) (s.e.) (secs)
d=10 assets:
SGBM 1.1781 1.1779 8.10
(RB 2) (0.0002) (0.0024)
SGBM 1.1795 1.1777 16.68
(KM) (0.0004) (0.0027)
LSM 1.1765 5.67
(0.0023)
d=15 assets:
SGBM 1.1190 1.1190 14.02
(RB2) (0.0002) (0.0023)
SGBM 1.1202 1.1185 22.42
(KM) (0.0003) (0.0027)
LSM 1.1164 7.15
(0.0019)

Table 3.2: Comparison between SGBM (using different bundling schemes) and LSM for a geometric
basket option on 10 and 15 assets. The values in parenthesis are standard errors. Computation time
includes the time to compute the policy or direct estimator and the path estimator. RB2 stands for
recursive bifurcation of the reduced state space and KM for k-means clustering. The reference option
price for the 10 assets case is 1.1779 and for the 15 assets case is 1.1190

Arithmetic Basket Option
Next we consider the case of a Bermudan option on the arithmetic mean of five
assets, where the asset prices follow the dynamics given by Equation (3.18).

The arithmetic average put option on d-assets is governed by the intrinsic value
function,

1 4
hSm) =K== 85,
d 53
As basis functions, the immediate choice,

1 d
Pi(Se,) = gZSfm k=1,...,5,
o=1

is used.
The continuation value, as given by Equation (3.8), requires us to compute,
1 d k-1
E[¢px(St,)ISt, , (n)] =E Eé;sfm IS, (M|, k=1,...,5. (3.19)

The expectation in Equation (3.19) can be expressed as a linear combination of
moments of the geometric average of the assets, i.e.

d ) ¢ k 0k
= 6
(sglstm Z i klkar---;kd 11_[ (Stm) ’

ky+ko+-+kg= <d<d
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Figure 3.6: Option value for a put on the arithmetic average of five assets, when (a) recursive bi-
furcation in high-dimensions is used and (b) recursive bifurcation on the reduced state space is used
(c) k-means clustering is used. (d) Total computational time corresponding to the different bundling
schemes considered. Parameter Set 2 from Table 3.1 is used.

where,

k _ k!
ki ko, kgl kilko!---kg!
which can be computed in a straightforward way by Equation (3.19).

Figures 3.6(a) to (c) display the direct and path estimator values, for different num-

bers of bundles and bundling schemes. For recursive bifurcation of reduced state
space, the arithmetic average of the asset prices is used to map the high-dimensional
state space to the single-dimensional space, which is then partitioned using the re-

cursive bifurcation scheme. Again, partitioning of the reduced state space leads to

better results when compared to the other two bundling schemes.

Figure 3.6 (d) compares the computational time corresponding to different num-
bers of bundles. The total computational time is always less than a minute, with the
recursive bifurcation being computationally most efficient, while k-means cluster-
ing being the most expensive. Figure 3.7 (a) shows the convergence of the method
with an increasing number of bundles for an arithmetic basket on 15 assets. Only
k-means clustering and recursive bifurcation along the reduced state space are con-
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Figure 3.7: (a) Option value for a basket on the arithmetic mean of 15 assets, corresponding to differ-
ent numbers of bundles. (b) Computational time corresponding to different numbers of bundles. The
parameter values from Set 2 in Table 3.1 are employed.

Direct estimator | Path estimator | Computation Time

(s.e.) (s.e.) (secs)
d=10 assets:
SGBM 1.0624 1.0615 22.60
(RB2) (0.0003) (0.0018)
SGBM 1.0669 1.0604 26.34
(KM) (0.0008) (0.0022)
LSM 1.0611 5.13
(0.0020)
d=15 assets:
SGBM 1.0008 1.0006 15.98
(RB2) (0.0002) (0.0019)
SGBM 1.0038 1.0002 18.56
(KM) (0.0004) (0.0020)
LSM 1.0009 7.20
(0.0026)

Table 3.3: Comparision between different bundling schemes used in SGBM and LSM for an arithmetic
basket option on 10 and 15 assets. The values in parenthesis are standard errors. Computation time
includes the time to compute the policy or direct estimator and the path estimator. RB2 stands for
recursive bifurcation of the reduced state space and KM for k-means clustering. Parameter values are
taken from Set 2 in Table 3.1.

sidered for bundling, as in the case of recursive bifurcation even with a single itera-
tion 2! bundles would be created, with a significant number of bundles having an
insufficient number of grid points. Figure 3.7 (c) displays the corresponding com-
putational time, which is still in seconds.

Table 3.3 compares the results with those obtained using LSM for the 10 and 15
assets case. The results reported for SGBM correspond to the case of 32 bundles.
The standard error for the direct estimator is significantly lower than that for the
path estimator, even though 4 times more paths were used in the latter case. The
variance reduction factor, i.e. the ratio of variance of the path estimator to the direct
estimator again ranges between 50 to 100.
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Duality based upper bounds

Duality-based upper bounds on the option price can be useful when only an ap-
proximation for E[¢¢(S,,)IS;,,_, = X] can be found and it cannot be computed ex-
actly. This is because for the direct estimator to be an upper bound on the true
price, Theorem 2 assumes E[¢(S;,,)S:,,., = X] to be computed exactly. An exam-
ple for such a case is an option on max of more than two assets, discussed below.

Max Option

A Bermudan max-option is a discretely-exercisable option on multiple underlying
assets, whose pay-off depends on the maximum among all asset prices. The intrin-

sic value function for the call option on the max of d assets is given by:
h(S;,) =max(S; ,...,S¢)-K,

t m

Consider the case where the asset prices follow correlated geometric Brownian mo-
tion processes, as given by Equation (3.18).

As basis functions,

1 d k-1
$x(Sy,) = (logmax(s} ,...,.$0))  k=1,....5

4 \3
$6(St,,) = (H S‘?m) :
5=1

Pe15(Ss,) =50, ,0=1,....d,
are used. The additional basis functions compared to the previous examples are
required because of the non-linear payoff surface.

The continuation value, as given by Equation (3.8), requires us to compute,

E (log(max(S}m,...,Sfm)))k_l|Stm71(n) : (3.20)

which can be done using Clark’s algorithm [22]. Clark’s algorithm (see Chapter 2,
Section 2.4 for details on Clark’s algorithm) computes the first four moments for the
maximum of several correlated normal variates, as well as the correlation coeffi-
cient between the maximum of a pair and the third normal variate. The computed
values, other than the maximum of two normal variates, will be approximations,
and therefore for options with more than two assets the direct estimator will not
be an upper bound. However, the upper bounds can still be computed using the
approach of duality, as discussed in Section 3.1.

Duality-based upper bounds, together with the lower bound computed using the
path estimator gives a valid confidence interval within which the true option price
lies. The confidence interval is constructed as:

I SH
V., (Sy) —1.96——, V(,(Sy) +1.96——|,
—tO( to) \/ﬁs l‘()( to) \/ﬁs



3.2. Numerical experiments 73

=]
@

Vi (St
=
Time (sec)
w

14150

~Upper bound (SGBM
Lower bound (SGBM

~

141 — Direct estimator

—True Price
---Bounds (AB)

@

14.05-

o)

~Total time
--Direct estimatol
Path + Dual est.|

St)

13.95 \
E—
13.9)- /

10 12

|

bt
0
<

10 12 2 a4

6 8 6 8
Bundles v Bundles v

(@ (b)

' ' ' = Upper bound (SGBM) ! T T T T —
Lower bound (SGBM) -+-Direct est.

[--BCbounds | 18 Path+Dual est| 4
26.16\\/. —Total time

Bl 3
£ 26.12 2 10
8
26.1F
o i
26.08;
4 /6/4’——‘
26.0 2 4 6 8 10 12 2 4 6 8 10 12
Bundles v Bundles v
(c) (d)

Figure 3.8: (a) Option price corresponding to different numbers of bundles for a call on maximum
of two assets. (b) Computational time for the two asset case. (c) Confidence interval corresponding to
different numbers of bundles used for a call on the max of five assets. (d) Computational time for the
five asset case. Parameter values are taken from Set 3 in Table 3.1.

where 3z, is the sample standard deviation for the path estimator and Sy, is the
sample standard deviation for the duality-based upper bound estimator. These
standard deviations are based on Ng independent simulation trials, and for the ex-
amples here Ng = 30, are taken.

Figure 3.8(a) shows the convergence of the direct estimator with an increasing num-
ber of bundles, and the corresponding confidence interval constructed using the
duality-based upper bounds and the lower bounds found using the path estima-
tor. For comparison, the confidence interval reported in Andersen and Broadie
(2004)[2], which is also based on the dual formulation, is plotted. Figure 3.8(b)
shows the time taken to compute the direct estimator, lower (using path estimator)
and upper bounds (using duality). For all cases the total computational time is less
than a minute.

Figure 3.8(c) displays the confidence interval constructed for the case of the max-
imum of 5 assets. Also plotted is the confidence interval reported by Broadie and
Cao (2009)[15] for the same problem. The corresponding computational times are
plotted in Figure 3.8(d). The computation time for duality-based upper bounds, re-
ported in the literature are usually in several minutes, and in comparison SGBM’s
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So SGBM SGBM SGBM SGBM Literature Binomial
‘ Direct est. (s.e.) ‘ Path est. (s.e.) ‘ Dual est. (s.e.) ‘ 95% CI 95% CI ‘

d=2 assets:

90 8.069 8.067 8.105 [8.059 8.136] [8.053 8.082] 8.075
(0.013) (0.020) (0.086)

100 13.907 13.898 13.906 [13.88913.919] | [13.892 13.934] 13.902
(0.005) (0.023) (0.035)

110 21.351 21.338 21.339 [21.329 21.347] | [21.316 21.359] 21.345
(0.004) (0.022) (0.023)

d=3 assets:

90 11.223 11.247 11.483 [11.23511.585] [11.265 11.308] 11.29
(0.006) (0.035) (0.284)

100 18.650 18.654 18.761 [18.641 18.809] | [18.661 18.728] 18.69
(0.008) (0.037) (0.134)

110 27.554 27.537 27.592 [27.523 27.648] | [27.51227.663] 27.58
(0.011) (0.038) (0.158)

d=5 assets:

90 16.521 16.620 16.625 [16.607 16.637] [16.620 16.653]
(0.009) (0.037) (0.036)

100 26.086 26.129 26.132 [26.113 26.148] [26.115 26.164]
(0.011) (0.044) (0.044)

110 36.743 36.753 36.754 [36.737 36.770] [36.710 36.798]
(0.013) (0.045) (0.045)

Table 3.4: Option values for call on maximum of 2, 3 and 5 assets, with parameter values taken from
Set 3, in Table 3.1.The values reported are for 12 bundles created using k-means clustering algorithm.
The reference confidence interval for the two and three asset case are taken from Andersen and Broadie
(2004) [2], and for the five asset case from Broadie and Cao (2009) [15].

time in seconds seems efficient. Results for d = 2,3, and 5 assets are summarized
in Table 3.4.

Computing Greeks

In this section the sensitivity of the option price is computed using SGBM. As an ex-
ample a call on the maximum of d assets option, which was discussed above is con-
sidered and the Greeks Delta, A} (= 8V, (S4))/0S} ), and Gamma, I'}) (= 0%V, (S4,)/3(S})%)
are computed for it.

First consider the case of the max on two assets, as for this case the exact Greeks can
be computed using the 2D COS method of Ruijter and Oosterlee (2012)[74]. Figures
3.9(a) and (b) compare the exact Greeks computed using the 2D COS method with
results from SGBM for different numbers of exercise opportunities. The error in the
delta values ranges between 0.2% to 0.4%, which is quite modest in comparison to
the ones obtained using the traditional bumping method. The errors for gamma
values are higher and range between 3% to 7%. Results for SGBM are comparable
to those reported by Kaniel et al. (2004) [47], however, the computation time for
SGBM is less than a minute while for the latter it can be hours.

Figures 3.8(c) and (d) compare the Greeks computed for different numbers of exer-
cise opportunities with the bounds reported in Wang and Calfisch (2009) [87]. Itis
clear that although the SGBM values reported lie within the confidence interval, the
results are not accurate enough when number of exercise opportunities increases.
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Figure 3.9: (a) Delta and (b) Gamma values, for a call on maximum of two assets, for different number
of exercise opportunities. (c) Delta and (b) Gamma values, for a call on maximum of five assets, corre-
sponding to different number of exercise opportunities. Parameter values are taken from Set 3 in Table
3.1.

One of the reasons for this is that with an increasing number of exercise oppor-
tunities there is an error build up while the option values are estimated moving
backwards in time. SGBM can provide an accurate approximation for the option
price sensitivities with minimal computational effort.

3.3 Conclusion

This chapter introduced the Stochastic Grid Bundling Method (SGBM) for approxi-
mating the value of Bermudan options by simulation. SGBM is a hybrid of regression-
based and bundling-based Monte Carlo methods, and appears to be computation-
ally at least as attractive as existing methods. Basic proofs for convergence are dis-
cussed, however, the rate of convergence, especially regarding the number of bun-
dles used is only dealt with by numerical examples.

This chapter illustrates SGBM’s performance using a number of realistic examples,
including the valuation of options on the geometric and the arithmetic mean, and
a maximum of assets option on a basket of assets. The computational time for the
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method is comparable to the least squares method [53], but a higher accuracy, not
just at the final time step, but also at intermediate time steps makes it a suitable
candidate for computing upper bounds using duality-based methods. Another ad-
vantage of SGBM is that it can be used for fast approximation of the option price
sensitivities. The SGBM method described is intuitive, easy to implement and ac-
curate.
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CHAPTER

Valuing Modular Nuclear Power
Plants in Finite Time Decision
Horizon

The contents of this chapter have appeared in [42]. Deregulation of the electric-
ity market has been driven by the belief in increased cost-efficiency of competitive
markets. There is a need for valuation methods to make economic decisions for
investment in power plants in these uncertain environments. Kessides (2010) [49]
emphasizes the use of real options analysis (ROA) to estimate the option value that
arises from the flexibility to wait and choose between further investment in the nu-
clear plant and other generating technologies as new information emerges about
energy market conditions.

There is an increased interest in small and medium sized reactors (SMRs) as an al-

ternative to large Gen III type nuclear reactors [11]. This is primarily because the
former have, amongst other benefits, comparatively low upfront costs and flexi-
bility of ordering due to its modular nature [19]. When comparing the economy

of large reactors and SMRs, it’s necessary to take into account the value of flexi-
bility arising from modular construction, which traditional valuation methods like
net present value (NPV) cannot. As the decisions to order new reactors would be
planned for finite time horizons, there is a need to adapt the real option valuation
for modular construction, as proposed by Gollier et al. (2005) [35], to a finite time
horizon. The case studies presented here are not only important for the construc-
tion of power plants but they are also relevant for a larger class of decision questions
in which flexibility due to modularity and economy of scale play an important role.

This chapter focuses on the value of flexibility that arises from the modular con-
struction of SMRs. The approach used here is similar to that used by Gollier et al.
(2005) [35], where the firm needs to make a choice between a single high capac-
ity reactor (1200 MWe) or a flexible sequence of modular SMRs (4 x 300 MWe). This
chapter, however, considers a finite time horizon before which the investment deci-
sion should be made. In a competitive market the firms cannot delay an investment
decision for ever and need to decide before the anticipated entry of a competitor,
or before a technology becomes obsolete. Also utilities need to meet the electricity
demand with some minimum reliability, which restricts their decision horizon to
finite time. The investment rules, such as the optimal time to start construction
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and the real option value of the investment, can differ significantly with changing
decision horizons.

Real options can be priced with methods used for pricing American- or Bermudan-
style financial options which are discussed in the previous chapters. This chap-
ter uses the stochastic grid method (SGM) [40] (see Chapter 2 for details regard-
ing SGM) , for computing the real option values of modular investment decisions.
SGM has been used to price Bermudan options in [40] with results comparable
to those obtained using the well-known least squares method (LSM) of Longstaff
and Schwartz (2001) [53], but typically with tighter confidence intervals using fewer
Monte Carlo paths. The option values are computed by generating stochastic paths
for electricity prices, and thus with uncertain future cash flows. The optimal elec-
tricity price at which a new module should be ordered is found as an outcome of
the real option pricing.

In the sections to follow the problem of modular investment in nuclear power plants
is stated and compared with its counter part in the financial world. In Section 4.1
the problem and its real option formulation is described. In Section 4.2 the mathe-
matical formulation behind the problem is discussed. Section 4.3 gives the descrip-
tion of how the stochastic grid method can be used to value a modular real option.
Section 4.4 describes in detail the application of the method to the nuclear case.
Finally, Section 4.5 gives some concluding remarks and possible future research
questions that need to be addressed.

4.1 Problem Context

A competitive electricity market where the price of electricity follows a stochastic
process is considered in this chapter. The utility faces the choice of either con-
structing a single large reactor of 1200 MWe, or sequentially constructing four mod-
ules of 300 MWe each. The total number of series units is denoted by n. Unit num-
ber i is characterized by discounted averaged cost per KWh equal to 6; , its con-
struction time is denoted by C; and the lifetime of its operation by L;. Both con-
struction and lifetime are expressed in years. It is assumed that different modules
are constructed in sequence, where,

1. similar to the case of Gollier [35], construction of module i + 1 cannot be
decided until construction of unit i is over, i.e. no overlap in construction of
modules is allowed.

2. amore relaxed constraint where the construction of unit i + 1 can be decided
from any time subsequent to the start of construction of unit i.

A constant discount rate denoted by r is assumed here.

The utility here needs to take a decision to start the construction of the modules
within a finite time horizon, denoted by T; for the ith module. In terms of financial
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Figure 4.1: The area between the electricity path (starting at 3.5 cents/kWh) and cost of operation =
3.5 cents/kWh, gives cash flow for the reactor.

options, T; represents the expiration time for the ‘option to start the construction
of the ith module . Unlike financial options, it’s difficult to quantify the expiration
time for real options, and it is usually taken as the expected time of arrival of a
competitor in the market, or time before which the underlying technology becomes
obsolete. In case of an electricity utility, it also represents the time before which the
utility needs to set up a plant to meet the electricity demand with certain reliability.
Reliability is measured as the probability of the number of unplanned outages in a
year with one of the reasons for such an outage being demand exceeding available
generation.

The real option formulation

The problem of modular construction can be formulated as a multiple exercise
Bermudan option. Consider the stochastic process, Py, to be the process which
models the electricity price. The payoff, h;(P; = x), for the real option problem is
the expected net cash flows per unit power of electricity sold through the lifetime
of module i, when it gets operational at time ¢ and state P; = x.

Figure 4.1 illustrates the profit from the sale of electricity for one realized electricity
price path. The cost of operation, 6, in the illustration is 3.5 cents/kWh and the
area between the electricity path and 0 gives the profit from the sale of electricity.
The value of interest is the expected profit, i.e. the mean profit from all possible
electricity paths in the future. This expected profit (or net cash flow) is the payoff,
h;i(Py), for the real option.
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The revenue, R;, for the ith module, for every unit power of electricity sold through
its lifetime L;, starting construction at time ¢, when the electricity price is P; = x,
can be written as

t+Ci+L;
f e "“pP,dulP;=x]|. 4.1)
t+C;

Ri(P;=x)=E

R; is the discounted expected gross revenue over all possible electricity price paths.
The revenue starts flowing in once the construction is over, and therefore the range
for the integral starts from ¢ + C;. and lasts as long as the plant is operational, i.e.
until ¢+ C; + L;. Similarly, the cost of operating the ith module, K;, through its life-
time for every unit power of electricity generated, is:

t+Ci+L;

Ki=[ " emoidu 4.2)
t+C;

Here 0, the cost of operating the reactor per kWh is assumed to be constant. There-

fore, the net discounted cash flow, for module i, is given by:

hi(P;=x) = R;i(P; =x) - K;. (4.3)

Equations (4.1) to (4.3) give the expected profit from the sale of electricity through
the life of the nuclear reactor. Equation (4.3) is the mean profit from all possible
electricity paths in the future.

The expiration time T, is the time before which the last module should be ordered.
The optimal exercise policy 7 = {1,...,71}, is then defined by the determination
of the optimal times for starting the construction of different modules, with 7;, the
optimal time for starting the construction of module i, so that the net cash flow
from the different modules is maximized.

Electricity price model

The uncertain parameter in our pricing model is the electricity price. Modelling
electricity spot prices is difficult primarily due to factors like:

¢ Lack of effective storage, which implies electricity needs to be continuously
generated and consumed.

e The consumption of electricity is often localized due to constraints of rela-
tively poor grid connectivity.

* The prices show other features like daily, weekly and seasonal effects, that
vary from place to place.

Models for electricity spot prices have been proposed by Pilipovic (1997) [66], Lucia
and Schwartz (2002) [55]. Barlow (2002) [6] develops a stochastic model for electric-
ity prices starting from a basic supply/demand model for electricity. These models
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are focused on the short term fluctuations of electricity prices which helps better
pricing of electricity derivatives.

As decisions for setting up power plants look at long term evolution of electricity
prices, like Gollier [35], the basic Geometric Brownian Motion (GBM) as the elec-
tricity price process is used here. However, it should be noted that within our mod-
elling approach it is easy to include other price processes.

Geometric Brownian Motion

If at any time ¢ the electricity price is given by P; cents/kWh, then the electricity
price process is given by

dPtzaPtdt+UPtth, (4.4)

where a represents the constant growth rate of P;, o is the associated volatility
and W; is the standard Brownian motion. In our model it is assumed that a and
o are constant. A closed form solution to the above SDE can be obtained using Ito’s
lemma, and is given by:

p, = pyellaF)rroviz), 4.5)

where Z is a standard normal variable. Also it can be seen that the above process
has a log-normal distribution, i.e. log(P;) has a Gaussian distribution with mean

0_2
E[log(Py)] =log(Py) + (a - ?) t
and variance

Var(log(Py) = o°t.

4.2 Mathematical Formulation

The optimal time to order! a new reactor under uncertain electricity price is solved
using dynamic programming, where an optimal solution is found recursively mov-
ing backwards in time. Here the problem stated above is re-framed as a dynamic
programming problem.

1 The optimal time to order is often called "optimal stopping time". In the case of sequential modu-
lar construction optimal stopping time would refer to the time when the option to delay the construction
to the next time step terminates.
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Dynamic programming formulation

In order to construct all the modules at the optimal time, using Bellman’s principle
of optimality, optimal decisions need to be taken, starting from the last reactor. The
optimal decision time for each of the reactors is computed as well, starting from
their respective expiration times and moving backwards in time to the initial state.
The expiration time for ordering the ith module is given by

n—1
Ti=Ta— ) Ck. (4.6)
k=i

This constraint comes from the restriction that a new reactor can be ordered once
all the prior ordered reactors have been constructed. Here T, is the expiration time
for the option to start the construction of the last module and C; is the construction
time in years for the ith module.

At the expiration time for the last module the firm does not have the option to delay
the investment. Therefore, the decision to start the construction is taken at those
electricity prices for which the expected NPV of the last module is greater than zero.
The option value of the last module at the expiration time is then given by:

Vi(ty = Ty, Pry,) = max(0, by (Pyy,)). (4.7)

At time t,,, m =M —1,---,0, the option value for the last of the series of reactors is
the maximum between immediate pay-off /4, and its continuation value Q. The
continuation value is the expected future cash flow if the decision to construct the
reactor is delayed until the next time step. The reactor is constructed if at the given
electricity price the net present value is greater than the expected cash flows if the
reactor is constructed sometime in the future. This can be written as:

Vn(tmvptm) :max(hn(Ptm);Qn(tmrPtm)); mZO,...,M—].. (48)

Given the present state P;,, the continuation value, or, in other words, the dis-
counted cash flows if the decision to start the construction is delayed for the last
reactor is,

Qn(tm, Py,) = e "R [V, (41, Py, )Py, | - (4.9)

Once the option value at each time step for the last module is known, we move on
to modules n —1,..., 1. At the expiration time for the i-th module, the decision to
start its construction is taken when the combined NPV of the present reactor and
the expected future cash flow from the optimally constructed modules i +1, ..., nis
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greater than zero. Therefore, the option value for the ith module at its expiration
time T; is given by:

Vi(T;, P1;) = max (0, h; (Pr;) + Qi+1(T;, Pr,)), (4.10)

where h; gives the direct future cash flow from the ith module and Q;11 (T}, Pr;)
gives the expected cash flow from the optimal construction of modules i + 1,..., n,
given the information Pr;. The option value for the module at time step f;,,, where
tm < T;, is given by

Vi(tm, Pt,,) = max(h;(Py,,) + Qi+1(tm, Pt,,), Qi (tm, Pt,,)), (4.11)

i.e. the decision to start the construction of module i is taken if the cash flow from
its immediate construction (given by h;(P;,,)) and the expected cash flow from the
modules i +1,..., n, constructed optimally in the future (modeled by Q;+1 (s, Pt,,))
, is greater than the expected cash flows from the modules i,..., n, if the decision
to start its construction is delayed to the next time step (given by Q;(#;;, Py,,)). The
expected cash flow if the decision to start the construction of modules i,...,n is
delayed to the next time step is given by:

Qi(tm, Py,) = e "kt TImE [ Vi(tg4q, Py, )Py, | - (4.12)

The option value, V; (¢, Py,,), at time ¢, for constructing the module i not only
carries the information about the cash flows from module i, but also about the
cash flows from the optimal construction of the modules i +1,..., n in the future.

For sequential modular construction the payoff for module i is given by h;(P;,,) +
Qi+1(tm, Py,,). The payoff does not only contain #;, the direct discounted revenue
from module i, but also Q;1, the value of the new option to start or delay the con-
struction of new modules, that opens up with the construction of module i.

4.3 Stochastic Grid Method for multiple exercise options

The real option problems discussed here, have financial counterparts, i.e. the Bermu-
dan options and multiple exercise Bermudan options. A Bermudan option gives
the holder the right, but not obligation, to exercise the option once, on a discretely
spaced set of exercise dates. A multiple exercise Bermudan option, on the other
hand, can be exercised multiple times before the option expires. Pricing of Bermu-
dan options, especially for multi-dimensional processes is a challenging problem
owing to its path-dependent settings.

Consider an economy in discrete time defined up to a finite time horizon T},. The
market is defined by the filtered probability space (Q, %, %;,P). Let P;, with t =
fo, ..., tm = Ty, be an R%-valued discrete time Markov chain describing the state
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of the economy, the price of the underlying assets and any other variables that af-
fect the dynamics of the underlying. Here P is the risk neutral probability measure.
The holder of the multiple exercise Bermudan option has n exercise opportunities,
that can be exercised at 1y, t1, ..., t;;. Let h; (P;) represent the payoff from the ith ex-
ercise of the option at time ¢ and underlying state P;. The time horizon for the ith
exercise opportunity is given by Tj.

Define a policy, 7, as a set of stopping times 7,,...,7; with 7, < ... < 71, which
takes values in f, ..., t;; = Tp, and 7; determines the time where the ith remaining
exercise opportunity can be used. The option value when there are n early exercise
opportunities remaining is then found by solving an optimization problem, i.e. to
find the optimal exercise policy, 7, for which the expected payoff is maximized. This
can be written as:

n
Y h(Pr)IPy = x| (4.13)

k=0

Vau(to, Py, = X) = supk

T

In simple terms, Equation (4.13) states that of all possible policies for ordering the
reactor in the given decision horizon, the real option value is computed using the
one which maximizes the expected future cash flows.

The problem of pricing Bermudan options with multiple exercise opportunities has
been dealt with by Meinshausen and Hambly (2002) [58], with generalizations by
Bender (2008) [9], Aleksandrov and Hambly(2008) [1] and Schoenmaker (2009) [75],
who use the dual representation for such pricing problems. Chiara et al. (2007) [21]
apply the multiple exercise real options in infrastructure projects. They use a multi-
least-squares Monte Carlo method for determining the option value.

The problem of sequential modular construction stated above can be solved using
the stochastic grid method [40] (see Chapter 2). It is chosen?, because:

* The stochastic grid method (SGM) can efficiently solve the multiple exercise
Bermudan option problem;

¢ SGM can be used to compute the sensitivities of the real option value;
* The method can be easily extended to higher dimensions;

e The method doesn’t depend on the choice of the underlying stochastic pro-
cess;

e Improved confidence intervals are obtained with fewer paths when compared
to LSM.

Although the problem considered here is one-dimensional, with the electricity price
as the stochastic variable, a typical real option problem tends to be high-dimensional

2We didn’t use SGBM here as in the chronology of development of this thesis the method was yet
not defined
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with several underlying stochastic terms. A proper choice of pricing method would
be one which can be extended to higher dimensions in the future.

The stochastic grid method solves a general optimal stopping time problem using
a hybrid of dynamic programming and Monte Carlo simulation. The method first
determines the optimal stopping policy and a direct estimator for the option price.
The optimal stopping policy for the ith module at time step f,, involves finding
the critical electricity price P; . When the market price of electricity is equal to the
critical price, the value of delaying the construction of the module to the next time
step is equal to the value of starting the construction immediately, i.e.,

Qi(ty, Py) = hi(Pp).

Therefore, the critical price is taken to be the largest “grid point” P, for which
Qi (fx, Pr) > hi(Py,). The module is ordered if the present market price of electric-
ity is greater than the critical price for the given time step. Once the policy for all
the time steps is known, SGM computes lower bound values, using a new set of
simulated electricity paths, as the mean of the cashflows from each simulated path
where the module is ordered following the policy obtained above.

SGM for multiple exercise Bermudan options begins by generating N stochastic
paths for the electricity prices, starting from initial state Py. The electricity prices
realized by these paths at time step ,,, constitute the grid points at z,,. The electric-
ity price paths can be generated using Equation (4.5) here.

The pricing steps for SGM can be decomposed into two main parts, based on the
recursive dynamic programming algorithm from the previous section.

e Parametrization of the option value: The option values at each grid point are
converted into a functional approximation using piece-wise regression.

e Computation of the continuation value: The continuation value is computed
using the conditional probability density function and the functional approx-
imation of the option value at the next time step.

Parametrization of the option value

In order to obtain the continuation value for grid points at ¢,,, the functional ap-
proximations of the option value at f;, needs to be determined. Once the option
values at the grid points at #,; are known, the functional approximation is ob-
tained using a piece-wise least squares regression. Therefore, the option value at a
given time step is divided into two regions, separated by the critical electricity price
P*

7
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For the two segments the functional approximation is given by,

K-1 K-1

& k k

Vi(tm+1, Prypyy) = L, <P; ) Y axPp  + Lp,, =2 ) Y. bcP (4.14)
k=0 k=0

Im+1

The expression 1jp, <o jisan indicator function whose value equals 1, if the
m+1
argument {P;, ., < %;;M}, is true and it is 0 otherwise. Therefore, I{le+l<%*

}
Im+1
and Lip, =2 group the grid points into two segments, separated by the crit-

m+1
ical electricity price. The results converge to the reference price when increasing

number of segments are used (see [40]).

Computation of the continuation value

Once the functional approximations of the option values for modules i and (i + 1)

are known for time step t;,+1, the continuation value for the ith module at ¢;, can

be computed using Equation (4.12). In order to compute the expectation, E [V; (¢,41, Pr,,, )Pt ] »
the distribution function for P,,,, given P;,, is required. This conditional distri-

bution function, f(P,,,,|Ps, = x), for the GBM process is known in closed form.

Therefore, the continuation value, or the value of the reactor if the decision to or-

der it is delayed to the next time step, as given in Equation (4.12) can be written

as:

K-1
Qi(tm,Py,) = f (Z ary* | f(yPr,, = 0dy
yel0,%]

k=0

K-1
+f (Z bkyk)f(ylme =x)dy. (4.15)
J/E(%*,OO] k=0

In a more generic case where the conditional distribution function is unknown, it
can be approximated using the Gram Charlier Series. For more details on comput-
ing the continuation value, refer to [40].

4.4 Numerical Experiments

The case where an investor needs to decide between two projects, one involving
a single large reactor of 1200 MWe and the other consisting of four modules of
300 MWe each, is considered here. The construction time and costs for the two
projects, given in Table 4.1, are taken from the reference case by Gollier [35]. The
discount rate is taken as 8% per annum, which is the OECD average, and the pre-
dicted growth rate of electricity price is 0% here. The cost of electricity production
for the first unit is relatively expensive when compared to series units, as a large
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part of the fixed costs for the modular assembly, like the land rights, access by road
and railway, site licensing cost, connection to the electricity grid are carried by the
first unit.

In the case of the modular project two different constraints are considered, in the
two subsections to follow, i.e., the decision for construction of subsequent units
can be made :

1. Once the construction of all prior units is completed (similar to the case con-
sidered by Gollier),

2. Once the decision for the construction of all prior units has been taken. Also,
only one unit can be ordered at a given time step.

Construction Time | Discounted Average cost
(months) (cents/KWh)
Large Reactor 60 2.9
Modular Case
Module 1 36 3.8
Module 2 to 4 24 2.5

Table 4.1: Construction time and discounted averaged costs used for the large reactor and the modu-
lar case.

Sequential construction: The case in Gollier [35]

In this test case constraint 1 is applied for the construction of subsequent modules,
i.e., the decision for the construction of a new module will not be made, unless
the construction of all previous modules is finalized. By the SGM first an optimal
investment policy and a direct estimator of the real option value of the project are
obtained. The optimal policy gives the critical electricity price (as a function of
time), above which a module should be ordered. At a given time a new module
is ordered only when the present electricity price is higher than the corresponding
critical price for the module under consideration and when all other constraints are
satisfied. Once the optimal investment policy is obtained, a fresh set of electricity
paths is generated, and at each of these simulated paths a new module is decided
if the following conditions are satisfied:

1. All modules preceding the given module have been constructed.

2. The present electricity price is higher than critical price for ordering the given
module.

3. The present time is within the decision horizon for the corresponding mod-
ule.
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Figure 4.2: optimal investment policy for ordering sequential modular reactors, with a sample sce-
nario path. No overlap between the construction periods of two reactors is possible in this case.

4. The given module hasn’t been ordered so far for the given path.

Figure 4.2 illustrates for a sample electricity path when a new module should be or-
dered. A module is ordered once the above conditions are satisfied and the revenue
from this module is discounted back to the initial time. The mean of the discounted
revenue for different paths from all the four modules gives the real option value of
the project. For a single large reactor the steps followed are the same, except that
condition 1 is not required.

As the case in [35] corresponds to an infinite horizon decision problem with exer-
cise opportunities, it is compared with an increasing finite time decision horizon.
Figure 4.3 compares the real option value of the modular project with the refer-
ence value in [35]. The option value of the project doesn’t increase much with an
increasing number of exercise opportunities per year, however it increases signifi-
cantly with an increasing decision horizon. From Figure 4.3 it’s clear that the real
option value of a modular project with a realistic decision horizon is lower than the
value obtained in [35], where an infinite decision horizon is assumed. In other sim-
ulations, not reported here, it is found that the option value of the modular project
with the same parameters, but with a decision horizon of 100 and 200 years and
four exercise opportunities per year, has an option value between 390 to 400 Eu-
ro/kW, which is already closer to the infinite horizon values.

Figure 4.4 then compares the optimal investment policy for the first module with
the corresponding policy in [35]. It shows clearly the effect of a finite decision hori-
zon on the investment policy. As one approaches the final decision time, the value
of waiting (given by the continuation value) reduces which lowers the threshold
electricity price at which a new module should be ordered. However, in the case of
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Figure 4.3: Real option value of a modular project with increasing decision horizon and exercise
opportunities per year compared with the value obtained by Gollier. The initial price of electricity is 3
cents/kWh and volatility in electricity price is 20%.
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Figure 4.4: Critical price at which the first module should be ordered, comparison between finite time

and infinite time horizon.

an infinite decision time horizon, the optimal policy or threshold electricity price
remains constant with time.

Comparison of two projects with different decision times

The real option values of the two projects, i.e. the single large reactor and the se-
quence of small modular units, are compared next for increasing decision time
horizon and uncertainty in electricity prices. The construction costs and times for
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Figure 4.5: Real option value for the large reactor and the modular project for different decision
horizons when the initial price of electricity is 3 cents/kWh.

the reactors are taken from Table 4.1. Based on Equation (4.6), the corresponding
decision horizon for the construction of the first module is taken between 1 to 17
years. For the single large reactor the decision horizon is taken the same as that
for the first module. One of the advantages of a modular construction is that the
increasing demand can be met gradually, which allows the spreading of the deci-
sions to a longer time horizon, possibly without significant gaps in demand and
supply. Therefore, although the decision horizon for the first module can be small,
the decision horizon for the entire project can be longer.

Figure 4.5 compares the option value for the single large reactor with that for the
modular project for increasing decision time. When the decision horizon is small it
is optimal to opt for the large reactor whereas for longer decision horizons modular
projects appear more profitable. An insight into the reason why modular projects
are better for longer decision time is given by Figure 4.6, which shows the expected
cashflow from the four units for increasing decision time. When the decision hori-
zon is small, the expected cashflow from the first module can be negative, which is
the case when the decision horizon for the first module is one year. For short deci-
sion times, the first unit needs to be ordered to keep open the option to order more
profitable subsequent modules. As the time approaches the final decision time for
the first unit, it can be ordered even if the expected revenue from its construction
would be negative. With increasing decision horizon the investor can wait longer
and order the modules at more profitable electricity prices. Figure 4.7 shows frac-
tions of the scenario paths for which different numbers of modules are ordered.
When the decision horizon is small, the project is only partially completed for a
large number of scenario paths, making it unprofitable. However, for longer de-
cision times, the fraction of the scenario paths for which all the four modules are
constructed increases, while the fraction of partially completed project reduces.
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Figure 4.6: Cash flow from different modules with increasing decision time. The initial price of elec-
tricity is 3 cents/kWh and the volatility in electricity prices is 20%.
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sion time. The initial price of electricity is 3 cents/kWh and the volatility in electricity prices is 20%.
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Figure 4.8: Real option value for the large reactor and the modular project for different volatilities
when the decision horizon is 9 years and the initial price of electricity is 3 cents/kWh.

Comparison of two projects and different volatilities in electricity prices

A parameter to be considered when deciding between a single large reactor and
the modular project is the uncertainty in electricity prices. The real option value
of the two projects for increasing volatility in the electricity price is compared in
Figure 4.8. When the volatility in the electricity price is low, the single large reactor
project is more profitable, while for higher volatilities the modular project seems
a better choice. An intuitive answer to this is that, for high volatilities, modular
projects offer more flexibility, i.e., if the electricity price path at some point reaches
unfavourable prices, the possibility to abandon module construction, with a few
units already ordered, exists. Figure 4.9 shows the fraction of scenario paths for
which the modular project finishes with different numbers of units ordered. As
expected, the fraction of paths for which not all the four units are ordered increases
with increasing volatility.

Figure 4.10 gives the expected cashflow from each unit for different volatilities of
the electricity prices. In general, the option value of the project increases with an
increasing uncertainty. A higher volatility reflects greater future price fluctuations
(in either direction) in underlying electricity price levels. This expectation generally
results in a higher option premium, especially if the option is exercised optimally.
The cashflow from the first unit is smallest because it’s the most expensive of the
four units. When the cost of the units would be same, as is the case for units 2 to 4,
the discount factor plays an important role, making the present value of units that
are ordered first larger than the value from units further in the future.

For a firm it is not only important to know the real option value for making an in-
vestment decision, but also the sensitivity® of the value with respect to the param-

3Sensitivity analysis in financial options is performed by computing the derivatives with respect to
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Figure 4.10: Expected cashflow from different units for different volatility values for electricity prices.

The initial price of electricity is 3 cents/kWh and the decision horizon for the first module is 9 years.
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eters chosen. The delta values, i.e. the ratios of the change in the real option value
of the reactors to the change in the underlying electricity price, are computed here.
High delta values imply that the investment decisions are sensitive to a changing
electricity price. Figure 4.11 compares the delta values for the different modules.
It can be seen that the delta values for the final module, as expected, converge to
one, i.e. when it’s optimal to order a new reactor the change in option value is pro-
portional to the change in the electricity price. However, for each prior module the
delta values converge to values less than one. For the first module a unit change
in the electricity price changes the option price by a factor of 0.8. This makes the
modular construction investment option generally more stable, i.e. even if the elec-
tricity price drops by 1 the value of investment changes by a factor of 0.8.

1.1
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Figure 4.11: The delta values for the four modules when the decision horizon is 12 years and the
volatility in electricity price is 20%.

Table 4.2 gives the critical threshold prices for constructing a single large reactor
and for the different modules. The SGM results are compared with those com-
puted using the COS method* [29] and with Gollier [35]. The COS method is a
deterministic method, developed for computational finance applications, which
can easily be applied to sequential investment decisions for single "assets". The
Monte Carlo and the COS method give identical prices, which is a validation for the
MC method, and a clear difference between the results obtained for finite time and
those for infinite time horizon decisions in [35] can be seen. From these results it
can be concluded that SGM is a good candidate for pricing finite time real option
problems.

Modified case: multiple construction, sequential ordering

This section considers the two projects discussed above, except that now one of
the constraints in the case of the modular project is relaxed, i.e., a new unit can

various parameters, and these derivatives together are referred to as the Greeks.
4Iwould like to thank Marjon Ruijter for the COS method results.
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Final Decision Isolated Modular
Time (years) LR | Unitl Unit1 | Unit2 | Unit3 | Unit4

12 456 | 5.98 4.05 3.44 3.65 3.93

SGM 17 4.60 6.02 4.18 3.50 3.69 3.96
22 4.62 6.05 4.24 3.53 3.71 3.98

12 456 | 5.98 4.10 3.46 3.65 3.93

COs 17 4.60 6.03 4.21 3.51 3.69 3.96
22 4.62 6.05 4.25 3.53 3.71 3.98

Gollier [e%) 4.75 6.23 4.29 3.57 3.79 4.10

Table 4.2: Critical threshold electricity prices (cents/KWh) at which new reactors should be ordered,
for different decision horizons. There are twenty equally spaced exercise opportunities each year. The
volatility of the electricity price is taken as 20 %.
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Figure 4.12: Optimal investment policy for ordering sequential modular reactors, with a sample sce-
nario path. Overlap between construction period of two reactors is possible in this case.

be ordered if all previous units have been ordered (not constructed). Only a single
unit can be ordered at any given time step. It's common practice to have parallel
construction of different units in order to achieve cost savings, as it allows rotation
of specialized labour between different units [62].

Figure 4.12 shows a scenario path and investment policy for a modular project with
the above considerations. It can be seen that in this case overlap in the construction
period of different units is possible.

Comparison of two projects and different decision times

Figure 4.13 compares the real option values of the two projects for different deci-
sion times. The decision time for the large unit is kept the same as that for the first
unit in the modular project. As mentioned before, decisions of generation capac-
ity expansion are based on meeting increasing electricity demands with a certain
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Figure 4.13: Real option value for the large reactor and the modular project for different decision
horizons when the initial price of electricity is 3 cents/kWh.

minimum reliability and therefore the decision horizon is chosen to be the same
for the first module and the large reactor. In this case the modular project appears
more profitable than the single large reactor.

In order to detail the results obtained, the expected cashflow from different units
of the modular project and the fraction of modules ordered for different decision
times are computed. Figure 4.14 gives the expected cashflow from the four units for
different decision times. It can be seen that the expected cashflow grows with de-
cision time. When overlap in the construction periods of different units is allowed,
the cashflow from the three similar costing units is almost the same. The reason
for this is that most often the three units are ordered around the same time, and so
the effect of discounting to present time is almost the same. An important reason
for modular projects having higher real option value is that the effective decision
horizon for the modular project is significantly longer than that of the large reactor
(which is the same as that of the first unit). Another factor which adds up to the
profitability of the modular project (when parallel construction is allowed) is that
modular units have less construction time, which allows cashflow from the sale of
electricity to start before it would start from the large reactor.

Figure 4.15 shows the fraction of different modules constructed by the end of the
decision time for the modular project. It is clear that when the constraint of waiting
for completion of a unit before ordering a new one is relaxed, that once the first unit
is ordered, in most cases it results in all four units being ordered.

Comparison of two projects for different electricity price volatilities

Figure 4.16 compares the real option values of the two projects for different volatil-
ity in electricity prices under the relaxed constraint. It can be seen in this case that
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Figure 4.14: Cash flow from different modules with increasing decision time. The initial price of
electricity is 3 cents/kWh and volatility in electricity prices is 20%.
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Figure 4.16: Real option value for the large reactor and the modular project for different volatilities
when the decision horizon is 9 years and the initial price of electricity is 3 cents/kWh.
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Figure 4.17: Fraction of modules ordered at the end for different scenario paths with increasing
volatility. The initial price of electricity is 3 cents/kWh and the decision horizon for the first module
is 9 years.

the modular project is always more profitable than a single large reactor.

When the constraint of ordering a new unit is relaxed from waiting until comple-
tion of all previous units to waiting until ordering of all previous units, most of the
units are ordered around the same time, as can be concluded from the discussion
above. However, this will not be the case when the uncertainty in the electricity
price increases. Figure 4.17 shows the fraction of scenario paths for which different
numbers of units are ordered by the end of the decision horizon. It is clear that
with increasing uncertainty more often the project ends with fewer units than were
planned initially.
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Figure 4.18: Expected cashflow from different units for different volatility of electricity prices. The
initial price of electricity is 3 cents/kWh and the decision horizon for the first module is 9 years.

The cashflow for the project from different units however increases with increasing
uncertainty in electricity prices, as can be seen in Figure 4.18

4.5 Conclusions

This chapter presented a flexible and accurate valuation method for computing
real option values, and critical electricity prices, related to the construction of nu-
clear power plants. The Stochastic Grid Method from Chapter 2 was used to analyze
some scenarios of interest for a utility when choosing nuclear reactors. In partic-
ular, the focus of the chapter is on the modular construction and finite decision
horizons.

Some of the outcomes can be summarized as:

* SGM is a suitable Monte Carlo method for pricing real options, especially for
valuing projects with modularity. The method has been validated against the
deterministic COS method for a 1D test case.

* Most investment decision problems are governed by a finite decision time. It
has been shown, in various numerical experiments, that decision-making in
finite time may result in quite different scenarios compared to infinite time
decision problems.
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* When the modular project has a restriction on parallel construction of differ-
ent units then:

- the real option value of a single large reactor is typically higher when
decision horizons are small.

- For longer decision times modular projects may be more profitable.

— With an increasing uncertainty in the electricity prices, modelled by
a higher volatility in the chosen electricity price model, modular con-
struction may represent a better option. Modular construction may in-
clude the possibility of having a few units ordered, when the electricity
price reaches unfavourable values. With stable electricity prices the cost
effective single large reactor appears to be a better choice.

* When there is the possibility of parallel construction of modular units, then:

- the option value of the modular project greatly improves, and seems,
with our model assumptions, more profitable than a single large reactor
for different decision horizons.

- For different electricity price volatility values, the modular project seems
to be the better choice.

- In many cases, once the first unit of the modular project is ordered it
results in all units being ordered.

This chapter serves as a validation of our method against the results obtained in [35].
As future research, a more detailed analysis may include a sophisticated electricity
price model, demand and capacity factors, and stochastic construction and opera-
tion costs. In the follow-up chapter the impact of features like the construction of
twin reactors (parallel construction of modules), effect of learning and rare events
on the real option values of various scenarios are also considered.

It's worth noting that the real option values computed here do not include elec-
tricity price prediction model uncertainty, which is typically called model risk in
finance. It is presumed here that the electricity price follows GBM and the scenario
paths used for calculations follow the same model. In reality however, the model
presumed by a firm wouldn't exactly replicate the actual electricity price process
distribution. Model risk can however be assessed by varying the price dynamics
and studying the impact on the real option values. Furthermore, one can always
compute sensitivities with respect to the different problem parameters. However,
the purpose of the study here was to compare two projects in which case the elec-
tricity price prediction model uncertainty effects the valuation of both of them sim-
ilarly. Note that we have shown results under specific model assumptions.



CHAPTER

Construction Strategies and
Lifetime Uncertainties for
Nuclear Projects: A Real Option
Analysis

The contents of this chapter have appeared in [43]. This chapter focuses on the
inherent value of flexibility that arises from different construction scenarios of nu-
clear power plants (NPPs). While the previous chapter focussed on the validation
of a real option pricing model for projects involving modular construction in fi-
nite decision time horizon; this chapter exploits the real option model developed
to analyze more realistic construction scenarios in the nuclear industry. Addition-
ally we use the Stochastic Grid Bundling Method (SGBM), discussed in Chapter 3
to do the underlying computations for the real option problem (unlike the previous
chapter where we used SGM for pricing the real options). In Section 5.1 the context
of different construction strategies for nuclear power plants and its corresponding
mathematical formulation are stated. Section 5.2 deals in detail with the real op-
tion analysis of projects under different construction strategies, while Section 5.4
describes the effect of a stochastic life time of operation for nuclear plants. Finally,
Section 5.5 gives some concluding remarks.

5.1 Context

Consider a competitive electricity market where the price of electricity follows a
stochastic process. A utility needs to make a choice between different projects to
meet the same generation capacity expansion. The following construction scenar-
ios are considered:

 The utility is planning a capacity expansion of 1200MWe and needs to make
the choice between a single large reactor of 1200 MWe that benefits from the
economy of scale or four modules of 300MWe each, that benefit from flexi-
bility, learning, and site sharing costs.

* The utility has a choice between two twin units at the same site or four in-
dividual reactors at different sites. Twin units, in order to benefit from site

103
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sharing costs, are constrained to be constructed one after the other. The lat-
ter project, although it does not benefit from site sharing costs, has the flexi-
bility to order reactors at favourable times.

The following notations are used: the total number of series units is denoted by n.
Unit number i is characterized by discounted averaged cost per KWh equal to 6;,
its construction time is denoted by C; and the lifetime of its operation by L;. Con-
struction and lifetime are expressed in years. It is assumed that different modules
are constructed in sequence, and the construction of unit i + 1 can be decided from
any time subsequent to the start of the construction of unit i.

A constant risk free interest rate, denoted by r is assumed here.

The value of different construction strategies can be affected by the uncertain life
time of operation of nuclear power plants. In Section 5.4 the effect of stochastic life
time of operation on the value of NPP is discussed.

5.2 Effects of construction strategies

In this section the real option analysis is used for investment decisions, which arise
due to sequential construction of SMRs, for the different scenarios discussed ear-
lier.

Economy of Scale vs Modularity

One of the measures identified to reduce capital costs of nuclear power by the NEA
report [62] was increased plant size. The savings arising from the economy of scale
when the unit size of power plants increases from the 300 MWe to 1300 MWe range
have been studied by experts around the world since the early 1960s. The specific
costs ($/kWe) of large nuclear power plants have been quoted within such a broad
range that the derivation of scaling factors becomes difficult. In addition to savings
arising from increased reactor unit size, cost reductions due to other factors such
as construction of several units at the same site, effects of replication and series
construction, and learning effects need to be incorporated in the analysis as well.
In this test case two projects, one with a single large reactor which benefits from the
economy of scale considerations, while the other project consists of a series of four
SMRs which benefit from learning and site sharing costs, are considered. Moreover,
the modular units benefit from the flexibility to order the reactors at optimal times.

For many years, bigger has been better in the utility industry. The economy of scale
arguments have, for some time, and in many cases, reduced the real cost of power



5.2. Effects of construction strategies 105

production. The economy of scale can be expressed by the following scaling func-
tion, which relates the effect of changing the unit size to the cost of the unit,

Y
TG (ﬁ) 5.1)

TCo \So

where T Cy, TC; are the total cost for construction of two reactors with size Sy, S,
respectively, v is the scaling factor which is usually in the range of 0.4 to 0.7. It is
assumed that the two reactors differ only in size, with other details being equal.

The effect of alearning curve and the associated cost reduction for nuclear technol-
ogy has been studied in detail by Zimmerman (1982) [90]. Modular SMRs benefit
from learning economies which result from the replicated supply of SMR compo-
nent by suppliers and from the replicated construction and operation of SMR units
by the utilities and their contractors (see Carelli et. al (2010) [19]). Boarin and Ri-
cotti (2011) [11] separate four effects of modular construction:

1. Learning factor: The number of similar plants constructed world-wide will
lead to increased experience in construction and therefore in decreased costs;

2. Modularity factor: Modularization assumes capital cost reduction for modu-
lar plants, based on the reasonable assumption that the lower the plant size,
the higher is the degree of design modularization;

3. Multiple Units factor: The multiple units saving factor shows progressive cost
reduction due to fixed cost sharing among multiple units on the same site;

4. Design factor: The design factor takes into account a cost reduction by as-
sumed possible design simplifications for smaller reactors.

The following equation to model the combined impact of multiple units and learn-
ing effects on cost savings, as a function of number of units on site is used.

K; = Ko((1-a) + ae”?), (5.2)

where a is the cost-savings factor, which is asymptotically achieved by an increas-
ing number of units, and b gives the rate of on-site cost savings. Factor a would
depend on the number of units constructed world wide, the amount of R&D ef-
fort put in the technology, etc. Factor b depends on the contractor, the skills of the
labour involved, etc. Figure 5.1 shows the price of subsequent units constructed
at the same site for varying values of learning rate b. For increasing value of b, the
subsequent reactor converges faster to the final cost efficiency gained by learning.

Consider now four modules, each with size 300 MWe, and compare this project
with a single unit of size 1200 MWe. The scaling factor for the economy of scale
is taken to be y = 0.65 [50]. In order to benefit from local learning, a constraint
that the construction of a next module can begin only after one year of the start
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Figure 5.1: Cost savings factor for different local learning rates.

of the construction of the previous module, is added. The rate of local learning is
taken as b = 0.8 and it is assumed that the cost saving for large numbers of mod-
ules would approach a value of 25%. These parameter values correspond to those
suggested by Mycoff et al. [61], based on various studies in the literature, posit that
the combined impact of multiple units and learning effects is a 22% reduction in
specific capital costs for the SMR-based power plant. The discounted average costs
of a large reactor are taken from Gollier et al. (2005) [35] and the corresponding
values for modular units are computed based on the discussion above. With these
parameters, the construction costs of the modules can be summarized in Table 5.1.

Construction Time | Discounted Average cost | Discounted Average cost
(months) (cents/kWh) ($/kWe)

Modular Units

Unit 1 36 4.71 4950

Unit 2 24 4.06 4250

Unit 3 24 3.77 3950

Unit 4 24 3.63 3800
Large Reactor

Unit1 | 60 [ 2.9 [ 3000

Table 5.1: Construction time and discounted averaged cost used for the modular units with learning
and a single large unit.

Figure 5.2 compares the option value obtained for different volatilities in the elec-
tricity price model. It is clear that with increasing uncertainties in the electricity
prices the flexible modular project becomes more attractive. However, in a more
certain environment a single large reactor seems to be profitable. Table 5.2 reports
the option values for the two projects for different decision horizons for ordering
the first unit. The gain due to the learning curve and the flexibility of construction,
although it improves the option value for the modular units, does not seem to be
sufficient to compensate for the economy of scale factor in the case of moderate
uncertainty in electricity prices.

Figure 5.3 illustrates the sensitivity of the real option value of the modular project
with respect to parameter a, which represents the asymptotic cost reduction that
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Figure 5.2: The real option value for the two projects for different uncertainties in the electricity prices
when the decision horizon for ordering the first unit and the large reactor is equal to 7 years.

Decison Time | Real Option Value
years (Euro/kW)
Modular Case
7 196.17
10 229.72
13 250.15
Large Reactor
7 341.48
10 364.04
13 376.98

Table 5.2: Option value (Euro/kW) for the modular case (4 x 300M We) and for the large reactor (1200
MWe). The volatility for the electricity price is 20% and the initial price of electricity equals 3 cents/kWh.

will be achieved from learning, when the rate of learning (given by parameter b) is
kept constant and equal to 0.8. It is seen that the option value of the project grows
proportionally to the asymptotic cost saving due to learning.

Figure 5.4 illustrates the sensitivity of the real option value of the modular project
for different rates of learning, given by parameter b, when a is kept constant and
equal to 0.25. It is seen that for a faster rate of learning the option value of the
project is higher as for large b values the cost savings are reflected rapidly in the
subsequent units, while for a smaller b value the benefit is reflected only after few
units have been constructed.

It can be seen from figures 5.3 and 5.4 that a higher final cost saving factor which is
reflected by the value of parameter a increases the option value of the project more
significantly than a higher on site learning rate as given by the parameter value b.
Under our model assumptions a higher final cost saving could be achieved by long
term cost reductions resulting from plant upgrades and/or increased R&D efforts
to increase the real option value of the nuclear power plants.
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Figure 5.3: The real option value for the modular project when b = 0.8, the decision horizon is 10
years and the volatility in the electricity prices is 20%, for different values of parameter a.
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Figure 5.4: The real option value for the modular project when a = 0.25, the decision horizon is 10
years and the volatility in the electricity prices is 20%, for different values of parameter b.

Two Twin Units vs Four Single Units

In this section the case describing the sharing of facilities by constructing multiple
units at a single site is considered. The parameter values are taken from a real case
observed at EdF as described in the NEA report [62]. The averaged costs of a unit
reduce with an increasing number of units per site. The case where two pairs of
units per site are constructed is compared with a case where four individual units
are constructed. All units considered are of the same size, so the economy of scale
doesn't play any role in this case.

The aim of the test case is to compare a project with two twin units on a single
site with four individual units constructed at different sites. It is assumed that the
reactors involved are of the same size (1200 MWe each), and hence the only cost
difference comes from the sharing of costs if constructed at a single site. The first
reactor, in both cases, is considered to be first-of-a-kind (FOAK), and it is further
assumed that the cost of generating electricity for this reactor is 3.5 cents/kWh.
The costs of the other units are summarized in Table 5.3. In order to achieve a
cost benefit for the reactors constructed at the same site, the reactor units are con-
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strained to be constructed in a phased manner. Therefore, the two twin reactors
are constructed immediately one after the other, with the construction of the first
unit starting when the electricity price crosses the corresponding critical price. The
benefits of cheaper subsequent units come at the loss of flexibility to order the
subsequent units at optimal electricity prices. The reasons for phased construc-
tion include considerable efficiencies and associated savings to be gained from the
phased construction and rolling the various craftsmen teams from one unit to the
next. In addition, by repetition of construction, there is the craft labour learning
effect that reduces the time to perform a given task and correspondingly reduces
labour cost and schedule. The decision horizon for ordering the first reactor is
taken to be 7 years, and it is assumed that once a unit becomes operational it oper-
ates at its maximum capacity factor.

On the other hand, when the four units are constructed at separate sites, they do
not have the cost benefits of sharing the site specific costs, neither of the productiv-
ity effects. However, when constructed individually they benefit from the flexibility
to order each unit at its corresponding optimal time.

Construction Time | Discounted Average cost
(months) (cents/KWh)
Two twin units

Unit 1 60 3.5
Unit 2 48 1.67
Unit 3 48 1.81
Unit 4 48 1.60

Four independent units
Unit 1 60 3.5
Unit2to 4 48 2.25

Table 5.3: Construction times and discounted average costs used for the two twin units at same site
and for four units at different sites.

The following assumptions are made when determining the overnight costs:

¢ Unit 1 bears all of the extra first-of-a-kind (FOAK) costs.

* The cost of engineering specific to each site is assumed to be identical for
each site.

* The cost of facilities specific to each site is assumed to be identical for each
site.

* The standard cost (excluding the extra FOAK cost) of a unit includes the spe-
cific engineering and specific facilities for each unit

If 8y is the standard cost (excluding the extra FOAK cost) of a sole unit on a site, the:

¢ Cost of the first unit is 6 = (1+x)0y;
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* Cost of the following units is 8 (for 1 unit per site);
* Cost of the 2nd unit at a site with one pair is y 6p;
* Cost of the 3rd unit at a site with two pairs is z 6y;

* Cost of the 4th unit at a site with two pairs is y 0y (it is assumed that the cost
of the 2nd unit of a pair is independent of the rank of the pair on the site).

The productivity effect depends on the rate of commitment of the units and on the
owner’s procurement policy. The optimum commitment rate is the one which pro-
vides good operational feedback from one construction project to the other, while
serving to maintain the apprenticeship effect in the manufacturers’ facilities and on
the sites. The most favourable procurement policy to obtain the best prices from
the suppliers consists in ordering the equipment of all the units under the same
contracts [62].

A productivity effect is considered to only occur from the 3rd unit on of a series. If
n is the rank of the unit in the series, and 6, is the cost which results from taking
into account the individual unit, it follows that:

0
0, =—"— n=2,
oA+ k)n?
where ), represents the cost of a module if there is a productivity gain involved.
Using the above formulation, for the case of EdF (x = 55%, y = 74%, z = 82 %, k =
2%) [62] in the case of the two pairs of units per site the relative costs are illustrated
in Figure 5.5
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Figure 5.5: Relative cost of the four units when constructed as two twin units on a single site
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In the case of two twin units the cash flow due to the sales of electricity once the
units become operational is modified from Equation (4.1) into

t+C1+1L1 t+(C1+Cp)+ Lo
Ri(P;=x) = E (f e_r“Pudu+f e "“pP,du+---
t

+C; t+(C1+C2)

t+(C1+Co+C3+Cy)+ Ly
+f
t

e_r”Pudu) |P;=x]|. (5.3)

+(C1+C2+C3+Cy)

The above Equation (5.3) can be read as the revenue from unit 1, when ordered at
time ¢, starts coming in once its construction is finalized at t + C;, and continues till
the end of its lifetime, i.e. until time ¢ + C; + L;. The construction of unit 2 starts at
t+ Cy, and its revenues start flowing in from ¢ + C; + C», till the end of its lifetime at
t+Cy + Cy + Ly. Equation (4.2) can be modified accordingly. It can be seen that only
the first reactor can be ordered at an optimal time, and the construction of the ith
reactor is forced immediately after the completion of the (i —1)th reactor to achieve
the cost reductions shown in Figure 5.5.

For the four independent reactors the revenue is given by Equation (4.1). As sig-
nificant cost benefits can be achieved after the construction of the FOAK unit, the
decision for the construction of subsequent units is made only when the construc-
tion of the first unit is done. Also the usual constraint that subsequent modules
can be ordered only after the decision on starting the construction of all previous
modules has been taken into account. The decision horizon for unit i is T; = T;_; +
Construction Time of Unit (i-1), where T;_; is the decision horizon for the (i — 1) th
unit.
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Figure 5.6: Option values (Euro/kW) for the twin units, and the four independent units for different
decision horizons. The option values are computed when the initial electricity price is 3 cents/kWh and
the volatility in the electricity prices is 20%.

Figure 5.6 compares the option values of the two projects for different decision
horizons for starting the construction of the first unit. When a firm has more time
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Figure 5.7: Option values (Euro/kW) for the twin units, and the four independent units for different
levels of uncertainties in the electricity prices. The option values are computed when the initial electric-
ity price is 3 cents/kWh and decision horizon for the first unit is 7 years.

to decide when to construct the reactor, the option value of the project increases.
From these results it seems that for the parameters chosen the project involving
four independent units appears to be a better choice, under our model assump-
tions.

Figure 5.7 compares the two projects for different uncertainties in the electricity
prices. The project involving four independent units seems to be less profitable
in a more certain environment of electricity prices. The benefit of flexibility in a
project becomes more apparent with increasing uncertainties in electricity prices.

It can be seen that although building two twin reactors at a single site significantly
reduces the costs of producing electricity for the units, the project loses on the value
of flexibility. The four units constructed at different sites, although produce elec-
tricity at higher prices, can benefit from the opportunity to construct at more op-
timal market electricity prices. It should also be noted that the construction of the
units in this manner may also benefit since in an event of natural disaster not all
units would shut down (see Takashima, Yagi (2011) [78], for more details). Also it
is clear that when the uncertainty in electricity price increases, it appears to be ad-
visable to focus on flexibility, by constructing independent reactors, rather than the
increased cost efficiencies, by constructing twin units at the same site. On the other
hand, when the electricity price is less uncertain not much is gained by the flexibil-
ity in the time to order and it appears more profitable to choose cheaper twin units
in our model.
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5.3 Parameter values for modular construction

Consider a case where an investor needs to decide between two projects, one in-
volving a single large reactor of 1200 MWe and the other consisting of four modules
of 300 MWe each. The construction time and costs for the two projects, given in Ta-
ble 5.4, are taken from the reference case by Gollier [35]. The discount rate is taken
as 8% per annum and the predicted growth rate of electricity price is 0% here. The
cost of electricity production for the first unit is relatively expensive when com-
pared to the series units, as a large part of the fixed costs for the modular assembly;,
like the land rights, access by road and railway, site licensing cost, connection to
the electricity grid are carried by the first unit.

Construction Time | Discounted Average cost
(months) (cents/KWh)
Large Reactor 60 2.9
Modular Case
Module 1 36 3.8
Module 2 to 4 24 25

Table 5.4: Construction times and discounted averaged costs used for the large reactor and the mod-
ular case.

It is assumed that a new unit can be ordered if all previous units have been ordered
(not constructed). It's common practice to have parallel construction of different
units in order to achieve cost savings, as it allows rotation of specialized labour
between different units [62].

5.4 Effects of uncertain life time of operation

Uncertain life times of operation should be taken into account when computing the
value of investment in an NPP. A detailed analysis would not just take the uncertain
life time of operation into account but also uncertain capacity factors during the
operation of the reactor. Du and Parsons (2010) [28], perform a detailed analysis on
the capacity factor risk in the nuclear power plants. Rothwell(2005) [73] employs
a stochastic process for varying capacity factors in his analysis. Here it is assumed
(like Gollier [35]) that the nuclear reactors operate at a mean capacity factor of 90%
throughout their lifetime, which is a reasonable assumption [86] for modern reac-
tors.

In the analysis it is assumed that the uncertain life time of operation of NPPs can
be due to premature permanent shut down on one hand or due to extension of
operating licenses and lifetime on the other hand.
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Effects of Premature Permanent Shut-down

The term premature permanent shut down is used for the case when an operat-
ing reactor is permanently shut down before completing its licensed operating life
time. Historically, premature permanent shut down of reactors have been observed
for direct reasons- like accidents or serious incidents in a reactor (e.g. Three Mile
Island 2- 1979, Chernobyl 4- 1986, Fukushima Daiichi 1,2,3,4 - 2011), or it could be
indirect by - for example shutting down of reactors due to increased safety mea-
sures, economic reasons, changing government policies etc. (e.g. Shoreham, in US
1989).

The arrival time of such an event (elsewhere called rare events or catastrophic events)
has been modelled by a Poisson process, e.g. Clark (1997) [22] for a real options
application with a single source for rare events, Schwartz (2003) [76] uses Poisson
arrival times to model catastrophic events when investing in R&D. Similarly, here,
the arrival time for the cause of premature permanent shut down is modelled as a
Poisson process whose arrival frequency, A, is the expected number of such events
ayear.

In order to compute the frequency of premature permanent shut down the data
available from the IAEA report (2005) and a WNA report [86] is used. In total there
have been 133 reactors that have been permanently shut down after they started
operating. Out of these, 11 reactors were shut down due to accidents or serious
incidents, and 25 have been shut down due to political decisions or due to regu-
latory impediments without a clear or significant economic or technical justifica-
tion. The remaining 97 reactors were shut down because they completed their des-
ignated lifetime and costs associated with a lifetime extension did not make eco-
nomic sense for these reactors. The total cumulative life time of operation for the
reactors in the world is approximately 14500 years. Therefore, the number of pre-
mature permanent shut downs per reactor year is (25 + 11)/14500, which is 0.0025
reactors per year. Thus, the rate of arrival of the cause for premature permanent
shut down, is modelled as A = 0.0025 events every year, from a statistical point of
view.

The inclusion of catastrophic events results in an effective discount rate from r to
r+ A, (see Schwartz (2002) [76] for more details) once the plant gets operational .
Figure 5.8 compares the option values for the modular project and the single large
reactor, with parameter values as given in Table 5.4. It’s clear that the value of the
investment option reduces with increasing probability of catastrophic events, how-
ever, the modular project seems to be more profitable in the realistic domain of 1
values.

Effects of Life Time Extension

Most nuclear power plants originally had a nominal design lifetime of 25 to 40
years, but engineering assessments of many plants have established a longer oper-
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Figure 5.8: The real option price for the large reactor, and the modular project for different values of
A when the volatility of the electricity price is 20% and the decision horizon for the large reactor and the
first module equals 7 years.

ation time. In the USA over 60 reactors have been granted licence renewals which
extend their operating lives from the original 40 to 60 years, and operators of most
others are expected to apply for similar extensions. Such licence extensions at
about the 30-year mark justify a significant capital expenditure for replacement of
worn equipment and outdated control systems. In 2010 the German government
approved a lifetime extension for the country’s 17 nuclear power reactors. However,
after the Fukushima accident in March 2011, Germany planned a complete phase-
out by the year 2022, reverting the previous decision. It is clear therefore that the
lifetime of a nuclear power plant can be uncertain.
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Figure 5.9: The distribution for the lifetime of operation of a nuclear reactor, which was originally
licensed for 40 years of operation.

Gen III and Gen IV reactors are mostly designed for a life time of 60 years [50].
However many generation Il reactors are being life-extended to 50 or 60 years, and
a second life-extension to 80 years may also be economic in many cases [63]. In
order to address the uncertain lifetime of operation due to the possibility of lifetime
extension, a normal distribution with a mean reactor life of y; = 50 years and a
variance of o; = 4 is used, which fits well to the discussion above, as can be seen in
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Figure 5.9. It should be noted that such a distribution allows for negative life time,
however the probability for such lifetime is almost negligible.

In the case where the electricity price follows GBM and the lifetime has a normal
distribution, as described above, equations (4.2) and (4.1) can be written as

(-T2,
i _]__e_ r-a)u— 2
Ri(Py=x)=e U 0C X, (5.4)
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Figure 5.10: Option value vs uncertainty in lifetime of operation

Figure 5.10 compares the real option value for the modular project and the single
large reactor with parameter values taken from Table 5.4. The option values are
plotted for various o; with a mean reactor life of 50 years. It can be seen that with
increasing uncertainty in the lifetime the option value reduces in value, although it
follows the same trend for both cases considered.

5.5 Conclusion

This chapter presents a real option valuation of different construction strategies of
NPPs for finite decision horizon. A few scenarios a utility might be interested in
before making a choice of nuclear reactor, are analyzed. The conclusions drawn
from the test cases under the model assumptions can be summarized as follows:

1. In afinite decision horizon, sequential modular units can be ordered at more
competitive electricity prices, compared to a construction of units in isola-
tion.
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2. The model shows that the real option value of nuclear power plants increases
with implementation of long term cost reductions. Such cost reductions might
be achieved e.g. by plant upgrades and/or increased R&D efforts.

3. When twin units are constructed at the same site, significant cost reductions
can be achieved. On the other hand, in order to achieve these cost savings,
the utility loses the flexibility to order units at optimal market conditions.
When the electricity price uncertainty is low it appears that cost savings by
a construction of twin modules at the same site would be favourable under
our model assumptions, while when electricity prices are more volatile, the
flexibility of choice dominates.

4. Uncertain lifetime of operations reduces the option value of both the modu-
lar and single large reactor test cases. However, with increasing frequency of
premature permanent shutdown, the modular construction works out more
profitable than individual large reactors. Uncertainty in life time extension
affects the option value of a single large unit and modular units almost simi-
larly in our model.

5. Specific cost of SMRs can be much higher than of a single large unit, because
of the economy of scale argument. Some cost reduction is achieved by the
learning effect with each new module. However, it appears that cost savings
due to learning are not sufficient to make modular SMRs competitive with
large units.



CHAPTER

Decision-support tool for
assessing future nuclear reactor
generation portfolios.

The global electricity demand is expected to double to over 30,000 TWh annually
by the year 2030 and meeting this demand without substantially exacerbating the
risks of climate change requires a solution comprised of a variety of technologies
on both the supply and demand side of the energy system (Pacala and Socolow
(2004) [65], Holdren (2006) [38] and European Commission (2007)[23]). Nuclear
power can play a key role in meeting the projected large absolute increase in en-
ergy demand while mitigating the risks of serious climate disruption. The fact that
several countries seem keen on building nuclear power stations suggests that their
relative costs compared to low-carbon alternatives seem attractive to at least po-
tential investors (Kessides, 2010 [49]). However, there are some concerns related to
uncertainties underlying the various costs elements of nuclear power that are re-
flected in the wide range of cost estimates, cost overruns and schedule delays, for
example of Finland’s Olkiluoto and France’s Flamanville nuclear power plants.

There have been numerous studies on the economics of nuclear power in recent
years which use levelized cost! of electricity to compare the economics of differ-
ent generation technologies. The levelized cost methodology used in these studies
however does not address the role of risks and uncertainties involved. Methodolo-
gies that take into account the large and diverse set of risks characterizing invest-
ment in nuclear power maybe a useful alternative. This chapter concentrates on
the effect of risks and uncertainties on investment decisions related to the nuclear
industry and the use of diversification to mitigate some of these risks. Following
Roques et al. (2008) [72] and Fortin et al. (2007) [30] a two-step approach is used,
where first real options optimal investment decisions are taken at the plant level,
and then mean-variance portfolio (MVP here after) theory is used to minimize the
uncertainties of returns for a portfolio of nuclear reactors.

The seminal literature using MVP techniques in the power sector concentrated on
fuel price risk, and focussed on minimizing generation cost, which, under ideal

1 The levelized cost of a project is equivalent to the constant euro price of electricity that would be
required over the life of the plant to cover all operating expenses, interest and repayment obligations
on project debt, and taxes plus an acceptable return to equity investors over the economic life of the
project.

118



119

regulations of a vertically integrated franchise monopoly, should maximise social
welfare. Awerbuch and Berger (2003) [4] use MVP to identify the optimal Euro-
pean energy technology mix, considering not only fuel price risk but also Opera-
tion and Maintenance (O&M), as well as construction period risks, while Jansen
et al. (2006) [44] use MVP to explore different scenarios of the electricity system
development in the Netherlands. Roques et al. (2008) [72] applied the portfolio
theory from a private investor perspective to identify optimal portfolios for elec-
tricity generators in the UK electricity market, concentrating on profit risk rather
than production costs risk. Fortin et al. (2007) [30] suggest the use of Conditional
Value-at-Risk (CVaR) for portfolio optimization rather than mean-variance portfo-
lio and provide a detailed review of the literature in this area.

Real options analysis (ROA) has been applied to the energy sector planning for
years, since the special features of the electricity sector, such as uncertainty, irre-
versibility and flexibility to postpone investments, make standard investment rules
solely relying on the net present value (NPV) not advisable as they ignore the op-
tions involved in a sequence of decisions. Using real options it’s possible to value
the option to delay, expand or abandon a project with uncertainties, when such
decisions are made following an optimal policy.

This chapter concentrates on investment in nuclear power plants in a liberalized
electricity market, where the energy utility diversifies into different nuclear reactor
types as a strategy for reducing exposure to construction costs, fuel and electricity
price risks. Mean-variance portfolio (MVP) theory is used to identify the portfolios
that maximize the returns for given risk levels. The return distribution of individual
nuclear generation types depends on the uncertainties in the costs and revenues
of the plant. It is, however, also affected by decisions to continue or abandon a
project, that may be taken based on evolution of construction costs and electricity
prices. For example, if the construction costs become too high in the future, the
management may decide to abandon a project. Using real options the return dis-
tribution for each plant assuming the management makes optimal decisions in the
future is computed. The return distribution for each plant is then used to compute
the mean-variance portfolio.

This chapter uses the Stochastic Grid Bundling Method (SGBM) (see Chapter 3),
for computing the return distribution for individual reactors. The simulation also
computes the optimal policy to continue or abandon the project in order to maxi-
mize its expected cashflows.

The rest of the chapter is structured as follows: Section 6.1 will be concerned with
defining the portfolio optimization problem. Section 6.2 gives detailed account of
the real options layer used for making optimal decisions at the individual plant
level. In Section 6.3 the present model is validated against the results reported in
Pindyck (1993) [67]. Section 6.4 illustrates the two steps involved when determin-
ing the optimal reactor order fractions through various numerical examples . Un-
der our model assumptions, the sensitivity of reactor order fractions to a different
choices of parameter values and constraints on the portfolio are also studied in this
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section. The final section will conclude the findings and interpret the general im-
plications.

6.1 Mean Variance Portfolio

While selecting the generating technology, policy makers need to consider not only
the cost of the generating technology but also uncertainties in the costs involved.
Furthermore, in liberalized energy markets uncertainties are not only limited to
the costs of the generating technology but also affect the revenues stream, as util-
ities are no longer able to pass on their prudently incurred investments costs to
consumers. In order to systematically deal with uncertainties in the costs and rev-
enues, like Awerbuch and Berger (2003) [4], Roques et al. (2008) [72]the MVP the-
ory? is employed to find an optimal mix of generating technologies, that results in
the highest expected return for a given level of uncertainty (or standard deviation)

of the returns?®.

To compute the optimal reactor order fraction using MVP, the expected return dis-
tribution for individual reactors is required. One way of obtaining the return distri-
bution is by simulating several samples of costs (like the fuel prices) and revenues
(electricity prices) and then computing the return for each sample. This approach
however does not address the effect of possible future decisions related to opera-
tion of the power plant (for example, abandoning the plant if the expected costs
exceed expected revenues at a later date) on the return distribution. In order to
include the effect of optimal decisions in the return distribution, first an optimal
investment policy for each reactor type is computed. This policy is then applied to
simulated paths to determine whether for a particular path there should be an early
abandonment. Based on these decisions the costs and revenues for each sample
path are computed, which then gives the optimal return distribution. The details
for computing an optimal investment policy and the associated return distribution
for individual plants are given in Section 6.2.

Suppose an investor has a certain wealth to invest in a set of J reactors. Let the
return from operation of reactor i be denoted by random variable R;, and let w;
represent the proportion of the total investment to allocate in the i-th reactor. The
expected return of this portfolio is given by:

E[Rp] = wrE[R ] +...+ wyE[Ry]. (6.1)

2MVP is one of the possible ways for portfolio optimization, based on how the risk is expressed,
which in the case of MVP is the standard deviation of the returns. Others like Szolgova et al. (2011) [77],
Fuss et al. (2012) [31] use Conditional Value at Risk (CVar) for portfolio optimization.

3See Awerbuch and Berger (2003) and Jansen et al. (2006) for a discussion of the assumptions and
limitations affecting the application of MVP theory to power generation assets.
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The portfolio variance, in turn, is calculated by

J J 2
Var(R,) =E (Z w;R; —[E(Z w,-R,-)) . (6.2)
i=1 i=1
So,
J J
Var(Ry) =) ) E[(Ri —E[R])(R; —E[R;])] w;w;. (6.3)
i=1j=1
Representing each entry i, j of the covariance matrix Q by
qgij =E[(R; —E[R;])(R; —E[R;]], (6.4)

one has
Var(Rp) =w' Qw,

wherew = (wy,...,wj) .

As w; represents the weight of reactor 7, the weights are required to satisfy an addi-
tional constraint:

1
Z w; =1.
i=1

As a portfolio of nuclear reactors is dealt with, additional conditions on the weights,
like that they cannot be negative, need to be applied. Additionally, weights of in-
dividual reactors might be constrained by an upper and lower bound, for example,
if the utility decides that the new portfolio should not excessively deviate from the
existing one. In general, it can be stated that:

Lisw;<U;i=1,...,],
for given lower L; and upper U; bounds on the weights.

MVP theory does not prescribe a single optimal portfolio combination, but rather
a range of efficient choices for each level of return, which form a Pareto efficient
frontier composed of non dominated points. This means that a rational investor
should use an external criterion to choose a portfolio out of the set at hand. In-
vestors will choose a risk-return combination based on their preferences and risk
aversion. By solving the mean-variance optimization problem a portfolio for given
risk tolerance, A, of the investor, of minimum variance is identified amongst all that
provide areturn equal to Rpip, or, in other words, minimize the risk for a given level
of return. The formulation can be written as:
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. 1
min —w' Qw,
w A
subject to: E[Rp] = Rmin,
J
Z w;=1, (6.5)
i=1

Li<sw;<U;i=1,...,].

Equation (6.5) is a convex quadratic programming problem for which the first-
order necessary conditions are sufficient for optimality. The classical Markowitz
mean-variance model can be seen as a way of solving the bi-objective problem,
which consists of simultaneously minimizing the portfolio risk (variance) and max-
imizing the portfolio return (profit), i.e.

N
n&n Aw Qw,
m“allx E[Rp],
J
subject to: Y wi=1, (6.6)

The solution of Equation (6.6) is non-dominated, efficient or Pareto optimal for
Equation (6.5). Efficient portfolios are thus the ones which have the minimum vari-
ance among all that provide a certain expected return or, in other words, those that
have maximal expected return among all upto a certain variance.

6.2 Plant level optimization using real options

The real option valuation of nuclear power plants should take into account the
major uncertainties that affect the decision making process associated with them.
Of the several risks involved in the life cycle of nuclear power plants (see Kessides
(2010) [49] for a comprehensive review), the following have been identified as sig-
nificant from the perspective of economic risks and are taken into account in our
model.

* The construction or capital costs, and the speed to build: The length of the pre-
construction period and the time it takes to construct the plant are highly un-
certain as there are several factors that make forecasting nuclear plant con-
struction costs difficult. As pointed out by Kessides (2010) [49] one of the
reasons for this is that new nuclear plants require a significant amount of on-
site engineering, which accounts for a major portion of the total construction
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cost (Thomas, 2005 [80]). It is generally difficult to manage and control the
costs of large projects involving complex on-site engineering. While major
equipment items (turbine generators, the steam generators, and the reactor
vessel) can be purchased on turnkey terms, it would difficult for the entire
nuclear plant to be sold on turnkey terms precisely because of the lack of
confidence on the part of vendors that they can control all aspects of the to-
tal construction costs. Additionally, governmental licensing and certification
procedures can add up significantly to construction costs and delays.

e The O&M and fuel costs: The O&M component includes expenses related to
health and environmental protection and accumulation of funds for spent-
fuel management and for eventual plant decommissioning. It also includes
the cost for insurance coverage against accidents. Thus, several potential ex-
ternalities are internalized in O&M costs.

* The price of electricity: Electricity prices are highly uncertain and vary signif-
icantly not just between different seasons but also during a single day. Thus,
the revenues generated by a power plant are uncertain and an important pa-
rameter for making optimal decisions.

Modelling uncertain construction costs

Construction or capital costs constitute almost 60% of the total costs associated
with nuclear power plants and are the major source of uncertainty when it comes
to a comprehensive cost-benefit analysis of nuclear power. An economic assess-
ment that reflects on the uncertainty in construction costs by employing proba-
bilistic scenario analysis can help making economic decisions related to NPPs. To
capture the uncertainties associated with the construction costs and their effect on
the decision making process, the model proposed by Pindyck (1993) [67] for irre-
versible investment decisions when projects take time to complete and are subject
to uncertainties over the cost of completion, is followed.

Expenditure of nuclear power plants are sunk costs that cannot be recovered should
the investment turn out, ex post, to have been an unfavourable one, i.e. the firm
cannot disinvest and recover the money spent. Cost uncertainties have implica-
tions for irreversible investment decisions. The uncertainties in construction costs
of nuclear power plants can be classified into two different types. The first, as
Pindyck (1993) [67] states, is technical uncertainty, that relates to the technical dif-
ficulties associated with the completion of the nuclear power plant, i.e. if the costs
of raw materials, labour etc. are fixed then the uncertainty reflects how much time,
effort and material will ultimately be required. Technical uncertainties involved in
the construction of the plant can be resolved only by undertaking the project which
unfolds the actual costs and construction time as the project proceeds.

The second type of uncertainty that affects the construction costs is external or in-
dependent of what the firm does and is called input cost uncertainty. Input cost
uncertainty arises when the prices of labour, land, materials needed to build the
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plant fluctuate unpredictably, or when there are unpredictable changes in govern-
ment regulations (for example a change in the required quantities of construction
inputs or certification time). As prices and government regulations change irre-
spective of whether or not the construction of a plant has already begun, input
costs uncertainties affect the expected plant costs.

Consider the expected cost of completion of a nuclear power plant to be a random
variable K, then, following Pindyck (1993) [67], the stochastic differential equation
(SDE) governing the dynamics of K; can be written as:

dK; = —Idt+BUIK)? AWy +yK,dWy, 6.7)

where I is the rate of investment. When the construction of a nuclear power plant
has begun the expected change in K; over an interval d¢ is —Idt, but the realized
change can be greater or less than this due to the random fluctuations in the cost
to completion of the project. The term S(/K;) 2d Wy constitutes a part of the fluc-
tuation in the project cost due to the technical uncertainty, where the noise is in-
troduced by the Wiener process Wg and the amplitude of the noise depends on the
remaining expected costs of the project and the rate of investment I, and . When
the firm is not investing, i.e., I is zero the project cost is not influenced by techni-
cal uncertainties. The term yK;dW, constitutes the part of the fluctuation in the
project costs due to input cost uncertainty. As discussed before, this uncertainty
affects the cost of the plant irrespective of I, i.e. whether the firm is investing or
not. Higher values of parameters 8 and v, result in greater uncertainties in realized
construction costs of the power plant. The time for completion of the power plant
is a stochastic variable T and is the time when K; falls to zero. Wg and Wy are un-
correlated Wiener processes, with Wy being also uncorrelated to the economy and
the stock market, while W, may be correlated with the market.

It is assumed that the firm invests in the project at a constant rate (i.e. I is con-
stant), a fact also observed in practice as shown in Table 6.1, where the fraction
of the overnight costs* for the construction of a power plant in different countries
incurred each year is almost equal.

Modelling uncertain O&M , fuel and electricity prices

During a nuclear power operation period, the generating costs consist of opera-
tional and maintenance cost, back-end and front-end fuel cycle costs. Following
Rothwell (2006) [73] and Zhu (2012) [89] the uncertain generation costs are mod-
elled by Geometric Brownian Motion (GBM). The dynamics of the generation costs
are described by the following SDE:

dC; = ' Cidt+0.C,dWe, (6.8)

40vernight cost is the cost of a construction project if no interest was incurred during construction,
as if the project was completed "overnight."
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Year CAN USA FIN NLD CHE JPN ROU

-8 16.5
-7 12.5
-6 10 3 5 12.5

-5 8 20 10 20 19 15 12.5
-4 22 20 22 20 19.5 20 12.5
-3 29 20 28 20 19.5 20 16.5
-2 21 20 20 20 19.5 185 125
-1 12.5 10 20 20 195 215 45
1 7.5

Table 6.1: Expense schedule for nuclear power plant construction from country to country expressed
as percentage of total overnight construction cost per year. Source: OECD (2005), CAN: Canada, FIN:
Finland, NLD: The Netherlands, CHE: Switzerland, ROU: Roumania. Year stands for number of years
before the plant becomes operational. [64].

where C; is the instantaneous cost of generation in € per kWh, p. is a risk adjusted
drift® of the generation costs and o is the volatility of the generation costs. Wc is a
Wiener process which may be correlated to the market.

Modelling electricity spot prices is difficult primarily due to factors like:

 Lack of effective storage, which implies that electricity needs to be continu-
ously generated and consumed.

* The consumption of electricity is often localized due to constraints of the grid
connectivity.

* The prices show other features like daily, weekly and seasonal effects, that
vary from place to place.

As decisions for setting up power plants look at long term evolution of electricity
prices, like Gollier et al. (2005) [35], the GBM is used as the electricity price process.
However, it should be noted that within the present modelling approach other price
processes can easily be included. The dynamics of electricity prices in our model
are now described by

dP, =, Pdt+0,PrdWp, 6.9)

where Py is the instantaneous cost of electricity in € per kWh, uy, is the risk ad-
justed drift of electricity price process and o, gives the volatility of electricity prices.

5if ¢ is the true drift of generation cost then the risk adjusted drift is We = pe —1, assuming that the
Intertemporal Capital Asset Pricing model of Merton (1973) [59] holds, the risk premium 7 is equal to
the f* of the successful project times the risk premium of market portfolio: n = * (ry, — r -



126 Chapter 6. Optimal Reactor Portfolio

Value of the power plant after it becomes operational

When the construction of a power plant is finished, i.e. K; =0, the value of the
project depends only on the net cashflow to be generated from the operation of
the power plant. Let h;(P;,C;) be the value of the power plant, once it becomes
operational, at time ¢ when the instantaneous cost of electricity is P; € per kWh
and the combined O&M and fuel cycle costs are C; € per kWh. Let s denote the
time when the plant starts its operation, i.e. s is the first instance when K; = 0.
Then, the time when it will be decommissioned, , is equal to,

ff =L+1s,

where Lis the designed lifetime of operation for the power plantand 75 < ¢ < ;. The
expected discounted stream of future differences in cash flows at time ¢, under the
risk neutral measure P, from the remaining operation of the power plant, assuming
the plant is decommissioned only after completing its designed lifetime, is then a
function of its current state, Py, C;, and is equal to:

max(ff,t)
he(PiCo) = E [ f eI (P, - C1) d1IP,,C,
t
1— e Ur—#p)le=—n*
rf = Hp
1= UpHp=0"

rf— e

= e_(rf_“;)tpt

e,

R (6.10)
where rfis the risk free discount rate and (tr— Bt is used to denote max(tf —t,0).

Real option value of the power plant

The option value of the power plant before it becomes operational depends on the
electricity price, P;, combined fuel cycle and O&M costs, C;, that would be incurred
if the plant becomes operational and on the expected cost of completion, K; of the
power plant. The option value, V;(P;, C;, K;), of the plant can be computed using
Ito’s lemma to obtain the differential equation for dV :

ov ov ov v
VvV = R —dP+ — _
d T dt+apd +aCdC+6KdK
16%V 10%V
- dP?+ = ——dC?+ = ——
et Tt Tamk
1 0%V 1 8%V

20PoC T2 aPoK

dK?

2

%4
dKdc,

1
dPdK + -
T2 9KaC
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and substituting equations (6.7), (6.8), (6.9) into the corresponding Bellman equa-
tion for optimality (see Pindyck (1993) [67]) with the final condition :

Vi, (P, Cig, Ki) = max(hy, (P, Cy,), 0). (6.11)

Here h;, (Pj,, Cy,) is given by Equation (6.10).

Solving the partial differential equation so obtained can be cumbersome due to
the free boundary condition, as the date at which the power plant starts its opera-
tion, Zs, is a random variable. The problem considered here has a dimensionality of
three, but in practice it can be even higher, which makes the use of finite difference
based methods for solving the above PDE cumbersome. Like Schwartz (2004) [76],
a simulation-based approach is used here to solve the optimal investment decision
problem.

Computing the real option value using simulation

It is assumed that a complete probability space (2, %#,P) and finite time horizon
[0, T, with Q the set of all possible realizations of a stochastic economy between 0
and T. The information structure in this economy is represented by an augmented
filtration &%; : t € [0, T], and P’ is the probability measure on elements of %. Further
it is assumed that the state of economy is represented by an %;-adapted Marko-
vian process (Py, Ct, Ky), i.e. the electricity price rate, the generation cost rate and
the expected cost of completion of the power plant, respectively, at time ¢. The state
space is generated at discrete time steps and for simplicity the time horizon is di-
vided into M equal parts, with £ € £, =0, ..., ;,..., tpr = T1. The length of each time
step is equal to

T
At=—.
M

The simulation begins by generating IV stochastic paths for the remaining expected
construction cost K;, generation cost C; and electricity price rate P;. The vector
P, (n),C,(n), K, (n),wherene(l,...,NJand m€ [0,..., M], defines a unique state
at time step f;,. The random cost of completion paths are simulated using the fol-
lowing discrete approximation to Equation (6.7).

Kiypy () = Ky, (m) = IA L+ BUK,, (m)2 (AD? X5 +YKyym(ADZX,,  (6.12)

where Xp, Xy are uncorrelated standard normal variates. Time point fs(n) is the
first time step at which K;(n) reaches a value less than or equal to zero and K;(n)
is set to zero for all ¢ = 7s(n). Figure 6.1 shows a few of the scenario paths obtained
using Equation (6.12), and Figure 6.2 gives an example of the distribution of the
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Figure 6.1: Sample paths for expected cost of completion at different time steps
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Figure 6.2: Distribution of construction time when construction costs are uncertain.

total construction time. The generation cost rate C; and the electricity price rate P;
paths are simulated as:

Ci. () = Cp, (m)elHi—200AoeVBDXC, 6.13)

At+o,V(AD Xp
)

P, ,(n) =Py, (n)e(”;"%"g’) (6.14)

where Xy, Xc and Xp are standard normal variates that can be correlated.

Time horizon T is taken sufficiently long, so that the construction of the plant is
almost surely finalized before T, i.e. fs < T with very high probability.

The real option value problem, like its financial counterpart the Bermudan option,
is solved backwards in time, starting from the final time step, #p; = T. For those
paths where the construction of the plant is finalized the option value at any time
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step is given by Equation (6.10). Particularly, the option value at the time point at
which the plant becomes operational is given by:

. — e L
—(rp—p*)7 l1-e P
Vi, (P5(n),Ci(n),0) = e "ITHB P (n) —————— (6.15)
Tf—Hp
1 - e lrpmHiL

—e" UM Gy () — (6.16)
Tr—Hc

where n € [1,..., N] and L is the designed lifetime of the plant.

For those paths where investment is still ongoing the optimal decision to continue
the investment is based on the continuation value Qq,, (Py,,, Cs,,, K1,,), which is given
by:

th = e_rfAtlE [Vtm+1 |Ptm) Ctm)Ktm] ’ (617)

where the simplified notations Q;,, and V,,,, are used for

Q, (P, Cy,, Ky,), and Vi, (P, Cr,iy s Ky, ), TESpectively. It is optimal for the
firm to continue with the investment, when the construction is not yet finalized,
i.e. if Qy, (n) = IAt, and abandon it otherwise. More intuitively, irrespective of how
much the firm has already spent on the construction of the power plant, the opti-
mal decision at a given state point is just based on whether the net future expected
revenues are greater than zero. The option value at a state described by path n, at
time step t,, is then:

Vi, (n) = max(Qy,, (n) — IAtL,0). (6.18)

Once the option value has been computed for all paths at t,,, the above process
(6.17,6.18) is followed recursively moving backwards in time until one reaches the
starting time #,. The main challenge here is to efficiently compute the continua-
tion value given by Equation (6.17), for which the Stochastic Grid Bundling Method
(SGBM) is used, details of which are discussed in Chapter 3.

The policy for continuing or abandoning the construction of the plant obtained
above is used to compute the real option value, i.e. the expected discounted cash-
flow, and the distribution of the net cashflow obtained following the optimal pol-
icy. The mean and the distribution of the optimal cashflow are required as inputs
for the portfolio optimization step described in Section 6.1. To compute them an-
other set of N; paths® is generated and the policy computed above is applied to
continue or abandon the construction of the plant. If the n-th path enters the crit-
ical zone, i.e. reaches a state (P;(n), C;(n), K;(n)) where it is optimal to abandon,

6Fresh paths are generated as using the same set of paths that were used to obtain the optimal policy
may result in an option value which is biased high, due to perfect foresight (or over-fitting).
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the plant is abandoned for that path and revenues for the path are set to zero, i.e.
Revenue(n) = 0. The costs incurred until the plant was abandoned are discounted
to time 7y to :

ig(n)
Cost(n)= )_ e "I'IAt,
=1

where 7, is the first time the path enters the abandonment region. For those paths
whose construction is successfully completed (i.e. the paths which never enter the
abandonment region), the revenues as seen at time f are:

Revenue(n) =e” '/ fs Vi, (P, (n), C5(n),0), (6.19)

and the costs of construction of the plant, discounted to time ¢, are:

Is
Cost(n) = ) e "I'IAt, (6.20)
=t

where fs(n) is the time when the plant starts its operation along the n-th scenario
path. The real option price or the net expected cash-flow following the optimal
policy of the power plant is then given by

1 N
Vig (Piy, Cipy Kiy) = - )" (Revenue(n) — Cost(n)). (6.21)
1 n=1

The option price so obtained is a lower bound" of the true price as the policy used
is generally sub-optimal due to numerical errors involved.

6.3 Validation: A Case from Pindyck

Pindyck (1993) [67] examined the decision to start or continue building of a nuclear
power plant. To apply the model the estimates of the expectation and variance of
the cost of building a kilowatt of nuclear generating capacity are used. The variance
is decomposed into two parts to obtain estimates for technical uncertainty and in-
put cost uncertainty. The survey of individual nuclear power plant costs published
by the Tennessee Valley Authority (1977 to 1985) was used, which provided data
on expected cost of a kilowatt of generating capacity on a plant-by-plant basis. A
cross-section regression analysis over time was employed to estimate the expected
costs and variance of a power plant. The variance of the costs and their decompo-
sition were estimated from time-series and cross-sectional variations of the data,

“Lower bound implies that if the same Monte Carlo simulation is performed several times, with
different initial seeds, the mean of V;, so obtained would be lower than V.
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Initial expected cost Ky $ 1435 per kilowatt
Investment rate I $ 144 per annum
Discount factor r 0.045
Life Time of reactor 40 years
Revenue $ 2000 per kilowatt or 1.23 cents per kWh

Table 6.2: Parameter set used for validation case

Pindyck SGBM LSM

B | Vy | K§ Vi, K} Vi, K}

0 | 121 | 1550 || 120.64 | 1550.5 || 120.64 | 1550.5
0.24 | 131 | 1609 || 128.89 | 1582 || 128.75 | 1612
0.59 | 215 | 1881 || 211.46 | 1798 || 210.36 | 1887

Table 6.3: The real option value and critical expected construction cost for different levels of technical
uncertainties. Ké‘ , is the critical expected construction cost at time %y, above which the project should
not be undertaken.

using the fact that the variance of cost due to technical uncertainty is independent
of time, whereas the variance due to input cost fluctuations grows with time. Based
on these estimates the technical uncertainty parameter § in (Pindyck (1993) [67]) is
found to vary from 0.24 to 0.59, while y in (Pindyck (1993) [67]) varies between 0.07
to 0.2. In this analysis an instant revenue as soon as the construction is finalized
was considered.

As a first numerical validation experiment, like Pindyck (1993) [67] the parameter
set given in Table 6.28 is used. Table 6.3 compares the values reported by Pindyck
with those obtained using the simulation method SGBM as well as the least squares
method (LSM) (see Longstaff and Schwartz (2002)[53], Schwartz (2005)[76] for de-
tails on LSM), for different levels of technical uncertainty. It can be seen that with-
out uncertainties in the construction costs the closed-form solution and results
from simulations are almost identical, where a minor difference is due to the dis-
cretization of Equation (6.7). When technical uncertainty, §, is non-zero the real
option values from simulation are slightly lower than the closed form values from
Pindyck (1993) [67], as simulation results are biased low. The option values ob-
tained using SGBM are slightly higher than those obtained using the least squares
method for the same set of paths, which implies that in the discrete time version
the critical costs for abandonment, K; , obtained using SGBM are somewhat more
accurate.

The role of real options in computing the net expected cashflow and its distribu-
tion when a firm is flexible to take decisions during the course of construction and
operation of the reactor, needs to be emphasized. If the underlying stochastic fac-

8 Note that prices are in USD here in accordance to the reference values from the literature.
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Figure 6.3: Distribution of net cashflow when the firm has flexible and inflexible decision opportuni-
ties to abandon the project in the future. The policy, when early abandonment is possible, is computed
using SGBM. Same set of scenario paths is used for the two cases.

tors like expected cost of completion turn unfavourable in the future the firm uses
its discretion to abandon the project? in such a way that the net expected cash-
flow is maximized. Figure 6.3 compares the cashflow distribution when (a) the firm
doesn't have the flexibility to change its decision in the future and continues with
the construction of the reactor irrespective of whether the scenario is favourable or
not, (b) the firm has the flexibility to change its decision and continues or aban-
dons the project following the policy computed using SGBM. It can be seen that
the option to abandon the project under unfavourable price scenarios reduces the
possibility of extreme losses. Table 6.4 compares the expectation and standard de-
viation of the net cashflow for the above two cases.

Figure 6.4 shows the fraction of scenario paths for which the project is abandoned
at different time steps when the policy from SGBM is followed for the above case.
It's more likely for a project to be abandoned in its early phases than in later stages.
As the project commences the remaining expected construction costs (due to the
ongoing investment) and also the remaining expected time to finish the construc-
tion reduce while the anticipated revenues increase (as the revenues are expected
to start flowing in relatively sooner, which implies they are discounted less), which
reduces the chance of the project being abandoned.

9 It is assumed that the firm behaves rationally throughout the life cycle of construction and opera-
tion of a nuclear power plant, although there is some empirical evidence which suggests that manage-
ment might act otherwise when sunk costs are involved, for example see “Throwing good money after
bad ? : Nuclear power plant investment decisions and the relevance of sunk costs”by Bondt and Makhija
(1988) [24].
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Inflexible | Flexible case
Case (SGBM)
Expected
net cashflow ($/kWe) 186 221
Standard
deviation 600 500

Table 6.4: The expected value and standard deviation of the net cashflow corresponding to the dis-
tribution in Figure 6.3. The reactor parameters are taken from Table 6.2 and [g, y] values are [0.59 0.07],
respectively.
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Figure 6.4: Fraction of paths abandoned at different time steps, when the policy from SGBM is fol-
lowed, corresponding to the case considered in Table 6.4.

6.4 Numerical Examples

This section illustrates by various examples the two steps involved in deciding the
optimal mix of NPPs for a power utility (or country or otherwise). A more realistic
case, where not only the costs are uncertain but also the market price of electricity,
is considered. The real option value, optimal decision rules to start, continue or
abandon the construction of a reactor, distribution of costs and cashflows obtained
following the optimal policy for different reactors, are analyzed. Finally, based on
the expected net cashflow and its distribution, the optimal reactor order fraction
for the different reactors considered is found.

Choice of nuclear power plants

This section discusses the economics of different nuclear reactors, considered here,
for determining an optimal portfolio in energy generation planning. Here, not only
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the expected costs of completion of the reactors are uncertain, but also the source
of revenues, i.e. the electricity prices. The optimal decisions do not only depend
upon the expected costs of the reactor but also on the present market price of elec-
tricity. Under our model assumptions, the construction of an unfinished reactor
continues as long as the expected cost of completion is below some critical value
and the electricity prices are above the corresponding threshold electricity price.
For a given expected construction cost if the present electricity price (per annum)
falls below a threshold the expected net cashflow would be negative and hence the
construction of the plant is discontinued in our model. Similarly for a given elec-
tricity price if the expected cost of completion increases above a threshold price the
construction of the plant will be abandoned in our model.

For the analysis the following types of reactors are considered for the portfolio.

* Generic Gen III type Light Water Reactor (LWR): The light water reactor (LWR)
is a type of thermal reactor that uses water as its coolant and a neutron mod-
erator and solid compound of fissile elements as its fuel. Thermal reactors
are the most common type of nuclear reactor, and light water reactors are
the most common type of thermal reactor.

* Fast Reactors (FR): Fast reactors or fast neutron reactors are a category of nu-
clear reactors in which the fission chain reaction is sustained by fast neu-
trons. They are considered an attractive option because of their potential to
reduce actinide wastes, particularly plutonium and minor actinides which
eliminate much of the long-term radioactivity from the spent fuel. Fast re-
actors with closed fuel cycle allow a significantly improved usage of natural
uranium. The Sodium Cooled Fast Reactor (SFR), Lead Cooled Fast Reactor
(LFR) and Gas Cooled Fast Reactor (GFR) are examples of fast reactors fea-
tured in the Generation IV roadmap (2002) [33].

* High Temperature Reactor (HTR): Also featured in the Generation IVroadmap,
HTRs are graphite-moderated nuclear reactors with a once-through uranium
fuel cycle. The high temperatures enable applications such as an emission-
free process heat or hydrogen production, which effectively increase the effi-
ciency of the reactor by as much as 20% (Generation IV roadmap (2002)) [33].

» Super Critical Water Reactor (SCWR): Featured in the Generation IV roadmap,
SCWRs resemble light water reactors (LWRs) but operate at higher pressure
and temperature, with a direct once-through cycle like a boiling water reac-
tor (BWR), with the water always in a single fluid state like the pressurized
water reactor (PWR). The SCWR is an advanced nuclear system because of its
high thermal efficiency of 45% vs. 33% for current LWRs, and simple design
(Generation IV roadmap (2002)) [33].

The size, efficiency and capacity factors of the reactors considered, taken from
Roelofs et al. (2011) [69], are given in Table 6.5.
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Power Power Efficiency | Capacity Factor | Life Time
(Thermal) MW | (Electric) MW (%) (%) (years)
Gen III 4500 1600 35.5 90 60
FR 3600 1500 42 85 60
HTR 500 (200 +100) (40 +20) 90 60
SCWR 2300 1000 43.5 90 60

Table 6.5: The specification of the reactors considered.

Notice that HTRs have an efficiency of 40% + 20%, as not only would the reactor
produce 200 MW of electricity, but also 100 MW of process heat. This is incorpo-
rated in the model by assuming that the cost of electricity is 2.32 times the process
heat costs, as in Gandrik (2012) [32], which results in a revenue for this reactor equal
t01.21 x P,.

The reference values for the expected construction costs, fuel cycle costs, operation
and maintenance costs and also the confidence interval or standard deviation of
these costs are taken from van Heek et al. (2012) [85] and Roelofs et al. (2011) [69].
These are engineering cost estimates as there isn’t sufficient experience to estimate
these values from historical data. Table 6.6 reports the expected construction costs
and fuel, operation and maintenance costs as derived from the values in van Heek
et al. (2012) [85] and Roelofs et al. (2011) [69]. In the case of the HTR additionally
the benefits of modular construction (increased standardisation and faster learn-
ing curves) are included which is different from van Heek et al. (2012) [85]. The
analysis of Boarin & Ricotti (2011) [11] is followed, where four effects of modular
construction are distinguished:

1. Learning factor: The number of similar plants constructed world-wide will
lead to increased experience in construction and therefore in decreased costs;

2. Modularity factor: The modularization factor assumes a capital cost reduc-
tion for modular plants, based on the reasonable assumption that the smaller
the plant size, the higher the degree of design modularization;

3. Multiple units factor: The multiple units saving factor shows a progressive
cost reduction due to fixed cost sharing among multiple units at the same
site;

4. Design factor: The design factor takes into account a cost reduction by as-
sumed possible design simplifications for smaller-sized reactors.

Figure 6.5 shows the curve constructed when all these separate effects are com-
bined. A fitted curve that gives the modular construction factor is then given by,

Power
mcf = min (0.1951n (—m"d
100

where Power,, ¢ is 1100 MWe and Power 4 is on the x-axis of Figure 6.5. Following
Equation (6.22) based on the assessment of Boarin et al. (2011) [11], the modularity

) +0.63—-10""* x Power,,f,100% |, (6.22)
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Figure 6.5: Modular construction factor as a function of size of the reactor. The reference power plant
size is 1100MWe.

Expected Expected
Reactor construction cost | Fuel and O&M cost

€/kWe €/kWe/a
Generic 2900 140
Gen III LWR (320) (35)
FR 4600 185
(580) (35)
HTR 3600 165
(750) (35)
SCWR 3400 140
(400) (33)

Table 6.6: Expected construction, fuel and O&M costs for different reactors considered. The values in
brackets are standard deviations of these costs.

construction factor would be 65.5% for a Power,,,,; = 200 MWe HTR, which brings
down the expected costs of construction of HTRs from 6100 to 3600 €/kWe.

As the values reported in Table 6.6 are “engineering estimates” the uncertainty in
these values can primarily be attributed to technical uncertainty. When only tech-
nical uncertainties are involved the variance of the expected cost of construction is
given by (see Pindyck (1993) [67]) :

2
Var(K) = [ —— | K%;
0=(355)
arelation used here to compute the corresponding value of § for different reactors
in the portfolio. The Brownian motions driving the input cost uncertainties (see
Section 6.2) for different reactors can be correlated to each other (and the econ-
omy), as raw material required and government regulations are similar for differ-
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Ko =2900 (€/kWe),
v=0.07,
Generic B=0.15,
GenlIl expected construction time = 5 years,
Cp = 1.36 (cents/kWh),
oc =0.25;
Ko = 4600 (€/kWe),
v =0.07,
Generic B=0.18,
Fast Reactor || expected construction time = 7 years,
Cp = 1.95 (cents/kWh),
oc=0.19;
Ko = 3600 (€/kWe),
¥=0.07,
HTR B=0.17,
expected construction time = 4 years,
Cp = 1.70 (cents/kWh),
oc=0.22;
Ko =3400 (€/kWe),
Y =0.07,
SCWR B=0.16,
expected construction time = 5 years,
Cp = 1.43 (cents/kWh),
oc=0.24;

Table 6.7: Initial expected cost of completion, input cost uncertainty parameter 7y, technical uncer-
tainty parameter 3, expected construction time, present value of combined O&M and fuel charges Cy
and the corresponding volatility for different reactors. For all cases considered it is assumed that the
correlation coefficient p between Wp and W to be 0.5 and the growth rate in O&M costs, ,uz to be 0.
The rate of investment I for each reactor is taken as their initial expected construction costs divided by
their expected construction times.

ent reactors, while technical uncertainties for different reactors are assumed to be
uncorrelated. Table 6.7 summarizes the parameter choices related to Table 6.6.

The real option value of the reactors and the distribution of the net cashflow under
optimal policy for construction and operation of the reactors, depends on, amongst
others, the expected growth rate for electricity prices (,u:,), uncertainty in electricity
prices (o), and the discount rate used (r)1°. Table 6.8 gives values considered for
these parameters. For the base case, values corresponding to the row 'Medium’ in

Table 6.8 are taken, and the initial price of electricity Py, is set to 8.5 cents/kWh.

10 As the Brownian motions dWy,dWc,dWp may be correlated with the market, the risk-free inter-
est rate for discounting cannot be used, especially if spanning is not possible. Instead different discount
rates which represent different levels of risk premiums added to the risk-free rate, are considered.
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Growth rate Uncertainty Discount rate
u;; (% per annum) | o (% per annum) | r (% per annum)
Low 0 10 6
Medium 3 20 8
High 5 30 10

Table 6.8: Values of electricity price growth rate ;t;;, uncertainty in electricity prices, g and discount
rate r considered in various examples.

Real option value analysis

Real option analysis is used here to determine the optimal policy to start, continue
or abandon the construction of a project, so that the net expected discounted cash-
flow is maximized. As stochastic construction costs K;, combined O&M and fuel
cycle costs Cy, and cost of electricity Py, are considered, the optimal decision will
depend on these three state variables. It will be optimal to abandon the project, if :

* the expected cost of completion is too high,
» the O&M and fuel cycle costs are too high,

* the electricity prices are too low.

Figure 6.6 shows the early abandonment region at an intermediate time step of the
simulation. Here the x— axis represents the expected costs of completion of the
reactor and the y— axis represents the cost of electricity minus fuel and O&M costs.
The red coloured grid points represent the states at which the construction of the
reactor should be abandoned, while green colour represents the ones for which the
construction should continue.

Table 6.9 reports the critical price of electricity above which each of these reactors
should be ordered and their real option values when the initial price of electricity
equals Py = 8.5 cents/kWh. Reactor specific parameters are taken from Table 6.7.
The same set of simulated electricity paths should be used for different reactors.

Under the present model assumptions and parameter choices, it is observed that
the HTRs, despite their high expected capital costs, appear economically most at-
tractive, primarily due to their higher efficiencies. The Gen III LWRs have the low-
est critical electricity price above which they can be ordered, while the fast reactors
seem economically least viable in our model settings.

Optimal portfolio analysis

If a firm has to choose amongst the above reactors, solely based on their capital
costs (Table 6.7), then their portfolio would contain only Generic Gen III type LWRs,
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Figure 6.6: Simulated K;, P;, C; paths at a particular time step. Green represents the states where it
is optimal to continue and red where it is optimal to abandon the project.

Type Critical electricity Option value
price P Py = 8.5 cents/kWh
Gen III LWR 4.0 3100
FR 6.25 875
HTR 4.5 3500
SCWR 4.7 2650

Table 6.9: Critical price of electricity P;) in (euro cents/kWh) above which the reactors should be
ordered and their option values (in €/kWe) when the initial price of electricity is 8.5 euro-cents/kWh.
The reactor parameters are taken from Tables 6.7 and 6.8.

something also observed in practice. However, such a portfolio excludes the role of
uncertainties of cashflows for these reactors. Application of MVP theory takes into
account not only the expected returns but also the uncertainties or risks associated
with these returns.

An efficient frontier gives the optimal reactor order fraction for a portfolio designed
to meet a given expected return while minimizing the uncertainties of these re-
turns. In order to determine the efficient frontier the expected returns and the
covariance matrix of the returns from the reactors considered are required. The
distribution of returns for each reactor optimally constructed is sampled by com-
puting the returns along each simulated path.

The following constraints on the portfolio are considered:

* Budget constraint: Under a budget constraint, the optimal reactor order frac-
tion for every euro spent is computed. Returns corresponding to a euro spent
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on a reactor are given by,

Revenue; (n) — Cost;(n)
Ri(n) = , (6.23)
Cost;(n)

and the constraint for the portfolio optimization problem is then:

J
Y wi=1,
i=1

n=1,..., N being the path index and i = 1,..., J again indicate the different
reactors considered. The weights correspond to the fraction of money in-
vested in different reactors, which is then used to compute the reactor order
fraction (per kWe) by taking into account the expected construction costs as
reported in Table 6.7.

Capacity constraint: Under a capacity constraint, the optimal reactor order
fraction for every kWe of capacity ordered is computed. Returns correspond-
ing to a kWe ordered are given by,

R;(n) = Revenue;(n) — Cost;(n),

and the constraint for the portfolio optimization problem is:

J
Z w; =1,
i=1

n =1,...,N being the path index, and i = 1,...,J indicate the different re-
actors considered. The constraint implies here that reactor order fractions
should add up to a kWe.

For both constraints, the weights are additionally bounded as,

O<w;<1l,i=1,...,],

which comes naturally from the fact that short selling is not possible here, and thus
the weights cannot be negative.

The quadratic programming problem expressed by Equation (6.5) is solved using
the optimization toolbox of MATLAB, which solves general problems of the kind:

. 1 T /
m“lrn Ew Qw+ f'w,
such that: AW < a,
Bw=b, (6.24)

L=sw<0U,
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Figure 6.7: (a) Efficient frontier for the base case when portfolios have the budget constraint and (b)
reactor order fraction corresponding to points on the efficient frontier.

GenIII FR HTR | SCWR
Expected Return | 1.3376 | 0.1863 | 1.0645 | 0.9744
Stdev Return 1.2356 | 0.9046 | 0.9926 | 1.0527

Table 6.10: The expected return and its standard deviation per euro spent for the base case.

using the command w = quadprog(Q,f,A,a,B,b,L,U).

Figure 6.7 displays the efficient frontier and the corresponding optimal reactor or-
der fraction when the portfolio has the budget constraint. The mean and standard
deviation of the simulated returns for the individual reactors are reported in Table
6.10. Under our model assumptions and choice of parameter values, the GenlIII
LWRs have the highest expected returns (based on Equation (6.23), while the FRs
have the lowest returns per euro spent. However, the uncertainty of returns for FRs
is lower than that for GenIIl IWRs. An investor who wants to minimize the uncer-
tainty of returns and is willing to take a lower expected return in order to do so, will
choose a portfolio with more Gen IV type reactors. An investor who wants higher
returns and is indifferent to the uncertainty of returns, will hold a portfolio with
more Gen III type reactors.

Figure 6.8 shows the efficient frontier and optimal reactor order fraction corre-
sponding to points on the optimal frontier, when the portfolios have the capac-
ity constraint. Expected returns and their standard deviations per kWe of reactor
ordered are reported in Table 6.11. It is observed that unlike the case with the bud-
get constraint, where portfolios with high returns were dominated by Gen III LWRs,
here portfolios with higher expected returns are dominated by both HTR and GenlII
IWRs. This difference can be explained as the returns in Equation (6.23) are scaled
by the individual reactor costs.
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Figure 6.8: (a) Efficient frontier for the base case when there is a capacity constraint and (b) the reactor
order fractions corresponding to points on the efficient frontier.

GenIll | FR | HTR | SCWR
Expected Return (€/kWe) | 3100 880 | 3500 | 2625
Stdev Return 2825 2870 | 3225 | 2850

Table 6.11: The expected returns and their standard deviations per kWe of reactor ordered for the
base case.

Portfolio sensitivity

In addition to the constraints on the portfolio, the choice of parameter values af-
fects the structure of the optimal portfolio. The optimal portfolio for varying pa-
rameter values is studied here, which gives an intuition about the portfolio’s sensi-
tivity with respect to these parameters. In particular, the following cases are con-
sidered:

¢ Different discount rates r, with other parameters constant.
* Varying electricity price growth rates p;, with other parameters constant.

* Varying uncertainties in electricity prices o, with other parameters constant.

From here on, only portfolios that have capacity constraints are considered.

Varying discount rates

The reference case considered a discount rate of 8% per annum. Here the portfolios
sensitivity to varying discount rates is examined. A change in discount rate affects
the expected revenues, costs and the optimal investment strategy, which in turn
affects the returns. This makes the discount rate an important parameter while
computing the efficient frontier and corresponding optimal reactor order fractions.
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Figure 6.9: Efficient frontiers for varying discount rates. Parameter values are taken from Tables 6.7
and 6.8.
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Figure 6.10: Optimal reactor order fractions when (a) r = 10%, (b) r = 8%, and (c) r = 6%. Parameter
values are taken from Tables 6.7 and 6.8.

Figure 6.9 shows the efficient frontier for low, medium and high discount rates, with
corresponding values taken from Table 6.8. Lowering the discount rate can help
realize higher expected returns, although at increased uncertainty (variance) in re-
turns. Although both the expected returns and the variance of returns increases,
however, the increase in the expected returns is more significant than increase in
the variance of returns. Therefore, reactors with higher expected returns would
then be more favoured in the mean-variance portfolio.

The optimal reactor order fractions corresponding to the points on the efficient
frontier are shown in Figure 6.10. Under the model assumptions and parameter
choices, it is seen that lowering discount rates results in a portfolio dominated
by reactors having greater expected returns, while higher discount rates result in
a portfolio where reactors with lower uncertainties dominate.

Varying electricity price growth rates

Long term growth rates of electricity prices are difficult to predict. A sensitivity
analysis of the optimal portfolio with respect to different electricity price growth



144 Chapter 6. Optimal Reactor Portfolio

45007
— = 5%
4000f Hp = 0%
—y = 3%
3500 1= 0%
c
5 30001
?
& 2500
K
5 2000f
3
15001
w
1000r
500

1%00 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600
Uncertainty(stdev)

Figure 6.11: Efficient frontier for varying electricity price growth rate, where the reactor specific pa-
rameters are taken from Table 6.7, and economic parameters from Table 6.8.
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Figure 6.12: Optimal reactor order fractions when (a) y;‘, =0%, (b) /.1;‘, =3%. (¢ /.1;‘, = 5%. Parameter
values are taken from Tables 6.7and Table 6.8.

rates is then essential. An optimal portfolio analysis for low, medium and high
growth rate scenarios for electricity prices is performed.

Figure 6.11 shows the efficient frontiers corresponding to different electricity price
growth rates. A higher growth rate in electricity prices results in portfolios which
can achieve greater expected returns.

The optimal reactor order fractions corresponding to the points on the efficient
frontiers for different electricity price growth rates are shown in Figure 6.12. Under
the model assumptions, it is observed that a higher expected growth rate in electric-
ity prices leads to portfolios that are dominated by reactors with higher expected
returns (HTR and GenlII), while for low growth rate scenarios optimal portfolios
can have reactors with lower returns (like FRs).

Varying uncertainty in electricity prices

Uncertainty in electricity prices affects the expected return and its distribution for
different reactors. The mean-variance portfolios for low, medium and high uncer-



6.5. Conclusion 145

4000-
—(7,,:30%
< 3500r —0, =20% |
E 0, = 10%
~ 3000~
[
e
£ 2500~
2
& 2000f
T
Q
815001
[}
X
w 1000+
50800 1500 2000 2500 3000 3500 4000 4500 5000 5500

Uncertainty(stdev)

Figure 6.13: Efficient frontier for varying uncertainty in electricity prices, where parameter values are
taken from Tables 6.7 and 6.8.
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Figure 6.14: Optimal reactor order fractions when (a) op =10%, (b) op =20%, and (c) op =30%.
Parameter values are taken from Tables 6.7 and 6.8.

tainty in electricity prices, with the corresponding values for o, taken from Table
6.8 are studied. Figure 6.13 plots the efficient frontiers for the three different sce-
narios considered. With increasing uncertainty in electricity prices, the uncertainty
in returns of the optimal portfolio increases for a given level of expected returns.

The optimal reactor order fractions corresponding to the points on the efficient
frontiers for the three scenarios considered are presented in Figure 6.14. Under our
model assumptions, the reactor order fractions seem less sensitive to uncertainty in
electricity prices, when compared to their sensitivity to discount rates or electricity
price growth rates.

6.5 Conclusion

While the future of nuclear power depends on resolving the issues of safety of op-
erations, safe management of radioactive wastes and measures to prevent prolifer-
ation (MIT, 2003) [26], in a deregulated electricity market, the economics of NPPs
will a very most important determinant of nuclear energy’s role in the future global
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energy mix. A decision-support tool, which takes into account major factors and
their uncertainties for studying the economics of individual reactors as well as for
a portfolio of reactors has been presented here.

Specifically, real option analysis and portfolio optimization have been used to study
optimal reactor order fractions within the nuclear sector. A two-step approach is
proposed, where first optimal decisions are taken at the plant level, and then the
resulting distributions of returns for each reactor-type are used as inputs to a port-
folio optimization problem solved using MVP theory. The main contributions on
the methodological side can be stated as:

The method adequately accounts for uncertain reactor construction costs
and schedule, and reflects their effect on the return distribution for different
reactors.

An optimal policy for continuing the construction or abandoning of the project
is computed taking into account the uncertainties in construction costs, elec-
tricity prices and O&M and fuel cycle costs involved.

A detailed study on optimal portfolios based on MVP theory is conducted.

The effect of different constraints on portfolio diversification is studied.

The sensitivity of the optimal portfolio with respect to electricity price growth
rates, uncertainty in electricity prices and discount rates is studied.

It should be emphasized here that, although careful attention has been paid to
choose realistic parameter values for the reactors considered, however, the main
focus is to illustrate a methodology that accounts for the various economic uncer-
tainties related to nuclear power plants. Under our model assumptions, it has been
shown that certain scenarios lead to portfolios that are dominated by Generation
IV type reactors, while others result in conventional Gen III type IWRs being the
dominant ones. Following the methodology described here can be useful when de-
cisions related to reactor order fraction need to be made.

As possible future direction of research, the portfolio optimization step should in
addition to the variance of the returns also consider other risk measures, such as,
value at risk and conditional value at risk, as in [77]. The resulting portfolios will
then not only minimize the variance of the returns but will also avoid reactors
which are likely to be abandoned in the future.



CHAPTER

Conclusions and Outlook

This thesis we dealt with models for making investment decisions under uncer-
tainty and used them to study different scenarios for investment decisions in the
nuclear industry. The first half of the thesis was concerned with the development of
algorithms for valuing and taking optimal early exercise decisions. As options with
early exercise features are common in the financial industry, such as American and
Bermudan options, the algorithm developed were motivated by these financial op-
tions. The latter half of the thesis adapted the pricing methods developed for finan-
cial options to value real options and take optimal decisions related to investment
in nuclear power plants.

Chapter 2 introduced the stochastic grid method SGM, for pricing and exercising
Bermudan options. SGM employed dynamic programming and least squares re-
gression for option pricing. One of the main achievements of the algorithm was its
ability to reduce a multi-dimensional problem to a problem that deals with single-
dimensional features. The method had a few advantages, but it suffered from some
disadvantages such as; the method was computationally expensive when sub-simulations
were required, the early exercise policy obtained using SGM was inferior to those
obtained using the least squares method (LSM) for high-dimensional problems,

and therefore the option values from SGM were less accurate, SGM for high-dimensional
problems required the use of peripheral paths to improve the early exercise policy

but the approach to generate the peripheral paths was not well defined and the
convergence was guaranteed only for the single-dimensional problem.

In order to deal with the drawbacks of SGM, Chapter 3 introduced the Stochastic
Grid Bundling Method, SGBM. SGBM is a hybrid of regression-based and bundling-
based Monte Carlo methods and appears computationally at least as attractive as
existing methods. SGBM overcame the drawbacks of SGM by utilizing bundling
to improve the approximated conditional expectations involved in the valuation.
The chapter provided a proof for convergence of the method for high-dimensional
problems, and demonstrated through numerical examples the rate of convergence
with respect to the number of bundles chosen in the method. One of the main
advantages of SGBM is that for similar computational time a higher accuracy, not
just at the final time step, but also at intermediate time steps is obtained when

147
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compared to the least squares method of Longstaff and Schwartz [53]. This makes
SGBM a suitable candidate for computing upper bounds using duality-based meth-
ods. Another advantage of SGBM is that it can be used for fast approximation of the
option price sensitivities.

Investment in small and medium size reactors which can benefit from modular
construction has been an attractive option in the nuclear industry. Chapter 4 pre-
sented a method for computing real option values for the construction of nuclear
power plants when the project can benefit from the flexibility offered by modular
construction in finite decision time horizon. SGM from Chapter 2 was used as the
underlying pricing method. It was found that decision-making in finite time, which
is often the case, may result in quite different scenarios when compared to infinite
time decision horizon problems. Chapter 4 showed that under model assumptions
in comparison to the modular project the real option value of a single large reac-
tor is typically higher when decision horizons are small, while for longer decision
times modular projects may be more profitable. An interesting result in Chapter 4
was that with an increasing uncertainty in the electricity prices modular construc-
tion may represent a better option as they include the possibility of having a few
units ordered, when the electricity price reaches unfavourable values. With stable
electricity prices the cost effective single large reactor appeared under the assump-
tions to be a better choice.

The real option model developed in Chapter 4 was further exploited in Chapter
5 to value and compare different construction strategies of NPPs for finite deci-
sion horizon. An finding of the chapter was that the real option value of nuclear
power plants increases with implementation of long term cost reductions. Such
cost reductions might be achieved e.g. by plant upgrades and/or increased R&D ef-
forts. It is known that when twin units are constructed at the same site, significant
cost reductions can be achieved. On the other hand, in order to achieve these cost
savings, the utility loses the flexibility to order units at optimal market conditions.
Chapter 5 shows that when the electricity price uncertainty is low the cost savings
by a construction of twin modules at the same site would be more profitable under
the model assumptions, while for volatile electricity prices, the flexibility of choice
dominates. In this chapter a basic model to include the effect of uncertain lifetime
of operations and premature permanent shutdown of nuclear reactors on the real
option value of projects was also included. It was found that some cost reduction
was achieved by the learning effect with each new module in a modular construc-
tion. However, under the model assumptions considered in Chapter 5 it appeared
that cost savings due to learning are not sufficient to make modular SMRs compet-
itive with large units.

Finally Chapter 6 presented a decision-support tool which took into account uncer-
tainties in major economic factors for individual reactors to provide, under model
assumptions, an optimal portfolio of reactors. Real option analysis together with
mean-variance portfolio optimization was used to compute optimal reactor order
fractions. The decision tool used a two-step approach; where first optimal deci-
sions were taken at the plant level, and then the resulting returns distributions for
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each reactor-type were used as input for a mean-variance portfolio optimization
problem. The tool could take into account uncertain reactor construction costs
and schedule, and compute their effect on the return distribution for different re-
actors. The chapter also presented the optimal portfolio and its sensitivity with re-
spect to electricity price growth rates, uncertainty in electricity prices and discount
rates. It was observed that under model assumptions certain scenarios led to port-
folios that were dominated by Generation IV type reactors, while others resulted in
conventional Gen III type LWRs being the dominant ones.

7.1 Future Outlook

This section discusses possible future directions for research, both on the method
development side that was discussed in Part 1 of the thesis, as well as on the appli-
cation side that was dealt with in Part 2 of the thesis.

The proof for convergence of SGBM was provided in Chapter 3. Although it was
shown that the method would converge to the true price as the number of paths
and bundles approach infinity, the rate of convergence of the method with increas-
ing number of bundles was only demonstrated through numerical examples. A de-
tailed numerical analysis however can provide the optimal number of bundles that
should be chosen for a given number of total paths. The intuitive reason behind
the existence of an optimal number of bundles is that, while on one hand increas-
ing the number of bundles results in reduced error as result of more accurate sam-
pling of the conditional distribution, on the other hand with an increasing number
of bundles the number of paths within each bundle reduces when the total num-
ber of paths is fixed. This results in larger standard error for the Monte Carlo esti-
mates within the bundle, as this error is inversely proportional to the square root of
number of samples. If the number of bundles is more than the optimal number of
bundles, the reduced error from accurate sampling of the conditional distribution
would be lost by increased standard errors from too few paths per bundle.

At present the value of an option with early exercise feature is computed by find-
ing a policy that maximizes the expected cashflows. An interesting direction for
future research could be to examine policies that not only maximize the expected
future cashflows but also, like a mean-variance portfolio, minimize the variance of
the future cashflows. Such policies could be more stable as deviating slightly from
the optimal policy wouldn’t dramatically affect the expected future cashflows. Dy-
namic portfolio allocation problems have gained popularity in recent times and
it would be interesting to compute them using SGBM, wherein constant portfolio
weights are assigned to the states that belong to the same bundle.

A comprehensive analysis of different nuclear power plants cannot exclude the role
of exogenous factors, such as the cost of carbon emissions, cost of natural gas etc,
something which hasn’t been dealt within the present work. Also in order to better
evaluate nuclear power plants it is important to consider their role in long term nu-
clear waste management. Some reactors although at present might appear attrac-
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tive, could become increasingly unattractive in absence of long term waste man-
agement solutions. For example the value of IWRs could significantly improve if
the waste from it could be reprocessed, while it could become unattractive if it has
to bear the economic burden for the development of expensive long term nuclear
waste storage facilities. Such complex interactions between nuclear fuel cycle sys-
tems of different reactors need to be addressed for more informed decision making
process in nuclear industry.

In Chapter 6 to compute the optimal reactor order fractions we used the mean-
variance portfolio theory. It can happen that the optimal portfolio so computed
may contain reactors that are very likely to be abandoned at a future date when
following the computed policy for reactor abandonment. It would be ideal to con-
struct the optimal portfolio such that the fraction of scenario paths for which all
the reactors become operational lies in some high percentile range. This could be
achieved by using alternate portfolio optimization techniques, such as those based
on the conditional value at risk (CVaR).

7.2 Integrating decision-support tool with DANESS

Argonne National Laboratory (ANL) developed an integrated nuclear energy sys-
tem model called Dynamic Analysis of Nuclear Energy System Strategies (DANESS).
DANESS allows modelling the full mass-flow chain of time varying mixes of nuclear
reactor plants and associated fuel cycle options ( Van den Durpel et al. (2008) [84]).
It has been used to simulate fuel cycles from uranium mining, reprocessing, to ge-
ological disposal. For any modelled combination of reactor types and fuel cycles,
DANESS projects electricity production cost, fuel mass flows, and waste quantities
as a function of time, spanning periods from decades up to centuries. Roelofs and
Estorff (2013) [70] use DANESS to predict the top down workforce demand corre-
sponding to different nuclear energy scenarios.

In DANESS new reactor types — characterized by techno-economic parameters,
representing their fuel consumption and overall effectiveness — are introduced
based on the requirement to fulfill a certain scenario dependent nuclear energy
demand.

Given a nuclear energy demand scenario, DANESS orders reactors and associated
facilities at discrete time steps so as to meet the time varying energy demand as
closely as possible. DANESS determines AE, the energy generation shortage, by
using a prediction of the energy demand, an assumed planning horizon and the
installed reactor capacities. While determining AE, reactors which will be taken
out of operation as well as reactors which are already under construction are also
considered. DANESS covers small changes in AE by exploiting the flexibility in load
factors of the different reactors. Adjustment in load factors reflects the possibility
of a utility to decide to have a longer maintenance stop when the energy demand
is low enough. Finally, if AE is large enough, reactors are constructed based on the
specified reactor order distribution target.
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DANESS orders from different available choices of reactor types to meet this energy
shortage. The shares of different reactor types to be ordered are usually determined
using some economic criteria. A criterion for the selection could be to order the
reactor with the lowest levelised costs. However, this could lead to only a single
reactor type to be ordered all the time, something that is not observed in practice.
Another approach is to use the Reactor Order Decision Model (RODM) of Roelofs
etal. (2011) [69] to determine the reactor order distribution to be used in DANESS.
Briefly, RODM involves the following steps:

1. The levelised fuel cycle costs are determined for each reactor type and asso-
ciated fuel cycle at every time step by the DANESS code. These levelised fuel
cycle costs take into account all front-end and back-end costs.

2. The levelised costs are time averaged for each available reactor type i. Evi-
dently, reactor types which are not available for construction, e.g. because
they are not yet fully developed, are not taken into account. The time aver-
aged costs are defined as C;.

3. The initial reactor order distribution target is determined as %, in which
1+

F;, = M In scenarios where the energy production cannot match

the energy demand because of fuel limitations for a certain reactor type and
associated fuel cycle, the target is adjusted towards a reactor type which does
not suffer from fuel availability limitations.

The RODM model has it advantages and drawbacks. The advantages are that it is
easy to implement and understand. Above that, it reflects the market conditions
in a way that not all utilities select only the reactor with lowest levelised costs, and
thus we see a mixture of reactors in the market. However, it can be argued that the
scheme used in RODM is not based on strong economic or physical principles.

Alternatively, the reactor order fraction determined by the MVP based decision tool,
as described in Chapter 6, can be used as the reactor order distribution in DANESS.
The market share of reactors then ordered would still be diversified, however, the
underlying rules for diversification would be based on established economic prin-
ciples. We therefore recommend that in the near future, for analysis using DANESS,
both the RODM and the MVP decision-tool should be used to determine the reac-
tor order distribution. Conclusions should be drawn by comparing the future reac-
tor park development results obtained from DANESS, in terms of revenues, waste
management etc. for these two models.

7.3 Integrating Real options with DANESS to evaluate scenarios

Modelling the worldwide nuclear reactor park can be challenging as the nuclear
fuel cycle includes feedback loops representing physical feedbacks within the sys-
tem. Moreover, and most prominently, socio-political feedbacks in the decision-
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making on the various available deployment pathways for nuclear energy (Van den
Durpel et al. (2008) [84]).

DANESS can be used to model nuclear energy systems composed of various reac-
tor types and fuel cycle facility technologies, as it allows for mutual exchange of
actinide mass flows and keeps a time-varying track of various inventories involved.
Also it helps in analysing how efficiently a facility would be utilized during its life-
time for some given nuclear energy demand scenario.

Given a nuclear energy deployment pathway DANESS can accurately compute the
physical mass flows and other involved system dynamics. However, the nuclear en-
ergy deployment pathways that generally span time periods over several decades;
can be highly uncertain, due to amongst others, socio-political and technical rea-
sons. In addition there can be several deployment strategies for which a given nu-
clear energy demand scenario can be met efficiently. A challenging task then is to
identify based on certain objectives an optimal deployment strategy.

One of the objectives to identify the optimal deployment strategy can be the cost-
benefit analysis of the strategy. In the absence of any uncertainties this would be
equivalent to identifying the cheapest deployment strategy. However, as usually
is the case with economics of nuclear energy systems, the costs and benefits are
highly uncertain. Deployment strategies then should ideally be valued using the
Real Options based methodologies, as it involves valuing flexible decisions. Under
uncertain scenarios, it is likely to switch from one planned deployment strategy to
another, depending upon how the future unfolds. Any nuclear deployment strat-
egy from which it is easier to switch to other possible strategies in the future would
have an inherent value of flexibility. Integrating Real Options based valuation tech-
niques for decision making process involved in scenario studies using DANESS can
therefore lead to valuable results.
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