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PRODUCT FORMS BASED ON BACKWARD TRAFFIC EQUATIONS 
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Abstract 

This paper introduces a new form of local balance and the corresponding 
product-form results. It is shown that these new product-form results allow capacity 
constraints at the stations of a queueing network without reversibility assumptions 
and without special blocking protocols. In particular, exact product-form results for 
heavily loaded queueing networks are obtained. 
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1. Introduction 

Queueing networks are widely used in computer performance evaluation, telecommu
nications and manufacturing. In particular, product-form queueing networks allow us to 
obtain accessible expressions for performance measures of interest. A major restriction 
of product-form queueing networks is that they do not allow the introduction of capacity 
constraints, unless very restrictive assumptions are made on the routing process of the 
customers. 

Product-forms for queueing networks are based on the traffic equations. It is the 
structure of the state-dependent traffic equations that introduces the restrictive assump
tions necessary to obtain product-form results when upper boundaries for the number of 
customers at stations are introduced. In contrast, lower boundaries for the number of 
customers at the queues can be chosen almost arbitrarily without destroying the product
form result. This is also a consequence of the form of the traffic equations. 

The standard traffic equations are the equilibrium equations for a queueing network 
containing a single customer moving from one queue to another according to a transition 
matrix of routing probabilities. As such these traffic equations are the Kolmogorov 
forward equations for the Markov chain describing the behaviour of a single customer in 
the queueing network. For this Markov chain one might also consider the Kolmogorov 
backward equations. A new type of traffic equations, closely related to the backward 
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equations, will be referred to as the backward traffic equations, and are the basis for the 
analysis and results presented in this paper. 

This paper shows that product forms can be derived based on the backward traffic 
equations. These product forms are similar to the product forms obtained for 'standard' 
queueing networks such as Jackson networks [8], Gordon-Newell networks [5], BCMP 
networks [l), and Kelly-Whittle networks [9], [11]. The major difference between 
product forms based on the backward traffic equations and product forms based on the 
'standard' traffic equations is that upper boundaries for the number of customers at the 
stations can be introduced without restrictive conditions on the routing process when 
the backward traffic equations are used, whereas lower boundaries introduce restrictions 
on the routing process. In particular, this allows us to obtain product-form results for 
heavily loaded queueing networks without restrictions such as blocking protocols. In 
addition to the results that can be obtained via job-hole duality, open networks are 
included in the formalism and blocking protocols are introduced to model lower 
boundaries. 

In Section 2 we discuss the backward traffic equations and the corresponding furm of 
local balance that is used to prove the product-form result. In Section 3 we investigate 
the structure of the backward traffic equations in detail. In particular, blocking protocols 
are investigated. Furthermore, Section 3 presents the generalisation to more general 
traffic equations. This generalisation is straightforward, and therefore postponed to this 
last section so as not to distract the reader from the ideas behind the backward traffic 
equations and corresponding product-form results. Finally, product forms are discussed 
for heavily loaded queueing networks. The paper concludes with a discussion of the 
results in Section 4. 

2. Model and product-form result 

Consider a continuous-time queueing network consisting of N queues, or stations 
labelled 1, · · ·, N. Assume that the queueing network can be represented by a stable, 
regular, continuous-time Markov chain X = {X(t), t:;;;;; O} at state space S ~ Nif. A state 
n = (n1, • • ·, nN) ES is a vector with components n; E No denoting the number of 
customers at queue i, i = 1,· · ·, N. 

Let q(n, n') denote the transition rate from state n to state n'. As transitions 
correspond to customers routing among the queues, we have q(n, n') = 0 unless n' = 

n - e; + ej, i,j = 0, · · ·, N, where e; denotes the ith unit vector, and e0 = 0. A transition 
n - n - e; + ej corresponds to a customer routing from station i to station j, and for 
notational convenience station 0 represents the outside. 

Assume that X is irreducible at S and that X possesses a stationary or equilibrium 
distribution n = (n(n ), n ES) at S. Then n is the unique solution of the global balance 
equations (Whittle [ 11]) 

L {n(n)q(n, n')- n(n')q(n', n)} = 0, n ES. 
n'ES 

An immediate consequence of the transition structure of X is that the global balance 
equations can be written as 
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N 

(2.1) L {n(n)q(n, n - e; + ej)- n(n - e; + ej)q(n - e; + ej, n)} = 0, n ES. 
i,j-0 

Product-form results for queueing networks are based on local balance, balancing for 
each queue separately the flow out of a state due to the departure of customers and the 
flow into that state due to the arrival of customers. A distribution n satisfies local balance 
if for i = 0, · · · , N 

N 

(2.2) L {n(n)q(n, n - e; + ej)- n(n -e; + ej)q(n - e; + ej, n)} = 0, n ES. 
j-0 

A distribution n that satisfies (2.2) is the equilibrium distribution because (2.2) is the 
decomposition of (2.1) into a set of equations for each i separately. 

Similar to the decomposition of(2.1) into a set of equations for each i, (2.1) can also be 
decomposed into a set of equations for eachj. This gives a form oflocal balance that we 
will refer to as backward local balance equating for each queue separately the flow 
(probability flux) out of a state due to the arrival of customers and the flow (probability 
flux) into that state due to the departure of customers from that queue (see Figure 1 ). A 
distribution nb satisfies backward local balance if for j = 0, · · ·, N 

N 

(2.3) L { nb(n )q(n, n - e; + ej) - nb(n - e; + ej )q(n - e; + ej, n)} = 0, n ES. 
i-0 

At first glance, (2.2) and (2.3) seem to express a similar form of local balance. 
However, note that in general n .P nb, and that a solution n to (2.2) may exist while a 
solution nb to (2.3) does not exist and vice versa. This is an immediate consequence of 
the restrictive nature of the assumption that a process satislies (backward) local balance. 

Below we present sufficient conditions for the existence of a solution to the backward 
local balance equations. These conditions are similar to the conditions sufficient to find a 
solution to the local balance equations. Note that the solution can be the same only if Xis 
reversible. 

Assume that the transition rates have the form 

(2.4) 

where r/>, If/, and pij are arbitrary functions such that l{l(n) > 0 for all n ES. We have the 
following result. 

Theorem 2.1. Assume that a positive solution { d; }f- 1 exists for the backward state 
dependent traffic equations for j = 0, · · ·, N, 

N 

(2.5) L {~P;j(n +ej)-d;Pj;(n +ej)}=O, do= 1. 
i-0 

Then X has a unique equilibrium distribution 
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(2.6) 

where 

IIN (dlk ) ">' n(n) = Bljl(n) 
k-1 

nES, 

s-1 = .. ~s lfl(n) k~I GJ"• < 00, 

and n satisfies backward local balance (2.3). 

511 

Proof. Insertion of (2.4) and (2.6) in the backward local balance equations gives 

N 

L {n(n)q(n, n - e; + ej)- n(n - e; + e1)q(n - e; + e1, n)} 
i-Q 

and (2.5) completes the proof. 

Remark 2.2 
1. The structure of the transition rates (2.4) is similar to the structure used in the 

literature on product-form queueing networks (Boucherie and van Dijk [3], Serfozo [l OJ) 

(2.7) 

The main difference is the dependence on n + e1 in (2.4) and on n - e; in (2. 7). This 
difference is related to the structure of the local balance equations. From (2.3) and the 
proof of Theorem 2.1 we see that </>(n + ei) appears as a constant for these local balance 
equations, whereas from (2.2) we similarly see that y(n - e;) is a constant for this set of 
local balance equations. This is the explanation of the choice (2.4) for the transition 
rates. 

2. The backward traffic equations have a structure related to the backward equations 
for the single customer process. This is best illustrated when we consider the state
independent routing version of (2.5): 

N 

(2.8) L {P;A - Pj;d;} = 0, do= 1. 
i-0 

The standard traffic equations for a queueing network with routing probabilities P;i are 

(2-9) 
N 

L { C; P;j - ci Pi;} = 0, 
J-0 

Co= 1. 

The difference between (2.8) and (2.9) is that d; appears on the other side of the routing 
probabilities. Note that (2.8) does not correspond to the backward equations of the 
single-customer process. The backward equations are L.f_0 { Pj;d; - p1A} = 0. There
fore, in contrast with the results for product-form queueing networks where the existence 
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of a solution to the traffic equations (2.9) follows from the Perron-Frobenius theorem, 
for the backward process a solution to (2.8) is not guaranteed. In Section 3.1 we present 
special cases in which a solution to (2.8) exists. In particular, in Section 3.1 we transform 
(2.8) into an equation of the form (2.9) with a transformation of the routing matrix Pu 
into a probability matrix flu. In Section 3.2 we present blocking results that are such that 
the solution for (2.8) is a solution for (2.5) too. 

3. As a consequence of the form of the transition rates (2.4), and the traffic equations 
(2.5), the equilibrium distribution has a product form similar to the standard product 
form for queueing networks. The ideas behind the product form (2.6) are different: it is 
derived on the basis of the backward local balance equations. As discussed below, this 
allows us to introduce capacity constraints at the stations without additional conditions 
on the transition structure. In particular, backward local balance allows us to derive 
product-form results for heavily loaded networks without constraints on the transition 
rates such as blocking protocols. Related results for heavily loaded networks are 
obtained by Gordon and Newell [6] and Hordijk and van Dijk [7]. In these references 
networks with transition rates (2. 7) are analysed via methods related to backward local 
balance as defined above. Since the transition rates (2. 7) are not compatible with 
backward local balance, the networks of these references are allowed to contain single 
server queues only. 

3. Examples and extensions 

In contrast with standard product-form queueing networks, where a positive solution 
for the traffic equations (2.9) is guaranteed by the Perron-Frobenius theorem, the 
backward traffic equations (2.8) will not always have a positive solution. Section 3.1 
presents some special cases in which a solution for the backward traffic equations is 
guaranteed. In Section 3.2 we will investigate the behaviour of the state-dependent 
traffic equations at the boundary of the state space, and in Section 3.3 we generalise the 
result of Theorem 2.1 to state-dependent solutions of the traffic equations. Finally, in 
Section 3.4 we use the product-form results of Gordon and Newell [6] and Hordijk and 
van Dijk [7] for heavily loaded networks of single-server queues to illustrate our results. 

3.1. State-independent routing. Consider the state-independent backward traffic 
equations (2.8), a special case of (2.5) in which the state is removed from the routing 
function. A solution for (2.8) will in general not satisfy (2.5) because of conditions 
imposed by the boundary of the state space S, but in most applications a solution of(2.8) 
is the basis of a solution for (2.5). This is discussed in Section 3.2. 

If P =(Pu) is doubly stochastic, that is 

N 

L Pii = 1 and 
j-0 

N 

.L Pij = l, 
i-0 

then the backward traffic equations are equivalent to the backward equations for the 
single customer Markov chain. Thus if this Markov chain is irreducible the Perron-
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Frobenius theorem guarantees a unique solution d; = 1 fot all i. This is not a very 
interesting case. 

It is not assumed that the coefficients pij figuring in the backward traffic equations are 
routing probabilities, that is 2f_0 pij = h; oft 1 is possible. The following choices, each 

with P;1 the routing probabilities for a single-customer Markov chain, exploit the 
possibility that h; ¥= 1 is allowed. In these examples the routing function is chosen such 

that the Perron-Frobenius theorem for the single customer process can be used to 
guarantee a unique solution for (2.8). 

Let { e; }f-1 be the unique solution to 2f=o { e; P;1 - e1 p1i} = 0, Co = 1, then 

if Pij =eAPij we have d; =lie;, 

if 
_2 

Pij = C1 P1; we have d; =lie;, 

if Pii =(eJe1)fJij we have d; =e;, 

if P;1 = P1; we have d; = e;, 

and in each of these cases { d; }f_ 1 is unique. The first two cases correspond to the Markov 
chain X describing customers, whereas the last two cases correspond to X describing 
vacancies. A discussion on this interpretation can be found in Boucherie [2]. 

Finally, if the routing probabilities Pu are such that a solution for the detailed balance 

equations e;J)ii = e1 fJ;; exists, then for pij = Pii we have that di = llei satisfies Pii4 = P1;d;. 
The above examples make use of the Perron-Frobenius theorem for a related Markov 

chain with routing probabilities Pu· In general we have to solve (2.8) to see whether or 
not a positive solution exists. 

To provide some insight in the solutions presented above, assume that the solutions 

for (2.8) presented above satisfy (2.5) too. Consider the cases Pi~ = e;e1 Pii and p~ = 
(e;le1) Pu discussed above. The transition rates (2.4) corresponding to these cases are 

1 ef>(n + ej) _ _ 2 ef>(n + ej) _ 
q(n,n-e;+e1)= e;c1p;1 , q(n,n-e;+e1)= (t;l0)Pu, 

l/f(n) ljl(n) 

and X has a unique equilibrium distribution 

N N 
n 1(n) = BlfJ(n) IT cZ' and n2(n) = Bljl(n) II (Ilcdn>. 

k-1 k-1 

Observe that n 1 satisfies standard local balance (2.2) for the process with transition rates 
(2. 7), and that n 1 therefore is the equilibrium distribution for the process with transition 
rates (2. 7) too. In contrast, we cannot select functions rp, 1f1, and y such that rc2 satisfies 
standard local balance (2.2). Therefore, the product form solutions for the backward 
local balance equations (2.3) found in Theorem 2.1 are in general different from the 
product form results based on standard local balance (2.2). 

3.2. Blocking protocols (for open queueing networks). In this section we discuss the 
behaviour of X at boundaries. In particular, blocking protocols are presented that 
preserve the product form equilibrium distribution. As will be shown, due to the 
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structure of the local balance equations, upper limit blocking corresponding to capacity 
constraints can be introduced without restrictions, but lower bounds require some 
assumptions on the Pq. 

For simplicity, assume that Pu(n + ej) is state-independent, except for states near the 
boundary of S, that is for all n, j such that n + ej ES 

Pu(n + ej) = Pubu(n + ej), 

where bq(n + ei) = 1 away from the boundary in a way presented below, and piJ is such 
that a positive solution exists for (2.8). 

If (2.8) admits a solution for Pu~ - Pi;d; = 0, then for all i, j, n + l!_j we may set 
bu(n + ei) = I. This result is similar to the result for reversible processes based on local 
balance (2.2). 

Consider the case in which a 'reversible' solution for (2.8) does not exist. In Figure 1 
for states in the interior of S global balance and its decomposition into local balance (2.3) 
is depicted for a two-queue system. For comparison, the decomposition into local 
balance (2.2) is depicted too. 

Global balance at n j=O j=l j=2 

Backward local balance (2.3) at n 

i=O i = 1 i=2 

Standard local balance (2.2) at n 

Figure I. Decomposition of global balance 

For a product form equilibrium distribution to be a solution of (2.2) it is known that 
special blocking protocols must be used to change certain transitions near the boundary 
of S. For example, the stop protocol also referred to as communication blocking stops all 
queues except for a saturated queue to preserve product form (cf. Van Dijk [4]). A 
similar protocol is discussed below for (2.3). 
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Consider the two-queue system of Figure 1. When we introduce a capacity constraint, 
say n2 ~ N2, this results in an upper bound for the state space. As a consequence, for n 
such that n2 = N2 transitions n - n + e2 and n - n - e1 + e2 cannot occur. This 
~orresponds to stopping oflocal balance for j = 2, but local balance for j = 0 and j = 1 is 
tiot affected by this bound. Therefore, if {d;};2_ 1 is a solution for (2.8), then {d;};2_, is a 
;olution for (2.3) at the upper bound too. The same holds true for a queueing network of 
7V queues: 

If{d;}f_. 1 is a solution for (2.8) then { d; }f_ 1 is also a solutionfor(2.3) at 
an upper bound without any restrictions on the transition rates. 

Hben we introduce the same upper bound n2 ~ N2 for local balance (2.2), from Figure l 
¥e see that local balance for i = 2 is not affected, but that the upwards transitions for 
= 0 and i = 1 cannot occur. Therefore, for the solution { c; };2_ 1 for (2.9) to be a solution 

or (2.2) we must stop local balance for i = 0 and i = 1 at the boundary n2 = N2• 

This implies that local balance (2.3) is more suited for queueing 
networks with capacity constraints. 

What we have gained at the upper bounds by using (2.3) instead of (2.2) is lost at the 
:>wer bounds. For queueing networks for which the equilibrium distribution satisfies 
2.2) it is well known that a lower bound corresponding to zero customers at the queues 
an be introduced without any restrictions on the process. This lower bound is a natural 
estriction on the network. For queueing networks for which the equilibrium distribu
ton is found as a solution for (2.3) we have to introduce a blocking protocol to preserve 
1e solution to (2.8). This can immediately be seen from Figure I. If n2 = 0 then 
~ansitions n ...... n - e2 and n - n + e1 - e2 can no longer occur. Therefore local balance 
>r j = 0 andj = 1 must be stopped, whereas local balance for j = 2 is not affected. This 
locking protocol at the boundary n2 = 0 can easily be formulated for queueing networks 
ith N stations and states: 

If a queue is empty only those transitions in which a customer moves to 
the empty queue are allowed. 

he blocking protocol corresponds to a service system in which when a queue is empty 
lly a smart customer that selects the empty queue for its next service will be served, but 
m also be interpreted as a protocol that applies a load balancing procedure, balancing 
.e load over the queues of the network. 
From the above discussion we obtain that we have two blocking protocols that 
·eserve product form. The first protocol (communication blocking) changes the behav
ur of the process at upper boundaries, and the second protocol (smart customer 
ocking) changes the behaviour of the process at lower boundaries. When a process 
:i.ys close to a lower boundary with high probability (light traffic) the communication 
ocking protocol may be used, and we may use smart customer blocking when the 
ocess stays away from its lower boundaries with high probability (heavy traffic). In 
ction 3.4 below we consider the case in which the process stays away from its lower 
1undaries with probability 1. 
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3.3. General traffic equations. The result of Section 2 can easily be generalised to 
general state-dependent solutions for the backward' state-dependent traffic equations 
(2.5). This gives the analogue of the general state-dependent traffic equations for 
queueing networks based on (2.2), as can for example be seen from Theorem 5.1 on p. 
137 of Van Dijk [4]. The proof of the theorem is similar to the proof of Theorem 2.1 and 
is therefore omitted. 

Theorem 3.1. Assume that a positive function H(n) exists that satisfies 

(3.1) 
N 

L {H(n)pii(n + ej)- H(n - e; + ej)Pj;(n + ej)} = 0, 
i-0 

for all n ES, j = 0, · · ·, N for which </>(_n + ej) > 0. Then X has a unique equilibrium 
distribution 

n(n) = Bl/f(n)H(n), nES, 

where B- 1 = z:.es lfl(n)H(n) < oo, and n satisfies backward local balance (2.3). 

The above theorem generalises Theorem 2.1 in two ways. Firstly, the solution for the 
traffic equations is a state-dependent function. Secondly, (3.l) is required only if 
rp(n + ej) > 0. Observe that the above theorem establishes a decomposition of the 
equilibrium distribution in a service part l/f( ·) and a routing part H( · ), and that these 
parts are linked via the normalisation constant B only. 

3.4. Heavily loaded networks. When we introduce a capacity constraint at each of 
the stations of a closed queueing network, in general product forms cannot be derived. 
As will be shown below, in lightly and heavily loaded systems product forms can still be 
obtained. 

Let S = {n: 0 ~ n; ~ M; < oo }, that is assume that at most M; customers are allowed 
at queue i, i = 1, · · ·, N. Let Mbe the number of customers in the network and assume 
that all stations are single-server queues. The transition rates for this network are 

q(n, n -e; + ej) = µ;pij 1(n; >0, nj <~). 

If M ~ min;{M;}, then blocking of customers does not occur, and the equilibrium 
distribution is of product form: 

N 

n(n) = B II (c/µ;)"1 , 

i-1 

where {c;}f_ 1 is a solution of the standard traffic equations (2.9), a result that can be 
concluded from the standard local balance equations (2.2). 

Now assume that M;;;;; Z:f_ 1 M; - min;{M;}; that is, assume that the network is 
heavily loaded such that no queue can empty. From Section 3.2 we obtain that the 
backward local balance equations do not impose restrictions on the process. Let { d; }f-1 
be a solution of the backward traffic equations (2.8) for the process with routing function 
µjpij: 
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N 
(3.2) L {µ;P;jdj - µjpjidd = 0, j= I,·· ·,N. 

i-l 

Then 
N 

n(n) = B IT (lld;)n,, 
;-1 

nES, (M ~ f M; -min {M;}), 
i-1 I 

is the equilibrium distribution at S, which can be concluded from Theorem 2.1 and 
backward local balance (2_.3). 

Observe that n(n)=Bnf'_ 1 (lid;)"• does not satisfy (2.2). Due to blocking of cus
tomers at the stations a product form cannot be obtained from standard product form 
theory, but can easily be concluded from Theorem 2.1. 

When the network is cyclic we have P;,;+ 1 = I, and d; = 11µ;_ 1, i = 2, · · ·, N, d1 = 
llµN, is the solution of (3.2). The equilibrium distribution is n(n) = B nf_ 1 µ;"•+•,where 

nN+1 ~ n1. This result is obtained by Gordon and Newell [6] via job-hole duality 
arguments, and by Hordijk and van Dijk [7]. Observe that in both these references the 
results are restricted to networks of single-server queues. Therefore, Theorem 2.1 
~eneralises the results of these references to queueing networks with arbitrary routing 
md more general service requirements. 

t. Discussion 

This paper has presented a new form of local balance for queueing networks and the 
:orresponding product-form results. These product-form results have a structure closely 
·elated to standard product-form results. A major difference is the behaviour at 
>aundaries of the state space. As is shown, the product-form queueing networks 
ntroduced in this paper allow us to introduce capacity constraints at the queues without 
:onditions on the transition rates. Smart customer blocking is introduced to preserve 
ocal balance at lower boundaries of the state space. 
It is shown that product-form results for heavily loaded queueing networks can be 

1btained from b.ackward local balance. These results extend the product-form results 
1btained by Gordon and Newell [6] for heavily loaded cyclic networks to networks with 
:rbitrary topology under heavy load. 

The product-form results introduced here may allow adequate approximations for 
1ueueing networks in heavy traffic, as can be seen from the smart customer blocking 
1rotocol at lower boundaries and the results related to job-hole duality. Additional 
esearch is necessary to investigate this possibility in detail. Furthermore, product-form 
esults for queueing networks and approximation schemes are available based on 
tandard local balance (2.2). Similar results seem to be possible based on backward local 
,alance (2.3). 
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