
Optimal Quality of Service Control in
Communication Systems

© J.W. Bosman, Amsterdam, 2014.

The research in this dissertation has been carried out in the context of the IOP
GenCom project Service Optimization and Quality (SeQual), which is supported by
the Dutch Ministry of Economic Affairs, Agriculture and Innovation via its agency
Agentschap NL.

All rights reserved. No part of this publication may be reproduced in any form or
by any electronic or mechanical means including information storage and retrieval
systems without permission in writing from the author.

Printed by Ipskamp Drukkers, The Netherlands.

ISBN: 978-94-6259-029-8

VRIJE UNIVERSITEIT

Optimal Quality of Service Control in
Communication Systems

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus
prof.dr. F.A. van der Duyn Schouten,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de Faculteit der Exacte Wetenschappen
op woensdag 12 februari 2014 om 11.45 uur

in de aula van de universiteit,
De Boelelaan 1105

door

Joost Willem Bosman

geboren te Amsterdam

promotoren: prof.dr. R.D. van der Mei

prof.dr. R. Núñez-Queija

Dankwoord (Acknowledgments)

Het moment is daar, voor u ligt het werk van vier voorbijgevlogen jaren.

Dit werk was niet mogelijk geweest zonder mijn promotoren Rob van der Mei en
Sindo Núñez Queija. Rob, jouw tomeloze emergie en optimisme heeft me geïnspi-
reerd en veel geleerd. Je hebt me binnengehaald als stagair en me enthousiast ge-
maakt voor dit promotieonderzoek. Sindo, mij blijven de vele waardevolle midda-
gen bij die we hebben besteed aan het kraken van moeilijke problemen. Ook wil
ik de leden van leescommissie: Mark Squillante, Hans van den Berg, Sandjai Bhulai,
Michel Mandjes en Erik Meeuwissen voor de grondige wijze waarop zij mijn proef-
schrift gereviewd hebben.

Ik wil Gerard Hoekstra en Sandjai Bhulai bedanken voor de vruchtbare samenwer-
king, die loopt vanaf het moment dat ik als stagair bij het CWI begon tot aan onze
laatste publicatie die in deze dissertatie is verwerkt. Veel collega's hebben mij van
waardevolle, wetenschappelijke input voorzien. In het bijzonder wil ik daarvoor De-
meter Kiss, Yoni Nazarathy en Florian Simatos bedanken. Bert Zwart wil ik bedanken
voor zijn inspiratie op zowel wetenschappenlijk als sportief gebied.

Ook ben ik dank verschuldigd aan Hans van den Berg, Erik Meeuwissen en Miroslav
Živković voor een prettige samenwerking met TNO, waarvan de resultaten in deze
dissertatie zijn verwerkt.

Het bezoek aan congressen heeft mij wereldwijd naar een aantal schitterende loca-
ties gebracht. Tijdens mijn eerste congres in Toledo, vlak bij Madrid, werd de sfeer
versterkt door de WK wedstrijden van het Nederlands elftal. Verder heb ik tijdelijk
de winter kunnen vermijden door na een congres in Miami door Florida rond te trek-
ken met als grote finale Key-West. Eén van de congressen heeft mij zelfs in Japan
gebracht, waar de reis begon op een congres in Fukuoka en eindigde in een rondreis
met de Shinkansen (hoge snelheidstreinen).

Goede herinneringen heb ik aan mijn kamergenoten Chrétien Verhoef en Arnoud
den Boer. Ik dank Chrétien voor de avonturen die we beleefd hebben. Arnoud, be-
dankt voor je wetenschappelijke en filosofische gesprekken. Na de verbouwing van
het CWI verhuisde ik naar de kamer van Jan-Pieter Dorsman, die een zeer bedreven
wetenschapper is. Dat was ook goed te merken als de oplossing van een vraag-
stuk hem niet zinde ;). Een bron van goede wetenschap is een omgeving waar je je
gemakkelijk voelt. Onze groep bestaat uit veel jonge wetenschappers die het goed
met elkaar kunnen vinden. De gezamenlijke activiteiten bleven niet beperkt binnen
de activiteitenruimte van het CWI gebouw. Zo maakten we mooie hardlooprondes
langs het Flevopark en door Diemen. Bovendien gingen we regelmatig samen wat

vi Acknowledgements

drinken. Wat dat betreft heb ik goede herinneringen aan collega's: Martijn Onder-
water, Martin van Buuren (onze vrolijke noot), Sihan Ding, Pieter van den Berg en de
vele andere collega's in de Stochastics groep.

Op donderdagen is een groot deel van onze afdeling te vinden bij de OBP groep op
de Vrije Universiteit. Ik wil Ger Koole bedanken voor het bieden van gastvrijheid op
de VU en de mooie tochten die we hebben gemaakt door de Alpen.

In the winter of 2012 a research visit brought me to the department of
Mark Squillante at the IBM Thomas J. Watson Research Center. The visit started
very adventurous as my flight was amongst the first flights to New York after hur-
ricane Sandy. Immediately when I started my research visit, I was involved in a
challenging project together with Mayank Sharma, Yingdong Lu. Mark, thank you
for the inspiring time that I spent at IBM.

Tenslotte wil ik mijn ouders bedanken. Jullie ambitie, zorg en geduld heeft mij geïn-
spireerd om mij te ontwikkelen tot wie ik nu ben.

Joost Bosman
Amsterdam, 2014

Table of Contents

1 Introduction 1
1.1 Goals . 1
1.2 Challenges . 2
1.3 Overview of the dissertation . 4

2 A Fluid Model Analysis of Streaming Media in the Presence of Time-Varying
Bandwidth 7
2.1 Background . 8
2.2 Model . 11
2.3 Analysis . 13
2.4 Dimensioning the initial buffer size . 23
2.5 Numerical experiments . 23
2.6 Discussion . 27

3 A Spectral Theory Approach for Extreme Value Analysis in a Tandem of Fluid
Queues 29
3.1 Analysis . 30
3.2 Numerical experiments . 46
3.3 Discussion . 50

4 Efficient Traffic Splitting over Parallel Wireless Networks with Partial Infor-
mation 57
4.1 Background . 57
4.2 Model . 60
4.3 Splitting algorithms . 62
4.4 Numerical experiments . 67
4.5 Discussion . 73

5 Stochastic Optimal Control for a General Class of Dynamic Resource Alloca-
tion Problems 75
5.1 Background . 75
5.2 Model . 79
5.3 Optimal control policy . 83
5.4 Numerical experiments . 87
5.5 Discussion . 94

6 Run-time Optimization of Composite Web Services with Response Time
Commitments 107
6.1 Background . 107

viii Table of Contents

6.2 Motivating example . 110
6.3 Model . 111
6.4 Algorithm description . 115
6.5 Numerical experiments . 118
6.6 Discussion . 135

7 Autonomous Runtime QoS Control for Composite Services in SOA 141
7.1 Background . 141
7.2 Model . 143
7.3 Closed loop control . 144
7.4 Algorithms . 146
7.5 Experimental setup . 151
7.6 Results . 153
7.7 Discussion . 159

Publications of the author 161

Summary 163

Samenvatting (Dutch Summary) 167

Bibliography 171

Introduction 1
In a globally connected world, on-line services essentially operate in a 24/7 econ-
omy. The emergence of high-speed Internet, mobile communications and smart
devices like smart phones and tablets provide people access to all kinds of services,
anytime, anywhere. Moreover, both private and public organizations tend to mi-
grate their administrative services to on-line environments. The Dutch government
for example introduced an on-line identity service for governmental services to file
tax returns, social security applications and enrollments for education. As a con-
sequence, our modern society has become largely dependent on the availability of
these services, while at any time the slightest disruptions in service are noticed and
may have a huge impact on user experience and reputation.

At the same time, the structure of ICT systems has become more complex. In the
last few years, we are witnessing a paradigm shift from the traditional information-
oriented Internet into an Internet of Services (IoS), catalyzed by concepts like Service
Oriented Architectures (SOA), Software as a Service, Platform as a Service, Infras-
tructure as a Service andCloudComputing. This has opened up virtually unbounded
possibilities for the creation of new and innovative services that facilitate business
processes and improve the quality of life. A fundamental characteristic of the IoS is
that new services may combine and integrate functionalities of other services. This
often leads to complex and large chains of services offered by a multitude of third
parties, each with its own business incentives.

Due to growing complexity and increasing dependence on services, reliability has
become an issue of great importance. Providing reliable (i.e., available, trustworthy)
and robust (i.e., resistant against system failures, cyber attacks, high-load and over-
load situations, flash crowds) ICT services has become crucial for our economy at
large. These developments have raised the need for means to control the quality of
complex large-scale ICT chains.

1.1 Goals

In current practice, quality for composite services is usually controlled on an ad-hoc
basis, while the consequences of failures in service chains are often not well under-
stood. A main concern is that, although such an approach might work for small
chains, it will become unfeasible for future complex global-scale service chains.
This raises the need for mechanisms that enable efficient usage of available shared

2 Chapter 1: Introduction

resources while preserving the desired Quality of Service (QoS) as perceived by the
end user.

There are many optimization mechanisms available that could accomplish this. Ex-
amples of such mechanisms are response-time driven dynamic service composi-
tion, load balancing across parallel wireless networks, and play-out buffering in
streaming media. The problem is that in general these mechanisms are not suit-
ably tailored for the current and evolving information and communication systems.
The controls and thresholds are often based on simple improvised rules. As a con-
sequence, the enormous potential of QoS mechanisms to enhance service quality
remains largely unexploited.

The main challenge faced in this thesis is how to effectively use QoS mechanisms
for large-scale complex ICT systems with shared resources. To this end, we de-
velop, analyze, optimize and evaluate quantitative models that capture the dynam-
ics of QoS-control mechanisms and their implications on the user-perceived QoS.
In doing so, our analyses ultimately lead to the development of scalable and robust
algorithms, decision tables, and rules-of-thumb for the optimal use of QoS-control
mechanisms.

1.2 Challenges

The development of efficient QoSmechanisms is complicated by the omnipresence
of the phenomenon of uncertainty. Stochastic models are instrumental to capture
such uncertainties and provide a basis for educated control of systems with uncer-
tainty. One may distinguish the following three types of uncertainty.

Uncertainty about demand for resources. Most demand is driven by user behav-
ior. We characterize three different time scales. On the timescale of years, develop-
ments like the emergence of cloud based services, and developments in multimedia
drive an overall growth of demand over time. A key factor here is that bandwidth
available for users is growing due to the evolution of new technologies e.g., Digi-
tal Subscriber Line (DSL), and third and fourth generation mobile networks. These
factors contribute to a global growth, both in frequency and size of demand for re-
sources. In medium long time scale (a few years or smaller), seasonality effects kick
in, for example yearly, monthly, weekly, daily or even hourly patterns. Across small
time scales (minutes, seconds or smaller), fluctuations are more unpredictable as
effects like session duration behavior becomes visible.

It is important to note that all of the above fits within the notion of predictable user
behavior. However, there are also many factors that are inherently unpredictable
but may have a huge impact on resource availability (cyber attacks, flash crowds).

1.2 Challenges 3

For this purpose, mechanisms are required that can respond to this unpredictable
behavior and provide robustness to threats and undesired behavior.

Variability in resource availability (shared resources). Various factors contribute to
variability in resource availability such as resource sharing, network or system fail-
ure, chaotic behavior, and temporary overload. For a majority of Internet resources,
capacity is shared among the different users. As a result, in the perspective of the
users, the availability of resource capacity varies. The level at which this is disturb-
ing is determined by the elasticity of the service requirement. Elasticity is the level
at which the data flow of a service can be slowed down or accelerated without
impacting the perceived end result. For example, a video stream is barely elastic
as eventually, when the available bandwidth decreases, the video stream will be
distorted or play-out will stall. File transfers on the other hand, are elastic. Elas-
ticity determines whether there is a need for minimal resource availability during
the service. When demand exceeds the capacity for a short period of time, tem-
porary overload may occur. In this sense, temporary overload is closely related to
variability in demand for resources.

Not only shared demand but also the occurrence of chaotic behavior, network fail-
ure or system failure contribute to variability in resource availability. Chaotic be-
havior may for example be caused by unexpected interactions between systems,
often due to misconfiguration. In worst cases misconfiguration causes network or
system failures. To exemplify this, one could consider large cloud services offered
by parties like Google or Amazon. In these services there is a need to dispatch de-
mand according to geographic features of the requests. These demand volumes
are so high that individual systems cannot handle all demand. In these cases, any
configuration error has enormous consequences.

Limited information. Many existing models assume that the stochastic behavior of
demand and resources is known. In practice, however this is rarely the case. Typ-
ically external parties at best have limited information about the internal behavior
of a system. An issue of importance here is to what extent information is available
to control models regarding the processes running in the system. Also external fac-
tors impact the challenge of limited information from system behavior. Systems
possibly operate in changing environments driven by uncertain, unpredictable fac-
tors. To respond in a fashionable way, mechanisms are required that can adapt to
these changes. The key challenge is partial observability. In partially observable
systems, the stochastic nature and corresponding behavior of the (underlying) pro-
cesses cannot be fully observed. For example one may only observe aggregated
information about the system (x +y instead of x and y), or information may only be-
comes available at course grained time intervals. In this setting, partial information
approaches prove to be useful. Partial information approaches tend to recover as

4 Chapter 1: Introduction

much knowledge as possible about the unobservable stochastic nature of a system
by using the information that can derived from past observations. In other words,
not only the pure observations are used but also the order and age (in time units) of
the observations may be used.

1.3 Overview of the dissertation

In Chapter 2 we consider streaming media applications in an environment with
shared resources. The shared nature of these resources causes fluctuations in the
available bandwidth. Specifically, we study a tandem model consisting of two fluid
queues. The first fluid queue models congestion due to resource sharing. Fluctua-
tions are modeled by a Continuous Time Markov Chain (CTMC). The second buffer
represents the play-out buffer.

We determine, by using extreme value theory, a proper choice for the initial play-
out-buffer level, providing a given probabilistic guarantee on undisturbed playback.
Our analysis is based on a result for the distribution of the maximum buffer level
during a busy period. In this chapter we focus our analysis on the case a two-state
CTMC. For this model we derive explicit expressions in terms of its parameters.

In Chapter 3we extend the results of Chapter 2 to a CTMCwith arbitrary number of
states. The complication here is that we need asymptotic properties of the inverse
over a partition from a matrix exponential that represents the maximum level in a
busy period. For the two state case this can be explicitly determined. In general
however, this will lead to an intractable expression.

We are able to analyze the general case CTMC model. Using a spectral theory anal-
ysis approach, we examine the asymptotic properties and derive a characterization
of the parameters of the asymptotic extreme value distribution. Using the results of
Chapter 2 this leads to a proper choice for the initial play-out-buffer level for case
with a multiple state CTMC.

In Chapter 4 we consider routing of traffic from stations with concurrent (parallel)
access to multiple wireless networks. Multi-path communication solutions provide
a promising means to improve network performance in areas covered by multiple
wireless access networks. To this end, we model the wireless networks by proces-
sor sharing nodes. By using the assumption of Poisson arrivals the system,wemodel
the numbers of flows through the networks by a CTMC. Our goal is to minimize the
expected transfer time of elastic data traffic by smartly dispatching the jobs to the
networks, based on partial information about the numbers of foreground and back-
ground jobs in each of the nodes. Such a smart dispatching strategy is called a (deci-

1.3 Overview of the dissertation 5

sion) policy. In the case of full state information, the optimal dispatching policy can
be derived via standardMDP-techniques, but for models with partial information an
optimal solution is hard to obtain. An important requirement is that the routing algo-
rithm is efficient, yet simple, easy-to-implement, scalable in the number of parallel
networks and robust against changes in the parameter settings.

We propose a simple index rule for splitting traffic streams based on partial infor-
mation, and benchmark the results against the optimal MDP solution in the case of
full state information. We demonstrate by extensive simulations with real networks
that our method performs extremely well under practical circumstances for a wide
range of realistic parameter settings.

In Chapter 5 we consider a general class of dynamic resource allocation problems
within a stochastic optimal control framework. This class of problems arises in a
wide variety of applications, each of which intrinsically involves resources of differ-
ent types and demandwith uncertainty and/or variability. Our goal is to dynamically
allocate capacity for each resource type in order to serve the uncertain/variable de-
mand and maximize the expected net-benefit based on the rewards and costs as-
sociated with the different resources. X. Gao, Y. Lu, M. Sharma and M. Squillante
derived the optimal control policy within a singular control setting, which includes
easily implementable algorithms for governing the dynamic adjustments to resource
allocation capacities over time. The control setting uses a financial mathematics ap-
proach that hedges against future risks associatedwith resource allocation decisions
and uncertain demand.

We have benchmarked this policy against other methods in the literature in a re-
alistic setting. Accordingly, we developed a simulation environment in which ex-
periments are constructed to demonstrate that this control policy is working ex-
tremely well. To make the setting more realistic we analyze Internet-traffic traces
and fit these to a demand model that is used in the simulation experiments. Numer-
ical experiments investigate various issues of both theoretical and practical interest,
quantifying the significant benefits of our approach over alternative optimization ap-
proaches.

In Chapter 6 we consider dynamic compositions of Web-services offered by third
parties. We represent the composite Web-service as a (sequential) workflow of
tasks. For each task within this workflow, a number of third-party service alterna-
tives may be available. We assume that the third-party service (task) alternatives
offer the same functionality at different price-quality levels. The execution of the
workflow is controlled by an orchestrator that is programmed with a decision strat-
egy. Service composition strategies can be either static, (i.e., according to a fixed set
of decisions) or dynamic, (i.e., based on state information of theworkflow). Our goal

6 Chapter 1: Introduction

is to find a dynamic strategy that maximizes the expected benefit for the composite
service providers subject to an end-to-end response time objective.

We propose a dynamic programming approach for the optimization of the dynamic
service selection strategy. To this end, we use the concept of response time bud-
get. The response time budget is the time left, during the workflow execution, until
the response time objective is violated. We conduct an extensive numerical study
on a wide range of parameter values. The results demonstrate a significant gain in
expected benefits while using our dynamic approach, just by simply using an easy
implementable, pre-calculated lookup-table.

In Chapter 7we relax the assumptions of Chapter 6 and suppose that the response
time distributions are unknown and have to be obtained empirically from response
time observations during the execution of requests. Our objective is to obtain a
dynamic control mechanism that is robust against changes in the environment it is
operating in. Therefore we consider the situation where the response time distribu-
tions are changing over time. Moreover we consider the case where services break
down at random and generate no response at all.

We propose a runtime control mechanism that dynamically optimizes service com-
position in real time by learning and adapting to changes in third party service re-
sponse time behaviors. Accordingly, we adopted statistical tests to our setting. For
demonstration of the usefulness of our approach we have implemented our con-
trol mechanism in a simulation. Moreover, we evaluate the influence of the control
parameter settings on the effectiveness of the control mechanism.

A Fluid Model Analysis of Streaming Media in

the Presence of Time-Varying Bandwidth 2
Over the past fewyears, the tremendous popularity of smartmobile enddevices and
services (like YouTube) has boosted the demand for streaming media applications
offered via the Internet. One of the key requirements for the success of providers
of such services is the ability to deliver services at competitive price-quality ratios.
However, the Internet provides no more than best-effort service quality. Therefore,
the packet streams generated by streamingmedia applications are distorted by fluc-
tuations in the available bandwidth on the Internet, which may be significant over
the duration of a typical streaming application (whose duration may range from a
few minutes to tens of minutes). To cope with these distortions, play-out buffers
temporarily store packets so as to reproduce the signal with a fixed delay offset
(see Figure 2.1).

... ..IP Network. φ(t). ..Play-out buffer...
Rplay.

O(t)
.

Streaming video
with rate Rplay

.

X (t): process
representing
packets on flight

.

φ(t): Speed
determined by
CTMC

.

Y (t): Play-out
buffer process

.

Playback
process
V (t)

. V (t)

Figure 2.1: Streaming video through an IP-network.

Figure 2.1 clarifies the connection of the model described in Figure 2.2 with the ap-
plication to streaming over an unreliable medium. For smooth reproduction of the
packet stream the play-out buffer should not empty, as the stream will stall when-
ever packets do not arrive in time. For that reason, it is beneficial to start the play-
out of a streamingmedia application onlywhen the play-out buffer content exceeds
some safety threshold value. In this context, our main goal is to determine a proper
choice for the initial play-out-buffer level, providing a given probabilistic guaran-
tee on undisturbed playback. Our objective in this chapter is to contribute to the
understanding of the performance implications of the play-out-buffer settings for
streaming applications over unreliable networks such as the Internet, by relating

2This chapter is based on [22].

8
Chapter 2: A Fluid Model Analysis of Streaming Media in the Presence of Time-
Varying Bandwidth

the proper buffer level to network variability parameters. Congestion is modeled by
a fluid queue with fixed input rate and output rate determined by a stochastic pro-
cess that is modeled as a Continuous Time Markov Chain (CTMC). This CTMC repre-
sents the IP network dynamics that causes congestion and fluctuations in available
bandwidth. If this model is applied to a real network, the CTMC parameters must
be estimated in order to capture the network behavior. Our approach relies on a
queuing-theoretical fluid model analysis.

The precise object of study in this chapter is a fluid model for constant bit-rate
streaming media applications in the presence of bandwidth that varies over time
(see Remark 2.6.1 for use of the model for variable bit rate applications). Motivated
from Figure 2.1, we consider a tandem model consisting of two fluid queues. The
first queue is a Markov Modulated fluid queue that models the congestion in the net-
work caused by bandwidth fluctuations. The second buffer represents the play-out
buffer.

2.1 Background

Buffer dimensioning for streaming video over variable rate networks has already re-
ceived considerable attention in literature over the past two decades. Most work
focused on balancing play-out buffer overflow and underrun probabilities, and de-
velop dimensioning rules for the play-out buffer at the receiver end using analytic
models. A particular large collection of work emerged in the 1990s. For example
Bléfari-Melazzi et al. [15], and Kontovassilis et al. [71] determine the probability of
overflow at the play-out buffer. This metric is particularly relevant for interactive
video with stringent delay requirements, but less so for non-interactive stream-
ing. More recently, play-out buffer engineering regained interest in the context
of Voice over IP (VoIP), with popular examples such as Skype and Google Talk in
Wu et al. [108]. Again, VoIP play-out buffer dimensioning must balance between
conversational interactivity and speech quality. Proper dimensioning of the play-
out buffer is known to have a decisive impact on conversation quality [108]. The
real time interactive character of VoIP, however, poses again stringent restrictions
on the buffer size, making the trade-off very different from non-interactive (video)
streaming, which is the objective of this chapter. A third such example is in the
context of closed-loop control for wireless streaming: Dua and Ambos [41], for ex-
ample, investigate dynamic rules for play-out buffer management to avoid both the
overflow of the play-out buffer and stalling of the streaming application. The setting
studied in Kim et al. [70] is closest in nature to that in this chapter. Their approach,
however, builds on a ``square root'' formula to approximate the throughput of TCP
and the stalling probability is obtained through a fixed-point solution. Somewhat
tangent to the above mentioned literature, there are works that concentrate on dy-

2.1 Background 9

namic deterministic optimization, e.g. Tabrizi et al. [84], and Zhang et al. [115]. In our
model, network unreliability is captured by a stochastic (Markovian) process and
buffer dimensioning is tailored to the variability of the network.

Despite the large volume of literature devoted to play-out buffer dimensioning, the
problem is still highly timely because of tremendous popularity of video streaming
services such as YouTube. This popularity is catalyzed by two main developments.
One is the continuing rise of streaming media usage on mobile devices, who suffer
fromhighly unpredictable channel conditions, making an accurate buffer dimension-
ing rule crucial for viability of such services. Cisco's global mobile data traffic fore-
casts predict that mobile videowill make up for 66% of all mobile data traffic in 2017,
amounting to an approximate monthly 7 Exabytes of mobile video worldwide, from
less than 1 Exabyte in 2013 [37]. Second, themarket for video traffic over the Internet
shows tremendous growth as well, in terms of numbers of users as well as in traffic
volume. Cisco [36] predicts that in 2017, every second, nearly a million minutes of
video content will cross the global IP network, making up for 69% of all consumer
Internet traffic (from 57% in 2012). This number further increases to nearly 90% if
video exchanged through peer-to-peer file sharing is included. Particularly relevant
is Internet video to TV, which doubled in 2012 and continues to grow at a rapid pace,
increasing fivefold by 2017.

Both in the context of wireless streaming and video on demand, a natural perfor-
mancemetric is the probability of uninterrupted video play out. The non-interactive
nature of these services and the fact that memory is not the limiting factor on mod-
ern devices (naturally, mobile devices have much less memory, but videos played
on mobile devices are streamed at a much lower bit rate also), make the memory
usage a secondary consideration. The foremost important tradeoff is then between
the initial play-out delay and the probability of stalling. We therefore set off to de-
termine the smallest initial play-out delay (i.e. initial size of the play-out buffer) that
gives a probabilistic guarantee on uninterrupted play out.

The above mentioned papers all focus on an engineering perspective. From a theo-
retical angle there is a considerable volume of related research too. Our modeling
approach was already depicted in Figure 2.2: We will use a tandem of fluid queues
(one with variable rate) to capture the most essential ingredients that determine the
stalling probability (a detailed model description follows later). Fluid queues have
proven to be a powerfulmodeling paradigm in awide range of applications and have
receivedmuch attention in literature. On one hand fluidmodel often capture the key
characteristics that determine the performance of e.g. communication networks
with complex packet-level dynamics (hiding largely irrelevant details), while on the
other hand they remain mathematically tractable. Many analytic results have been
obtained, andwe refer to Scheinhardt [98], and Kulkarni [74] for excellent overviews
of results on fluid queues that are directly relevant to our analysis. Asmussen and
Bladt [6] propose a sample-path approach to study mean busy periods in Markov

10
Chapter 2: A Fluid Model Analysis of Streaming Media in the Presence of Time-
Varying Bandwidth

Modulated fluid queues, and derive a simple way of calculating mean busy periods
in terms of steady-state quantities. In [4], Asmussen shows that the probability of
buffer overflow within a busy cycle has an exponential tail, gives an explicit expres-
sion for the Laplace Transform of the busy period and, moreover, derives several
inequalities and approximations for the transient behaviour. Boxma and Dumas [23]
study the busy period of a fluid queue fed by N ON/OFF sources with exponential
OFF periods and heavy tailed activity durations (more specifically, with regularly
varying activity duration distributions). Scheinhardt and Zwart [99] study a two-
node tandemwith gradual input, and compute the steady-state joint buffer-content
distribution using martingale methods. Kulkarni and Tzenova [75] study a fluid queu-
ing systems with different fluid-arrival rates governed by a CTMC and constant ser-
vice rate. For this model, they derive a system of first-order non-homogeneous
linear differential equations for the mean passage time. Sericola and Remiche [101]
propose a method to analyse the maximum level and the hitting probabilities in a
Markov driven fluid queue for various initial condition scenarios, allowing for both
finite and infinite buffers. Their analysis leads to matrix differential Ricatti equations
for which there is a unique solution. Asmussen [4] investigates a more general set-
ting than the one considered in this chapter, which focuses on the streaming video
setting. In our work we use an alternative matrix-theoretic analysis technique and
obtain more explicit dimensioning rules than can be derived directly from specializ-
ing [4] to our model.

We derive a dimensioning rule for the play-out buffer, based on an extreme value
distribution approximation. Our analysis is strongly motivated by the classical pa-
pers of Berman [13] and Iglehart [65]. Berman [13] studies the limiting distribution
of the maximum in sequences of random variables satisfying certain dependence
conditions. Iglehart [65] derived asymptotic distributions for the extreme value of
the buffer content and the number of customers in the GI/G/1 queue. We refer
to Asmussen [5] for an excellent survey on extreme-value theory for queues. This
chapter provides an alternative approach for the analysis in Asmussen [4] specified
to ourmodel. Through our approach, we obtainmore explicit results for the targeted
dimensioning rules.

Our analysis proceeds as follows: We use results from [101] for the analysis of the
maximum in a busy period. Furthermore, we show that the busy period maximum
has an exponential tail and the maximum grows logarithmically. We apply a result
on mean busy periods from [75] to obtain the mean expected cycle time. Next we
apply an approach similar to [65] in order to show that the maximum buffer level
converges to a Gumbel extreme value distribution. From this result the correct initial
play-out buffer level can be estimated. As mentioned previously, our work shows
strong similarities with [4]. Like us, Asmussen shows that the maximum fluid level
grows logarithmically over time and under proper scaling converges to random vari-
able with a Gumbel extreme value distribution. In this chapter we independently
establish this result in a more intuitive manner. Based on this result, we derive an

2.2 Model 11

explicit expression for the initial level of the play-out-buffer at which the play-out
can best be started so as to guarantee undisturbed play-out with sufficient certainty.

2.2 Model

In our model we mimic a video stream that has fixed data rate Rplay . Video is
streamed through an IP network with fluctuating speed. From the IP network pack-
ets arrive to the play-out buffer with a rate that can take values from a finite set
{si , i = 1, 2, ... , n}. The actual output rate of the network is determined by a stochas-
tic processφ(t) that ismodeled by an n-state CTMC. TheCTMChas generatormatrix
T and state-space S = {1, ... , n}. States are arranged in increasing order such that
s1 > · · · > sn. State-space S can be separated into three subsets S↓, S0 and S↑,
where n− := |S−|, n0 := |S0|, and n+ := |S+| and n↓ + n0 + n↑ = n:

S↓ = {i : si > Rplay} = {1, ... , n↓},
S0 = {i : si = Rplay} = {n↓ + 1, ... , n↓ + n0},
S↑ = {i : si < Rplay} = {n↓ + n0 + 1, ... , n↓ + n0 + n↑}.

In short, S↓ represents the states with decreasing number of packets in flight, S0

represents the states with stable number of packets in flight, and S↑ states with
increasing number of packets in flight. We assume that φ(t) can modeled such that
there exists a stationary distribution π. We partition the generator matrix T as a
(n↓ + n0 + n↑)× (n↓ + n0 + n↑)matrix according to:

T =

T↓↓ T↓0 T↓↑
T0↓ T00 T0↑
T↑↓ T↑0 T↑↑

 . (2.1)

The combination of network congestion and play-out buffering is represented by a
tandem of two fluid queues. See Figure 2.2 for an illustration of our model.

..
Rplay

.
X (t)

.
φ(t)

.

O(t)

.
Y (t)

..

V (t)

.

CTMC

Figure 2.2: Tandem of fluid buffers representing streaming video through an IP-network.

The first fluid buffer models the network congestion (packets on flight), and has cor-
responding fluid level X (t). The second fluid buffer models the play-out buffering

12
Chapter 2: A Fluid Model Analysis of Streaming Media in the Presence of Time-
Varying Bandwidth

process at the client with corresponding fluid level Y (t). Process V (t) represents
the video play-out rate that is achieved from the play-out buffer. For the first fluid
buffer we define rates of change (of the first buffer contents) by ri := Rplay − si (i =
1, ... , n), when φ(t) = i . Conversely for φ(t) = i , the rate of change in the second
fluid buffer is exactly −ri whenever Y (t) > 0. Indeed, if Y (t) > 0, the play-out
buffer can sustain output rate V (t) = Rplay . For the second fluid buffer the rate of
change is directly proportional whenever Y (t) > 0, so that V (t) can sustain play-
out at rate Rplay . On the contrary, when Y (t) = 0 and si < Rplay the play-out buffer
stays empty and V (t) = si . In this case the video stream is disturbed.

In practice the video may be stalled instead of continuously buffering and playing
back. In that case the disturbed playback period in our model may be seem as a
measure for the severity of distortion. We define the rate-of-change-matrix that
has the same block partitioning as generator matrix T , i.e. R is a (n↓ + n0 + n↑) ×
(n↓ + n0 + n↑)matrix:

R :=

R↓ 0 0
0 R0 0
0 0 R↑

 . (2.2)

The entries are defined by:

R↓ i ∈ S↓,:= diag (ri),
R0 i ∈ S0,:= diag (ri) = 0 and

R↑ i ∈ S↑.:= diag (ri),

Here diag (ri) i ∈ S is the diagonal matrix with on the diagonal all elements of set S .
In order for the first buffer to be stable the average potential throughput Sres must
satisfy:

Sres :=
n∑

i=1

siπi > Rplay . (2.3)

The drift of the process is expressed in terms of rates of change ri and is defined as:

d :=
n∑

i=1

riπi = Rplay − Sres . (2.4)

Stability condition (2.3) is equivalent to having a negative drift d < 0.

2.3 Analysis 13

Due to congestion the play-out buffer level Y (t) fluctuates. When the play-out
buffer is empty video play-out will be disturbed as only a rate of V (t) < Rplay is
supported. We consider a video stream of length t = Tplay . Although we assume
Sres > Rplay due to fluctuations in traffic the bit rate Rplay cannot be guaranteed at all
times during Tplay . At periods with high traffic, congestion in the network builds up
resulting in a temporary throughput O(t) = si < Rplay . Therefore the video needs
to be buffered at client side. When the play-out buffer is empty video play-out
will be disturbed as a play-out rate of Rplay can not be sustained. The result is that
the video is quickly alternating between buffering and play-out. This is commonly
experienced as being very disturbing. We want to guarantee a certain Quality of
Service (QoS) on the video play-out. The QoS objective is to find an initial buffer
level binit such that the probability of disturbed play-out during Tplay is smaller than
pempty :

P{∃s ∈ [0, Tplay] : V (s) < Rplay | X (0) = 0, Y (0) = binit} < pempty . (2.5)

Of course the probability that play-out will be disturbed equals zero if a stream is
fully buffered. However the larger the play-out buffer the longer the loading time.
Second a large buffering delay causes a too large lag before the event is displayed
on screen. Therefore, we want the play-out buffer to have a minimal size.

We want the play-out buffer to strike the right balance between both objectives, so
that we aim for the minimal buffering threshold that guarantees undisturbed play-
back with probability at least 1− pempty . In order to minimize the initial buffer level
binit while meeting the QoS requirements, we develop a procedure that maps video
parameters Tplay , Rplay , network characteristics and QoS objective pempty onto a ini-
tial buffer level binit .

2.3 Analysis

We are interested in a mapping from network, video characteristics and distortion
probability pempty to a minimal buffer level binit such that Equation (2.5) is satisfied.
To this end we analyze the interaction between the network congestion buffer level
X (t) and the play-out buffer level Y (t). In our analysis four different scenarios can
be identified. These are depicted in Figure 2.3. Each scenario is represented by a
time interval ti :

(1) During interval t1 the network achieves a transfer rate lower than the video
bit-rate si < Rplay (ri < 0), while the play-out buffer level is positive Y (t) > 0.
In this case the level of X increases while the level of Y decreases.

14
Chapter 2: A Fluid Model Analysis of Streaming Media in the Presence of Time-
Varying Bandwidth

(2) Within interval t2 the network transfer rate is lower than video bit-rate si <
Rplay (ri < 0), while the play-out buffer level is zero Y (t) = 0. Now the
video playback will be disturbed and the play-out buffer level will remain zero
Y (t) = 0while the network content X (t) continues to grow.

(3) Next, in interval t3 we have a network transfer rate higher than the video bit-
rate si > Rplay (ri > 0), while the network content is positive X (t) > 0. The
level of X decreases while the level of Y increases.

(4) Finally, during interval t4 there is a network transfer rate higher than the video
bit-rate si > Rplay (ri > 0), without any backlog in the network, X (t) = 0.
Although higher transfer rate ri > 0 is supported, an effective rate of Rplay will
be achieved as the fluid entering X directly flows to the play-out buffer Y .

..

time

.
t1

.
t2

.
t3

.
t4

.

b
uf

fe
r

le
ve

l

.

X (t)

.

Y (t)

.

X (t) + Y (t)

. artificial sym-
metry axis

.

X (0)

.

Y (0)

Figure 2.3: Different phases of the stochastic processes X(t) and Y (t).

Observe in Figure 2.3 that within intervals t1, t3 and t4,X (t)+Y (t) remains constant.
Therefore, in these cases an artificial symmetry axis can be drawn betweenX (t) and
Y (t). Moreover, within these intervals V (t) = Rplay and the CTMC determines how
the constant level X (t) + Y (t) is distributed over the first and second fluid buffer.
In scenario 2 (corresponding to t2 in Figure 2.3) the second buffer remains empty
(Y (t) = 0) while the first buffer continues to grow. In that case X (t) attains a new
maximum, and obviously X (t) = X (t) + Y (t) since Y (t) = 0. Each time X (t)
attains a new maximum, X (t) + Y (t) grows. We can conclude that the total fluid
buffer contents X (t) +Y (t) is not a stationary process. However the growth of the
maximum becomes an increasingly rare event each time a new maximum level is
reached.

2.3.1. Definition. We define the maximum level process as

M∗(t) := sup
0≤s≤t

X (s). (2.6)

2.3 Analysis 15

2.3.2. Lemma. Let
(
X (t), Y (t)

)
be the stochastic process describing fluid levels in

the tandem system. Then, if Y (0) = 0,

X (t) + Y (t) = sup
0≤s≤t

X (s) = M∗(t). (2.7)

Proof. Obviously, the initial conditions ensure that M∗(0) = X (0) + Y (0). We will
show that the maximum and the sum remain equal throughout time, because the
maximum can only increase when Y (t) = 0. From the construction it is clear that,
unless Y (t) = 0 and φ(t) ∈ S+, the total amount of fluid in X (t) + Y (t) remains
equal. Only the partition of fluid over X (t) and Y (t) changes as the rates of change
for both buffers only differ in sign. On the contrary, when Y (t) = 0 and φ(t) ∈ S+

the amount of fluid in X (t) will grow while the the second buffer remains Y (t) = 0
(because the inflow into the second buffer is below Rplay). Beyond this point, both
the maximum levelM∗(t) for X (t) and X (t) itself increase, as long as Y (t) remains
empty. We can conclude that the total amount X (t) + Y (t) must always be equal
to the maximum levelM∗(t). �

In Equation (2.5) we use an initial buffer level of Y (0) = binit , while in Lemma 2.3.2
we assume Y (0) = 0. However, setting Y (0) = binit and X (0) = 0 corresponds to
the case where X (0) has a virtual (initial) supremum equal to binit . Thus we are inter-
ested in the probability that new supremumM∗(t) > binit is attained in time interval
[0, t] given that the initial supremum level is set to M∗(0) = binit . Using the connec-
tion of the initial buffer level binit to the supremum levelM∗(t) and Lemma 2.3.2 we
can rewrite Equation (2.5) to:

P{M∗(t) > binit} < pempty . (2.8)

This corresponds to the probability thatM∗(t) exceeds binit when no initial-buffering
is applied. We assume here and throughout the remainder of this chapter the initial
condition to be X (0) = Y (0) = 0.

Lemma 2.3.2 targets our problem on identifying the maximum level of packets on
flight. Therefore we consider the process X (t). The process is driven by a CTMC
and the process has negative drift. This results in a behaviour where semi regener-
ative busy cycles are formed each consisting of a busy period with X (t) > 0 that is
followed by an idle period.

2.3.1 Maximum over busy cycles

In Sericola and Remiche [101] the distribution of the maximum level reached in a
busy period is derived using matrix exponential forms. The resulting equations are

16
Chapter 2: A Fluid Model Analysis of Streaming Media in the Presence of Time-
Varying Bandwidth

rewritten such that they can be transformed intomatrix differential Riccati equations.
Recall that the state space S is be partitioned into:

S↓ := {1, ... , n↓},
S0 := {n↓ + 1, ... , n↓ + n0} and

S↑ := {n↓ + n0 + 1, ... , n↓ + n0 + n↑},

with corresponding rate matrices

R↓ i ∈ S↓,:= diag (ri),
R0 i ∈ S0,:= diag (ri) = 0 and,
R↑ i ∈ S↑,:= diag (ri),

that contain rates that are negative, zero or positive, respectively. For calculation of
the distribution of themaximum level in a busy period, only the rates that change the
buffer level (ri , i /∈ S0) contribute to the solution. Moreover time is not considered
in the distribution of the maximum level in a busy period. Therefore the rates can
be uniformized resulting in modified matrix Q:

Q =

(
Q↓↓ Q↓↑
Q↑↓ Q↑↑

)
,

where the entries are defined by:

Q↓↓ = R−1
↓ (T↓↓ − T↓0T−1

00 T0↓),
Q↓↑ = R−1

↓ (T↓↑ − T↓0T−1
00 T0↑),

Q↑↓ = R−1
↑ (T↑↓ − T↑0T−1

00 T0↓),
Q↑↑ = R−1

↑ (T↑↑ − T↑0T−1
00 T0↑).

2.3.3. Definition. WithΨi ,j(x)wedefine the joint distribution for themaximum level
in a busy period M+, given that a busy period starts in state φ(0) = i , (i ∈ S↑) at
level X (0)=0 and finishes in state φ(τ0) = j , (j ∈ S↓):

i ∈ S↑, j ∈ S↓,Ψi ,j(x) := P
{
φ
(
τ0
)
= j , M+ ≤ x | φ(0) = i , X (0) = 0

}
, (2.9)

τ0 := inf{t > 0 : X (t) = 0},
M+ := M∗(τ0).

2.3 Analysis 17

The joint distribution of themaximum in a busy periodΨi ,j(x) is calculated by solving
amatrix differential equation [101]. FunctionΨi ,j(x) can be expressed in terms of the
matrix exponential form of matrix Q:

eQx = exp

[(
Q↓↓ Q↓↑
Q↑↓ Q↑↑

)]
=

(
A(x) B(x)
C(x) D(x)

)
. (2.10)

The expression for Ψ(x) is given by:

Ψ(x) = C(x)A(x)−1. (2.11)

In general we are interested in the distribution of the busy cycle β(x) which we
describe in Definition 2.3.5 below. First we introduce some further notation.

2.3.4. Definition. Matrix U is the transition matrix from an empty system to the start
of a new busy cycle and is defined by:

i ∈ S↓, j ∈ S↑,Ui ,j :=P{φ(τS↑) = j | φ(0) = i , X (0) = 0},
τS↑ := inf{t > 0 : φ(t) ∈ S↑},

2.3.5. Definition. We define βi ,j(x) as the joint distribution for M+, the maximum
level in a busy cycle, given that a busy period starts in state φ(0) = i (i ∈ S↑) at
level X (0)=0 and finishes in state φ(τ0↑) = j (j ∈ S↑):

i ∈ S↑, j ∈ S↑,βi ,j(x) := P
{
φ
(
τ0↑
)
= j , M+ ≤ x | φ(0) = i , X (0) = 0

}
, (2.12)

τ0↑ := inf{t > τ0 : φ(t) ∈ S↑},
τ0 := inf{t > 0 : X (t) = 0}.

2.3.6. Observation. The function β(x) can be written as β(x) = Ψ(x)U where Ψ(x)
is the joint stationary distribution of the maximum level in a busy period from Def-
inition 2.3.3. Matrix U is the transition matrix from start of an idle period to start
of a busy period from Definition 2.3.4 and is given by (see for example [86, Exam-
ple 1.4.4]):

U = −
(
I 0

)(T↓↓ T↓0,
T0↓ T00

)−1(T↓↑
T0↑

)
. (2.13)

In this chapter we start with the analysis for the case where n↓ = n↑ = 1 and n0 =
0. In Chapter 3 we extend the analysis for the case where n↓ ≥ 1, n↑ ≥ 1 and
n0 ≥ 0, In general, the maxima in consecutive busy periods are not independent,

18
Chapter 2: A Fluid Model Analysis of Streaming Media in the Presence of Time-
Varying Bandwidth

because the starting states of the environment may induce correlation. However,
for the two-state model with n↓ = n↑ = 1 we have U =

[
1
]
. Therefore busy

cycles constitute regenerative sequences, implying thatmaxima in consecutive busy
periods are independent. The non-regenerative nature of the general case implies
several technical complications that, while we can handle them largely analogously
using semi-regenerative processes, the technical details are not part of the scope of
this chapter. Instead, we specialize only for the two-state model and refer to future
work for details on extensions to the semi-regenerative case.

For the two-state model with transmission rates s1 > Rplay and s2 < Rplay , we use
generator matrix:

T =

[
−α1 α1

α2 −α2

]
and rate matrix:

R =

[
r1 0
0 r2

]
to obtain the generator matrix with uniformized fluid rates:

Q =

[−α1

r1
α1

r1
α2

r2 −α2

r2

]
.

The solution the the differential equation is given by:

Ψ(x) = 1− r2α1 + r1α2

r2α1 + r1α2ex(α1
r1

+
α2
r2

)
.

The maximum of a busy cycle is given by:

P{M+ ≤ x} = Ψ(x), (2.14)

whereM+ represents the r variable corresponding to the maximum in a busy cycle.
The distribution of the maximum of a busy period for the two-state model has an
exponential decaying tail, and when x → ∞:

1−Ψ(x) = r2α1 + r1α2

r2α1 + r1α2ex(α1
r1

+
α2
r2

)
∼
(r1α2 + r2α1

r1α2

)
e−x(α1

r1
+

α2
r2

). (2.15)

2.3 Analysis 19

Similar to Iglehart [65, Lemma 1] we obtain an expression for

P{M+ > x} ∼ be−κx , x → ∞. (2.16)

In our case, b =
(r1α2 + r2α1

r1α2

)
and κ = (α1

r1 + α2

r2).

Let M+(k) be the maximum of the kth busy cycle. Using similar arguments as in
Iglehart [65, Lemma 2] we obtain:

lim
n→∞

P{κ max
1≤k≤n

M+(k)− log(bn) ≤ x} = Λ(x), (2.17)

where

Λ(x) = exp[−e−x]. (2.18)

Here, we use the following extreme value theorem argument:

P{ max
1≤k≤n

M+(k) ≤
x + log(bn)

κ
}

= Pn{M+(1) ≤
x + log(bn)

κ
}

=
[
1− b exp[−(x + log(x + bn))] + o(exp[−(x + log(n))])

]n
.

2.3.2 Maximum with respect to time

Rather than the asymptotics for the busy cycles, we are interested in the evolution of
the maximum over time. For this we use a result in Kulkarni and Tzenova [75]. In this
chapter an expression is derived for the joint mean first passage time in a Markov
Modulated fluid queue:

i ∈ S,E[τS↓ | X (0) = x ,φ(0) = i], (2.19)

τS↓ := inf{t > 0 : X (t) = 0,φ(t) ∈ S↓}.

The joint mean first passage time will be represented by the function fi(x):

i ∈ S.fi(x) := E[τS↓ | X (0) = x ,φ(0) = i], (2.20)

20
Chapter 2: A Fluid Model Analysis of Streaming Media in the Presence of Time-
Varying Bandwidth

An expression for the joint mean first passage time can be obtained by solving the
corresponding system of differential equations

R df (x)
dx + Tf (x) + e = 0, (2.21)

with boundary condition

∀i ∈ S↓,fi(x) = 0, (2.22)

where R = diag (r1, ... , rn) is the diagonal matrix of rates of change, T is the gener-
ating matrix and where e is a column vector of ones. Here eigenvalues λj are the
solution to

det[R − λT] = 0, (2.23)

and the corresponding right eigenvectors ϕr
j satisfy:

λiRϕr
j = Tϕr

j . (2.24)

The eigenvalues of Q, ordered such that the real parts are in increasing order:

ℜ
(
λ1

)
≤ ℜ

(
λ2

)
≤ · · · ≤ ℜ

(
λn↑

)
< 0 < ℜ

(
λn↑+2

)
≤ · · · ≤ ℜ

(
λn↑+n↓

)
There are n solutions to Equation (2.23) of which there are n↓ − 1 eigenvalues with
positive real part, one eigenvalue has real part equal to 0 and there are n↑ eigenval-
ues with negative real part. In Kulkarni and Tzenova [75, Theorem 4.2] the solution
for (2.21) is given by:

f (x) =
n↑+n↓∑

j=n↑+1

ajϕ
r
j e−λj x − ex

d + g . (2.25)

In this expression g is a solution to

Tg = −(cR + I)e. (2.26)

2.3 Analysis 21

We are interested in the solution for the two-state model where n↓ = n↑ = 1. Plug-
ging in T and R into the results of Kulkarni [74, Example 1] gives:

d =
α2r1 + α1r2
α1 + α2

,

λ1 = 0, λ2 =
α2r1 + α1r2

r1r2
,

ϕ1 =
[
1, 1
]t , ϕ2 =

[
−α1r2
α2r1

, 1
]t

,

g1 =
r2 − r1

α1r2 + α2r1
, g2 = 0,

which gives

[
f1(x)
f2(x)

]
=

[
0

− r2 − r1
δ

]
+

−α1 + α2

δ

−α1 + α2

δ

 x , (2.27)

with

δ := r2α1 + r1α2.

2.3.7. Definition. We define the conditional expected duration of a busy period and
idle period by:

E[CB] i ∈ S↑,:= E[τS↓ | X (0) = 0,φ(0) = i], (2.28)

τS↓ := inf{t > 0 : X (t) = 0,φ(t) ∈ S↓},
E[CI] i ∈ S↓,:= E[τS↑ | X (0) = 0,φ(0) = i], (2.29)

τS↑ := inf{t > 0 : φ(t) ∈ S↑}.

In the two-state model the only way that a busy period can be initiated is whenever
X (t) = 0 and the state with r2 > 0 is reached. The expected length of this busy
period is equal to the first mean passage time:

E[CB] = f2(0) = E[τS↓ | X (0) = 0,φ(0) = 2] = − r2 − r1
r2α1 + r1α2

, (2.30)

τS↓ : = inf{t > 0 : X (t) = 0,φ(t) = 1}.

There is only one state that can end a busy period and that isφ(t) = 1whenX (t) = 0.
This initiates an idle period that continues until the state φ(t) = 2 with rate r2 is

22
Chapter 2: A Fluid Model Analysis of Streaming Media in the Presence of Time-
Varying Bandwidth

reached. The duration until the initiation of a consecutive busy period is exponen-
tially distributed with mean 1/α1. Therefore:

E[CI] = E[τ↑ | X (0) = 0,φ(0) = 1] = 1/α1.

By combining the expected busy period with the expected idle period we obtain an
expression for the total expected busy cycle:

E[C] =E[CB] + E[CI] = − r2 − r1
r2α1 + r1α2

+
1

α1
=
(r1
α1

)
· α1 + α2

r2α1 + r1α2
. (2.31)

In Equation (2.17) we stated that the asymptotic distribution of the maximum of a
sequence of busy cycles converges to an extremevalue distribution. Wenowderive
the asymptotic distribution over time.

Define {c(t) : t ≥ 0} as the counting process of busy cycles. ThenM∗(t) satisfies:

max
0≤k≤c(t)

{M+(k) ≤ x} ≤ M∗(t) ≤ max
0≤k≤c(t)+1

{M+(k) ≤ x}. (2.32)

According to the weak law of large numbers we have:

t → ∞.c(t)
t → 1

E[C]
, (2.33)

Using Berman [13, Theorem3.2] and Equation (2.17) the limiting distribution becomes:

lim
t→∞

P{κM∗(t)− log(bt) ≤ x} = Λ
1

E[C] (x). (2.34)

In Equation (2.34) the term 1
E[C] from (2.33) represents the expected number of busy

cycles per time unit (this corresponds to the c in Berman [13, Theorem 3.2]). The
expression for the asymptotic distribution for the maximum of the two-state fluid
queue

P{M∗(t) > binit} < pempty (2.35)

can now be expressed as:

P{κM∗(t)− log(bt) > x} ≈ 1− Λ
1

E[C] (x), (2.36)

P{M∗(t) > binit} ≈ 1− Λ
1

E[C] (κbinit − log(bt)), (2.37)

2.5 Dimensioning the initial buffer size 23

whenever we have a sufficiently large binit such that at least binit >
log(bt)

κ .

Using the fact that when t → ∞ the distribution of the maximum M∗(t) converges
to a Gumbel distribution, we can also establish the following asymptotic expectation
of the maximum level:

t → ∞,E[M∗(t)] →
log
(bt
E[C]

)
+ γ

κ
, (2.38)

where γ ≈ 0.577215665 is the Euler-Mascheroni constant. The behavior with re-
spect to the real process is illustrated in Figure 2.6. Observe that E[M∗(t)] grows
logarithmically over time with logarithmic slope 1

κ .

2.4 Dimensioning the initial buffer size

In Section 2.3 we showed that the probability of an empty play-out buffer corre-
sponds to the maximum level reached by the first fluid buffer representing the num-
ber of packets in flight. Given the parameters that capture the network behavior (s
andT) for a video streamwith bit-rate Rplay and durationTplay the initial buffer level
binit can be determined. Given the video playback QoS parameter pempty , that rep-
resents the maximum probability a video is disturbed during Tplay , the initial buffer
size binit should be chosen such that:

binit >
− log[− E[C]

bTplay
log(1− pempty)]

κ
. (2.39)

This holds when we have Tplay sufficiently large such that

Tplay > − log(1− pempty)
E[C]

b .

This is a reasonable assumption, since we are considering video streams that have
typically long durations (minutes and longer) compared to the time scale of fluctua-
tions in the network transmission speed (typically in the order of seconds).

2.5 Numerical experiments

In the previous sections we derived a mapping from the QoS parameter pempty and
streaming video duration Tplay to minimal initial buffer level binit . We will now run

24
Chapter 2: A Fluid Model Analysis of Streaming Media in the Presence of Time-
Varying Bandwidth

0 2000 4000 6000 8000 10000
0%

2%

4%

6%

8%

10%

T
play

 (seconds)

R
el

at
iv

e
er

ro
r

Evaluation of accuracy of approximation w.r.t. simulation

p
empty

=0.01

p
empty

=0.025

p
empty

=0.05

p
empty

=0.1

Figure 2.4: Relative difference of buffer under-run probability to simulation. The gray bands
around the lines are the 95% confidence intervals of the simulation.

simulations in order to evaluate the accuracy of ourmapping. Our parameter setting
is as follows: α1 = 0.1, α2 = 0.2, s1 = 8Mbps , s2 = 2Mbps , Rplay = 4Mbps , r1 = −4,
r2 = 2, R = diag (

[
r1 r2

]
) and

T =

[
−α1 α1

α2 −α2

]
.

The simulation consists of 10, 000, 000 sample paths. Figure 2.4 represents the rela-
tive difference between target tail probability pempty and the actual fraction of sample
paths that exceed the buffer level approximation. We define the relative difference
of approximation (app) and simulation (sim) by:

diffrelative(app, sim) =

∣∣∣∣app − sim
sim

∣∣∣∣ . (2.40)

From Figure 2.4 it can be observed that for the the tail probabilityP{M(Tplay) > binit}
the error quickly approaches the region below 5%. Figure 2.5 represents the actual
fraction of sample paths that exceeds the theoretical asymptotic percentiles. The
theoretical percentiles are based on Equation (2.39). The straight thin dashed lines
represent the desired tail probability.

2.6 Numerical experiments 25

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

T
play

 (seconds)

P[
M

* (T
p

la
y)>

b
in

it]
Simulated tail probabilities

p
empty

=0.01

p
empty

=0.025

p
empty

=0.05

p
empty

=0.1

Figure 2.5: Tail probabilities using empirical distribution based on simulation, evaluated on
theoretical asymptotic percentiles.

The tail probabilities in Figure 2.5 indicate that the buffer level, derived from asymp-
totics, gives a conservative estimate, i.e., an overestimation of the tail probability. So
using the asymptotics, depending on the duration of the video stream, the estimated
buffer level is slightly higher than strictly needed.

In Section 2.3.2 we derived the asymptotic mean in Equation (2.38). We compare
the asymptotic mean to the simulation results in Figure 2.6. This figure has a loga-
rithmic time scale because we expect the mean maximum level to asymptotically
converge to logarithmic growth with respect to time. From Figure 2.6 we observe
that this is indeed the case.

In Figure 2.7 percentiles from simulation are compared to the theoretical asymptotic
percentiles. Black lines represent simulation percentiles while gray lines represent
the theoretical percentiles as expressed in Equation (2.39). On a linear time scale,
simulation and asymptotic percentiles coincide quite closely.

Figure 2.8 presents the percentiles on logarithmic time scale. On small time scale
we observe a "notch" in the simulation percentiles. This is caused by the fact that
the figure is presented in logarithmic time scale. From the buffer process we can
derive a coarse upper bound. A percentile at time t can not exceed tmax(R − si)
as max(R − si) is the maximal possible growth rate of X (t) + Y (t). The "notch"
corresponds to the upper bound (which is curved due to logarithmic time scale).

26
Chapter 2: A Fluid Model Analysis of Streaming Media in the Presence of Time-
Varying Bandwidth

10
0

10
1

10
2

10
3

10
4

0

5

10

15

20

T
play

 (seconds)

M
ax

 b
uf

fe
r

le
ve

l X
(t

)
in

 s
ec

o
nd

s
Expected maximum level

Simulation
Asymptotic

Figure 2.6: Simulated and theoretical (asymptotic, see Equation (2.38)) expectation of the
maximum levelM∗(t) on logarithmic time-scale.

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

T
play

 (seconds)

B
uf

fe
r

le
ve

l p
er

ce
nt

ile
 (

se
co

nd
s)

Theoretical and simulation percentiles

p
empty

=0.01

p
empty

=0.025

p
empty

=0.05

p
empty

=0.1

Figure 2.7: Black lines represent simulation percentiles, gray lines represent theoretical
asymptotic percentiles.

2.6 Discussion 27

10
0

10
1

10
2

10
3

10
4

0

5

10

15

20

25

30

35

T
play

 (seconds)

B
uf

fe
r

le
ve

l p
er

ce
nt

ile
 (

se
co

nd
s)

Theoretical and simulation percentiles

p
empty

=0.01

p
empty

=0.025

p
empty

=0.05

p
empty

=0.1

upper bound

Figure 2.8: Percentiles on logarithmic time scale. Black lines represent percentiles from sim-
ulation, gray lines represent theoretical asymptotic percentiles.

2.6 Discussion

We studied a model for a constant bit-rate video stream over an IP network with a
play-out buffer at the client side. The network is modeled as a Markov Modulated
fluid queue in which a CTMC determines the actual transmission rate through the
network. For the play-out buffer an initial buffer level binit was determined such
that the probability that the videowill stall during play-outwill not exceed an agreed
service level probability pempty .

2.6.1. Remark (Variable bitrate). In our exposition, we assumed that the video ap-
plication was streamed at constant bit rate. For practical application, however, it is
more realistic to assume that the video produces variable bit rate flows. Our model
still applies to this case, if we take the transport unit to be time rather than bits or
packets. The streaming and play-out rate are then Rplay = 1 (one unit of time is
played each unit of time). To incorporate the variable bit rate into our model, we
modify the network throughput process φ(t) as follows. We construct it from two
independent componentsφ(t) = (φ1(t),φ2(t)). The first component is a CTMC and
again determines the network capacity at time t in bits per time unit, say speed s1i if
φ1(t) = i . The second component φ2(t) is also a CTMC, independent of φ1(t), and
determines the length of time encoded per bit for the video segments transported

28
Chapter 2: A Fluid Model Analysis of Streaming Media in the Presence of Time-
Varying Bandwidth

through the network at time t , say s2j if φ2(t) = j . Setting the network speeds as
si ,j = s1i s2j whenever φ(t) = (i , j), our original model can be directly used. Of
course, exploiting the structure of the process φ(t) (its generator, for example, can
be written as the Kronecker product of the generators of φ1 and φ2) was not part
of the scope of our analysis here. Incorporating this structure may further enhance
efficient computations.

We have shown that the probability of this event corresponds to the event of the
maximum congestion level M(t) exceeding the initial buffer level binit . As a by-
product, we found that the asymptotic distribution of the maximum levelM(t), t →
∞ has a Gumbel distribution, which is in agreement with earlier results in [4]. For
smaller t the expression of the asymptotic distribution can be used to approximate
the tail probability P{M(T) > binit}. From this expression we derived a formula
that maps pempty , Tplay and the network and video parameters to a minimal buffer
level binit . Simulation results indicate that the buffer level that is obtained from the
asymptotic analysis is a conservative estimate, i.e., it overestimates the trueminimal
required buffer level. The longer the video stream themore accurate the asymptotic
prediction is. In adaptive media streaming, streaming servers tend to adapt Rplay to
the fluctuating available bandwidth. Our analysis facilitates proper parameter selec-
tion with respect to the altered network parameters.

2.6.2. Remark (Transition probabilities). For practical purposes it may be difficult to
estimate the transition probabilities of themodulating processφ(t). In principle, this
can be done using the classical maximum likelihood estimators as described for ex-
ample in [86, Section 1.10]. For the choice of the state space it is natural to let the
state of the modulating process coincide with the measured network rate; the gran-
ularity then determines the dimension of the transition matrix. In practice, one may
however not want to go into estimation of the network characteristics, but rather
try to adapt the coefficients κ and E[C]/b in the dimensioning rule formulated in re-
lation 2.39. Through live measurements, one may decide on adapting the estimates
for these coefficients so as to improve quality when the stall probability is too large,
or reduce the initial delay, when the buffer is never close to empty.

A Spectral Theory Approach for Extreme Value

Analysis in a Tandem of Fluid Queues 3
In Chapter 2 we studied a model for a constant bit-rate video stream over an IP
network with a play-out buffer at the client side. The network is modeled as a
Markov Modulated fluid queue in which a CTMC determines the actual transmis-
sion rate through the network. For the play-out buffer we derived an initial buffer
level binit such that the probability that the video will stall during play-out will not
exceed an agreed service level probability pempty . We demonstrated that the prob-
ability of this event corresponds to the event of the maximum congestion level
M(t) := sup0≤s≤t X (s) exceeding the initial buffer level binit . The analysis was fo-
cused on the case with two states.

This chapter extends the result of Chapter 2 to an arbitrary number of states. To
this end we extend results on the maximum level in a busy period from Section
2.3.1, the conditional busy cycle duration, the expected busy cycle duration from
and extreme value theorem asymptotic result in Section 2.3.2. Our analysis was
particularly motivated by the cited papers of Berman [13] and Iglehart [65]. For a
literature review we refer to Section 2.1. We further refer to Asmussen [5] for an
excellent survey on extreme-value theory for queues.

For the case with more than two states there is not always an explicit expression for
the initial level of the play-out-buffer. However we provide an explicit recipe to cal-
culate the asymptotic behavior of the maximum level in the MarkovModulated fluid
queue. This recipe contains results that were derived using spectral theory analysis
on the fluid model equations. The result can directly be applied to dimension the
initial play-out buffer size.

The organization of the remainder of this chapter is as follows. In Section 3.1 we
lay out the modifications to our model and the extension to the analysis described
in Sections 2.2 and 2.3. We also describe how the dimensioning rule for the initial
buffer level extends to the more general case.

In Section 3.2, we provide a numerical validation of the proposed dimensioning rule
by means of simulations. Section 3.3 contains a discussion of the results and looks
out to future work.

3This chapter is based on [22] and [20].

30
Chapter 3: A Spectral Theory Approach for Extreme Value Analysis in a Tandem of
Fluid Queues

3.1 Analysis

This section extends our analysis of Chapter 2. For the model formulation and re-
quired preliminaries for this section we refer to Sections 2.2 and 2.3.

We show that the expression for the distribution of themaximum in a busy cycle has
an exponential tail. Moreover we can derive an explicit expression for the asymp-
totic tail. In the expression for Ψ(x) from (2.11) function C(x) is an n↑ × n↓ matrix
and A(x) is an n↓ × n↓ matrix. For the case n↓ > 1 we have to take the inverse of a
matrix that contains exponential terms with exponents corresponding to the eigen-
values of Q. Using Sylvester's formula [38, Page 87] the matrix exponential eQt can
be decomposed as:

eQx = eλ1x Q̃1 + ... + eλn↓+n↑x Q̃n↓+n↑ , (3.1)

where the eigenvalues λ1, ... ,λn↓+n↑ of Q are the solution of

det[Q − λI] = 0, (3.2)

and the matrices Q̃i , i = 1, ... , n↓ + n↑ are the Frobenius covariants. Let ϕl
i and ϕr

i
be the normalised left and right eigenvector corresponding to eigenvalue λi :

ϕl
iQ = λiϕ

l
i and (3.3)

Qϕr
i = λiϕ

r
i , (3.4)

respectively. The corresponding Frobenius covariants are given by Q̃i = ϕr
i ϕ

l
i . These

describe how the exponentials eλi x with corresponding eigenvalues λi contribute to
the matrix exponential eQx . If we consider the partitioning of eQx in Equation (2.10)
then C(x) and A(x) can be represented as:

A(x) = eλ1x Ã1 + ... + eλn↓+n↑x Ãn↓+n↑ and (3.5)

C(x) = eλ1x C̃1 + ... + eλn↓+n↑x C̃n↓+n↑ . (3.6)

Now we decompose (2.11) into:

Ψ(x) =
C(x) adj

[
A(x)

]
det
[
A(x)

] . (3.7)

3.1 Analysis 31

As A(x) is n↓×n↓ both the determinant of A(x) and the product C(x) adj
[
A(x)

]
will

contain terms that are products of n↓ exponentials. The resulting exponential terms
have exponents that are sums of n↓ eigenvalues.

3.1.1. Definition. Let c be a vector with n elements. In summations we denote with∑
k∈c

:=
∑
k=ci ,

i=1,...,n

that we iterate k over the elements from vector c = (c1, ... , cn).

3.1.2. Lemma. Let A be an n × n matrix and m ≥ 1:

A =
m∑

k=1

bkAk ,

with

Ak = rT
k ck =

rk,1ck,1 · · · rk,1ck,n
...

. . .
...

rk,nck,1 · · · rk,nck,n

 .

Then the following holds:

adj [A] =
∑
c∈C

(∏
k∈c

bk

)
adj

[∑
k∈c

Ak

]
,

where C is the set with all combinations of length n − 1 from the set {1, 2, ... , m}.

Proof. For the proof we refer to Appendix 3.A. �

3.1.3. Lemma. Let

A(x) = eλ1x Ã1 + ... + eλn↓+n↑x Ãn↓+n↑ and

C(x) = eλ1x C̃1 + ... + eλn↓+n↑x C̃n↓+n↑ ,

32
Chapter 3: A Spectral Theory Approach for Extreme Value Analysis in a Tandem of
Fluid Queues

with

Q̃k = ϕr
kϕ

l
k =

 ϕr
k,1ϕ

l
k,1 · · · ϕr

k,1ϕ
l
k,n↓+n↑

...
. . .

...
ϕr

k,n↓+n↑
ϕl

k,1 · · · ϕr
k,n↓+n↑

ϕl
k,n↓+n↑

 ,

=

[
Ãk B̃k
C̃k D̃k

]
,

where Ãk is n↓ × n↓, B̃k is n↓ × n↑, C̃k is n↑ × n↓ and D̃k is n↑ × n↑. Furthermore, let
C be the set of combinations of length n from the set {1, ... , n}. Then the following
holds:

C(x) adj [A(x)] =
∑
c∈C

(∏
k∈c

eλk x

)∑
k∈c

C̃k adj

[∑
k∈c

Ãk

]
. (3.8)

Proof. By applying Lemma 3.1.2 we obtain:

C(x) adj [A(x)] =
n↓+n↑∑

j=1

eλj x C̃j
∑
c∈C

(∏
k∈c

eλk x

)
adj

[∑
k∈c

Ãk

]
,

with C the set of combinations of n↓−1 elements from the set {1, ... , n↓+n↑}. From
(2.10) and Observation 2.3.6 we find that both Ãk and C̃k share the same row vector.
As all sums of n↓ − 1matrices Ãk have rank n↓ − 1 the following is true:

∀c ∈ C.
∑
k∈c

C̃k adj

[∑
k∈c

Ãk

]
= 0, (3.9)

3.1 Analysis 33

Using (3.9) we can rewrite:

C(x) adj [A(x)] =
n↓+n↑∑

j=1

eλj x C̃j
∑
c∈C

(∏
k∈c

eλk x

)
adj

[∑
k∈c

Ãk

]
,

=
∑
c∈C

∑
j /∈c

eλj x C̃j

(∏
k∈c

eλk x

)
adj

[∑
k∈c

Ãk

]
,

=
∑
c∈C

∑
j∈c

eλj x C̃j

 ∏
k∈c\j

eλk x

 adj
∑

k∈c\j

Ãk

 ,

=
∑
c∈C

(∏
k∈c

eλk x

)∑
j∈c

C̃j adj

∑
k∈c\j

Ãk

 .

By using again (3.9) we obtain:

∑
c∈C

(∏
k∈c

eλk x

)∑
j∈c

C̃j adj

∑
k∈c\j

Ãk

 ,

=
∑
c∈C

(∏
k∈c

eλk x

)∑
k∈c

C̃k adj

[∑
k∈c

Ãk

]
.

�

3.1.4. Observation. There are m =
(n↓+n↑

n↓

)
unique combinations of n↓ eigenvalues

from n↓+n↑ eigenvalues. Let c ∈ C be the set of combinations of n↓ indices from the
set {1, 2, ... , n↓+n↑}. We define the sums of eigenvalues λk1 , ... ,λkn↓

corresponding
to combination ck with index k by:

λ̂k :=
∑
j∈ck

λj , k = 1, ... , m, ck ∈ C,

where the set C is ordered in decreasing order according to the real parts of λ̂k such
that:

ℜ
(
λ̂1

)
≥ ℜ

(
λ̂2

)
≥ ... ≥ ℜ

(
λ̂m
)
.

3.1.5. Lemma. Equation (3.7) can be rewritten as:

Ψ(x) = Ĉ1eλ̂1 + Ĉ2eλ̂2 + ... + Ĉmeλ̂m

Â1eλ̂1 + Â2eλ̂2 + ... + Âmeλ̂m
, (3.10)

34
Chapter 3: A Spectral Theory Approach for Extreme Value Analysis in a Tandem of
Fluid Queues

with values λ̂k as defined in Observation 3.1.4, and

ck ∈ C,Ĉk :=
∑
j∈ck

C̃j adj
[∑

j∈ck

Ãj

]
,

and

ck ∈ C,Âk := det
[∑

j∈ck

Ãj

]
,

where the elements ck from set C are ordered according to Observation 3.1.4 such
that:

ℜ
(
λ̂1

)
≥ ℜ

(
λ̂2

)
≥ ... ≥ ℜ

(
λ̂m
)
.

Proof. Due to the determinant and adjoint matrix in Equation (3.7), there will be ex-
ponential terms in both numerator and denominator that result from products of n↓
exponentials eλi x with eigenvalues λi , i ∈ S . First consider the terms in the denom-
inator. Remember that the Frobenius covariants Q̃i (and also Ãi , C̃i) have rank 1.
Therefore only linear combinations of n↓ distinct Frobenius covariants, defined by
ck ∈ C, will result in positive determinants. Combination ck ∈ C is element of the
set containing al combinations of length n↓ from the set {1, ... , n↓ + n↑} as defined
in Observation 3.1.4. Considering the numerator, the adjoint matrix of a linear com-
bination of Frobenius covariants Ãi will only have positive entries when it is a linear
combination of n↓ − 1 distinct Frobenius covariants as the adjoint matrix contains
minors of degree n↓ − 1. By applying Lemma 3.1.3 we observe that only remaining
exponential terms in the numerator are those that correspond to sums over combi-
nations ck ∈ C of n↓ eigenvalues. �

As λ̂k is ordered in decreasing order the leading exponential term is eλ̂1 . Considering
(3.7) the limiting distribution Ψ∞ becomes:

Ψ∞ := lim
x→∞

Ψ(x) = Ĉ1

Â1

. (3.11)

Using this we can derive the tail behaviour of Ψ(x):

3.1.6. Lemma. Ψ(x) has an exponential tail that behaves as

x → ∞,Ψ∞ −Ψ(x) → Ge−κx , (3.12)

3.1 Analysis 35

where

κ = λn↑ , G =
Ĉ1Â2 − Â1Ĉ2

Â2
1

and κ is the maximal (least) negative eigenvalue of Q.

Proof. Subtracting Ψ∞ from the expression of Ψ(x) in Lemma 3.1.5 gives:

Ψ∞ −Ψ(x) = Ĉ1

Â1

− Ĉ1eλ̂1 + Ĉ2eλ̂2 + ... + Ĉmeλ̂m

Â1eλ̂1 + Â2eλ̂2 + ... + Âmeλ̂m
,

=
[Ĉ1Â2 − Â1Ĉ2]eλ̂2 + ... + [Ĉ1Âm − Â1Ĉm]eλ̂m

Â1[Â1eλ̂1 + Â2eλ̂2 + ... + Âmeλ̂m]
.

When x → ∞ the two leading exponential terms λ̂1 and λ̂2 remain:

x → ∞.Ψ∞ −Ψ(x) → Ĉ1Â2 − Â1Ĉ2

Â2
1

eλ̂2−λ̂1 , (3.13)

According to Kulkarni [74, Theorem 11.5] the eigenvalues of Q, resulting from
det[R − λT] = 0 can be ordered as follows:

ℜ
(
λ1) ≤ ℜ

(
λ2

)
≤ ... ≤ ℜ

(
λn↑

)
< 0 < ℜ

(
λn↑+2

)
≤ · · · ≤ ℜ

(
λn↑+n↓

)
. (3.14)

there are n↑ eigenvalues with negative real part, one eigenvalue is equal to zero and
there are n↓ − 1 eigenvalues with positive real part. In Definition 3.1.4 we defined λ̂k

as the sum of n↓ unique eigenvalues. Consider λ̂1 and λ̂2:

λ̂1 = 0 + λn↑+2 + ... + λn↑+n↓ ,

λ̂2 = λn↑ + λn↑+2 + ... + λn↑+n↓ .

Observe that λ̂1 consists of n↓−1 eigenvalues with positive real part and one eigen-
value equal to zero. The next λ̂2 is obtained by replacing the eigenvalues equal to
zero with the eigenvalue with least negative real part λn↑ . Therefore

λ̂2 − λ̂1 = max
i∈{i:λi<0}

λi = λn↑ .

Plugging this in (3.13) gives:

x → ∞,Ψ∞ −Ψ(x) → Geκx ,

36
Chapter 3: A Spectral Theory Approach for Extreme Value Analysis in a Tandem of
Fluid Queues

with

G :=
Ĉ1Â2 − Â1Ĉ2

Â2
1

and

κ := max
i∈{i:λi<0}

λi = λn↑ .

�

From Lemma 3.1.6 we established that Ψ(x) has an exponential tail Ge−κx . Here G
is a matrix while we are interested in the general case averaging over all transitions.
Therefore we define the following transition matrices:

3.1.7. Definition.

PBI := Ψ∞ =
Ĉ1

Â1

, (3.15)

PIB := U = −
(
I 0

)(T↓↓ T↓0
T0↓ T00

)−1(T↓↑
T0↑

)
, (3.16)

PBB := PBIPIB = −
(
Ψ∞ 0

)(T↓↓ T↓0
T0↓ T00

)−1(T↓↑
T0↑

)
, (3.17)

where PBI is the transition matrix from a busy to an idle period, PIB is the transition
matrix from an idle to a busy period and PBB is the transition matrix between states
that initiate busy cycles. In PBI , Ψ∞ is transition matrix from a state that initiates a
busy period to the state that terminates the busy period. Recall that U is the transi-
tionmatrix fromDefinition 2.3.4 for transitions from idle period states to busy period
initiating states.

Weuse transitionmatrixPBB for calculating the stationary distributionπB over states
(i ∈ S↑) that initiate a busy period. The stationary distribution πB is the solution of:

πBPBB = πB , (3.18)∑
πB = 1.

3.1.8. Corollary. The overall expected tail of the distribution on the maximum is
given by:

x → ∞,P{M+ > z} → be−κz , (3.19)

3.1 Analysis 37

where b = πB
Ĉ1Â2−Â1Ĉ2

Â2
1

e and κ = λn↑ .

Proof. The stationary distribution of states that initiate a busy period is given by πB .
The marginal distribution of the maximum in a busy period is given by Ψ(x) and is
conditioned on the states i ∈ S↑ that initiate a busy period. The overall distribution
of the maximum is given by:

πBΨ(x)e.

We have to add the rows and weight the sums according to the stationary distribu-
tion πB . The same holds for the exponential tail parameter G from Lemma 3.1.6:

b := πBGe. (3.20)

We define the maximum of an arbitrary busy cycle by:

P{M+ ≤ x},

whereM+ represents the stochastic variable corresponding to the maximum of the
busy cycle. Similar to Iglehart [65, Lemma 1] we obtain an expression for

x → ∞.P{M+ > z} → be−κz ,

In our case b = πB
Ĉ1Â2−Â1Ĉ2

Â2
1

e and κ = λn↑ . �

3.1.9. Lemma. LetM+(k) be themaximum of the kth busy cycle. Then the following
holds:

lim
n→∞

P{κ max
1≤k≤n

M+(k)− log(bn) ≤ x} = Λ(x), (3.21)

where

Λ(x) = exp[−e−x]. (3.22)

Proof. In Corollary 3.1.8 we showed that the maximum of a busy cycle has an expo-
nential tail according to:

x → ∞.P{M+ > z} → be−κz ,

38
Chapter 3: A Spectral Theory Approach for Extreme Value Analysis in a Tandem of
Fluid Queues

Using the same arguments as in Iglehart [65, Lemma 2] we can derive that

lim
n→∞

P{κ max
1≤k≤n

M+(k)− log(bn) ≤ x} = Λ(x).

The following extreme value theorem argument can be used:

P{ max
1≤k≤n

M+(k) ≤
x + log(bn)

κ
} = Pn{M+(1) ≤

x + log(bn)
κ

},

=
[
1− b exp[−(x + log(x + bn))] + o(exp[−(x + log(n))])

]n.

�

3.1.1 Maximum with respect to time

Rather than the asymptotics for the busy cycles, we are interested in the evolution
of the maximum over time.

For this we use a result in Kulkarni and Tzenova [75], who derive an expression for
the joint mean first passage time in a Markov Modulated fluid queue:

i ∈ S,E[τS↓ | X (0) = x ,φ(0) = i],
τS↓ := inf{t > 0 : X (t) = 0,φ(t) ∈ S↓}.

The joint mean first passage time will be represented by function fi(x):

i ∈ S.fi(x) := E[τS↓ | X (0) = x ,φ(0) = i]. (3.23)

An expression for the joint mean first passage time can be obtained by solving a
system of differential equations:

R df (x)
dx + Tf (x) + e = 0. (3.24)

with boundary condition:

∀i ∈ S↓.fi(x) = 0, (3.25)

3.1 Analysis 39

where R = diag (r1, ... , rn) is the diagonal matrix with rates of change, T is the
generating matrix and where e is a column vector of ones. Here eigenvalues λj as
the solution to

det[R − λT] = 0, (3.26)

and corresponding right eigenvectors ϕr
j for which holds:

λiRϕr
j = Tϕr

j . (3.27)

Note that the eigenvalues are equal to the eigenvalues obtained in (3.2). Recall that
the eigenvalues of Q, are ordered in increasing order (Lemma 3.1.6, Equation (3.14)),
and have the following property:

ℜ
(
λ1

)
≤ ℜ

(
λ2

)
≤ · · · ≤ ℜ

(
λn↑

)
< 0 < ℜ

(
λn↑+2

)
≤ · · · ≤ ℜ

(
λn↑+n↓

)
.

In Kulkarni and Tzenova [75, Theorem 4.2] the solution for (3.24) is given by:

f (x) =
n↓+n↑∑

j=1+n↑

ajϕ
r
j e−λj x − ex

d + g . (3.28)

In this expression g a solution of

Tg = −(cR + I)e. (3.29)

Note that rank (T) = n − 1 therefore we have one free variable in g and fix gn = 0
in order to get a solution to (3.29). Coefficients aj are obtained from the solution to:

∀i ∈ S↓, ri < 0,
n↓+n↑∑

j=1+n↑

ajϕ
r
ij + gi = 0, (3.30)

where ϕr
ij is the ith entry of eigenvector ϕr

j .

In Section 2.3.2 we directly use [74, Example 1]. We now extend this for the case
where n↓ ≥ 1, n↑ ≥ 1 and n0 ≥ 0:

40
Chapter 3: A Spectral Theory Approach for Extreme Value Analysis in a Tandem of
Fluid Queues

Resulting from the Equation (3.27) we obtain eigenvectors that are partitioned into:

ϕr =

ϕr
↓

ϕr
0

ϕr
↑

 .

For the sake of readability we omit the index j in his expression. There are n0 states
with ri = 0 therefore we write:

λ

R↓ 0 0
0 0 0
0 0 R↑

ϕr
↓

ϕr
0

ϕr
↑

 =

T↓↓ T↓0 T↓↑
T0↓ T00 T0↑
T↑↓ T↑0 T↑↑

ϕr
↓

ϕr
0

ϕr
↑

 ,

and obtain:

ϕr
0 = −T−1

00 T0↓ϕ
r
↓ − T−1

00 T0↑ϕ
r
↑. (3.31)

Plugging in (3.31) gives:

λ

(
R↓ 0
0 R↑

)(
ϕr
↓

ϕr
↑

)
=

(
T↓↓ − T↓0T−1

00 T0↓ T↓↑ − T↓0T−1
00 T0↑

T↑↓ − T↑0T−1
00 T0↓ T↑↑ − T↑0T−1

00 T0↑

)(
ϕr
↓

ϕr
↑

)
.

The resulting eigenvectors will become:

ϕr =

 ϕr
↓

−T−1
00

[
T0↓ϕ

r
↓ + T0↑ϕ

r
↑
]

ϕr
↑

 . (3.32)

Observe that this is equivalent using the eigenvalues and vectors frommatrixQ (see
Equations 3.2-3.4) and plugging this into (3.32).

In order to have a valid solution only positive eigenvalues can contribute to (3.28).
Let Φ be the matrix consisting of all right-eigenvectors ordered according to all
corresponding eigenvalues with non negative real parts ℜ

(
λn↑+1

)
= 0 ≤ · · · ≤

ℜ
(
λn↓+n↑

)
. We now partition matrix Φ into

Φ =

Φ↓
Φ0

Φ↑,

 , (3.33)

where Φ↓ is n↓ × n↓, Φ0 is n0 × n↓ and Φ↑ is n↑ × n↓.

3.1 Analysis 41

3.1.10. Definition. Wedefine the conditional expected duration of a busy period and
idle period by:

E[CB] :=
(
E[τS↓ | X (0) = 0,φ(0) = i], i ∈ S↑

)
, (3.34)

τS↓ := inf{t > 0 : X (t) = 0,φ(t) ∈ S↓},

E[CI] :=
(
E[τS↑ | X (0) = 0,φ(0) = i], i ∈ S↓

)
, (3.35)

τS↑ := inf{t > 0 : φ(t) ∈ S↑}.

3.1.11. Lemma. The mean duration of a busy period starting in state i ∈ S↑ is given
by:

E[CB] = Φ↑Φ
−1
↓ g↓ + g↑, (3.36)

where Φ is the block partitioned matrix with right eigen vectors from (3.33) corre-
sponding to non negative eigenvalues, g is the solution to:

Tg = −(cR + I)e,

with vector g partitioned in

g =

g↓
g0
g↑

 .

Proof. The solution for (3.24) is given by:

f (x) =
n↓+n↑∑

j=1+n↑

ajΦje−λj x − ex
d + g . (3.37)

Coefficients aj are obtained from the solution to:

∀i ∈ S↓, ri < 0,
n↓+n↑∑

j=1+n↑

ajΦij + gi = 0, (3.38)

42
Chapter 3: A Spectral Theory Approach for Extreme Value Analysis in a Tandem of
Fluid Queues

where Φij is the ith entry of jth eigenvector Φj in eigenvector matrix Φ. We are in-
terested in the mean first passage time for a busy period started at x = 0. Therefore
we take f (0):

f (0) =
n↓+n↑∑

j=1+n↑

ajΦj + g↑.

Switching to matrix notation gives:

f (0) = Φ↑a + g , (3.39)

where

Φ↓a + g↓ = 0.

Matrix Φ↓ is invertible, therefore we can write:

a = −Φ−1
↓ g↓. (3.40)

Plugging (3.40) into (3.39) gives:

f (0) = Φ↑Φ
−1
↓ g↓ + g↑. (3.41)

�

3.1.12. Definition. We define the expected busy cycle time conditioned on starting
in a state i ∈ S↑ by:

i ∈ S↑,E[CBB] := E[τB | φ(0) = i , X (0) = 0],
τB := inf{t > τS↓ : φ(t) ∈ S↑},
τS↓ := inf{t > 0 : X (t) = 0,φ(t) ∈ S↓}.

3.1.13. Lemma. The overall mean expected busy cycle length is given by:

E[C] = πB

[
E[CB] + PBIE[CI]

]
,

where

E[CI] = −
(
I 0

)(T↓↓ T↓0
T0↓ T00

)−1

e, (3.42)

3.1 Analysis 43

resulting in

E[C] = πB

[
Φ↑↓Φ

−1
↓↓ g↓ + g↑ −

(
Ψ∞ 0

)(T↓↓ T↓0
T0↓ T00

)−1

e
]

,

with Ψ∞ = Ĉ1

Â1
as defined in (3.11).

Proof. In Lemma 3.1.11 we obtained an expression for the mean busy period. For the
idle period using standard first passage time calculations for a CTMC we obtain:

E[CI] = −
(
I 0

)(T↓↓ T↓0
T0↓ T00

)−1

.

Using E[CB] and E[CB] the expected cycle time can be obtained:

E[CBB] = E[CB] + PBIE[CI].

When a busy period is initiated for a given initiating state i ∈ S↑ the expected pas-
sage time is given by E[CB]. Remember that in Definition 3.1.7, Equation (3.15) we
defined PBI = Ψ∞. From this the expected idle time after a busy period that has
been initiated by state i ∈ S↑ is obtained:

i ∈ S↑,E[τS↑ − τ0 | X (0) = 0,φ(0) = i] = PBIE[CI], (3.43)

τS↑ := inf{t > τ0 : φ(t) ∈ S↑},
τ0 := inf{t > 0 : X (t) = 0}.

This corresponds to taking the expectation over E[CI] with respect to the transition
matrixPBI . Combining (3.42) and (3.43) gives the expected cycle time given the busy
cycle started in state i ∈ S↑:

i ∈ S↑.E[CBB] = E[CB] + PBIE[CI],

In (3.18) we defined the distribution πB of states that initiate a busy period. Themean
cycle time becomes:

E[C] = πB

[
E[CB] + PBIE[CI]

]
,

= πB

[
Φ↑↓Φ

−1
↓↓ g↓ + g↑ −

(
Ψ∞ 0

)(T↓↓ T↓0
T0↓ T00

)−1

e
]

.

�

44
Chapter 3: A Spectral Theory Approach for Extreme Value Analysis in a Tandem of
Fluid Queues

3.1.14. Theorem. Let M∗(t) := sup
0≤s≤t

{M(s)}. The limiting distribution of M∗(t) is

given by

lim
t→∞

P{κM∗(t)− log(bt) ≤ x} = Λ
1

E[C] (x), (3.44)

where

b = πB
Ĉ1Â2 − Â1Ĉ2

Â2
1

e,

E[C] = πB

[
Φ↑↓Φ

−1
↓↓ g↓ + g↑ −

(
Ψ∞ 0

)(T↓↓ T↓0
T0↓ T00

)−1

e
]

and

κ = λn↑ .

Proof. The proof is similar to that of Iglehart [65, Theorem 3]. In Lemma 3.1.9 we
showed that:

lim
n→∞

P{κ max
1≤k≤n

M+(k)− log(bn) ≤ x} = Λ(x).

Define {c(t) : t ≥ 0} as the renewal process associated with the length of busy
cycles. ThenM∗(t) satisfies:

lim
t→∞

P{ max
0≤k≤c(t)

M+(k) ≤ x} ≤ M∗(t) ≤

lim
t→∞

P{ max
0≤k≤c(t)+1

M+(k) ≤ x}. (3.45)

From Lemma 3.1.13 we know that:

E[C] = πB

[
Φ↑↓Φ

−1
↓↓ g↓ + g↑ −

(
Ψ∞ 0

)(T↓↓ T↓0
T0↓ T00

)−1

e
]

.

Applying the weak law of large numbers for c(t)we obtain:

t → ∞.c(t)
t → 1

E[C]
, (3.46)

3.1 Analysis 45

Using Berman [13, Theorem 3.2] and Lemma 3.1.9 the limiting distribution becomes:

lim
t→∞

P{κM∗(t)− log(bt) ≤ x} = Λ
1

E[C] (x). (3.47)

The term 1
E[C] from (3.46) represents the expected number of busy cycles per time

unit and corresponds to the c in Berman [13, Theorem 3.2]. �

From Theorem 3.1.14 the expression for the asymptotic distribution for themaximum
of fluid queue

P{M∗(t) > binit} < pempty (3.48)

can now be used to approximate the tail probabilities:

P{κM∗(t)− log(bt) > x} ≈ 1− Λ
1

E[C] (x), (3.49)

P{M∗(t) > binit} ≈ 1− Λ
1

E[C] (κbinit − log(bt)), (3.50)

whenever we have a sufficiently large binit such that at least binit >
log(bt)

κ .

Define pempty as the maximal allowed probability that a buffer, with initial contents
binit , will become empty during play-out of a video stream of length t = Tplay . Given
pempty , that represents themaximumprobability a video is disturbed duringTplay , the
initial buffer size binit should be chosen such that

binit >
− log[− E[C]

bTplay
log(1− pempty)]

κ
. (3.51)

This holds when we have Tplay sufficiently large such that

Tplay > − log(1− pempty)
E[C]

b .

FurthermoreM∗(Tplay) represents the limiting distribution on themaximum conges-
tion over time. Then if we considerM∗(Tplay) it should hold that:

P{M∗(Tplay) > binit} < pempty . (3.52)

46
Chapter 3: A Spectral Theory Approach for Extreme Value Analysis in a Tandem of
Fluid Queues

Using the fact that when t → ∞ the maximum M∗ converges to a Gumbel distribu-
tion the following asymptotic expectation of the maximum level can be derived:

t → ∞,E[M∗(t)] →
log
(bt
E[C]

)
+ γ

κ
, (3.53)

where γ ≈ 0.577215665 is the Euler-Mascheroni constant. Observe that E[M∗(t)]
grows logarithmically over time with logarithmic slope 1

κ .

3.2 Numerical experiments

In Section 2.3 we derived that the combined buffer contents, that is congested and
in the play-out buffer X (t)+Y (t) = M∗(t), equals the maximum of the congestion
process X (t). Moreover the distributionM∗(t) can be approximated by an extreme
value distribution for sufficiently large t . From this we derived a mapping from the
maximum buffer under-run probability pempty and streaming video duration Tplay to
minimal initial buffer level binit . Wewill now run simulations in order to evaluate the
accuracy of our mapping. Our parameter setting is as follows: α1 = 0.1, α2 = 0.2,
s1 = 8Mbps , s2 = 2Mbps , Rplay = 4Mbps , r1 = −4, r2 = 2, R = diag (

[
r1 r2

]
) and

T =

[
−α1 α1

α2 −α2

]
.

The simulation consists of 1, 000, 000 sample paths. Examples of realizations of sam-
ple paths are represented in Figure 3.1. In these figures we observe that the sample
paths follow the asymptotic mean quite well. Figure 3.1b is the logarithmic time
scale variant of Figure 3.1a. On the logarithmic time scale in Figure 3.1b the logarith-
mic growth behavior of the sample paths with respect to time t can be observed.

3.2 Numerical experiments 47

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

T
play

(sec)

M
(t

)

Maximum level

Sample path a
Sample path b
Theoretical mean

(a) Linear time scale.

10
1

10
2

10
3

10
4

0

20

40

60

80

100

T
play

(sec)

M
(t

)

Maximum level

Sample path a
Sample path b
Theoretical mean

(b) Logarithmic time scale.

Figure 3.1: Sample paths of M∗(t) compared to asymptotic mean as expressed in (3.53).
Sample paths a and b correspond to realisations of X(t) + Y (t) from the fluid model simu-
lation.

48
Chapter 3: A Spectral Theory Approach for Extreme Value Analysis in a Tandem of
Fluid Queues

In Figure 3.2 simulations ran for different values ofTplay for fixedRplay . On the vertical
axis the required buffer (in seconds) is matched with corresponding pempty on the
horizontal axis. With Figure 3.3 the required buffer from simulation is compared to
the required buffer using our asymptotic result. Herewe observe that for reasonably
long Tplay (minutes) the asymptotic result gives a good handle for determining the
required buffer time.

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

p
empty

B
u

ff
e

r
(s

e
c)

Required buffer

T
play

=1

T
play

=10

T
play

=100

T
play

=1000

Figure 3.2: Required buffer (from simulations) for given Tplay and pempty .

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

p
empty

B
u

ff
e

r
(s

e
c)

Required buffer

Sim., T
play

=10

Sim., T
play

=100

Sim., T
play

=1000

Theo., T
play

=10

Theo., T
play

=100

Theo., T
play

=1000

Figure 3.3: Required buffer (from simulations) for given Tplay and pempty compared to theo-
retical required level given by (3.51).

3.2 Numerical experiments 49

In Figures 3.4a-3.5e the buffer time is fixed while the maximum supported video
bitrate is determined. In this setting the network parameters remain fixed while the
parameter Rplay is varied from 2.1 to 5.9. This range is determined by the fact that
for the given parameters aminimal bit rate of 2Mbps is achieved and the average bit
rate is equal to 6Mbps. The maximum supported level determined by simulation is
compared to the theoretical maximum supported bit rate. Using (3.50) for given pa-
rameters (including Rplay) the empty buffer probability pempty can be approximated.
Note that κ, b and E[C] all depend on Rplay . Finding a supported Rplay using (3.50) is
done by applying a search method.

0.001 0.01 0.025 0.05 0.1 0.25 1
2.5

3

3.5

4

4.5

5

5.5

6

p
empty

 (log
10

 scale)

S
u

p
p

o
rt

e
d

 b
it

ra
te

 M
b

p
s

buffer=10 sec, T
play

=60 sec

Simulation
Theoretical

(a) Tplay = 60s , buffer= 10s .

0.001 0.01 0.025 0.05 0.1 0.25 1
2.5

3

3.5

4

4.5

5

5.5

6

p
empty

 (log
10

 scale)

S
u

p
p

o
rt

e
d

 b
it

ra
te

 M
b

p
s

buffer=10 sec, T
play

=120 sec

Simulation
Theoretical

(b) Tplay = 120s , buffer= 10s .

0.001 0.01 0.025 0.05 0.1 0.25 1
2

2.5

3

3.5

4

4.5

5

5.5

6

p
empty

 (log
10

 scale)

S
u

p
p

o
rt

e
d

 b
it

ra
te

 M
b

p
s

buffer=10 sec, T
play

=600 sec

Simulation
Theoretical

(c) Tplay = 600s , buffer= 10s .

0.001 0.01 0.025 0.05 0.1 0.25 1
2

2.5

3

3.5

4

4.5

5

5.5

6

p
empty

 (log
10

 scale)

S
u

p
p

o
rt

e
d

 b
it

ra
te

 M
b

p
s

buffer=10 sec, T
play

=3600 sec

Simulation
Theoretical

(d) Tplay = 3600s , buffer= 10s .

Figure 3.4: Supported bitrate for given Tplay and initial buffer level (in seconds) with respect
to pempty .

50
Chapter 3: A Spectral Theory Approach for Extreme Value Analysis in a Tandem of
Fluid Queues

0.001 0.01 0.025 0.05 0.1 0.25 1
4

4.5

5

5.5

6

p
empty

 (log
10

 scale)

S
u

p
p

o
rt

e
d

 b
it

ra
te

 M
b

p
s

buffer=30 sec, T
play

=120 sec

Simulation
Theoretical

(a) Tplay = 120s , buffer= 30s .

0.001 0.01 0.025 0.05 0.1 0.25 1
3.5

4

4.5

5

5.5

6

p
empty

 (log
10

 scale)

S
u

p
p

o
rt

e
d

 b
it

ra
te

 M
b

p
s

buffer=30 sec, T
play

=600 sec

Simulation
Theoretical

(b) Tplay = 600s , buffer= 30s .

0.001 0.01 0.025 0.05 0.1 0.25 1
3

3.5

4

4.5

5

5.5

6

p
empty

 (log
10

 scale)

S
u

p
p

o
rt

e
d

 b
it

ra
te

 M
b

p
s

buffer=30 sec, T
play

=3600 sec

Simulation
Theoretical

(c) Tplay = 3600s , buffer= 30s .

0.001 0.01 0.025 0.05 0.1 0.25 1
5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

p
empty

 (log
10

 scale)

S
u

p
p

o
rt

e
d

 b
it

ra
te

 M
b

p
s

buffer=60 sec, T
play

=600 sec

Simulation
Theoretical

(d) Tplay = 600s , buffer= 60s .

0.001 0.01 0.025 0.05 0.1 0.25 1

5

5.2

5.4

5.6

5.8

6

6.2

6.4

p
empty

 (log
10

 scale)

S
u

p
p

o
rt

e
d

 b
it

ra
te

 M
b

p
s

buffer=60 sec, T
play

=3600 sec

Simulation
Theoretical

(e) Tplay = 3600s , buffer= 60s .

Figure 3.5: Supported bitrate for given Tplay and initial buffer level (in seconds) with respect
to pempty .

3.3 Discussion

We extended our model in Chapter 2 such that it supports more than two rates
in the Markov Modulated fluid model. In this case there is not always an explicit
expression for the initial level of the play-out-buffer. A complicating factor is that the

3.A Proof of Lemma 3.1.2 51

inverse is needed of a complicatedmatrix expression from the fluidmodel equations
in Equation 2.11, which resulted in a spectral theory analysis approach. However
using the Binet-Cauchy formula on minors [47] (Page 12) we were able to provide
an explicit recipe to calculate the asymptotic behavior of the maximum level in the
MarkovModulated fluid queue. The result can directly be plugged into Equation 2.39
from Section 2.4 to dimension the initial play-out buffer size. From the simulation
results we observe that for reasonably long Tplay the asymptotic result gives a good
handle on the required buffer time. The longer the video stream themore accurately
the asymptotic distribution of the maximum corresponds to the real distribution of
the maximum.

The speed of convergence to the extreme value distribution depends on the rate in
which transitions (of the CTMC that models throughput) occur. In the examples we
observe that for small timescale the model is less accurate. An improvement would
be adding an approximation for the behavior on shorter time scale. We know that
when t ≈ 0 the distribution quantiles grow linearly with respect to transmission
rate and initial distribution. We expect a mix of the small timescale linear behavior
model and the long time scale extreme value model to become more accurate.

Appendix 3.A Proof of Lemma 3.1.2

3.A.1. Definition. Let A be a n × m matrix:

A =

a1,1 a1,2 · · · a1,m
a2,1 a2,2 · · · a2,m
...

...
. . .

...
an,1 an,2 · · · an,m

 .

Then any order-p minor of Awill be denoted as:

A
(

i1 i2 · · · ip
k1 k2 · · · kp

)
:= det

ai1,k1 ai1,k2 · · · ai1,kp

ai2,k1 ai2,k2 · · · ai2,kp
...

...
. . .

...
aip ,kp aip ,k2 · · · aip ,kp

 ,

provided that

1 ≤ i1 < i2 < · · · < ip ≤ m,
1 ≤ k1 < k2 < · · · < kp ≤ n,
p ≤ m, n.

52
Chapter 3: A Spectral Theory Approach for Extreme Value Analysis in a Tandem of
Fluid Queues

The Binet-Cauchy formula on minors [47] (Page 12):
Let A be anm×nmatrix, B be a n×q matrix and C be anm×q matrix and C = AB.
Then any minor of C of order p is the sum of the products of all possible minors of
Awith order p and corresponding minors of the same order of B:

C
(

i1 i2 · · · ip
j1 j2 · · · jp

)
=

∑
1≤k1<k2<···<km≤n

A
(

i1 i2 · · · ip
k1 k2 · · · kp

)
B
(

k1 k2 · · · kp
j1 j2 · · · jp

)
.

3.A.2. Lemma. Let A be a n × n matrix:

A =

m∑
k=1

Ak ,

with:

Ak =

ak,1,1 · · · ak,1,n
...

. . .
...

ak,n,1 · · · ak,n,n

Define A as a n × mn matrix with:

A =
[
A1 A2 · · · Ak

]
,

and I is a mn × n matrix (consisting of m n × n identity matrices In) defined by:

I =
[
In In · · · In

]T .

Let V be the set of subsets with exactly n − 1 elements from the set {1, 2, ... , mn}
which is defined by:

V = {(k1, k2, ... , kn−1) : 1 ≤ k1 < k2 < · · · < kn−1 ≤ mn}.

Then the following holds:

adj(A) =
∑
v∈V

adj
(

FC (A, v)FR(I, v)
)

,

with operators:

FC (A, v) =

a1,v1 · · · a1,vn−1

...
. . .

...
an,v1 · · · an,vn−1

 ,

3.A Proof of Lemma 3.1.2 53

FR(I, v) =

 iv1,1 · · · iv1,n
...

. . .
...

ivn−1,1 · · · ivn−1,n

 ,

Operator FC (A, v) selects the columns from A according to vector v , while operator
FR(I, v) selects rows from I according to vector v .

Proof. We write
m∑

k=1

Ak = AI =
[
A1 A2 · · · Ak

] [
In In · · · In

]T
. Using the

Binet-Cauchy formula on minors, this can be rewritten to:

adj [A] = adj [AI] =

∑
v∈V

a1,1(v)
∑

v∈V
a1,2(v) · · ·

∑
v∈V

a1,n(v)∑
v∈V

a2,1(v)
∑

v∈V
a2,2(v) · · ·

∑
v∈V

a2,n(v)
...

...
. . .

...∑
v∈V

an,1(v)
∑

v∈V
an,2(v) · · ·

∑
v∈V

an,n(v)

=
∑
v∈V

a1,1(v) a1,2(v) · · · a1,n(v)
a2,1(v) a2,2(v) · · · a2,n(v)
...

...
. . .

...
an,1(v) an,2(v) · · · an,n(v)

=
∑
v∈V

adj
(

FC (A, v)FR(I, v)
)

,

with

ai ,j(v) = A

(
1 · · · i − 1 i + 1 · · · n
v1 · · · vi−1 vi · · · vn−1

)
I

(
v1 · · · vj−1 vj · · · vn−1

1 · · · j − 1 j + 1 · · · n

)
.

�

54
Chapter 3: A Spectral Theory Approach for Extreme Value Analysis in a Tandem of
Fluid Queues

We are now ready to finalize the proof of Lemma 3.1.2.

Proof. Let V be the set of subsets with exactly n − 1 elements from the set
{1, 2, ... , mn}which is defined by:

V = {(k1, k2, ... , kn−1) : 1 ≤ k1 < k2 < · · · < kn−1 ≤ mn}.

We define P as the set containing all k-permutations of n − 1 elements from the
set {1, ... , n}. Furthermore we define C as the set with all combinations of n − 1
elements from the set {1, ... , m}. For each combination c ∈ C we define:

Ac =
[
Ac1 Ac2 · · · Acn−1

]
,

Ic =
[
In In · · · In

]T ,

and thus:

Ac Ic =
∑
k∈c

Ak .

Next we apply Lemma 3.A.2:

adj[A] =
∑
v∈V

(∏
k∈v

b⌈k/n⌉

)
adj
(

FC (A, v)FR(I, v)
)

,

with

A =
[
A1 A2 · · · Ak

]
,

and

I =
[
In In · · · In

]T .

Because all matrices Ak have rank 1 the only adjugates that remain are those where
there are n−1 columns, at n−1 different positions, from n−1 different Ak matrices.
All other combinations of columns result in a matrix with rank< n− 1 for which the
minors of order n − 1 are zero. Thus the only elements from V that contribute are
those that correspond to any k-permutation of n − 1 columns from the set {1, ... n}
where each column is selected from a distinct matrix Ak , k = 1, ... , m. Note that
each selected column remains exactly on its originating column position in the Ak

3.1 Proof of Lemma 3.1.2 55

matrix. As the only combinations consisting of n − 1 columns at unique positions
from n − 1 unique matrices contribute to non-zero minors it holds that:

∑
v∈V

(∏
k∈v

b⌈k/n⌉

)
adj
(

FC (A, v)FR(I, v)
)

=
∑
c∈C

∑
p∈P

(∏
k∈c

bk

)
adj
(

FC (Ac , vp)FR(Ip, vp)
)

,

where vp is the vector that selects the pi th column from matrix Aci :

(vp)i := n(i − 1) + pi , i ∈ {1, ... , n − 1}, p ∈ P.

We now define Vc as be the set of subsets with exactly n − 1 elements from the set
{1, 2, ... , n(n − 1)}which is defined by:

Vc = {(k1, k2, ... , kn−1) : 1 ≤ k1 < k2 < · · · < kn−1 ≤ n(n − 1)}.

For each combination c ∈ C we can do the opposite: add again the terms (cor-
responding to zero valued minors) from the set Vc corresponding to columns of
Ac =

[
Ac1 · · · Acn−1

]
:

∑
c∈C

∑
p∈P

(∏
k∈c

bk

)
adj
(

FC (Ac , vp)FR(Ip, vp)
)

,

=
∑
c∈C

(∏
k∈c

bk

) ∑
v∈Vc

adj
(

FC (Ac , v)FR(Ic , v)
)

,

=
∑
c∈C

(∏
k∈c

bk

)
adj

[∑
k∈c

Ak

]
.

�

56
Chapter 3: A Spectral Theory Approach for Extreme Value Analysis in a Tandem of
Fluid Queues

Efficient Traffic Splitting over Parallel Wireless

Networks with Partial Information 4
Up to now, we have considered information flows over a single path through the
network. Packet-switched networks offer the possibility to exploit several paths
in parallel. Multi-path communication solutions provide a promising means to im-
prove network performance in areas covered by multiple wireless access networks.
Today, little is known about how to effectively exploit this potential. In this chap-
ter we study a model where jobs are transferred over multiple parallel networks,
each of which is modeled as a processor sharing node. The goal is to minimize the
expected transfer time of elastic data traffic by smartly dispatching the jobs to the
networks, based on partial information about the numbers of foreground and back-
ground jobs in each of the nodes. In the case of full state information, the optimal
policy can be derived via standard MDP-techniques, but for models with partial in-
formation an optimal solution is hard to obtain. An important requirement is that the
splitting algorithm is efficient, yet simple, easy-to-implement, scalable in the num-
ber of parallel networks and robust against changes in the parameter settings. We
propose a simple index rule for splitting traffic streams based on partial information,
and benchmark the results against the optimal solution in the case of full state infor-
mation. Extensive simulations with real networks show that this method performs
extremelywell under practical circumstances for awide range of realistic parameter
settings.

4.1 Background

Today, many wireless networks have already closely approached the Shannon limit
on channel capacity, leaving complex signal processing techniques room for only
modest improvements in the data transmission rate [40]. A powerful alternative to
increase the overall data rate then becomes one in which multiple, likely different,
networks are used concurrently because (a) the spectrum is regulated among var-
ious frequency bands and corresponding communication network standards, and
(b) the overall spectrum usage remained to be relatively low over a wide range of
frequencies [46]. The concurrent access to multiple networks simultaneously has
opened up enormous possibilities for increasing bandwidth, improving reliability,
and enhancing Quality of Service (QoS) in areas that are covered by multiple wire-
less access networks. Currently, the efficient use of multiple networks concurrently
is an active area of both research [97] and standardization efforts [54]. However,

4This chapter is based on [19] and [14].

58
Chapter 4: Efficient Traffic Splitting over Parallel Wireless Networks with Partial
Information

despite the enormous potential for quality improvement, only little is known about
how to fully exploit this potential. This raises the need for new splitting algorithms
for concurrent access that are simple, easy to implement, yet effective.

The effectiveness of splitting data traffic streams is generally believed to increase
when detailed information about the state of the system (e.g., the number of flows,
measured round-trip times and the network load) is available. In practice, how-
ever, there is often no such detailed information available, or at best only some
coarse-grained and aggregated statistics. Consequently, a key the challenge is to
achieve efficient network utilization levels and good end-user application perfor-
mance, based on information that is only partially available. At the same time, for
the practical usefulness the splitting algorithms are required to be simple, easy-to-
implement, scalable in the number of access networks and robust against changes
in the parameter settings. We emphasize the importance of this requirement: 'opti-
mal' splitting algorithms based on idealized situations where all detailed information
is available - if possible at all - are often too complicated to be practically infeasible.

Processor Sharing (PS) models provide a powerful means to model the bandwidth
sharing behavior of elastic traffic streams in TCP-based data networks. A particularly
attractive feature of these models is that they abstract from the complex packet-
level details of the network, but at the same time maintain the essential factors that
determine the data transfer-time performance of elastic data flows. Moreover, the
theory of PSmodels iswell-matured and has been successfully applied tomodel the
flow-level behavior of a variety of communication networks, including CDMA 1xEV-
DO [18],WLAN [59], UMTS-HSDPA [109] andADSL [9]. In [59], an analytic flow-level
model was presented that explicitly translates the complex and detailed packet-
level dynamics of the FTP/TCP/IP-stack over a WLAN into a M/G/1-PS model for
the flow-level performance of data transfers.

In the literature, a variety of fundamental and applied studies have been focused to
the splitting and scheduling jobs to multiple nodes. The available results and tech-
niques are outlined below. In the context of telecommunication systems, the con-
current use of multiple network resources in parallel was already described for a
Public Switched Digital Network (PSDN) [43], where inverse multiplexing was pro-
posed as a technique to perform the aggregation of multiple independent informa-
tion channels across a network to create a single higher-rate information channel.
Various approaches have appeared to exploit multiple transmission paths in paral-
lel. For example, by using multi-element antennas, as adopted by the IEEE 802.11n
standard [64], at the physical layer or by switching datagrams at the link layer [31, 72],
and also by using multiple TCP sessions in parallel to a file server [95]. In the latter
case, each available network transports part of the requested data in a separate
TCP session. Previous work has indicated that downloading frommultiple networks
concurrently may not always be beneficial [52], but in general significant perfor-
mance improvements can be realized [56, 58, 62]. Under these circumstances of

4.1 Background 59

using a combination of different network types, in particular, the transport layer-
approaches, have shown their applicability [62] as they allow appropriate link layer
adaptations for each TCP session.

In a queueing-theoretical context, only few papers study partial information mod-
els. Bellman [10] was the first to study decision problemswith a transition law that is
not completely known. He observed that the problem could be transformed into an
equivalent full observation problem by augmenting the state space with the set of
probability distributions defined on the domain of the unknown quantity (i.e., the un-
observed state, or the unknownparameter) and updating it by Bayes' rule. The trans-
formation of the partial information problem to the complete information model,
however, comes with added computational difficulties, since policies are defined
over a continuum of states. This is the fundamental problem in developing algo-
rithms for computing optimal policies [89]. There is some work in the theoretical
domain to characterize the structure of the optimal policy (see, e.g., [25, 2, 103, 79]).
Even then, finding the optimal policy computationally for a general Bayesian deci-
sion problem is intractable. Approaches dealing with this are to be satisfied with
suboptimal solutions or to develop algorithms that can exploit problem characteris-
tics (see, e.g., [78, 90, 116, 57, 24, 30]). We refer to [80, 85, 107, 76] for some surveys
on computational techniques.

In this chapterwe study amodel (depicted in Figure 4.1) consisting ofN non-identical
parallel networks that are modeled as PS nodes that serve N + 1 streams of jobs.
Node i has processing speed Ci . Stream 0 is called the foreground stream, and
streams 1, ... , N are called the background streams. Jobs of background stream i
are served exclusively at PS node i . Each job of the foreground stream has to be
routed to exactly one of the PS nodes by the dispatcher. Job sizes are assumed to be
exponentially distributed. The goal is to develop a dynamic dispatching policy that
minimizes the expected sojourn time of foreground jobs by using information about
the numbers of foreground and background jobs at each of the PS nodes. Based
on practice, we assume that the dispatcher is not able to distinguish the number of
foreground and background jobs in the network, but instead only has information
about the total number of jobs.

The model under consideration (see Section 4.2 below for details) was also stud-
ied in [14], where we addressed this problem through a learning mechanism, where
the dispatcher makes a statistical inference on the distribution of the numbers of
foreground and background jobs after the each decision. This Bayesian splitting al-
gorithm in [14] was found to be highly effective in dealing with partial information,
and its performance was found to be close to the performance of the optimal pol-
icy under full state information. However, the Bayesian approach has two main
drawbacks: (1) the method is quite complicated and requires in-depth knowledge
about stochastic models, which limits its practical usefulness, and (2) the method
is not scalable in the number of parallel access networks, N , because it needs the

60
Chapter 4: Efficient Traffic Splitting over Parallel Wireless Networks with Partial
Information

full-state information MDP solution, which suffers from the curse of dimensionality.
This limits the applicability of the Bayesian methods due to memory constraints.

The method presented in this chapter is a simple index rule that is essentially a con-
vex combination of techniques that are found to work well extreme cases: (1) the
Weighted Join Shortest Queue (WJSQ) policy that routes foreground flow arrivals
to the node where the total number of flows, normalized by the node speed, is min-
imized, and (2) the Conditional Sojourn Time (CST) approach where the expected
sojourn time, conditioned on the total numbers of flows at each of the networks,
is minimized. The WJSQ policy is particularly effective when the foreground traffic
load tends to saturate the nodes, whereas the CST policy is expected to perform
well in systems with low load, or low foreground load situations. The interpolating
factor, denoted α (0 < α < 1), represents the ratio of the foreground load and the
remaining amount of capacity. When α ≈ 0 the CST policy is expected to perform
well, whereas for α ≈ 1 the WJSQ policy is expected to perform well. To assess
the effectiveness of the CC method, we have performed extensive simulation ex-
periments in a real network simulator, called OPNET [87], that implements the full
wireless protocols stack. The results show that the CC method leads to close-to-
optimal performance for a wide range of realistic parameter settings.

We emphasize that the main contribution of this chapter lies in (1) its practical use-
fulness, providing a simple but very effective means to (near-)optimally split elas-
tic traffic streams over wireless networks based on limited information about the
state of the system, (2) its scalability with respect to the number of parallel access
networks, and (3) the fact the efficiency of the splitting approach is extensively vali-
dated by a wide range of real network simulations (rather than simplified queueing
simulations) implementing the complex dynamics of full wireless protocol stacks.

The organization of the chapter is as follows. In Section 4.2 we describe the model
and introduce the notation. In Section 3 we discuss the full-state information model
and present our simple index-rule based heuristic. In Section 4.4 we discuss the
results of extensive numerical evaluation of the heuristic in realistic network simu-
lations with OPNET [87], where full wireless protocol stack is implemented.

4.2 Model

We study a model consisting of N non-identical parallel networks that are modeled
as PS nodes that serve N + 1 streams of flows (we refer to [59] for details on the
validation and the parameterization of PS models for modeling wireless networks).
Stream 0 is called the foreground stream, and streams 1, ... , N are called the back-
ground streams. From each stream flows arrive according to a Poisson processwith
arrival rate λi , (i = 0, 1, ... , N). Flows from background stream i are served exclu-

4.3 Model 61

PS 1

PS 2

PS N

Background stream 1 1

Background stream 2 2

Background stream N

Foreground stream 0

Figure 4.1: The splitting model.

sively at PS node i . Each flow from the foreground stream has to be dispatched
to one of the PS nodes on the basis of information on the total number of flows
(thus, number of foreground flows plus the number of background flows) at each
of the nodes, such that the expected sojourn time E [S0] for an arbitrary foreground
flow is minimized. Flow sizes are assumed to be exponentially distributed with rate
µ, and each node has processing speed Ci , so that server i can handle Ciµ flows
per time unit. Without loss of generality, the node capacities are normalized such
that C1 + · · · + CN = 1. For each node i , the offered background load is given by
ρi := λi/Ciµ (i = 1, ... , N), and the foreground load is ρ0 := λ0/µ. Considering all
arriving flows, the total offered load is given by ρ := ρ0 +

∑N
i=1 ρiCi . For stability

reasons, we assume ρ < 1. The fraction foreground load compared to the total load
is denoted by β := ρ0/ρ.

In general, for each given splitting policy that basis its routing decision on the full
state information, the model can be described as a CTMCwith state space S = N2N

0 ,
where N0 is the set of nonnegative integer numbers. Each state s ∈ S can be writ-
ten as s = (x1, ... , xN , y1, ... , yN), with xi the number of foreground flows on the
nodes and yi the number of background flows. In this chapter, it is assumed that
the dispatcher has only access to partial information in the sense that it has knowl-
edge of zi := xi + yi for i = 1, ... , N , i.e. the total number of flows on each of the
nodes. Recall that in the case of full state information the dispatcher has knowledge
of (x1, ... , xN , y1, ... , yN). Based on the above information, there is a central deci-
sion maker that has to decide on the distribution of the foreground jobs over the N
servers. In doing so, the aim is to have a decision policy that minimizes E [S0], where
S0 is the sojourn time of an arbitrary foreground job in the system.

62
Chapter 4: Efficient Traffic Splitting over Parallel Wireless Networks with Partial
Information

4.3 Splitting algorithms

In this section we describe a number of splitting algorithms, which will be evaluated
in the next section. In 4.3.1 we describe the MDP model for the case of full state
information (see [94] for details on MDP's), which will be used as a benchmark to
assess the efficiency of the index rule for the case of partial information. In Section
4.3.2 we describe both the Bayesian partial information approach 4.3.2.1 and our
index rule 4.3.2.2.

4.3.1 Full state information

In this subsection we assume that the dispatcher has full state information, and
formulate the optimal dispatching problem as a Markov decision process (MDP).
More specifically, the dispatching decisions are based on state description s =
(x1, ... , xN , y1, ... , yN)where s ∈ S is from the state space S = N2N

0 , and where N0 is
the set of nonnegative integer numbers. Let I = {1, ... , N} be the set of nodes and
A = {1, ... , N} be the set of actions, where the action i means that the dispatcher
forwards the flow to node i ∈ A. The goal is tominimize the total expected response
time by minimizing the total number of active foreground flows. Note that the MDP
will not directly obtain the expected sojourn time for foreground flows but by using
Little's Law, λ0E[S0] = E[N0], we can obtain the average response time from E[N0],
the average number of foreground flows. The reward function, corresponding to
the total number of foreground flows, is defined as r(s) = x1 + · · · + xN , where
s = (x1, ... , xN , y1, ... , yN) ∈ S . Furthermore we assume that λ0 + · · ·+ λN + µ = 1
we can always get this by proper scaling. Please note that we already assumed
C1 + · · · + CN = 1. Let V (s) be the value function, i.e., the asymptotic difference
in total costs that results from starting the process in state s instead of some refer-
ence state. The long-term average optimal actions are a solution of the optimality
equation (in vector notation) g + V = TV , where T is the dynamic programming
operator acting on V defined as follows (see [94] for details):

TV (s) = min
i∈A

{
λ0V (s + ei)

}
(4.1a)

+

N∑
i=1

yi + λiV (s + ei+N) (4.1b)

+
N∑

i=1

µCi
xi

xi + yi
V (s − ei) (4.1c)

+
N∑

i=1

µCi
yi

xi + yi
V (s − ei+N). (4.1d)

4.3 Splitting algorithms 63

In optimality equation TV (s) (4.1a) corresponds to the foreground flow arrivals that
have to be optimized, (4.1b) corresponds to arrivals of cross-traffic flows, (4.1d) cor-
responds to departures of foreground flows, and (4.1c) corresponds to departures
of cross traffic flows.

Applying the backward recursion results in an optimal policy R∗ ∈ A|S|. An op-
timal policy contains optimal decisions depending on the number of flows on the
PS-nodes. For each state s = (x1, ... , xN , y1, ... , yN), the policy found by the back-
ward recursion R∗(s) ∈ Awill give an optimal action.

4.3.2 Partial information model

The dynamic server selection model with full information uses a state description
(x1, ... , xN , y1, ... , yN) with 2N entries. However, in practice, distinguishing the fore-
ground traffic from the background traffic might not be feasible. In these cases, one
can only observe the state (z1, ... , zN) with zi = xi + yi for i = 1, ... , N . Now, the
dynamic control policy that we derived in the previous section cannot be applied
straightforwardly. We now describe two approaches to tackle this problem. First
in Section 4.3.2.1 we describe the Bayesian partial information approach. Secondly
in Section 4.3.2.2 we describe a near optimal approach based on the conditional
sojourn times of the different nodes.

4.3.2.1 Bayesian partial information approach

To apply the control policy one needs to create a mapping from (z1, ... , zN) to
(x1, ... , xN , y1, ... , yN), so that (an estimate of the) full information is recovered. Note
that it is not sufficient to create a mapping solely based on (z1, ... , zN) at each deci-
sion epoch, since it does not use the information contained in the sample path, i.e.,
many sample paths can lead to the same state (z1, ... , zN). Therefore, we will use
Bayesian learning that takes into account the complete history of states in the estima-
tion procedure. We shall call z = (z1, ... , zN) ∈ NN

0 the observation state. In order
to learn about the division between the number of foreground and background
jobs, we will denote by ui(n) the probability that at server i there are n foreground
jobs for i = 1, ... , N . The probability distribution ui will serve the purpose of in-
formation about the states that cannot be observed; hence, u = (u1, ... , uN) is
called the belief state. Note that the belief state space is of high dimension, namely∏N

i=1{ui ∈ [0, 1]N0 |
∑

x∈N0
ui(x) = 1}.

Based on the observation and belief states, we construct a state space for the
Bayesian dynamic program consisting of the vectors s = (z , u). Note that every
arrival and departure gives the system information on how to update the belief state.

64
Chapter 4: Efficient Traffic Splitting over Parallel Wireless Networks with Partial
Information

Suppose that state s is given and that an arrival of foreground job that is admitted
to server i occurs. The new state safi is then given by safi = (z + ei , u′) where
u′

i (x) = ui(x − 1) for x > 0 and u′
i (0) = 0, and where u′

j (x) = uj(x) for j ̸= i . In case
of arrival of a background job to server i , we have a new state sabi = (z + ei , u).

In case of departures, we have a similar state transformation. When a foreground
job leaves server i , then we have corresponding states sdfi = ([z − ei]

+, u′) with
u′

i (x) = ui(x + 1) for x ≥ 0. Similarly, when a background job leaves server i , then
we have sdbi = ([z − ei]

+, u). Naturally, these transitions cannot be observed, so
we take the expectation with respect to the probability distribution u to average
over all sample paths. This gives a new dynamic programming operator in which
learning is incorporated. This is given by

TV (s) =
∑

x1∈N0

· · ·
∑

xN∈N0

u1(x1) · · · uN(xN)
[N∑

i=1

xi +
N∑

i=1

λiV (sabi)

+λ0min{V (saf1), ... , V (safN)}

+
N∑

i=1

xi
zi
µ0V (sdfi) +

N∑
i=1

zi−xi
zi

µiV (sdbi)

+
(
1− λ0 −

N∑
i=1

[
λi +

xi
zi
µ0 +

zi−xi
zi

µi
])

V (s)
]
.

(4.2)

Note that the basic idea to transform Equation (4.1) into Equation (4.2) is to take the
conditional expectationwith respect to the belief state distribution u. Under this con-
dition, the foreground and background jobs can be distinguished so that the struc-
ture of the equation resembles the one of the fully observed problem. However,
only the transitions to the new belief state need to be adjusted so that the infor-
mation that has been learned is taken into account. These transitions are provided
above.

We end this section with two remarks.

4.3.1. Remark (Complexity). Note that the dynamic programming operator for the
Bayesian model (4.2) resembles the dynamic programming operator of the full ob-
servation model (4.1). However, the state space of the Bayesian model is of signif-
icantly higher dimension as the state variables for the background traffic are con-
tinuous. Hence, solving the optimality equation g + V = TV is notoriously hard,
both analytically and numerically. In general, the Bayesian updates result in poste-
rior distributions that cannot be captured by a nice structural form. In our problem,
however, the decision maker can distinguish foreground and background upon ar-

4.3 Splitting algorithms 65

rival leading to an arrival process with deterministic state transitions. It is only the
departures that carry uncertainty with them. This leads to a state transition function,
as described above, which keeps the dimensionality of the state space at reasonably
low levels. In this way, the structure of the problem makes the Bayesian model a
tractable approach (after discretization of the state space). Also note that for arbi-
trary nodes i and j , the decision as to whether an incoming foreground job should
join node i or j , does not depend on the other nodes. Hence, in the decision making
one can compare node 1 and 2, take the best node and compare it to node 3, take
the best of that comparison and compare it to node 4, and so forth. This leads to a
sequence of N − 1 comparisons. Therefore, the Bayesian approach scales linearly
in running time with the number of nodes N .

4.3.2. Remark (Accuracy). In a general Bayesian setting, the belief state represents a
probability distribution that represents the likelihood that the process is in a particu-
lar state. The accuracy of this estimate, generally, tends to deteriorate as the process
progresses due to accumulated errors. In our problem setting, the accuracy of the
estimates tends to improve as jobs leave the system. Asmore jobs leave the system,
the support of the posterior distribution reduces to a smaller set of states, limiting
the possibilities for errors. In fact, upon departure of the last job in a particular node,
the posterior distribution of that node is independent of the past, since the state is
exactly known. Thus, all probability mass is concentrated on having 0 jobs in that
node. Hence, an empty node leads to a belief state that corresponds to the true
state for that node. This observation increases the accuracy of our algorithm due to
stability of the system.

4.3.2.2 Conditional sojourn time approach

In this sectionwe propose a heuristic policy for near-optimal dispatching in the case
of partial information, i.e. the dispatcher only has knowledge of the total numbers of
(foreground plus background) jobs at each node. The policy is based on the combi-
nation of two policies that perform well on complementary sets of parameter com-
binations (see also the discussion below): (1) the Weighted Join the Shortest Queue
(WJSQ) policy, and (2) the Conditional Sojourn Time (CST) policy.

The WJSQ policy routes an arriving foreground flow to the node where the total
number of flows (normalized by the node speed) is minimal. Thus, the WJSQ for-
wards an incoming foreground job to node i∗, such that

γ
(WJSQ)
i∗ =min

{
γ
(WJSQ)
1 , ... , γ(WJSQ)

N

}
, (4.3)

66
Chapter 4: Efficient Traffic Splitting over Parallel Wireless Networks with Partial
Information

where

γ
(WJSQ)
i :=

zi
Ci

(i = 1, ... , N).

In other words, the WJSQ routes foreground flows to the node with the smallest
zi/Ci ratio. Ties are broken evenly. TheWJSQmay be expected to work particuarly
well when the total load to the system is large (i.e., ρ ≈ 1) and the foreground load
represents a significant fraction of the total load offered to the system (i.e., β ≈ 1).

The CST approach routes an incoming flow to the node for which the expected so-
journ time, conditioned on the fact that there are zi other flows at node i at that mo-
ment, is minimal. Using a well-known result for the conditional expected sojourn
time in an M/M/1-PS queue [100], the CST policy forwards an incoming foreground
job to node i∗, such that

γ
(CST)
i∗ =min

{
γ
(CST)
1 , ... , γ(CST)

N

}
, (4.4)

where

γ
(CST)
i :=

zi + 2

2µCi − λi
(i = 1, ... , N).

The CST approach may be expected to work well if the foreground load is negligible
compared to the total load (i.e., β ≈ 0). If the foreground load is large, then the
dynamic decision making will induce a correlation between the number of flows in
a PS node and the combined arrival process into that node, which leads to a violation
of the Poisson assumption that underlies (4.4).

Both theWJSQ and the CST policies generate a switching curve given the total num-
ber of flows zi on each node. We aim to develop a method that works well for the
whole range of foreground and background load values. To this end, we propose a
method where both switching curves are combined using a convex combination of
these curves. The convex combination (CC) approach forwards an incoming fore-
ground job to node i∗, such that

γ
(CC)
i∗ =min

{
γ
(CC)
1 , ... , γ(CC)

N

}
, (4.5)

where

γ
(CC)
i :=α

zi
Ci

+ (1− α)
zi + 2

2µCi − λi
,

4.4 Numerical experiments 67

and where α (0 ≤ α ≤ 1) is given by:

α :=
ρ0

N∑
i=1

Ci (1− ρi)

(i = 1, ... , N). (4.6)

Thus, the CST method is expected to work well when α ≈ 0, whereas the WJSQ
method is expected to work well when α ≈ 1. In the next section the CC-approach
defined in (4.5)-(4.6) ,and the performance of each of the policies discussed above
is evaluated by simulations.

4.4 Numerical experiments

To assess the performance of the index rules discussed in Section 4.3 for efficiently
assigning downloads with concurrent access based on partial state information, we
have performed extensive experimentation with a state-of-the-art network simula-
tion package OPNET [87], using an implementation for FTP file transfers via TCP/IP
over two parallel WLANs. We have performed a large number of experiments with
a wide range of parameter settings. The results are outlined below.

4.4.1 Experimental configuration

In the experimental setup all wireless terminals download files from an application
server, which may also be a dispatcher in front of several application servers (not
shown). The application server has information about the number of ongoing down-
loads over each of the WLAN access networks, AP1 and AP2, but is unable to dis-
tinguish between the multi-homed and the single homed terminals, because there
is no binding between both network addresses of the multi-homed terminals. Both
WLAN access points operate on non-overlapping frequency channels to establish
two non-interfering parallel paths to the application server from the multi-homed
systems. The transmission links from the access points towards the application
server are considered to incur a negligible delay and loss to packets from and to
the access points. This assumption is motivated by the much higher capacities and
reliability offered in contemporary fixed-line carrier-grade Internet connections in
comparison to the IEEE 802.11b access networks. The analytic model from [59] cap-
tures the combined dynamics and protocol overhead of the 802.11 MAC, IP, TCP
and application-layer into an explicit expression for the effective service time of a
file download. Based on the effective service time, the effective load can be deter-
mined of the file transfers in our simulatedWLANnetworkswith a flow-levelM/G/1
PS model.

68
Chapter 4: Efficient Traffic Splitting over Parallel Wireless Networks with Partial
Information

Figure 4.2: The experimental setup.

In the simulated network there are ten multi-homed terminals (named FG_01 −
FG_10) that generate download requests (that are considered foreground jobs in
the queuing model) with arrival rate λ0. These foreground terminals are positioned
between both access points in a circle with a radius of 15 meter. In addition there
are ten single-homed terminals (named with prefix BG_AP1_) that generate back-
ground traffic in network 1 with file downloads arriving with rate λ1 to the first net-
work. The remaining ten single-homed terminals (namedwith prefixBG_AP2_) gen-
erate background traffic at rate λ2 in network 2 in a similar fashion. All background
terminals are positioned at an equal distance of 15 meter from their respective ac-
cess point. The file download requests arrive according to an independent Poisson
process and may have multiple file transfers in progress.

The MAC/PHY parameters of theWLAN stations are set in accordance to the widely
deployed IEEE 802.11b standard amendment as it relies on the same MAC proto-
col basis as the contemporary higher rate (IEEE 802.11 a/g/n) amendments and has
lower computational requirements for high-load network simulations. Table 4.1
summarizes the IEEE 802.11 MAC parameters used in our analytic model to calculate
the effective load values for the simulation runs. In this table, mac is the number

4.4 Numerical experiments 69

Parameter Value Parameter Value
mac 224 bits ack 112 bits
difs 50 µs Rb {1, 11} · 106 bps
sifs 10 µs Cwmin 31 slots
eifs 364 µs phy 192 µs
δ 1 µs τ 20 µs
Rc 106 bps

Table 4.1: IEEE 802.11b MAC parameters.

of bits of overhead bits associated to a MAC data frame. The difs, sifs, eifs are the
DCF, short and extended interframe spacing times, respectively. The δ is the prop-
agation delay that is assumed in our analytic model. Rc is the transmission rate for
WLAN acknowledgments of size ack bits, and Rb is the WLAN transmission rate for
MAC data frames that is set to 1 or 11 Mbps. Cwmin corresponds to the minimum
contention window in slots. Phy is the physical layer overhead, and τ is the slot
time. In addition to the WLAN MAC, specific settings apply to the higher protocol
layers and are outlined in Table 4.2. In Table 4.2, XFTPget is the size of the FTP GET-

Variable Setting
XFTPget 4096 bits
XFTPclose 64 bits
TCPstack Full-Featured
XMSS 11584 bits
Xtcp/ip 416 bits
w 70080 bits (8760 bytes)
Xfile 1.6 · 106 bits

Table 4.2: Network and application settings.

command that is issued for initiating a file download, XFTPclose is the size of the FTP
CLOSE-command that concludes the file transfer at the application. The TCP stack
used in our experiments is characterized in OPNET as `Full-Featured', which is an en-
hanced version of TCP Reno that uses Selective Acknowledgments (SACK) [82] and
has a slightly smaller MSS, XMSS (in bits), due to the use of timestamps to fit in the
1500 bytes that are used as the WLAN data frame payload. The number of TCP/IP
overhead bits per segment is Xtcp/ip bits. The maximum TCP receiver window size
is indicated as w (in bits), and the file size as Xfile (in bits). Based on the parameter
setting from Table 4.1 and 4.2 and respecting the engineering guidelines from [59] we
can assume that the mean download response times in our simulation model can
be accurately predicted from the effective load of the network using theM/G/1 PS
model.

70
Chapter 4: Efficient Traffic Splitting over Parallel Wireless Networks with Partial
Information

4.4.2 Experimental results

The OPNET simulations for the experimental results have been run with approx-
imately 322, 000 foreground jobs and the background jobs ranging from roughly
644, 000 jobs to 5.1 million jobs depending on the load. In our simulation study we
have considered two scenarios. One simulation scenario considers equal capacity
networks in which all terminals are configured to use a WLAN transmission rate of
11 Mbps. For simulating a scenario in which the network capacity of both access
network is unequal, the WLAN transmission rate used in AP2 is lowered to 1Mbps,
which reduces the medium capacity for processing file transfers by a factor of 5.79.
In this scenario, the background load applied to AP2 is based on the lower capacity,
whereas the foreground traffic intensity remains the same as for the equal capacity
network. We have executed 48 runs for the equal capacity scenario (24 runs for
the fully observed MDP and 24 runs for the heuristics) and 80 runs for the unequal
capacity scenario. All runs have completed a total simulation time of 300 hours per
run ofwhich 1 hour is thewarm-up time leading to awall clock time of approximately
75 hours per run. This experimental setup is sufficient to derive a 99% confidence
interval of approximately 0.7%with respect to the point estimates.

To assess the efficiency of the different partial-information policies, we have simu-
lated the mean transfer time of an arbitrary foreground job, E [S0], for different poli-
cies, and compare the outcome to the full MDP case. For given policy π, the relative
error is defined as follows:
For π ∈ {WJSQ,CST,CC,Bayes, full MDP},

∆% =
E [S0|π]− E [S0|full MDP]

E [S0|full MDP]
× 100%. (4.7)

Note that the simulations have been run with 107 foreground jobs resulting in a 99%
confidence interval of approximately 0.1%with respect to the point estimates.

4.4.2.1 The case of equal capacities

We first consider the case where both access networks have the same (normalized)
capacity, i.e., C1 = C2. The results of the experiments are outlined in Tables 4.3 to
4.5, for ρ0 = 0.1 and a number of combinations ρ1 and ρ2. Tables 4.3 and 4.4 show
the results for the (W)JSQ and the CC policies, benchmarked against the full MDP
policy. Table 4.5 shows a comparison between theCCpolicy and the Bayesian policy
[14]. Note that the parameter values are obtained according to the parameterization
as defined and validated in [59]. The results in Table 4.3 show that the JSQ policy
performs quite well, with a maximum error up to 4.7%. However, the results in
Table 4.4 show that the CC policy strongly outperforms JSQ, with a maximum error

4.4 Numerical experiments 71

ρ2
0.1 0.3 0.5 0.7 0.8

ρ1

0.1 (0.356, 0.354, 0.6%) (0.380, 0.369, 3.0%) (0.401, 0.385, 4.2%) (0.419, 0.400, 4.7%) (0.422, 0.406, 4.0%)

0.2 (0.402, 0.395, 1.8%) (0.435, 0.420, 3.7%) (0.463, 0.446, 3.8%) (0.471, 0.455, 3.5%)

0.3 (0.422, 0.421, 0.4%) (0.469, 0.458, 2.3%) (0.513, 0.498, 2.9%) (0.533, 0.519, 2.8%)

0.4 (0.506, 0.501, 1.0%) (0.574, 0.564, 1.8%) (0.610, 0.599, 1.9%)

0.5 (0.548, 0.547, 0.0%) (0.649, 0.639, 1.6%) (0.706, 0.696, 1.5%)

0.6 (0.744, 0.737, 1.0%) (0.840, 0.828, 1.5%)

0.7 (0.867, 0.865, 0.2%) (1.030, 1.018, 1.2%)

0.8 (1.319, 1.319, 0.0%)

Table 4.3: Comparison of E [S0|JSQ] and E [S0|full MDP] for ρ0 = 0.1.

ρ2
0.1 0.3 0.5 0.7 0.8

ρ1

0.1 (0.356, 0.354, 0.6%) (0.371, 0.369, 0.7%) (0.386, 0.385, 0.2%) (0.401, 0.400, 0.4%) (0.408, 0.406, 0.5%)

0.2 (0.397, 0.395, 0.5%) (0.422, 0.420, 0.5%) (0.447, 0.446, 0.1%) (0.459, 0.455, 0.9%)

0.3 (0.422, 0.421, 0.4%) (0.460, 0.458, 0.4%) (0.501, 0.498, 0.6%) (0.523, 0.519, 0.8%)

0.4 (0.503, 0.501, 0.4%) (0.568, 0.564, 0.8%) (0.599, 0.599, 0.1%)

0.5 (0.548, 0.547, 0.0%) (0.644, 0.639, 0.8%) (0.702, 0.696, 0.9%)

0.6 (0.738, 0.737, 0.1%) (0.835, 0.828, 0.8%)

0.7 (0.867, 0.865, 0.2%) (1.022, 1.018, 0.4%)

0.8 (1.319, 1.319, 0.0%)

Table 4.4: Comparison of E [S0|CC] and E [S0|full MDP] for ρ0 = 0.1.

ρ2
0.1 0.3 0.5 0.7 0.8

ρ1

0.1 (0.355, 0.356,−0.3%) (0.370, 0.371,−0.4%) (0.385, 0.386,−0.2%) (0.402, 0.401, 0.1%) (0.408, 0.408,−0.1%)

0.2 (0.396, 0.397,−0.3%) (0.420, 0.422,−0.4%) (0.446, 0.447, 0.0%) (0.456, 0.459,−0.8%)

0.3 (0.421, 0.422,−0.3%) (0.460, 0.460,−0.1%) (0.502, 0.501, 0.0%) (0.521, 0.523,−0.3%)

0.4 (0.503, 0.503, 0.0%) (0.565, 0.568,−0.6%) (0.601, 0.599, 0.3%)

0.5 (0.551, 0.548, 0.6%) (0.643, 0.644,−0.1%) (0.700, 0.702,−0.3%)

0.6 (0.742, 0.738, 0.6%) (0.831, 0.835,−0.5%)

0.7 (0.867, 0.867, 0.0%) (1.028, 1.022, 0.6%)

0.8 (1.322, 1.319, 0.2%)

Table 4.5: Comparison of E [S|Bayes] and E [S|CC] for ρ0 = 0.1.

of 0.9%. The difference in performance between JSQ and CCmanifests itself mainly
when the background load values are strongly asymmetric. In those case the JSQ
policy become highly inaccurate. To illustrate this, consider a two-node system
where node 1 has high background load and node 2 has low background load. If
n1 < n2 then the JSQ policy will route an incoming job T to node 1. In this situation,
it may well occur that this decision is not optimal, because the sojourn time of T is
likely to be stretched due to the background job arrivals at node 1. Table 4.5 shows
that the CC policy performs comparably well to the Bayesian policy, despite the
fact that the Bayesian policy has a much higher computational complexity. We re-
emphasize that the computational complexity of the CC rule is negligible.

72
Chapter 4: Efficient Traffic Splitting over Parallel Wireless Networks with Partial
Information

4.4.2.2 The case of unequal capacities

Let us now consider the case where the access networks have different capacities,
i.e., C1 ̸= C2. To this end, we consider the case C1 : C2 = 1 : 0.17. The results of the
simulations experiments are outlined in Tables 4.6 to 4.8, for ρ0 = 0.1 and a number
of combinations ρ1 and ρ2. Tables 4.6 and 4.7 show the results for theWJSQ and the
CC policies, benchmarked against the full MDP policy (similar to the results in Tables
4.3 and 4.4 for the equal capacity case). Table 4.8 shows a comparison between the
CC policy and the Bayesian policy (similar to Table 4.5, see Section 4.2.1). Recall that
the parameter values in this setting are obtained according to the parameterization
discussed in [59].

ρ2
0.1 0.3 0.5 0.7 0.8

ρ1

0.1 (1.027, 0.415, 147.5%) (0.962, 0.415, 131.7%) (0.865, 0.416, 108.1%) (0.865, 0.416, 108.1%) (0.643, 0.415, 54.7%)

0.2 (1.094, 0.474, 130.7%) (1.025, 0.475, 115.7%) (0.930, 0.476, 95.4%) (0.930, 0.476, 95.4%) (0.709, 0.475, 49.2%)

0.3 (1.741, 0.555, 213.8%) (1.106, 0.555, 99.3%) (1.013, 0.551, 83.7%) (1.013, 0.551, 83.7%) (0.787, 0.555, 41.8%)

0.4 (1.247, 0.660, 88.9%) (1.195, 0.664, 80.0%) (1.111, 0.666, 66.9%) (1.111, 0.666, 66.9%) (0.900, 0.664, 35.6%)

0.5 (1.348, 0.806, 67.1%) (1.315, 0.818, 60.8%) (1.252, 0.826, 51.6%) (1.252, 0.826, 51.6%) (1.056, 0.833, 26.8%)

0.6 (1.498, 1.013, 47.8%) (1.499, 1.047, 43.1%) (1.463, 1.065, 37.4%) (1.463, 1.065, 37.4%) (1.320, 1.099, 20.1%)

0.7 (1.714, 1.305, 31.3%) (1.775, 1.390, 27.7%) (1.828, 1.476, 23.8%) (1.828, 1.476, 23.8%) (1.789, 1.595, 12.1%)

0.8 (2.093, 1.777, 17.8%) (2.304, 2.013, 14.4%) (2.545, 2.273, 12.0%) (2.545, 2.273, 12.0%) (2.966, 2.862, 3.6%)

Table 4.6: Comparison of E [S0|WJSQ] and E [S0|full MDP] for ρ0 = 0.1 with C1 = 1 and
C2 = 0.17.

ρ2
0.1 0.3 0.5 0.7 0.8

ρ1

0.1 (0.418, 0.415, 0.8%) (0.415, 0.415, 0.0%) (0.416, 0.416, 0.2%) (0.416, 0.416, 0.2%) (0.415, 0.415, 0.0%)

0.2 (0.476, 0.474, 0.3%) (0.476, 0.475, 0.1%) (0.477, 0.476, 0.2%) (0.477, 0.476, 0.2%) (0.475, 0.475, 0.0%)

0.3 (0.556, 0.555, 0.3%) (0.556, 0.555, 0.2%) (0.555, 0.551, 0.7%) (0.555, 0.551, 0.7%) (0.555, 0.555, 0.0%)

0.4 (0.664, 0.660, 0.6%) (0.666, 0.664, 0.4%) (0.667, 0.666, 0.2%) (0.667, 0.666, 0.2%) (0.667, 0.664, 0.4%)

0.5 (0.809, 0.806, 0.3%) (0.821, 0.818, 0.3%) (0.831, 0.826, 0.6%) (0.831, 0.826, 0.6%) (0.834, 0.833, 0.0%)

0.6 (1.019, 1.013, 0.6%) (1.047, 1.047, 0.0%) (1.070, 1.065, 0.5%) (1.070, 1.065, 0.5%) (1.100, 1.099, 0.1%)

0.7 (1.331, 1.305, 2.0%) (1.399, 1.390, 0.6%) (1.477, 1.476, 0.1%) (1.477, 1.476, 0.1%) (1.602, 1.595, 0.4%)

0.8 (1.841, 1.777, 3.6%) (2.023, 2.013, 0.5%) (2.313, 2.273, 1.8%) (2.313, 2.273, 1.8%) (2.866, 2.862, 0.1%)

Table 4.7: Comparison of E [S0|CC] and E [S0|full MDP] for ρ0 = 0.1 with C1 = 1 and C2 =
0.17.

The results in Table 4.6 show that theWJSQ policy is highy inefficient when the net-
work capacities are strongly asymmetric, with error even up to over 200%. The
results reveal that theWJSQ performs particularly bad in low-load scenarios. How-
ever, the results in Table 4.7 show that the CC policy remains to be highly efficient,
even when the networks are strongly asymmetric, with a worst-case error less than
4%. Table 4.8 shows again that the CC policy performs comparably well to the
Bayesian policy, and that both policies are highly accurate.

4.5 Discussion 73

ρ2
0.1 0.3 0.5 0.7 0.8

ρ1

0.1 (0.418, 0.417, 0.4%) (0.415, 0.415, 0.0%) (0.416, 0.416, 0.2%) (0.416, 0.416, 0.2%) (0.415, 0.415, 0.0%)
0.2 (0.476, 0.476,−0.1%) (0.476, 0.477,−0.2%) (0.477, 0.479,−0.4%) (0.477, 0.479,−0.4%) (0.475, 0.475, 0.0%)

0.3 (0.556, 0.556, 0.1%) (0.556, 0.556,−0.1%) (0.555, 0.553, 0.4%) (0.555, 0.553, 0.4%) (0.555, 0.555, 0.0%)

0.4 (0.664, 0.663, 0.2%) (0.666, 0.665, 0.1%) (0.667, 0.667, 0.0%) (0.667, 0.667, 0.0%) (0.667, 0.667, 0.0%)

0.5 (0.809, 0.807, 0.3%) (0.821, 0.819, 0.2%) (0.831, 0.827, 0.5%) (0.831, 0.827, 0.5%) (0.834, 0.835,−0.2%)

0.6 (1.019, 1.016, 0.3%) (1.047, 1.052,−0.4%) (1.070, 1.068, 0.2%) (1.070, 1.068, 0.2%) (1.100, 1.100, 0.1%)

0.7 (1.331, 1.322, 0.7%) (1.399, 1.410,−0.8%) (1.477, 1.482,−0.4%) (1.477, 1.482,−0.4%) (1.602, 1.597, 0.3%)

0.8 (1.841, 1.817, 1.3%) (2.023, 2.057,−1.6%) (2.313, 2.299, 0.6%) (2.313, 2.299, 0.6%) (2.866, 2.876,−0.4%)

Table 4.8: Comparison ofE [S0|Bayes] andE [S0|CC] for ρ0 = 0.1withC1 = 1 andC2 = 0.17.

4.4.2.3 Varying the asymmetry in foreground versus background load

Finally, we check the efficiency of the splitting policies where we vary the fraction of
the foreground compared to the total load. Similar to Section 4.2.2, we assume that
the ratios of the network capacities are C1 : C2 = 1 : 0.17. Figures 4.3a to 4.3c show
the expected value of the transfer time of an arbitrary foreground job (i.e., E [S0]) as
a function of the ratio β = ρ0/ρ, where the overall load ρ is kept fixed, for each of
the routing policies CC,WJSQ, full MDP and Bayes. Figures 4.3a, 4.3b and 4.3c show
the results for ρ = 0.65, ρ = 0.70 and ρ = 0.80, respectively.

The results in Figures 4.3a to 4.3c show again that in all cases the WJSQ policy is
strongly outperformed by the other policies. Moreover, we observe that the CC
policy, which is based on partial information only, is extremely close to the full MDP
solution, which is based on full state information. Also, we observe our simplistic
index-based CC rule performs comparably well to the more complicated Bayesian
policy. We re-emphasize that the importance of this observation for practical engi-
neering purposes.

4.5 Discussion

In conclusion, the experimental results demonstrate that the CC-method using par-
tial information strongly outperforms the WJSQ policy, and even leads to close-
to-optimal performance that can be obtained using the full-state information MDP.
Moreover, the CC method performs equally well when compared to the Bayesian
policy, which has a number of drawbacks: (1) it is inherently complicated, which
limits its practical usefulness, (2) it is not scalable in the number of access networks
N , because it needs the full-state information MDP solution, which suffers from the
curse of dimensionality. Typically, this will limit the applicability of the Bayesian
methods due to memory constraints. These observations lead to the conclusion

74
Chapter 4: Efficient Traffic Splitting over Parallel Wireless Networks with Partial
Information

that the CC index rule has a considerable advantage over the Bayesian approach
with respect to its practical usefulness and engineering.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

ρ0/ρ

E
[S

0
]

Only background
traffic

Only foreground
traffic

CC
WJSQ
Full MDP
Bayes

(a) ρ = 0.65.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

ρ0/ρ

E
[S

0
]

Only background
traffic

Only foreground
traffic

CC
WJSQ
Full MDP
Bayes

(b) ρ = 0.75.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

ρ0/ρ

E
[S

0
]

Only background
traffic

Only foreground
traffic

CC
WJSQ
Full MDP
Bayes

(c) ρ = 0.8.

Figure 4.3: Comparison of E [S0|CC] , E [S0|full MDP] , E [S|WJSQ] and E [S0|Bayes] in
OPNET for different ρ.

Stochastic Optimal Control for a General Class

of Dynamic Resource Allocation Problems 5
Thus far, the considered models and corresponding analyses were focused on opti-
mal usage of available resources. In this chapter we consider a general class of dy-
namic resource allocation problems within a stochastic optimal control framework.
This class of problems arises in a wide variety of applications, each of which intrin-
sically involves resources of different types and demand with uncertainty and/or
variability. The goal is to dynamically allocate capacity for every resource type in or-
der to serve the uncertain/variable demand andmaximize the expected net-benefit
over a time horizon of interest based on the rewards and costs associated with the
different resources. In [48, 49] Xuefeng Gao, Yingdong Lu, Mayank Sharma, and
Mark Squillante derived the optimal control policy within a singular control setting,
which includes easily implementable algorithms for governing the dynamic adjust-
ments to resource allocation capacities over time.

Based on the singular control policy, we have performed benchmarks to othermeth-
ods in literature in a realistic setting. Therefore we developed a simulation environ-
ment in which experiments are constructed to demonstrate that this control policy
is working extremely well. To make the setting more realistic, we analyze Internet-
traffic traces and fit these to a demand model that is used in the simulation exper-
iments. Numerical experiments investigate various issues of both theoretical and
practical interest, quantifying the significant benefits of our approach over alterna-
tive optimization approaches.

5.1 Background

Various canonical forms of general dynamic resource allocation problems arise nat-
urally across a broad spectrum of computer systems and communication networks.
As the complexities of these systems and networks continue to grow, together with
ubiquitous advances in technology, new approaches and methods are required to
effectively and efficiently solve canonical forms of general dynamic resource alloca-
tion problems in such complex system and network environments. These environ-
ments often consist of different types of resources that are allocated in combination
to serve demand whose behavior over time includes different types of uncertainty
and variability. Each type of resource has a different reward and cost structure that

5This chapter is based on [49].

76
Chapter 5: Stochastic Optimal Control for a General Class of Dynamic Resource
Allocation Problems

ranges from the best of a set of primary resource allocation options, having the high-
est reward, highest cost and highest net-benefit, to a secondary resource allocation
option, having the lowest reward, lowest cost and lowest net-benefit. Each type of
resource also has different degrees of flexibility and different cost structures with
respect to making changes to the allocation capacity. The resource allocation opti-
mization problem we consider consists of adaptively determining the primary and
secondary resource capacities that serve the uncertain/variable demand and that
maximize the expected net-benefit over a time horizon of interest based on the fore-
going structural properties of the different types of resources.

The general class of resource allocation problems studied in this chapter arises in a
wide variety of application domains such as cloud computing and data center en-
vironments, computer and communication networks, and power-aware (energy-
aware) and smart power grid environments, among many others. For example,
large-scale cloud computing and data center environments often involve resource
allocation over different server options (from fastest performance and most expen-
sive to slowest performance and least expensive) and different network bandwidth
options (from guaranteed performance at a cost to opportunistic options at no cost,
such as the Internet); e.g., refer to [39, 88, 33, 3, 67]. An additional critical issue in
large-scale cloud computing and data center environments concerns the effective
and efficient management of the consumption of power by resources in the face of
time-varying uncertain systemdemand and energy prices; e.g., see [55, 83]. Related
issues arise in smart power grids where resource allocation is required across a di-
versity of available energy sources, including a long-term market (stable and less
expensive, but rather inflexible), local generation (significant operating constraints
and limited capacity), a real-time spot market (readily available and responsive, but
at a premium price), and renewables such as wind and solar (less expensive and
green, but with high volatility); e.g., refer to [50, 104]. Across these and many other
domain-specific resource allocation problems, there is a common need for the dy-
namic adjustment of allocations among multiple types of resources, each with dif-
ferent structural properties, to satisfy time-varying and uncertain demand.

Motivated by this general class of resource allocation problems, we take a financial
mathematics approach that hedges against future risks associated with resource al-
location decisions and uncertain demand. Specifically, we consider the underlying
fundamental stochastic optimal control problem where the dynamic control pol-
icy that allocates primary resource capacity to serve uncertain/variable demand is
a variational stochastic process [110] with conditions on its rate of change with re-
spect to time, which in turn determines the secondary resource allocation capacity.
The objective is to maximize the expected discounted net-benefit over time based
on the structural properties of the different resources types, which we show to be
equivalent to a minimization problem involving a piecewise-linear running cost and
a proportional cost for making adjustments to the control policy process. Our solu-
tion approach is based on first deriving twice continuously differentiable properties

5.1 Background 77

of the value function at the optimal free boundary to determine a solution of the
Hamilton-Jacobi-Bellman equation, i.e., the so-called smooth-fit principle. Our the-
oretical results also include an explicit characterization of the dynamic control pol-
icy, which is of threshold type, and then we verify that this control policy is optimal
through a martingale argument. In contrast to an optimal static allocation strategy,
in which a single primary allocation capacity is determined to maximize expected
net-benefit over the entire time horizon, our theoretical results establish that the
optimal dynamic control policy adapts its allocation decisions in primary and sec-
ondary resources to hedge against the risks of under allocating primary resource ca-
pacity (resulting in lost reward opportunities) and over allocating primary resource
capacity (resulting in incurred cost penalties).

The research literature covers a great diversity of resource allocation problems,
with differing objective functions, control policies, and rewards, costs and flexibility
structures. A wide variety of approaches and methods have been developed and
applied to address this diversity of resource allocation problems including, for exam-
ple, online algorithms and dynamic programming. It is therefore important to com-
pare and contrast our problem formulation and solution approachwith some promi-
nent and closely related alternatives. One classical instance of a dynamic resource
allocation problem is the multi-armed bandit problem [81] where the rewards are
associatedwith tasks and the goal is to determine under uncertainty which tasks the
resource should work on, rather than the other way around. Another widely stud-
ied problem is the ski-rental or lease-or-buy problem [44] where there is demand
for a resource, but it is initially not known as to how long the resource would be
required. In each decision epoch, the choice is between two options: either lease
the resource for a fee, or purchase the resource for a price much higher than the
leasing fee. Our resource allocation problem differs from this situation in that there
are multiple types of resources each with an associated reward and cost per unit
time of allocation, since the resources cannot be purchased outright.

From a methodological perspective, the general resource allocation problem we
consider in this chapter is closely related to the vast financial mathematics literature
on solving stochastic control problems for investment and capacity planning; refer
to, e.g., [68, 110, 91]. For example, Beneš et al. [12] consider the so-called bounded
velocity follower problem with a quadratic running cost objective function, where
the authors propose a smooth-fit principle to characterize the optimal policy. In
comparison with our study, however, the paper does not consider any costs asso-
ciated with the actions taken by the control policy, and deals with a smoother ob-
jective function. From an applications perspective, there is a growing interest in the
computer system and communication network communities to address allocation
problems involving various types of resources associated with computation, mem-
ory, bandwidth and/or power. For example, Lin et al. [83] consider the problem of
dynamically adjusting the number of active servers in a data center as a function
of demand to minimize operating costs. In comparison with our study, however,

78
Chapter 5: Stochastic Optimal Control for a General Class of Dynamic Resource
Allocation Problems

the paper considers average demand over small intervals of time, subject to system
constraints, and develops an online algorithm that is shown to be within a constant
factor worse than the corresponding optimal offline policy.

Our study provides important methodological contributions and new theoretical re-
sults by deriving the solution of a fundamental singular stochastic optimal control
problem. This stochastic optimal control solution approach highlights the impor-
tance of timely and adaptive decision making in the allocation of a mixture of dif-
ferent resource options with distinct features in optimal proportions to satisfy time-
varying and uncertain demand. Our study also provides important algorithmic con-
tributions through a new class of online policies for dynamic resource allocation
problems arising across a wide variety of application domains. Extensive numer-
ical experiments quantify the effectiveness of our optimal online dynamic control
algorithm over recent work in the area, including comparisons demonstrating how
our optimal online algorithm significantly outperforms the type of optimal offline al-
gorithm within a discrete-time framework recently proposed in [83], which turns
out to be related to the optimal online algorithm proposed in [35] within a different
discrete-time stochastic optimization framework. This includes relative improve-
ments up to 90% and 130% in comparison with the optimal offline algorithm consid-
ered in [83], and significantly larger relative improvements in comparison with the
optimal online algorithm in [35].

As a specific application example used for illustrative purposes throughout the chap-
ter, which includes our representative numerical experiments, we shall focus on a
basic power-aware resource allocation problem that arises in data center environ-
ments. In particular, we consider the problem of dynamically adjusting the allo-
cation of high-performance, high-power servers (primary resources) to serve the
uncertain/variable demand within a data center, where any remaining demand is
served by low-performance, low-power servers (secondary resources), with the
objective of maximizing expected profit (expected rewards minus expected costs).
Here, the rewards are based on the performance properties of the type of resources
allocated to serve demand over time and the costs are based on the power proper-
ties of the type of resources allocated to serve demand over time, together with the
costs incurred for making adjustments to the allocation of primary resources over
time.

The remainder of this chapter is organized as follows. Section 5.2 defines ourmathe-
matical model and formulation of the resource allocation optimization problem. The
optimal control policy and corresponding results are presented in Section 5.3, with
proofs provided in Section 5.A. A representative sample of numerous numerical ex-
periments are discussed in Section 5.4, followed by some concluding remarks.

5.2 Model 79

5.2 Model

5.2.1 System model

We investigate a general class of resource allocation problems in which different
types of resources are allocated to satisfy demand whose behavior over time in-
cludes uncertainty and/or variability. To simplify the presentation, we focus on two
types of resources: a primary resource allocation option that has the highest net-
benefit and a secondary resource allocation option that has the lowest net-benefit.
In terms of our representative application example, the primary resource option
consists of high-performance/power servers and the secondary resource option
consists of low-performance/power servers. Moreover, high-performance/power
server capacity is somewhat less flexible in the sense that its rate of change at any in-
stant of time is bounded, whereas low-performance/power server capacity is more
flexible in this regard, each of which is made more precise below. Beyond these
differences, both types of resources are capable of serving the demand and all of
this demand needs to be served (i.e., no loss of demand). A control policy defines
at every time t ∈ R the level of primary (high-performance/power) resource al-
location, denoted by P(t), and the level of secondary (low-performance/power)
resource allocation, denoted by S(t), that are used in combination to satisfy the
uncertain/variable demand, denoted by D(t).

Our mathematical resource allocation model generalizes to multiple primary re-
source allocation options with an analogous net-benefit ordering. Namely, the
first primary resource option (highest performance/power servers) has the high-
est net-benefit, followed by the second primary resource option (next highest per-
formance/power servers) having the next highest net-benefit, and so on, with the
(single) secondary resource option (lowest performance/power servers) having the
lowest net-benefit. In addition, we have extended our mathematical analysis pre-
sented herein to address various forms of this general resource allocation model
under certain conditions. However, the single primary and secondary instance of
our general resource allocation model captures the key aspects of the fundamen-
tal trade-offs among the net-benefits of the various resource allocation options to-
gether with their associated risks. We have also shown that the optimal dynamic
control policy for various instances of the general model under certain conditions
has a very similar structure to that of the single primary and secondary resource
model instance. In contrast, the general model, the additional notation, and the
technical arguments used to establish these more general results all require much
more space than is available to us here. Hence, our focus in this chapter shall be
on the canonical single primary (high-performance/power) and secondary (low-
performance/power) resource allocation model. The interested reader is referred
to [48] for these additional technical details.

80
Chapter 5: Stochastic Optimal Control for a General Class of Dynamic Resource
Allocation Problems

We consider the singular stochastic optimal control problem underlying our
resource allocation model in which uncertain and/or variable demand needs
to be served by primary (high-performance/ power) and secondary (low-
performance/power) resource allocation capacities. The demand process D(t)
is given by the linear diffusion model

dD(t) = bdt + σdW (t),

where b ∈ R is the demand growth/decline rate (which can be extended to a deter-
ministic function of time, but we do not consider this further in the present chapter),
σ > 0 is the demand volatility/variability, and W (t) is a one-dimensional standard
Brownian motion, whose sample paths are nondifferentiable [69, 68]. This demand
process is served by the combination of primary (high-performance/power) and
secondary (low-performance/power) resource allocation capacities P(t) + S(t).
Given the higher net-benefit structure of the primary resource option, the opti-
mal dynamic control policy seeks to determine at every time t ∈ R the high-
performance/power server allocation capacity P(t) to serve the demandD(t) such
that any remaining demand is served by the low-performance/power server allo-
cation capacity S(t).

Let Rp(t) and Cp(t) respectively denote the reward and cost associatedwith the pri-
mary (high-performance/power) resource allocation capacity P(t) at time t . The
rewards Rp(t) are linear functions of the primary resource capacity and demand,
whereas the costsCp(t) are linear functions of the primary resource capacity. There-
fore, we have

Rp(t) = Rp × [P(t) ∧ D(t)], (5.1)

Cp(t) = Cp × P(t), (5.2)

where x ∧ y := min{x , y}, Rp ≥ 0 captures all per-unit rewards for serving de-
mand with high-performance/power server capacity, Cp ≥ 0 captures all per-unit
costs for high-performance/power server capacity, and Rp > Cp . Observe that
the rewards are linear in P(t) as long as P(t) ≤ D(t), otherwise any primary re-
source capacity exceeding demand solely incurs costs without rendering rewards.
Hence, from a risk hedging perspective, the risks associated with the primary (high-
performance/power) resource allocation position at time t , P(t), concern lost re-
ward opportunities whenever P(t) < D(t) on one hand and concern incurred cost
penalties whenever P(t) > D(t) on the other hand.

Since the optimal dynamic control policy serves all remaining demand with sec-
ondary (low-performance/power) resource allocation capacity, we therefore have

S(t) = [D(t)− P(t)]+.

5.2 Model 81

The corresponding reward function Rs(t) and cost function Cs(t) are then given by

Rs(t) = Rs × [D(t)− P(t)]+, (5.3)

Cs(t) = Cs × [D(t)− P(t)]+, (5.4)

where x+ := max{x , 0}, Rs ≥ 0 captures all per-unit rewards for serving demand
with low-performance/power server capacity, Cs ≥ 0 captures all per-unit costs for
low-performance/power server capacity, andRs > Cs . Hence, from a risk hedging
perspective, the secondary (low-performance/power) resource allocation position
at time t , S(t), is riskless in the sense that rewards and costs are both linear in the
resource capacity actually used.

5.2.2 Problem formulation

The singular stochastic optimal control problem of the previous section allows the
dynamic control policy to adapt its allocation positions in primary and secondary re-
source capacities based on the demand realization observed up to the current time,
whichwe call the risk-hedging position of the dynamic control policy. More formally,
the decision process P(t) is adapted to the filtrationFt generated by {D(s) : s ≤ t}.
Furthermore, any adjustments to the primary (high-performance/power) resource
allocation capacity have associated costs, where we write Ip and Dp to denote
the per-unit costs of increasing and decreasing the decision process P(t), respec-
tively; namely, Ip represents the per-unit cost for increasing the allocation of high-
performance/power servers while Dp represents the per-unit cost for decreasing
the allocation of high-performance/power servers. Then the objective of the op-
timal dynamic control policy is to maximize the expected discounted net-benefit
over an infinite horizon, where net-benefit at time t consists of the difference be-
tween rewards and costs from primary (high-performance/power) and secondary
(low-performance/power) resource allocation capacitiesminus the additional costs
for adjustments to P(t).

In formulating the corresponding stochastic optimization problem, we impose
a couple of additional conditions on the variational decision process {P(t) :
t ≥ 0} based on practical aspects of the diverse application domains motivating
our study. The control policy cannot instantaneously change the primary (high-
performance/power) resource allocation capacity in an attempt to directly follow
the demand D(t); i.e., some time is required (even if only a very small amount of
time) to adjust P(t). Moreover, the control policy cannot make unbounded adjust-
ments in the primary (high-performance/power) resource allocation capacity at any
instant in time; i.e., the amount of change in P(t) at time t is restricted (even if only
to a very small extent) by various factors. Given these practical considerations, we
assume that the rate of change in the primary resource allocation capacity by the

82
Chapter 5: Stochastic Optimal Control for a General Class of Dynamic Resource
Allocation Problems

control policy is bounded. More precisely, there are two finite constants θℓ < 0 and
θu > 0 such that

θℓ ≤ Ṗ(t) ≤ θu,

where Ṗ(t) denotes the derivative of the decision variable P(t)with respect to time.

Now we can present the mathematical formulation of our stochastic optimization
problem. Defining

Np(t) := Rp(t)− Cp(t),
Ns(t) := Rs(t)− Cs(t),

we seek to determine the optimal dynamic control policy that solves the problem
(SC-OPT)

max
Ṗ(t)

E
∫ ∞

0

e−αt [Np(t) + Ns(t)]dt

− E
∫ ∞

0

e−αt [Ip · 1{Ṗ(t) > 0
}]dP(t)

− E
∫ ∞

0

e−αt [Dp · 1{Ṗ(t) < 0
}]d(−P(t)) (5.5)

s.t. −∞ < θℓ ≤ Ṗ(t) ≤ θu < ∞, (5.6)

dD(t) = bdt + σdW (t), (5.7)

where α is the discount factor and 1{A
} denotes the indicator function returning 1

if A is true and 0 otherwise. The control variable is the rate of change in the primary
(high-performance/power) resource capacity by the control policy at every time t
subject to the lower and upper bound constraints on Ṗ(t) in (5.6). Note that the
second (third) expectation in (5.5) causes a decrease with rate Ip (Dp) in the value
of the objective function whenever the control policy increases (decreases) P(t).

The first expectation in the objective function of the stochastic optimization problem
(SC-OPT) can be simplified as follows. Define

X (t) := P(t)− D(t),
Np := Rp − Cp,
Ns := Rs − Cs ,

and x− := −min{x , 0}. Upon substituting (5.1), (5.2), (5.3) and (5.4) into the first
expectation in (5.5), and making use of the fact that

[P(t) ∧ D(t)] = D(t)− [D(t)− P(t)]+,

5.3 Optimal control policy 83

we obtain

E
[∫ ∞

0

e−αt [−CpX (t) + (Ns −Rp)X (t)−]dt
]

+NpE
[∫ ∞

0

e−αtD(t)dt
]

. (5.8)

Since the second expectation in (5.8) does not depend on the control variable Ṗ(t),
this term plays no role in determining the optimal dynamic control policy. Together
with the above results, we derive the following stochastic optimization problem
which is equivalent to the original optimization problem formulation (SC-OPT):

min
Ṗ(t)

Ex

[∫ ∞

0

e−αt
{(

C+X (t)+ + C−X (t)−
)

dt

+

(
Ip1{Ṗ(t) > 0

} −Dp1{Ṗ(t) < 0
}) dP(t)

}]
(5.9)

s.t. −∞ < θℓ ≤ Ṗ(t) ≤ θu < ∞, (5.10)

dX (t) = dP(t)− bdt − σdW (t), (5.11)

X (0) = x , (5.12)

C+ = Cp, (5.13)

C− = Np −Ns , (5.14)

where Ex [·] denotes expectation with respect to the initial state distribution (i.e.,
state at time t = 0) being x with probability one.

We use V (x) to represent the optimal value of the objective function (5.9); namely,
V (x) is the value function of the corresponding stochastic dynamic program. Given
its equivalence with the original optimization problem (SC-OPT), the remainder of
this chapter will focus on the stochastic dynamic program formulation in (5.9) -
(5.14).

5.3 Optimal control policy

In this sectionwe consider ourmain results on the optimal dynamic control policy for
the stochastic optimization problem (5.9) - (5.14). After some technical preliminaries,
wepresent ourmain results under the conditions Ip ≥ 0 andDp ≥ 0, which are likely
to be the most interesting case in practice. All other cases of our main results are
covered in [48]. Consideration of the proofs of our main results is postponed until
the next section.

84
Chapter 5: Stochastic Optimal Control for a General Class of Dynamic Resource
Allocation Problems

5.3.1 Preliminaries

To elucidate the exposition, we henceforth assume b ≥ 0 without loss of generality
as one can readily verify that our main results hold when b < 0. For notational
convenience, we next define the constants

r1 :=
b +

√
b2 + 2ασ2

σ2
> 0, (5.15)

r2 :=
b −

√
b2 + 2ασ2

σ2
< 0, (5.16)

s1 :=
b − θu +

√
(b − θu)2 + 2ασ2

σ2
> 0, (5.17)

s2 :=
b − θu −

√
(b − θu)2 + 2ασ2

σ2
< 0, (5.18)

t1 :=
b − θℓ +

√
(b − θℓ)2 + 2ασ2

σ2
> 0, (5.19)

t2 :=
b − θℓ −

√
(b − θℓ)2 + 2ασ2

σ2
< 0. (5.20)

These quantities are the roots of the quadratic equation

σ2

2
y2 + (θ − b)y − α = 0,

when θ takes on the values of θℓ, 0 or θu .

Finally, for additional convenience in stating our main results, we further define the
following constants

B1 = (C+ − αDp)(t2 − r2),
B2 = (C− − αIp)(s1 − r2),
B3 = (C+ + C−)(−r2),
A = (C+ + αIp)(r2 − r1),
J1 = (C+ − αDp)(r1 − t2),
J2 = (C− − αIp)(r1 − s1),
J3 = (C+ + C−)r1,
K = (C− + αDp)(r2 − r1),

in terms of r1, r2, s1, s2, t1, t2 given in (5.15) - (5.20). Since θℓ < 0 and θu > 0, we
conclude that Bi and Ji are all positive for i = 1, 2, 3, and that A and K are both
negative.

5.3 Optimal control policy 85

5.3.2 Case 1: Dp < C+/α and Ip < C−/α

Let us first briefly interpret the conditions of this section. Observe from the objective
function (5.9) that C+/α reflects the discounted overage cost associatedwith the pri-
mary resource capacity and C−/α reflects the corresponding discounted shortage
cost, recalling that α is the discount rate. In comparison, Dp represents the cost in-
curred for decreasing P(t)when in an overage position while Ip represents the cost
incurred for increasing P(t) when in a shortage position. We now state our main
result for this case.

5.3.1. Theorem. SupposeDp < C+/α and Ip < C−/α. Then there are two threshold
values L and U with L < U such that the optimal dynamic control policy is given by

Ṗ(t) =

 θu, if P(t)− D(t) < L,
0, if P(t)− D(t) ∈ [L, U],
θℓ, if P(t)− D(t) > U.

Moreover, the values of L and U can be characterized by the following three cases.

I. If

0 <
B3 − B2

B1
< 1

and (
B3 − B2

B1

) r2
r1

≥ J3 − J2
J1

,

or

B3 ≤ B2,

then we have

U > L ≥ 0,

where L and U are uniquely determined by the two equations:

B1er1(L−U) + J1er2(L−U) + A = 0, (5.21)
B1r2

r1 − r2
er1(L−U) +

J1r1
r1 − r2

er2(L−U) =

(r1 + r2 − s1)(αIp + C+) + (C+ + C−)s1 · es2L. (5.22)

86
Chapter 5: Stochastic Optimal Control for a General Class of Dynamic Resource
Allocation Problems

II. If

B3 − B1

B2
> 1

and (
B3 − B1

B2

) r2
r1

≥ J3 − J1
J2

,

then we have

L < U ≤ 0,

where L and U are uniquely solved by the two equations:

B2er1(U−L) + J2er2(U−L) + K = 0, (5.23)

B2
r2

r1 − r2
er1(U−L) + J2

r1
r1 − r2

er2(U−L) =

(r1 + r2 − t2)(αDp + C−) + (C+ + C−)t2 · et1U . (5.24)

III. If none of the above conditions hold, we then have

U ≥ 0 ≥ L,

where L and U are uniquely determined by

B1e−r1U + B2e−r1L = B3, (5.25)

J1e−r2U + J2e−r2L = J3. (5.26)

Theorem 5.3.1 can be explained as follows. The optimal dynamic control policy
seeks to maintain X (t) = P(t) − D(t) within the risk-hedging interval [L, U] at all
time t , taking no action (i.e., making no change to P(t)) as long as X (t) ∈ [L, U].
Whenever X (t) falls below L, the optimal dynamic control policy pushes toward
the risk-hedging interval as fast as possible, namely at rate θu , thus increasing the
primary (high-performance/power) resource capacity allocation. Similarly, when-
ever X (t) exceeds U , the optimal dynamic control policy pushes toward the risk-
hedging interval as fast as possible, namely at rate θℓ, thus decreasing the primary
(high-performance/power) resource capacity allocation. In each of the cases I, II
and III, the optimal threshold values L and U are uniquely determined by two non-
linear equations.

5.4 Numerical experiments 87

5.3.3 Remaining cases

We further establish our main results for all remaining possible conditions on the
adjustment costs Dp and Ip . However, this is not in the scope of this dissertation.
Therfore we refer the interested reader to [48] for these additional technical details.

5.4 Numerical experiments

The foregoing sections establish the explicit optimal dynamic control policy among
all admissible nonanticipatory control processes dP(t) within a singular stochastic
optimal control setting that maximizes the original stochastic dynamic program (SC-
OPT) given in (5.5) - (5.7). This optimal dynamic control policy renders a new class
of practical online algorithms for general dynamic resource allocation problems that
arise in awide variety of application domains. The resulting online algorithm is easily
implementable in computer systems and communication networks (among others)
at runtime and consists of maintaining

X (t) = P(t)− D(t)

within the risk-hedging interval [L, U] at all time t , where L and U are easily ob-
tained in terms of system/network parameters. Extensive numerical experiments
have been conducted across a broad spectrum of system/network environments
to investigate various issues of both theoretical and practical interest by comparing
our online optimal dynamic control algorithm against alternative optimization ap-
proaches from recent work in the research literature. In this section, we present a
representative sample of these numerical experiments.

The characteristics of the demand process can differ significantly from one sys-
tem/network environment to the next. However, within a particular environment
as well as across a class of similar environments, one often finds consistent sea-
sonal patterns in the average demand process over time, including consistent sea-
sonal effects at daily, weekly, monthly and yearly time scales. We confirm this to
be the case for the environments motivating our study through detailed analyses
of real-world trace data from a wide variety of proprietary and publicly-available
system/network environments. This includes our detailed analysis of request and
packet traces from commercial web server environments, university web site proxy
servers, e-commerce Internet server environments, and information technology
service delivery centers. Based on such detailed analyses of real-world traces, we
accurately fitted the average demand process for each environment of interest by a
smooth function f (t). Figure 5.1 depicts representative examples of two of these av-
erage daily demand patterns f 1(t) and f 2(t), where time t reflects the time zone of

88
Chapter 5: Stochastic Optimal Control for a General Class of Dynamic Resource
Allocation Problems

the system/network environment which may be different from that of the demand
source. In addition to the average daily demand process, our detailed analyses of
real-world traces reveal common seasonal patterns in the volatility of the demand
process over time. These demand process volatility patterns tend to be fairly con-
sistent within each system/network environment, whereas they tend to vary much
more significantly over an expansive range of values from one environment to the
next. Although a great diversity of daily average and volatility demand patternswere
discovered throughout our detailed analyses of trace data, the results of numerous
numerical experiments comparing our optimal dynamic control policy with alter-
native optimization approaches under these diverse demand patterns exhibit very
similar performance trends, both quantitatively and qualitatively, for a given level of
volatility σ. We therefore focus in the remainder of this section on the average daily
demand patterns f 1(t) and f 2(t) in Figure 5.1 while varying the volatility parame-
ter σ, noting that the corresponding numerical results are representative of a broad
spectrum of system/network environments.

0 3 6 9 12 15 18 21 24
0

min[f(t)]

max[f(t)]

t(hours)

f
(t

)

0 3 6 9 12 15 18 21 24
0

min[f(t)]

max[f(t)]

t(hours)

f
(t

)

Figure 5.1: Representative average daily demand patterns f 1(t) (left) and f 2(t) (right).

To evaluate the benefits of our optimal online dynamic control algorithm in realistic
system/network environments, we consider an alternative optimization approach
that has recently appeared in the research literature. As previously noted, Lin et
al. [83] study a particular optimal offline algorithm for dynamically adjusting the num-
ber of active, power-aware servers in a data center tominimize operating costs, and
then develop an optimal online algorithm which is proven to be 3-competitive. Our
interest for comparison here is in the offline algorithm of [83], which consists of mak-
ing optimal provisioning decisions in a clairvoyant anticipatory manner based on
the known demand within each slot of a discrete-time model where the slot length
is chosen to match the timescale at which the data center can adjust its capacity
and so that demand activity within a slot is sufficiently nonnegligible in a statistical

5.4 Numerical experiments 89

sense. Applying this particular optimal offline algorithm within our mathematical
framework, we partition the daily time horizon into T slots of length γ such that

hi = (ti−1, ti],
γ = ti − ti−1,

i = 1, ... , T , t0 := 0, and we compute the average demand

gi := γ−1

∫
hi

f (t)dt

within each slot i yielding the average demand vector

(g1, g2, ... , gT).

Define

∆(Pi) := Pi − Pi−1,

where Pi denotes the primary (high-performance/power) resource allocation ca-
pacity for slot i . The optimal solution under this offline algorithm is then obtained
by solving the following linear program (LP):

min
∆(P1),...,∆(PT)

T∑
i=1

C+(Pi − gi)
+ + C−(Pi − gi)

− +

Ip(Pi − Pi−1)
+ +Dp(Pi − Pi−1)

− (5.27)

s.t. −∞ < θℓ ≤ ∆(Pi)/γ ≤ θu < ∞,
∀i = 1, ... , T , (5.28)

where the constraints on ∆(Pi) in (5.28) correspond to (5.10). In this determinis-
tic optimization problem, the control variable is the rate of change in the primary
(high-performance/power) resource allocation for each slot i over the daily horizon.
We refer to this solution as the offline LP algorithm. This alternative optimization
approach is used for comparison in evaluating the benefits of our optimal dynamic
control policy.

We also consider a related optimal online algorithm proposed by Ciocan and
Farias [35], which is based on a discrete-timemodel framework similar to that above
though within a distinct stochastic optimization framework. We refer to this as the
online CF algorithm. Our numerical experiments indicate that the primary (high-
performance/power) resource allocation capacity decisions under the online CF al-
gorithm are identical to those under the offline LP algorithm shifted by one time slot.

90
Chapter 5: Stochastic Optimal Control for a General Class of Dynamic Resource
Allocation Problems

Hence, the benefits of our optimal online dynamic control algorithm over the online
CF algorithm are considerably more significant than those presented here for the of-
fline LP algorithm. We refer the interested reader to [48] for these results and other
technical details.

The workloads used for our numerical experiments are generated from real-world
trace data taken from various system/network environments. Specifically, once the
average daily demand pattern f (t) and the volatility pattern σ(t) are extracted from
the traces through our detailed analyses, as described above, we construct a linear
diffusion process for the entire time horizon such that the drift of the demand pro-
cess is obtained as the derivative of f (t) (i.e., b(t) = df (t)) and the corresponding
volatility term is set tomatch σ(t). Since the volatility pattern σ(t) tended to be fairly
consistent with respect to timewithin each daily real-world trace for a specific envi-
ronment and since the volatility pattern tended to vary considerably from one daily
real-world trace to another, our linear diffusion demand process is assumed to be
governed by the following dynamic model

dD(t) = b(t)dt + σdW (t),

where we vary the volatility term σ to investigate different system/network envi-
ronments. The workload for each system/network environment then consists of a
set of sample paths generated from the Brownian demand process D(t) defined in
this manner. Given such a workload demand process for a specific system/network
environment of interest, we calibrate our optimal online dynamic control algorithm
by first partitioning the drift function b(t) of the demand process D(t) into piece-
wise linear segments and then computing the threshold values L and U for each
per-segment drift and σ according to Theorem 5.3.1. This (fixed) version of our op-
timal online dynamic control algorithm is applied to every daily sample path of the
Brownian demand process D(t) and the time-average value of net-benefit is com-
puted over this set of daily sample paths. Based on detailed analyses of real-world
traces, such applications of our optimal dynamic control policy are easily realized in
practice. For comparison under the same set of Brownian demand process sample
paths, we compute the average demand vector (g1, ... , gT) and the corresponding
solution under the offline LP algorithm for each daily sample path by solving the
linear program (5.27),(5.28) with respect to (g1, ... , gT), and then we calculate the
time-average value of net-benefit over the set of daily sample paths. All of our nu-
merical experiments were implemented in Matlab using, among other functionality,
the econometrics toolbox.

We now present a representative sample of our extensive numerical experiments,
starting with a first collection of workloads based on the average daily demand
pattern f 1(t) illustrated in the top plot of Figure 5.1. Define fmin := mint{f (t)},
fmax := maxt{f (t)}, and favg := T−1

∫ T
0

f (t)dt . The base parameter settings for this

5.4 Numerical experiments 91

first set of workloads are: α = 0.02, σ = 0.4, θl = −10, θu = 10, C+ = 20, C− = 2,
Dp = 0.5, Ip = 0.5, f 1

min = 2, f 1
max = 7, f 1

avg = 4.5, x = X (0) = P(0) − D(0) = 0,
and P0 = D(0). In addition to these base settings, we vary certain parameter values
to investigate the impact and sensitivity of these parameters on the performance of
both optimization algorithms. This includes conducting numerical experiments un-
der the base parameter settings while varying one of σ ∈ [0.01, 1.0], C+ ∈ [10, 40],
C− ∈ [1, 10], f 1

min ∈ [1, 5], and f 1
max ∈ [4, 25], all representing parameter values exhib-

ited in real-world system/network environments. For each numerical experiment
comprised of a specific workload, we generate N = 10, 000 daily sample paths us-
ing a timescale of a couple of seconds and a γ setting of five minutes, noting that
a wide variety of experiments with different timescale and γ settings provided the
same performance trends as those presented herein. We then apply our optimal
dynamic control policy and the alternative optimization approach to this set of N
daily sample paths as described above, where our performance evaluation com-
parison is based on the expectation of net-benefit realized under each of the two
algorithms, also as described above. In particular, the expected net-benefit is com-
puted as the time-average value of the rewards minus the costs from the primary
(high-performance/power) and secondary (low-performance/power) resource al-
location capacities and minus the costs for adjustments to the primary resource al-
location capacity, taken over all N daily sample paths under each of our optimal
online dynamic control algorithm and the offline LP algorithm.

Figure 5.2 presents a representative sample of some of our numerical results for the
first set of workloads based on f 1(t). The top graph provides performance compar-
isons of our optimal online dynamic control algorithm against the alternative offline
LP algorithm, where the comparisons are based on the relative improvements in ex-
pected net-benefit under our optimal control policy as a function of σ; the relative
improvement is defined as the difference in expected net-benefit under our opti-
mal dynamic control policy and under the alternative offline LP approach, divided
by the expected net-benefit of the latter. For the purpose of comparison across sets
of workloadswith very different favg values, we plot this graph as a function of the co-
efficient of variation CoV = σ/favg. The bottom graph provides similar comparisons
of relative improvement in expected net-benefit between our optimal dynamic con-
trol policy and the alternative offline LP approach as a function of C+, both with σ
fixed to be 0.4.

We first observe from the top graph in Figure 5.2 that our optimal online dynamic
control algorithm outperforms the alternative optimization approach for all σ > 0.
The relative improvements in expected net-benefit under our optimal dynamic con-
trol policy grow in an exponential manner with respect to increasing values of σ
over the range of CoV values considered, with relative improvements up to 90% in
comparison with the offline LP algorithm. The rewards and costs associated with
the primary (high-performance/power) and secondary (low-performance/power)
resource capacities can be based on either performance or financial metrics, or a

92
Chapter 5: Stochastic Optimal Control for a General Class of Dynamic Resource
Allocation Problems

0 0.044 0.088 0.132 0.176 0.22
0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

CoV

G
a

in
 i
n

 N
e

t−
B

e
n

e
fi
t

10 15 20 25 30 35 40
0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

C
+

G
a

in
 i
n

 N
e

t−
B

e
n

e
fi
t

Figure 5.2: Improvement in expected net-benefit under our optimal dynamic control policy
relative to the alternative offline LP algorithm for the first set of workloads based on f 1(t)
and for varying values of σ and C+.

combination of both. Our results illustrate andquantify the fact that, even in discrete-
timemodelswith small time slot lengths γ, nonnegligible volatility plays a critical role
in the expected net-benefit of any given resource allocation policy. The significant
relative improvements under the optimal online dynamic control algorithm then fol-
low from our stochastic optimal control approach that directly addresses the volatil-
ity of the demand process in all primary (high-performance/power) and secondary
(low-performance/power) resource allocation decisions. Since our detailed analy-
sis of real-world traces exhibited relatively large CoV values, the results in Figure 5.2
suggest that these net-benefit improvements under our optimal dynamic control
policy can be very significant in practice. While the offline LP algorithm based on
(5.27),(5.28) would eventually outperform our optimal online dynamic control algo-
rithm as the time slot length γ decreases, we note that the choice for γ in our numer-
ical experiments is considerably smaller than the 10-minute intervals suggested as
examples in the literature [83]. Moreover, as discussed in [35], the optimal choice
of γ is a complex issue in and of itself and it may need to vary over time depending
upon the statistical properties of the demand process D(t). A key advantage of our
optimal online dynamic control algorithm is that such parameters are not needed.
As explained above, our algorithm can exploit any consistent seasonal patterns for
b(t) and σ(t) observed from historical traces in order to predetermine the threshold
values L and U . In addition, approaches similar to those taken in [35] can be used
to adjust these threshold values in real-time based on any nonnegligible changes in
the realized values for b(t) and σ(t). Furthermore, this latter approach can be used
directly for system/network environments whose demand processes do not exhibit
consistent seasonal patterns.

We next observe from the bottom graph in Figure 5.2 that the relative improve-
ments in expected net-benefit under our optimal online dynamic control algorithm
similarly increases with respect to increasing values of C+, though in a more lin-

5.4 Numerical experiments 93

ear fashion. We also note that very similar trends were observed with respect to
varying the value of C−, though the magnitude of the relative improvement in ex-
pected net-benefit is smaller. Our numerical experiments suggest that the relative
improvements in net-benefit under our optimal dynamic control policy can bemore
sensitive to C+ than to C−. Recall that C+ = Cp is the cost for the primary resource
allocation capacity, whereas C− = Np −Ns is the difference in net-benefit between
the primary (high-performance/power) and secondary (low-performance/power)
resource allocation capacities.

We next present a representative sample of our numerical experiments for a second
collection of workloads based on the average daily demand pattern f 2(t) illustrated
in the bottom plot of Figure 5.1. The base parameter settings for this second set of
workloads are: α = 0.02, σ = 7.0, θl = −100, θu = 100, C+ = 20, C− = 2, Dp = 0.5,
Ip = 0.5, f 2

min = 15, f 2
max = 90, f 2

avg = 61, x = X (0) = P(0)− D(0) = 0 and P0 = D(0).
In addition, analogous to the first set of workloads, we conducted numerical ex-
periments under the base parameter settings while varying one of σ ∈ [0.01, 15],
C+ ∈ [10, 40], C− ∈ [1, 10], f 2

min ∈ [1, 20] and f 2
max ∈ [9, 120], all representing param-

eter values exhibited in real-world system/network environments. Once again, for
each experiment comprised of a specific workload, we generate N = 10, 000 sam-
ple paths using a timescale of a couple of seconds and a γ setting of five minutes,
noting that a wide variety of experiments with different timescale and γ settings
provided performance trends that are identical to those presented herein. We then
apply our optimal dynamic control policy and the alternative optimization approach
to this set ofN sample paths as described above. Our performance evaluation com-
parisons are based on the expectation of net-benefit realized under each of the two
algorithms, also as described above.

0 0.048 0.096 0.144 0.192 0.24
0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

CoV

G
a

in
 i
n

 N
e

t−
B

e
n

e
fi
t

10 15 20 25 30 35 40
0.00%

5.00%

10.00%

15.00%

C
+

G
a

in
 i
n

 N
e

t−
B

e
n

e
fi
t

Figure 5.3: Improvement in expected net-benefit under our optimal dynamic control policy
relative to the alternative offline LP algorithm for the second set of workloads based on f 2(t)
and for varying values of σ and C+.

Figure 5.3 presents a representative sample of some of our numerical results for the
second set of workloads based on f 2(t), providing the analogous results that cor-

94
Chapter 5: Stochastic Optimal Control for a General Class of Dynamic Resource
Allocation Problems

respond to those in Figure 5.2. We note that the larger range [f 2
min, f 2

max] exhibited in
the second average daily demand pattern as well as a higher value of f 2

avg lead to
both a higher relative net-benefit for fixed σ and a higher sensitivity to changes in σ.
Hence, our optimal online dynamic control algorithm has enhanced gains over the
alternative offline LP algorithm in terms of expected net-benefit. This relative im-
provement in expected net-benefit as compared to the set of experiments for the
average daily demand pattern f 1(t) can be understood to be caused by the sharp
drop in average demand from themaximum value of 90 to a minimum of 15within a
fairly short time span, thus contributing to an increased effective volatility over and
above that represented by σ. Therefore, the fact that the relative improvement ex-
hibited by our optimal online dynamic control algorithm is larger under the average
daily demand pattern f 2(t), up to 130% in comparison with the offline LP algorithm,
can be viewed in a sense to be verymuch an extension of the finding that the relative
improvement provided by our optimal online algorithm increases with an increase
in CoV. A similar gain in performance improvement can be seen in the bottom plot
when we vary C+ with a fixed value of σ.

In comparing the results in Figures 5.2 and 5.3 as well as those from our many other
numerical experiments, we observe that all of these net-benefit results are quite
consistent in terms of qualitative and quantitative trends, where our optimal on-
line dynamic control algorithm consistently provides superior results even when
the demand uncertainty/volatility is very small. As an additional observation from
our numerical experiments, we find that, upon applying our optimal online dynamic
control algorithm and the offline LP algorithm directly to the actual trace data, con-
sistent performance trends among the two optimization approacheswere observed
in comparison with those shown above for the time-average over many sample
paths from the Brownian motion demand process fitted to the same trace data. Fi-
nally, though not presented herein, the magnitude of the relative improvements in
expected net-benefits exhibited in Figures 5.2 and 5.3 are significantly larger when
comparing our optimal online dynamic control algorithm and the online CF algo-
rithm.

5.5 Discussion

In this chapter we investigated a general class of dynamic resource allocation prob-
lems arising across a broad spectrum of applications that involve different types
of resources and uncertain/variable demand. With a goal of maximizing expected
net-benefit based on rewards and costs from the different resources, Xuefeng Gao,
Yingdong Lu, Mayank Sharma, and Mark Squillante derived the provably optimal
dynamic control policy within a singular stochastic optimal control setting. Their
mathematical analysis includes obtaining simple expressions that govern the dy-

5.A Proofs 95

namic adjustments to resource allocation capacities over time under the optimal
control policy. Based on this analysis, we constructed a wide variety of extensive
numerical experiments. The results demonstrate and quantify significant benefits of
the optimal dynamic control policy over recently proposed alternative optimization
approaches in addressing a general class of resource allocation problems across a
diverse range of application domains, including cloud computing and data center
environments, computer and communication networks, and power-aware (energy-
aware) and smart power grid environments. Moreover, our results strongly sug-
gest that the stochastic optimal control approach taken in this chapter can provide
an effective means to develop easily-implementable online algorithms for solving
stochastic optimization problems.

Appendix 5.A Proofs

In this sectionwe consider the proofs of themain results. We focus on some aspects
of our rigorous proof of Theorem 5.3.1, with all remaining technical details as well as
the proofs of the other main results provided in [48]. Our proof proceeds in three
main steps. First, we express the optimality conditions for the stochastic dynamic
program, i.e., the Bellman equation corresponding to (5.9) - (5.14). We then derive a
solution of the Bellman equation and determine the corresponding candidate value
function and dynamic control policy. Finally, we verify that this dynamic control
policy is indeed optimal through a martingale argument. Each of these main steps is
presented in turn.

5.A.1 Proof of Theorem 5.3.1: Step 1

From the Bellman principle of optimality, we deduce that the value function V sat-
isfies for each t ≥ 0

V (x) = min
θℓ≤Ṗ(t)≤θu

Ex

[∫ t

0

e−αs
[(

C+X (s)+ + C−X (s)−
)

ds

+ (Ip1{Ṗ(s) > 0
} −Dp1{Ṗ(s) < 0

})dP(s)
]
+ e−αtV (X (t))

]
, (5.29)

refer to [110, Chapter 4]. Suppose the value function V is smooth, belonging to the
set C2 (i.e., the set of twice continuously differentiable functions) except for a finite
number of points, which will be established in step 2. Then, based on a standard

96
Chapter 5: Stochastic Optimal Control for a General Class of Dynamic Resource
Allocation Problems

application of Ito's formula as in [73], we derive that the desired Bellman equation
for the value function V has the form

−αV (x) + 1

2
σ2V ′′(x)− bV ′(x) + C+x+ + C−x−

+ inf
θℓ≤θ≤θu

L(θ, x) = 0, (5.30)

where

L(θ, x) =
{
(V ′(x) + Ip)θ if θ ≥ 0,
(V ′(x)−Dp)θ if θ < 0.

(5.31)

5.A.2 Proof of Theorem 5.3.1: Step 2

Our next goal is to construct a convex function Y that satisfies the Bellman equation
(5.30) and show that the threshold values L and U are uniquely determined by the
corresponding pair of nonlinear equations in Theorem 5.3.1. Suppose a candidate
value function Y (x) satisfies (5.30). We then seek to find L and U such that

Y ′(x) =

 ≥ Dp, if x ≥ U ,
∈ (−Ip,Dp) if L < x < U ,
≤ −Ip if x ≤ L.

(5.32)

Moreover, Y (x) = O(|x |)when |x | goes to∞, and Y meets smoothly at the points
L, 0 and U to order one.

For each of the three cases in Theorem 5.3.1, reflecting different relationships among
L, U and 0 based on model parameters, we first establish the desired convexity
properties together with the corresponding pair of threshold equations. Case II of
Theorem 5.3.1 is considered in the next subsection, noting that Cases I and III and
other technical details can be found in [48]. Then, in Section 5.A.2.2, we show that
the thresholds L and U can be uniquely determined through these equations.

5.A.2.1 Case II: 0 ≥ U > L

Focusing on the case 0 ≥ U > L where L and U satisfy (5.23) and (5.24) subject to
(5.32), we proceed to solve the Bellman equation (5.30) depending on the value of
x in relation to U , 0 and L. There are four subcases to consider as follows.

(i). If x ≥ 0, we have

Y ′(x) ≥ Dp

5.A Proofs 97

and

inf
θℓ≤θ≤θu

L(θ, x) = L(θℓ, x).

Then the Bellman equation yields

−αY (x) + 1

2
σ2Y ′′(x)− bY ′(x) + C+x+ + C−x− + L(θℓ, x) = 0,

or equivalently

−αY (x) + 1

2
σ2Y ′′(x)− bY ′(x) + C+x + (Y ′(x)−Dp)θℓ = 0.

Solving this equation, we derive for x ≥ 0

Y (x) = C+
α

x +
1

α
(
C+
α

(θℓ − b)−Dpθℓ) + l3et2x , (5.33)

where l3 is a generic constant to be determined.

(ii). If

U < x < 0,

we have

Y ′(x) ≥ Dp,

which yields

inf
θℓ≤θ≤θu

L(θ, x) = L(θℓ, x),

and thus we obtain

−αY (x) + 1

2
σ2Y ′′(x)− bY ′(x)− C−x + (Y ′(x)−Dp)θℓ = 0.

This implies for U < x < 0

Y (x) = −C−
α

x +
1

α
(−C−

α
(θℓ − b)−Dpθℓ) + λ1et1x + λ2et2x , (5.34)

where λ1 and λ2 are generic constants to be determined.

98
Chapter 5: Stochastic Optimal Control for a General Class of Dynamic Resource
Allocation Problems

(iii). If

L < x < U,

we have

−Ip ≤ Y ′(x) ≤ Dp

and the Bellman equation (5.30) renders

−αY (x) + 1

2
σ2Y ′′(x)− bY ′(x)− C−x = 0.

Solving this equation, we deduce for U > x > L

Y (x) = −C−
α

x +
bC−
α2

+ λ̃1er1x + λ̃2er2x , (5.35)

where λ̃1 and λ̃2 are generic constants to be determined.

(iv). If x ≤ L, we have

Y ′(x) ≤ −Ip

and the Bellman equation (5.30) becomes

−αY (x) + 1

2
σ2Y ′′(x)− bY ′(x)− C−x + (Y ′(x) + Ip)θu = 0.

The solution is then given by

Y (x) = −C−
α

x +
1

α
(−C−

α
(θu − b) + Ipθu) + l1es1x , (5.36)

where l1 is a generic constant to be determined.

Now we match the value and the first-order derivative of Y at the points U , 0 and
L. Hence, the function Y that we construct will be twice continuously differentiable

5.A Proofs 99

with the exception of at most three points. Let us first consider such matchings at
the point U . From (5.34) and (5.35), we derive

Y ′(U+) = −C−
α

+ λ1t1et1U + λ2t2et2U = Dp, (5.37)

Y ′(U−) = −C−
α

+ λ̃1r1er1U + λ̃2r2er2U = Dp, (5.38)

Y (U+) = −C−
α

U +
1

α
(−C−

α
(θℓ − b)−Dpθℓ) + λ1et1U + λ2et2U ,

Y (U−) = −C−
α

U +
bC−
α2

+ λ̃1er1U + λ̃2er2U .

Since

Y (U+) = Y (U−),

we immediately obtain

λ̃1er1U + λ̃2er2U = λ1et1U + λ2et2U − (Dp +
C−
α

)
θℓ
α

. (5.39)

Matching at the point L, we deduce [48] from (5.35) and (5.36) expressions for
Y ′(L+), Y ′(L−), Y (L+), Y (L−), and then solve for λ̃1 and λ̃2 in terms of L and
the model parameters as follows:

λ̃1 =
σ2

2α2
e−r1L(1− r1

r2
)−1B2, (5.40)

λ̃2 =
σ2

2α2
e−r2L(1− r2

r1
)−1(−J2). (5.41)

Upon substituting these expressions into (5.38), we obtain (5.23). To establish (5.24),
matching Y at the point 0 to order one renders [48] expressions forY ′(0+), Y ′(0−),
Y (0+), Y (0−), and thus we can derive

λ1 =
σ2

2α2
(C+ + C−)

t22
t1 − t2

, (5.42)

λ2 − l3 =
C+ + C−

α
(
1

t2
+

1

t1 − t2
). (5.43)

Upon substituting the expressions for λ1, λ̃1 and λ̃2 into (5.37) and (5.39), cancelling
λ2, and simplifying the resulting expressions, we can conclude that L and U satisfy
(5.24).

100
Chapter 5: Stochastic Optimal Control for a General Class of Dynamic Resource
Allocation Problems

Next, we verify that the candidate value function Y satisfies the required first-order
properties in (5.32). Since we have constructed the function Y with

Y ′(U) = Dp,
Y ′(L) = −Ip,

then to establish (5.32) it suffices to verify the convexity of the function Y . To this
end, one first readily confirms that for x < L

Y ′′(x) = l1s21es1x = (
C−
α

− Ip)s1es1(x−L).

Given that Ip < C−/α and that s1 > 0 in (5.17), we can conclude

Y ′′(x) > 0 for x < L.

For x ∈ [L, U], we substitute (5.40) and (5.41) for λ̃1 and λ̃2 into (5.35), from which
we deduce [48]

Y ′′(x) > 0.

Turning to x ∈ (U, 0], we derive [48] from (5.37)

Y ′′(x) = λ1t21et1x + λ2t22et2x ,

= λ1t21et1x + (Dp +
C−
α

− λ1t1et1U)t2et2(x−U),

= (Dp +
C−
α

)t2et2(x−U) + et1U(−t2)
C+ + C−

α
×

t1et1(x−U) − t2et2(x−U)

t1 − t2
,

= [(Dp +
C−
α

)t2 + et1U(−t2)
C+ + C−

α
] · et2(x−U) +

et1U(−t2t1)
C+ + C−

α
· et1(x−U) − et2(x−U)

t1 − t2
. (5.44)

Now suppose we have

(Dp +
C−
α

)t2 + et1U(−t2)
C+ + C−

α
> 0. (5.45)

Then we readily obtain from (5.44) that

Y ′′(x) ≥ 0, for all x ∈ (U, 0).

5.A Proofs 101

Therefore, to show that Y is convex on (U, 0), it remains for us to establish (5.45).
We first note from (5.24) that

t2(αDp + C−) + (C+ + C−)(−t2) · et1U

= (r1 + r2)(αDp + C−)− [B2
r2

r1 − r2
er1(U−L)

+J2
r1

r1 − r2
er2(U−L)], (5.46)

and thus (5.45) holds if and only if

(r1 + r2)K + r2B2er1(U−L) + r1J2er2(U−L) < 0,

which due to (5.23) is equivalent to

r1B2er1(U−L) + r2J2er2(U−L) > 0. (5.47)

Define

f (x) = B2er1x + J2er2x + K .

We deduce that

f ′(0) = r1B2 + r2J2 = (r1 − r2)s1(C− − αIp) > 0. (5.48)

One can readily verify that f is convex. Upon combining this with (5.48), we obtain

f ′(U − L) > 0,

which is exactly (5.47). Finally, we show that for x > 0

Y ′′(x) = l3t22et2x ≥ 0.

It suffices to show l3 ≥ 0, which by (5.43) is equivalent to showing

λ2 ≥ C+ + C−
α

(
1

t2
+

1

t1 − t2
). (5.49)

From (5.37) and (5.42), we know

λ2 = (Dp +
C−
α

)
e−t2U

t2
− σ2

2α2
(C+ + C−)

t1t2
t1 − t2

e(t1−t2)U .

102
Chapter 5: Stochastic Optimal Control for a General Class of Dynamic Resource
Allocation Problems

Upon substituting this expression into (5.49) andmultiplying both sides by t2(t1−t2),
we simply need to show

(Dp +
C−
α

)(t1 − t2)e−t2U − σ2

2α2
(C+ + C−)t1t22e(t1−t2)U ≤ C+ + C−

α
t1. (5.50)

Given that Dp < C+/α and using the fact that

t1t2 =
−2α

σ2
,

then establishing the inequality (5.50) is equivalent to showing [48]

e−t2U(t1 − t2) + t2e(t1−t2)U ≤ t1. (5.51)

To this end, we set

g(y) = e−t2y (t1 − t2) + t2e(t1−t2)y − t1,

and verify

g ′(y) = −t2(t1 − t2)e−t2y (1− et1y),

which implies that

g ′(y) ≥ 0 for y ≤ 0.

Combining this with the fact that g(0) = 0, we deduce for U ≤ 0

g(U) ≤ g(0) = 0,

thus showing (5.51). We have therefore established the convexity of the candidate
value function Y , which implies (5.32).

5.A.2.2 Uniqueness of the threshold values

Finally, we show that L and U are uniquely determined by two nonlinear equations
and provide necessary and sufficient conditions under which the two equations are
both negative, both positive, or of different signs. Once again, we focus here on

5.A Proofs 103

proving these results for Case II of Theorem 5.3.1, noting that Cases I and III and
other technical details can be found in [48]. Since

Ip +Dp > 0,

we obtain

B2 + J2 + K = α(r1 − r2) · (−Ip −Dp) < 0.

Defining

f (x) = B2er1x + J2er2x + K ,

one can readily verify that f is convex,

f (0) = B2 + J2 + K < 0

and

lim
|x |→∞

f (x) = ∞,

which implies that f (x) = 0 has only one positive solution. We therefore conclude
that (5.23) uniquely determines U − L and that (5.24) uniquely determines U . To
establish necessary and sufficient conditions under which U ≤ 0, observe that [48]

U ≤ 0 ⇔ et1U ≤ 1,
⇔ RHS (5.24) ≥ (r1 + r2 − t2)(αDp + C−) +

(C+ + C−)t2,
⇔ LHS (5.24) ≥ (r1 + r2 − t2)(αDp + C−) +

(C+ + C−)t2,

⇔ er1(U−L) ≤ B3 − B1

B2
.

Considering (5.23) and letting

h(y) = B2y + J2y
r2
r1 + K

104
Chapter 5: Stochastic Optimal Control for a General Class of Dynamic Resource
Allocation Problems

for y > 0, one can readily verify that h is strictly increasing on [1,∞) with h(1) < 0.
Guaranteeing that (5.23) has a solution is equivalent to showing that h(y) = 0 has a
solution in the interval

(1, B3 − B1

B2
].

Hence, it suffices to show

B3 − B1

B2
> 1 and h(B3 − B1

B2
) ≥ 0, (5.52)

which can be confirmed by simple algebraicmanipulations establishing that the con-
ditions (5.52) are the same as the second set of conditions in Theorem 5.3.1.

5.A.3 Proof of Theorem 5.3.1: Step 3

The final step of our proof of Theorem 5.3.1 consists of verifying that the proposed
two-threshold dynamic control policy is optimal and that Y (x) = V (x) for all
x . We take a martingale argument approach where the key idea is to construct
a submartingale to prove that the candidate value function Y is a lower bound
for the optimization problem (5.9) - (5.14). To this end, first consider an admissi-
ble process dP(t) = θdt , where P(t) is adapted to the filtration Ft generated by
{D(s) : 0 ≤ s ≤ t} and θ ∈ [θℓ, θu]. Recalling X (t) = P(t) − D(t), we define the
process

M(t) = e−αtY (X (t)) +
∫ t

0

e−αs(C+X (s)+ + C−X (s)−

+ Ipθ1{θ ≥ 0
} −Dpθ1{θ < 0

})ds,

with our goal being to show thatM(t) is a submartingale.

Applying Ito's formula to e−αtY (X (t)) renders for any t1 ≤ t2

M(t2)− M(t1) =
∫ t2

t1
e−αs

(
− αY (X (s)) + 1

2
σ2Y ′′(X (s))

+ (θ − b)Y ′(X (s)) + C+X (s)+ + C−X (s)−

+ Ipθ1{θ ≥ 0
} −Dpθ1{θ < 0

})ds

−
∫ t2

t1
e−αsY ′(X (s))σdW (s). (5.53)

5.1 Proofs 105

We have established in Section 5.A.2 that Y satisfies the Bellman equation

−αY (x) + 1

2
σ2Y ′′(x)− bY ′(x) + C+x+ + C−x−

+ inf
θℓ≤θ≤θu

L(θ, x) = 0,

where

L(θ, x) =
{
(Y ′(x) + Ip)θ if θ ≥ 0,
(Y ′(x)−Dp)θ if θ < 0.

This implies, for any given x and any θ ∈ [θℓ, θu], that

−αY (x) + 1

2
σ2Y ′′(x)− bY ′(x) + C+x+ + C−x− + L(θ, x) ≥ 0.

Since Y ′(·) is bounded, upon taking the conditional expectation in (5.53) with re-
spect to the filtration Ft1 , we deduce for any t1 ≤ t2 that

Ex [M(t2)|Ft1]− M(t1) ≥ 0.

Namely,M(t) is a submartingale and therefore we have

Ex [M(t)] ≥ M(0) = Y (x), for any t ≥ 0.

Letting t go to∞, we can conclude that Y is a lower bound for the optimal value of
the optimization problem (5.9) - (5.14), and thus Y (x) = V (x) for all x . Hence, the
dynamic control policy characterized by the two threshold values L and U is indeed
optimal, and our proof of Theorem 5.3.1 is complete.

106
Chapter 5: Stochastic Optimal Control for a General Class of Dynamic Resource
Allocation Problems

Run-time Optimization of Composite Web

Services with Response Time Commitments 6
In this chapter we address dynamic decision mechanisms for composite web ser-
vices. We represent the composite web-service as a (sequential) workflow of tasks.
For each task within this workflow, a number of third-party service alternatives may
be available. We assume that the third-party service (task) alternatives offer the
same functionality at different price-quality levels. Before a task in theworkflowwill
be executed, a service alternative has to be selected that implements the task func-
tionality. Decisions are represented in a decision strategy which defines decisions
for all tasks in the workflow. Our goal is to find a dynamic strategy that maximizes
the expected benefit for the composite service providers. For each task, the service-
selection decision may be based on information about: observed response times in
the current workflow, sub-service costs, response time characteristics of the alter-
natives, and end-to-end response time objectives with the corresponding rewards
and violation penalties. We propose an approach, based on dynamic programming,
to determine the optimal, dynamic selection policy. Numerical examples show sig-
nificant potential gain in expected benefits using the dynamic approach compared
to other, non-dynamic approaches.

6.1 Background

Composite web services in a service oriented architecture (SOA) aggregateweb ser-
vices that may be deployed and executed within different administrative domains.
The composite web service provider typically runs an orchestrator that invokes the
aggregated services according to a pre-defined workflow. The workflow is based
on an unambiguous functionality description of a task ("abstract service"), and sev-
eral alternatives ("concrete services") may exist that implement such a description
[93]. With respect to functionality, all concrete services that match the same task
service are identical. We refer to [42], and references therein, for an overview of
QoS control frameworks.

A lot of attention in the literature has been paid to the problem of QoS-aware op-
timal service composition of SOA services (see, e.g. [26, 112, 113]). The main prob-
lem addressed in these papers is how to select one concrete service per task for
a given workflow. This selection is made with the goal to guarantee the QoS of
the composite service (as expressed in the respective SLA) while at the same time

6This chapter is based on [120], [122] and [121].

108
Chapter 6: Run-time Optimization of CompositeWeb Services with Response Time
Commitments

optimizing certain objectives like cost minimization. For the same QoS parameter,
different SLAs are possible, ranging from those based on single value (e.g. expected
value, median, etc.) to those models that are based on probabilistic models, repre-
sented by probability density functions, [117, 7, 122]. The choice of model impacts
how QoS of composite services is determined, and consequently, how service se-
lections are made. In static service composition solutions, the composition would
remain unchanged the entire life-cycle of the composite web service. In static ser-
vice composition solutions, the SLA violations could occur relatively often, leading
to providers' losses and customer dissatisfaction. This is due to the high variability
of the service environment, e.g. response time, and due to the fact that this is not
well-reflected in static service composition solutions.

One way to address the problem of SLA violations is the request replication ap-
proach, as presented in [111]. Although showing relative potential, the request repli-
cation may be inefficient and not scalable compared to other approaches. It is
suggested in [27, 114, 77] that, based on observations of the actually realized perfor-
mance, re-composition of the service may be triggered, in order to mitigate the is-
sue of SOA violations. These "reactive" solutionsmay select new concrete service(s)
for the given workflow during the re-composition phase. Once the re-composition
phase is over, the (new) composition is used as long as there are no further SLA
violations. In particular, the authors of [27, 114, 77] describewhen to trigger such (re-
composition) event, and which adaptation actions may be used to improve overall
performance. On the other hand, dynamic service compositions consider how to
dynamically adapt the service composition at runtime [28].

It seems natural to address the issue of dynamic service composition within SOA
by application of Markov Decision Processes (MDPs) and variants thereof. Abundo
et al. [1] use MDPs to calculate the admission policy which allows the orchestrator
to decide whether to accept or reject a new potential user in such a way to maxi-
mize the benefit while guaranteeing non-functional QoS for already admitted users.
Wang et al. [106] use MDPs to model service composition with the aim to create
automatically an abstract workflow of the service composition that satisfies func-
tional and non-functional requirements, and also to allow the composite service to
adapt dynamically to a varying environment. Yet another example of the pro-active
solution for SOA-based systems based upon MDP has been considered in [92]. For
a sequential workflow, a replacement of the atomic service is initiated when the
maximum loss a consumer could bear for each service occurs. The authors do not
consider service replacement at each SLA violation. The problem of an adaptive ser-
vice composition is also addressed in [105], where a solution based on a hierarchical
reinforcement learning method has been considered.

All of the mentioned MDP-based solutions show significant improvements over the
respective non-dynamic (i.e. static) service composition solutions. However, rela-
tively little is done with respect to a analysis of the services' QoS parameter space.

6.1 Background 109

CS(1,1)

CS(1,2)

CS(1,3)

CS(2,1)

CS(2,2)

CS(2,3)

CS(2,4)

CS(3,1)

CS(4,1)

CS(4,2)

request

response

orchestrator
selects and invokes

concrete services (CS)

lookup function, e.g.
lookup table, DB query

QoS control
decision module

Figure 6.1: Compositeweb service depicted by a sequential workflow. Dynamic service com-
position is based on pre-calculated response-time thresholds using dynamic programming.

Motivated by this, in this chapter we conduct a thorough empirical evaluation based
on our analysis from [122]. In [122] we analyzed our dynamic service composition ap-
proach that is based on DP. The objective is to maximize benefit for the composite
service provider, while committing to the response-time objective that is part of
the agreed end-to-end SLA. The investigation in this chapter aims to fully explore
the impact of the reward, penalty and execution cost parameters, relating to the
expected value and the variance of the response-time probabilistic models (distri-
butions). To the best of our knowledge, the impact of the number of the concrete
services (alternatives) and the positions of the alternatives within the workflow has
not been analyzed so far within the context of the MDP-based SOA dynamic ser-
vice composition. We quantify the answer to the question how many alternatives
are advisable at the "beginning", "middle" and "end" of a workflow, and enlight this
analysis with respect to the number of services within the workflow.

After illustration of MDP-based solution in Section 6.2 we describe in Section 6.3
the model of the system under consideration. In Section 6.4 we describe the DP ap-
proach we abridged for our purposes. We explain the procedure and derive formu-

110
Chapter 6: Run-time Optimization of CompositeWeb Services with Response Time
Commitments

lae used to determine response time thresholds. Simulation results are presented
and discussed in Section 6.5 in which we illustrate the influence of different sys-
tem parameters. In Section 6.6 we conclude this chapter with directions for further
research.

6.2 Motivating example

To illustrate our dynamic service selection approach, we consider the case of se-
quential workflows. Figure 6.1 depicts a sequential workflow consisting of four tasks
(defined as abstract services). Each task maps to a number of concrete services
(alternatives). Per task, the number of alternatives is three, four, one and two, re-
spectively. The response times of the concrete web services are represented by
random variables for with it is assumed that the probability distributions are known
in advance. See Remark 6.3.1 for when this is not the case. The execution costs per
concrete service are known in advance as well. Our approach is tailored for sequen-
tial workflows. However, our approach is applicable to any workflow that could be
aggregated and mapped into a sequential one. This can be done by the calculations
of the aggregated services for the most frequently used workflow patterns in which
the probabilistic models are used as explained in [122], [117], and [7]. In case of arbi-
trary workflow patterns, an efficient numerical method could be used, as presented
in [34]. See Appendix 6.A for an example how where an (non sequantial) example
workflow is aggegrated into a sequential one.

After each execution of a single task within the workflow, the orchestrator decides
for the next task which concrete service alternative will be executed. To this end
the orchestrator compares the remaining end-to-end deadline time-budget to the
pre-calculated response-time thresholds for each service. The thresholds are re-
trieved from a pre-calculated lookup table. In the most extreme example, after the
execution of, e.g. the first task within the workflow, the promised end-to-end dead-
line may already has been violated. In such a case, the dynamic selection algorithm
should choose the cheapest alternatives for all remaining tasks in theworkflow. Sim-
ilarly, when only the last task remains to be executed, and the promised deadline
is jeopardized, it may be sensible to select the more expensive service with better
deadline-meeting promise than the cheaper service with the much smaller proba-
bility of meeting the deadline.

When the client's request meets the agreed end-to-end deadline, the composite
service provider is rewarded by the client. Otherwise, when the deadline is not met
(i.e. an event of an SLA violation) the provider pays a penalty to the client. The exact
relation between the metric of percentile conformance and the monetary penalties
charged on the provider due to non-conformance (hereon referred to as the "penalty
function") is an important parameter of the SLA [16]. There are multiple ways in

6.3 Model 111

relating the two and thus a variety of penalty functions can be chosen. We have
adopted the step-wise penalty function in this case with the desired conforming
percentile of 100% [16].

The response-time thresholds are calculated before the first request is admitted
to the system, where the DP takes the penalty, the reward, the concrete services'
level objectives (SLOs) and the execution costs as input. These thresholds are rep-
resented by e.g. a lookup table. Depending upon the actual response times and the
thresholds, it is possible that each client request may be served by a different chain
of alternatives.

6.3 Model

A composite service consists of N of tasks or abstract services, denoted by
T1, ... , TN , that have to be performed in sequential order. For each task i there areMi
alternative implementations available, which are called concrete services, denoted
by CS(i ,j), for j = 1, ... , Mi . The composite service processes incoming service re-
quests. To this end, each request is assigned a unique concrete service alternative
for each task in the composition chain. In other words, each request is assigned a
workflow of concrete services CS(1,w1) → · · · → CS(N,wN) that contains for each
task Ti an invocation of a concrete service alternative CS(i ,wi). Each workflow is
represented in a workflow vectorW , defined as:

W := [w1, ... , wN]. (6.1)

The position of wi in the vector corresponds to the position in the workflow and the
values wi = 1, ... , Mi correspond to the concrete service alternative at position i .

Figure 6.2 illustrates the case where N = 4, M1 = 3, M2 = 4, M3 = 1, M4 = 2 and
W = [2, 2, 1, 1].

Per single composite service request, the orchestrator (illustrated in Figure 6.1)
executes services one-by-one as indicated by the workflow. Before task Ti is exe-
cuted, the orchestrator makes a decision which one of theMi service alternatives to
choose. Decisions from the orchestrator are based on information about response
times from the concrete services. The response-time SLOs of the concrete services
are specified as "soft" ones, and in general, "soft" SLOs are expressed as a response-
time probability distribution function (PDF) [96], or alternatively, as the cumulative
distribution function (CDF).

112
Chapter 6: Run-time Optimization of CompositeWeb Services with Response Time
Commitments

CS(1,1)

CS(1,2)

CS(1,3)

CS(2,1)

CS(2,2)

CS(2,3)

CS(2,4)

CS(3,1)

CS(4,1)

CS(4,2)

request

response

T1

T2

T3

T4

M1=3 M2=4 M3=1 M4=2
Figure 6.2: Model with example workflow
CS(1,2) → CS(2,2) → CS3,1 → CS(4,1) , corresponding workflow vector W = [2, 2, 1, 1] and
M1 = 3, M2 = 4, M3 = 1, M4 = 2.

6.3.1. Remark (probability density functions). In practice, probability density func-
tions may either be estimated from themeasurements carried out by the composite
service provider, or the third-party domains may publish, or otherwise make avail-
able, such information. Since we investigate the potential of our approach, we as-
sume time-invariant SLAs and the PDFs (which are part of the SLAs) do not change
either. In case of time-variant PDFs, a recalculation of the response-time thresholds
may be occasionally necessary. The recalculation may be triggered when there is a
long-term SLA violation, i.e. when the observed PDF differs "significantly" from the
initial one. This is topic is addressed in Chapter 7.

Each concrete service CS(i ,j) (the j-th alternative for task i) has a response time rep-
resented by a random variable D(i ,j) ≥ 0 for i = 1, ... , N and j = 1, ... , Mi . From
the perspective of the response time, we model each concrete service as a black
box, whichmeans that for each random variableD(i ,j) the respective PDF (or CDF) is
given. The PDFs and CDFs for concrete services are denoted by f (i ,j)(t) and F (i ,j)(t),
respectively. If a concrete service CS(i ,j) is invoked a response time realization d(i ,j)

(i = 1, ... , N, j = 1, ... , Mi) is generated and a invocation cost of c(i ,j) money units
have to be paid. Because CS(i ,j) is represented by random variable D(i ,j) with given
distribution, d(i ,j) is a sample from the distribution associated with D(i ,j). We as-
sume that response times of concrete service alternatives aremutually independent.
Using the mutual independence, for a given workflow CS(1,w1) → · · · → CS(N,wN)

the response time distribution can be determined by taking the convolution of the
distributions associated to the respective random variables:

DW = D(1,w1) ⋆ D(2,w2) ⋆ · · · ⋆ D(N,wN). (6.2)

6.3 Model 113

The realization of a end-to-end response time, resulting from invoking workflowW ,
is represented byDW . The overall deadline for a request handled by the orchestrator
is denoted by δp . For each workflow W the probability of a successful response
within δp is defined by:

pW := P(DW ≤ δp). (6.3)

The workflow invocation cost cW for workflowW = (w1, ... , wN) is defined by:

cW :=
N∑

i=1

c(i ,wi). (6.4)

As for a fixed workflowW the composition is known, an explicit expression for the
expected benefit per request can be formulated. We define R∗

W as the expected
benefit per request for workflowW :

R∗
W := RpW − V (1− pW)− cW . (6.5)

When decisions aremade in a dynamic fashion, the concrete serviceworkflowW is
not fixed, but depends on the response time realizations of concrete services. In our
approach the optimization problem is solved by applying DP. The key idea behindDP
is that the optimization problem can be separated into smaller subset problems that
are easier to solve. Solving the smaller subset problems will lead to the solution of
the optimization problem that optimizes expected benefit. Dynamic programming
consists of the following components:

• State space S , in our case the state space is defined by S = {1, · · · , N} ×R+.
Each state is a tuple (i , b) ∈ S, (i ∈ {1, · · · , N}, b ∈ R+) combining position
i in the workflow and remaining time until deadline violation b.

• Decision epochs, before execution of each next sub-service we have to select
an concrete service alternative based on b.

• Action space, the set of possible actions for given state (i , b). At each de-
cision moment at task Ti we have a set of concrete service alternatives
{CS(i ,1), ... , CS(i ,Mi)}, i = 1, ... , N .

• Cost function, defining cost for each action or state that is reached. If concrete
service alternative CS(i ,j) than invocation cost c(i ,j) has to be paid. At the end
of theworkflow a rewardR is earned is the deadline is not violated. Otherwise
a penalty V has to be paid.

• Value function P(i ,∗)(b), representing the expected benefit for state (i , b) ∈ S .

114
Chapter 6: Run-time Optimization of CompositeWeb Services with Response Time
Commitments

• Policy A, the set of decisions or actions over all states (i , b). The policy can
be implemented by a lookup table where for given (i , b) the optimal pre-
calculated decision is selected. An example is depicted in Figure 6.3 at Section
6.4. We refer to Section 6.4 for more details.

The combination of state space, decision epochs, action space, cost function and
value function defines a DP problem where the solution results in policy that opti-
mizes expected benefit. An optimal policy can be determined by defining a back-
ward recursion on P(i ,∗)(b). This recursion is called the Bellman Equation [11]. The
recursion is defined and implemented in Section 6.4. We denote the dynamic work-
flow that implements lookup table A as:

W d(A).

Generally there is no tractable explicit expression for the end-to-end response time
distributionwhen the orchestrator choosesworkflows dynamically like for the static
workflow. For the orchestrator the realization of a end-to-end response-time distri-
bution is denoted byD and has corresponding realization d . The fraction of requests
within the deadline is

p := P(D ≤ δp). (6.6)

The orchestrator has to deal with two levels of SLAs:

First, the SLA agreed between the individual service provider (ISP) for the j-th ser-
vice alternative of the i-th task and the composite service provider (CSP). These
consist of the following elements:

• The response-time probability distribution function, f (i ,j)(b).

• The cost c(i ,j) [money unit] that the CSP pays to ISP for the execution of a
single request. No penalties are imposed. From the ISP viewpoint, this value
represents reward.

Second, the SLA between the CSP and its clients, that contains the following ele-
ments:

• The end-to-end response time penalty deadline δp [time unit].

• The fraction of response time realizations pe2e that should be within the dead-
line δp .

• The reward R [money unit] that the CSP gets for executing a single request
within penalty deadline δp .

• The penalty V [money unit] that the CSP pays to the end customer when the
agreed end-to-end deadline is not met.

6.4 Algorithm description 115

The orchestrator must choose workflows such that it will meet the required fraction
pe2e of requests within deadline δp :

P(D ≤ δp) ≥ pe2e . (6.7)

6.4 Algorithm description

In this sectionwe describe how to optimize expected CSP benefit by formulating the
dynamic service selection as a DP, [11]. Before a request is executed by the CSP a re-
sponse time budget δp is available until response-time deadline δp is violated. Each
execution of concrete service CSi(j) in the CSP workflow will result in a response-
time realization d(i ,j) and a remaining response-time budget B. After execution of
CS(i ,j), the remaining time budget B will reduce with d(i ,j) time units. The term "dy-
namic" refers to the fact that workflows are selected on-line based onB, the remain-
ing response-time budget until the deadline δp is violated. In otherwords, before the
execution of each task, a service alternative must be selected, based on B. The DP
optimizes the CSP benefit by taking into account the effect of future decisions. Since
the decisions within the DP take in account (possible) effects subsequent decisions,
a "backward recursion"method is needed for finding the optimal solution. The appli-
cation of DP will result in a decision policy. The policy indicates, for given response
time realizations, which one of the concrete service alternatives should be chosen
in order to optimize the CSP's expected benefit per composite service request. The
policy is determined by the current position within the sequential workflow i and
the remaining time b ("time budget") till the overall deadline δp will be violated.

Define P(i ,∗)
(b) := E[Benefit | B = b, I = i] as the expected benefit under the

optimal DP policy. Here B = b is the given response time budget , and i represents
the task at the ith position in the workflow. The recursion starts with the terminal
reward function for b ≥ 0:

P(N+1,∗)
(b) =

{
R if b > 0,
−V otherwise.

(6.8a)

Using this function, we iterate backwards using the following equations, for i =
1, ... , N, j = 1, ... , Mi , b > 0:

116
Chapter 6: Run-time Optimization of CompositeWeb Services with Response Time
Commitments

P(i ,∗)
(b) = max

j

{
− c(i ,j) + R(i ,j)

(b) + V (i ,j)
(b)
}

, (6.8b)

R(i ,j)
(b) =

b∫
0

f (i ,j)(t)P(i+1,∗)
(t − b)dt, and (6.8c)

V (i ,j)
(b) =

∞∫
b

f (i ,j)(t)P(i+1,∗)
(0)dt. (6.8d)

Here f (i ,j)(t) represents the response-time PDF of concrete service alternative j for
task i , while the term R(i ,j)

(b) represents the expected reward, when concrete ser-
vice j (corresponding to task i) is executed for the given time-budget value B = b.
The term V (i ,j)

(b) represents the expected penalty for exceeding the overall dead-
line at task i while executing concrete service j for the given time budget valueB = b.
The expected reward and penalty functions take into account the impact of future

decisions as represented by terms relating to R(i+1,∗)
(b) in equations (6.8c) and

(6.8d). Once the end of the workflow is reached (i.e., i = N) the current request has
been processed.

The integrals in Equation (6.8c) will generally not result in tractable expressions. The
problem can be solved numerically, by discretizing the distributions. For the dis-
cretization we split the time interval over which the response-time PDF is defined
in segments of the same size h. The number of segments is T ∗ and the size of h cor-
responds to the accuracy of the discretization. The discretized versions of the PDF

q(i ,j)
k are therefore defined as follows, for i = 1, ... , N, j = 1, ... , Mi , b = 0, ... , T ∗:

T ∗ =
⌈δ∗

h

⌉
,

q(i ,j)
b = P

(
D(i ,j) ≤ h[b + 0.5]

)
− P

(
D(i ,j) ≤ h[b − 0.5]

)
,

Generally, the larger the number of segments T ∗ the more accurate the discretiza-
tion would be, but it would take longer time to calculate the respective PDF.

Using the discretization, the backward recursion can be transformed into a scheme
that can be evaluated numerically. For given number of segments T ∗, let the terms

6.5 Algorithm description 117

P(i ,∗)
b , R(i ,j)

b , and V (i ,j)
b represent discretized versions of P(i ,∗)

(b), R(i ,j)
(b), and

V (i ,j)
(b), respectively. The backward recursion formulae are then as follows:

P(N+1,∗)
b =

{
R if b > 0,
−V otherwise.

(6.9a)

Using this function, we iterate backwards using the following equations, for i =
1, ... , N, j = 1, ... , Mi , b = 0, ... , T ∗:

P(i ,∗)
b = max

j

{
− c(i ,j) + R(i ,j)

b + V (i ,j)
b

}
, (6.9b)

R(i ,j)
b =

b∑
k=0

q(i ,j)
k P(i+1,∗)

k−b , and (6.9c)

V (i ,j)
b =

T∗∑
k=b+1

q(i ,j)
k P(i+1,∗)

0 . (6.9d)

While applying formulae (6.9b)-(6.9d), the corresponding decisions (ac-
tions) A can be obtained by storing the maximum arguments evaluated for
i = 1, ... , N, b = 0, ... , T ∗ as:

A(i ,∗)
b = argmax

j=1,...,Mi

{
− c(i ,j) + R(i ,j)

b − V (i ,j)
b

}
.

The optimal decisions could be represented by a lookup-table, and a graphical ex-
ample of a lookup-table for the sequential workflow with N = 4 tasks is shown in
Figure 6.3. The horizontal axis corresponds to the time budget left until the overall
deadline is breached, while the vertical axis corresponds to the position of the task
within the workflow. The color corresponds to the decision that has to be taken, e.g.
proceed with the alternative j .

We illustrate the lookup table with the following examples:

(1) We start handling a new request and the overall deadline equals δp = 13.5.
The decision is marked by an asterisk ∗ at the lookup table shown in Figure
6.3, and alternative 1 is to be selected.

(2) We have 4.9 time units remaining the decision is made for the task at position
3. The decision is marked by a cross ×, and points that service alternative 3
should be selected.

118
Chapter 6: Run-time Optimization of CompositeWeb Services with Response Time
Commitments

Policy

b (time budget)

{
1Task: T

{
2Task: T

{
3Task: T

{
4Task: T

δ
p
 Overall deadline

0 5 10 15

(i,1)Concrete Service: CS

(i,2)Concrete Service: CS

(i,3)Concrete Service: CS

(i,4)Concrete Service: CS

Figure 6.3: Graphical example of a decision table.

6.5 Numerical experiments

In this sectionwe investigate the influence of the systemparameters on the potential
gain that can be obtained by applying dynamic service composition as compared
to static service composition. To this end, we have performed a wide variety of
numerical experiments. The results of these experiments are outlined below. The

Parameter Definition
N Number of tasks (workflow size)
Mi Number of service alternatives for task i

f (i ,j) PDF of response-time distribution CS(i ,j)

µi ,j Mean response time of CS(i ,j)

σ2
i ,j Variance of response time of CS(i ,j)

c(i ,j) Cost of invocation of CS(i ,j)

δp End-to-end deadline
pe2e Required fraction of responses within the deadline
R Reward per successful request within deadline δp
V Penalty per request not completed within deadline
KR Scaled reward
KV Scaled penalty

Table 6.1: Overview of model parameters.

parameters of themodels discussed in Sections 6.3 and 6.4, and their corresponding
value ranges, are listed in Table 6.1. The parameter space is highly dimensional and
prohibits an exhaustive analysis of model instances. Therefore, we have defined a
number of specific model instances that represent certain characteristics of service
compositions. First, we study the impact of the input parameters reward, penalty

6.5 Numerical experiments 119

and cost on the potential gain in expected benefit obtained by dynamic versus static
service composition. Second, we investigate the impact of the service-chain length
on the potential gain. Third, we consider the impact of the number of available alter-
natives for the tasks, and their corresponding positions in the service chain, on the
expected gain. For convenience, we assume that the response-time distributions
for the j-th alternative of task i can be approximated by a log-normal distribution
with mean µi ,j and variance σ2

i ,j , see Table 6.1. We emphasize that this assumption
is not restrictive, because our approach supports all non-negative probability distri-
butions.

The gain G in expected benefit obtained by using optimal dynamic composition
compared to the optimal static composition is defined as follows:

G :=
R∗

dynamic − R∗
static

R∗
static

× 100%, (6.10)

where R∗
dynamic is the expected benefit per request under the optimal dynamic pol-

icy, obtained by applying the algorithm described in 6.4. Moreover, R∗
static is the

expected benefit per request under the optimal static policy, obtained by an ex-
haustive search of all possible "paths" traversing the tasks in the workflow (see for
example Figure 6.2, where there are 24 possible paths).

For our parameter study we need to choose a deadline δp . This has to be done
such that experiments will generate sensible results. Therefore, we introduce the
reference workflow W ref . Using the reference workflow we can relate a sensible
deadline to a given end-to-end objective pe2e . The reference workflow W ref is de-
termined by taking

W ref = argmax
W

[
RpW − V (1− pW)− cW

]
, (6.11)

cW :=
N∑

i=1

c(i ,wi), (6.12)

pW := P(DW ≤ δp). (6.13)

For given pe2e , we denote by δp the deadline such that for the reference composition
W ref , consisting of CS(i ,1), i = 1, ... , N , it holds that P(Dref < δp) = pe2e .

120
Chapter 6: Run-time Optimization of CompositeWeb Services with Response Time
Commitments

6.5.1 Impact of reward, penalty and cost parameters

In this subsection we study the impact of concrete service-cost c(i ,j), the reward R
and the penalty V on the potential gain G , defined in (6.10). To this end, define the
overall mean service cost by

c =
N∑

i=1

c i , where c i =
1

Mi

Mi∑
j=1

c(i ,j). (6.14)

Note that R , V and c are scale-invariant, in the sense that if these parameters are
scaled to αR , αV and αc for some α > 0, then the optimal dynamic and static
policies, and hence also the gain G , remain the same. Therefore, it is convenient to
define the following two scaled reward and cost parameters:

KR :=
R
c and KV :=

V
c . (6.15)

As an illustration, consider the following exploratory example with N = 2, M1 = 1
and M2 = 2, depicted in Figure 6.4, and where the cost parameters c(i ,j) and the
distribution parameters µi ,j and σ2

i ,j are listed in Table 6.2.

CS(1,1)

CS(2,1)

CS(2,2)

T1

request 1

T2

response 1

response 2

request 2

M1=1 M2=2
Figure 6.4: Exploratory example with M1 = 1, M2 = 2.

Task (i , ·)
(1, ·) (2, ·)

c(i ,j) µi ,j σ2
i ,j c(i ,j) µi ,j σ2

i ,j
Service

alternative (·, j)
(·, 1) 1 5 4 1 5 4
(·, 2) n.a. n.a. n.a. 5 2.5 4

Table 6.2: Global scenario.

Figure 6.5a shows the contour lines of combinations (KR , KV) that lead to the same
expected benefit, subject to the constraint that the reference static workflow (i.e.,

6.5 Numerical experiments 121

the workflow [1, 1]) leads to an end-to-end response time less than the deadline
with probability pe2e = 80%. The values plotted on the dotted lined indicate the
expected benefit. The grey area is the set of combinations for which the static work-
flow is [1, 1], indicated by the solid line in Figure 6.4. The white area represents the
combinations for which the static workflow [1, 2] is optimal, indicated by the dashed
line in Figure 6.4. Note that in these cases pe2e > 80%, because one chooses a faster
alternative while maintaining the same deadline.

(a) Expected benefit in static set-up.

−8

−6

−6

−4

−4

−4

−2

−2

−2

2

2

2

4

4

4

6

6

6

8

8

8

1
0

1
0

1
2

0

0

0

K
R

K
V

1 2 3 4 5

5

10

15

(b) Expected benefit in dynamic set-up.

−8 −6

−6

−4

−4

−2

−2

−2

2

2

2

4

4

4

6

6

6

8

8

8

1
0

1
0

1
0

1
2

1
2

1
4

0

0

0
K
R

K
V

1 2 3 4 5

5

10

15

(c) Potential gain in expected benefit.

10
%

10
%

10
%

10
%

10% 10% 10%

5
0

%

5
0

%

5
0

%

50%

5
0

%
5
0

%

K
R

K
V

1 2 3 4 5

5

10

15

Figure 6.5: Comparison between static and dynamic set-up for pe2e = 80%. Black con-
tour lines represent equal values. The grey and white area correspond to the different opti-
mal static compositions. Furthermore, the solid grey contour line is where R∗

dynamic = 0, the
dashed grey contour line is where R∗

static = 0.

122
Chapter 6: Run-time Optimization of CompositeWeb Services with Response Time
Commitments

Note that all iso-curves in Figure 6.5a are piecewise linear. More precisely, one may
verify using (6.5) that for a given optimal static workflow the iso-curves are of the
form KV = aKR + b, with

a =
pW

1− pW
and b =

R∗
static + cW

c(pW − 1)
, (6.16)

where R∗
static is defined in (6.10), and where cW is the cost for the optimal static

workflow W , pW is probability a request using W will be within deadline δp and
W is the optimal static workflow for which holds that W = [1, 1] in the grey area
and W = [1, 2] in the white area. Moreover, it is readily verified from (6.5) that the
switching curve of the optimal workflow (i.e., the border separating the grey and the
white area) is given by:

KV + KR =
c[1,1] − c[1,2]

c(p[1,1] − p[1,2])
, (6.17)

where c[1,k] is the cost for workflow [1, k] (k = 1, 2) as defined in (6.4), c is defined
in (6.14) and p[1,k] is the probability that the response time meets the deadline if the
static workflow [1, k] is optimal.

Figure 6.5b shows the results for the dynamic counterpart of Figure 6.5a, and Figure
6.5c shows the iso-curves for the relative gainG , defined in (6.10). Most remarkably,
the iso-curves depicted in Figure 6.5c are wedge-shaped with a sharp angle at the
switching curve (6.18). This suggests that the relative gain G has the highest values
at the switching curve. In other words, the information about the response times at
the first task is particularly crucial to decide about the optimal path.

The solid grey line is the contour line over the combinations (KV , KR) where
R∗

dynamic = 0, and the dashed grey line show the combinations for which R∗
static = 0.

We observe that the distance between these two lines is maximal on the switching
curve, as expected. Moreover, note that the green line gives the boundary where
positive benefit is expected: combinations to the left of this curve will result in loss
in expectation.

Figures 6.6a to 6.6c show similar results to those in Figures 6.5a to 6.5c, but with
pe2e = 90%.

6.5.2 Impact of number of alternatives

Wewill now investigate the impact of the number of available alternatives for each
of the tasks on the gain G to be obtained by using dynamic composition. To this end,
we consider a service chain of length N ≥ 3, and with Mi = 1 for i ̸= 2, N , and

6.5 Numerical experiments 123

(a) Expected benefit in static set-up.

−6

−4

−4

−2

−2

−2

2

2

2

4

4

4

6

6

6

8

8

8

1
0

1
0

1
0

1
2

1
2

1
4

0

0

0

K
R

K
V

1 2 3 4 5

5

10

15

(b) Expected benefit in dynamic set-up.

−4

−4

−2

−2

−2

2

2

2

4

4

4
6

6

6
8

8

8
1
0

1
0

1
0

1
2

1
2

1
2

1
4

1
4

1
6

0

0

0

K
R

K
V

1 2 3 4 5

5

10

15

(c) Potential gain in expected benefit.

10
% 10%

10%
10%

5
0

%
5

0
%

5
0
%

5
0
%

5
0

%

K
R

K
V

1 2 3 4 5

5

10

15

Figure 6.6: Comparison between static and dynamic set-up for pe2e = 90%. Black con-
tour lines represent equal values. The grey and white area correspond to the different opti-
mal static compositions. Furthermore, the solid grey contour line is where R∗

dynamic = 0, the
dashed grey contour line is where R∗

static = 0.

where M2 and MN are varied as {1, 2, 3, 4}. The cost and distribution parameters
are listed in Table 6.3, and moreover, we take R = 26, and V = 130. Note that it is
readily verified from (6.14) that c = 26, and from (6.15) that KR = 1 and KV = 5.

Figure 6.7 illustrates an example withM2 = 2 andMN = 3. For each of the model in-
stances, we have calculated (1) the optimal static composition and its corresponding
expected benefit R∗

static , (2) the optimal dynamic composition and its corresponding
expected benefit R∗

dynamic , and (3) the relative gain G , defined in (6.10).

In particular we expect that, due to increasing uncertainty when traversing a service
compositionworkflow,more alternatives are desired at the end of theworkflow. For
our analyses we define a service chain of lengthN where at the second position and
at the last position the number of concrete service alternatives is varied. With this

124
Chapter 6: Run-time Optimization of CompositeWeb Services with Response Time
Commitments

CS(1,1)

CS(2,1)

CS(2,2)

CS(3,1)

CS(N,1)

CS(N,2)

T1 T2 T3 TN

M1=1 M2=2 M3=1 MN=3

request response
CS(N-1,1)

TN-1

MN-1=1

CS(N,3)

Figure 6.7: Configuration for analyses on impact of position of alternatives at task T2 at
position 2 and task TN at position N . In this case M2 = 2, MN = 3 and Mi = 1 for i ∈
{1, ... , N} \ {2, N}.

set-up we can compare the relative value of alternatives in the beginning and at the
end of the service composition chain. The results are presented in tables where the
rows correspond to MN and columns correspond to M2. In other words, the rows
correspond to the number of concrete service alternatives at position N and the
columns correspond to the number of available concrete service alternatives at po-
sition 2. The parameter values are presented in Table 6.3. Results of the case where
N = 8 and pe2e = 90% for the reference composition are represented in Table 6.4.
We observe that increasing the number of alternatives at position 2 in the workflow
results in a neglectable increase in gain G . However increasing the number of al-
ternatives at position 8 results in a increase in gain up to 42.1%. If we take a closer
look to the expected benefit of the static composition approach in Table 6.4 we ob-
serve that the third and fourth alternative are never used as the expected benefit
does not increase when the third and fourth alternative are available. Furthermore,
we observe that the table is symmetric for the number of alternatives at positions
2 and 8. This is caused by the fact that workflows in the static scenario are fixed
and therefore, if the alternatives at both positions are similar, the position where the
number alternatives is increased has no effect on expected benefit. However, for
the dynamic composition the position where the number of alternatives is increases
has a dramatic effect. At the expected dynamic benefit results in Table 6.4, for the
case with dynamic workflows, we observe that for position 8 the availability of al-
ternatives 3 and 4 has a significant impact on benefit. At position 2 the availability
has hardly any effect as the advantage of optimal dynamic selection is averaged out
over the successive workflow response times. At position 8 the dynamic workflow
enables the orchestrator to take advantage of the 3th and 4th alternative where the
static workflow is not optimally using the 2th alternative and does not even use the
3th and 4th alternative.

6.5 Numerical experiments 125

Task (i , ·)
i /∈ {2,N} i ∈ {2,N}

c(i ,j) µi ,j σ2
i ,j c(i ,j) µi ,j σ2

i ,j

Service
alternative (·, j)

(·, 1) 1 5 16 1 5 16
(·, 2) n.a. n.a. n.a. 3 2.5 4
(·, 2) n.a. n.a. n.a. 9 1.25 1
(·, 2) n.a. n.a. n.a. 27 0.675 0.25

Table 6.3: Cost and distribution parameters.

Gain
N2

1 2 3 4

N8

1 0.0% 0.0% 0.4% 0.4%
2 16.6% 14.6% 14.8% 14.8%
3 37.1% 25.1% 25.3% 25.3%
4 42.1% 27.6% 27.8% 27.8%

Dynamic N2

benefit 1 2 3 4

N8

1 2.44 5.43 5.45 5.45
2 6.33 8.21 8.23 8.23
3 7.44 8.97 8.98 8.98
4 7.71 9.15 9.16 9.16

Static N2

benefit 1 2 3 4

N8

1 2.44 5.43 5.43 5.43
2 5.43 7.17 7.17 7.17
3 5.43 7.17 7.17 7.17
4 5.43 7.17 7.17 7.17

Table 6.4: Impact on availability of alternatives.

6.5.3 Length of the composition

In section 6.5.2 we observed that the effect of alternatives at the start of the work-
flow can vanish due to averaging of response times over the succeeding services.
We will now investigate the effect of service-chain length. The service chain used
for the experiments is depicted in Figure 6.8 and has length N . There is one alterna-
tive at position 1 (M1 = 1) while there are two alternatives at position i ≥ 2 (Mi = 2
for i = 2, ... , N). The parameter space is large, therefore we limit us to workflows
where there are two concrete-service alternatives for each task. Concrete-service

126
Chapter 6: Run-time Optimization of CompositeWeb Services with Response Time
Commitments

Task (i , ·)
(1, ·) (2, ·)

c(i ,j) µi ,j σ2
i ,j c(i ,j) µi ,j σ2

i ,j
Service

alternative (·, j)
(·, 1) 1 5 16 1 5 16
(·, 2) n.a. n.a. n.a. 3 2.5 4

Table 6.5: Cost and distribution parameters for the impact of the service-chain length.

alternative parameters are defined in Table 6.5. Reward parameter R , penalty pa-
rameter V are related to overall mean service cost c as is defined in (6.14) using
scaled reward and penalty KR and KV which are defined in (6.15). Deadline δp
is chosen as defined in (6.11). Note that there are N different static workflows as
for the static workflow the position of alternatives does not matter (the set of al-
ternatives is equal for all tasks). We define a workflow for a system with N tasks
as W k , k = 0, ... , N − 1 where k represents the number of faster alternatives
that is invoked in the workflow. In our case the reference workflow becomes
W ref = W 0 = [1, 1, ... , 1] (a workflow consisting of only regular (slow) alternatives).
We chose to vary parameters KR and KV in the ranges KR ∈ (0; 5] and KV ∈ (0; 50].
Figures 6.9-6.13 contain results for service-chain length N = 3, 6, 8, 15, 20 respec-

CS(1,1)

CS(2,1)

CS(2,2)

T1 T2 T3 TN

M1=1 M2=2 M3=2 MN=2

request response

TN-1

MN-1=2

CS(3,1)

CS(3,2)

CS(N-1,1)

CS(N-1,2)

CS(N,1)

CS(N,2)

Figure 6.8: Configuration for analyses on the impact of the service-chain length,
M1 = 1, Mi = 2, i = 2, ... , N .

tively with end-to-end probability pe2e = 90% for the reference workflow. In these
figures different gray-scale levels of the contour areas identify different benefit gain
G . Each grey-scale area corresponds to a specific range of relative gain G as speci-
fied in the color bar. The arrows identify the (dashed) lines that separate different op-
timal static policies e.g. the number of faster alternatives used. We observe wedge
shapes at the edges of the gray-scale contour areas. These wedges correspond to
the switching curves where the static policy adds another faster alternative to the
workflow, like the wedge shaped curves around the switching curve in section 6.5.1.
Red lines identify the switching curves between different optimal static workflows.
Arrows, left from the vertical axis, identify what static optimal paths are separated.

6.5 Numerical experiments 127

Similar to Section 6.5.1, more gain is found around the static optimal path switching
curves. Switching curves have an expression similar to (6.18): for k = 0, ... , N − 1,

KV + KR =
cW k − cW k+1

c(pW k − pW k+1
)
. (6.18)

pW k is the probability that a static workflow with k faster alternatives will generate
a response within deadline δp . Observe that if the service-chain length N increases
then the grey-scale contour areas become wider. This implies that longer work-
flows potentially have a higher benefit gain G when comparing dynamic and static
workflows.

Relative difference dynamic v.s. static approach

− 0% − 10%

− 10% − 25%

− 25% − 50%

− 50% − 100%

− 100% − 250%

− 250% − 500%

− 500+%

Relative difference dyn,stat for N=3, p
e2e

=90%

K
R

K
V

1 2 3 4 5

5

10

15

20

25

30

35

40

45

0−1

1−2

Figure 6.9: Contour plot for the relative gain G with N = 3 and pe2e = 90%.

6.5.4 Arbitrary alternatives

We consider a service workflow illustrated in Figure 6.14 for our experiments. This
sequential workflow consists of N = 4 tasks. For each task i , there are Mi concrete
service alternatives, whereMi could take one of the values {1, 2, 3, 4}, andMi ̸= Mj
whenever i ̸= j . The notation (M1, M2, M3, M4) depicts the particular experimental
setup, and represents one of the possible permutations of the set {1, 2, 3, 4}. There-
fore, there are in total 24 different compositions (experimental setups).

128
Chapter 6: Run-time Optimization of CompositeWeb Services with Response Time
Commitments

Relative difference dynamic v.s. static approach

− 0% − 10%

− 10% − 25%

− 25% − 50%

− 50% − 100%

− 100% − 250%

− 250% − 500%

− 500+%

Relative difference dyn,stat for N=6, p
e2e

=90%

K
R

K
V

1 2 3 4 5

5

10

15

20

25

30

35

40

45

0−1

1−2

2−3

3−4

4−5

Figure 6.10: Contour plot for relative gain G with N = 6 and pe2e = 90%.

Let W SW = [w1, w2, w3, w4] represent the service composition for the Static Work-
flow (SW) strategy, where 1 ≤ wj ≤ Mj , j = 1, 2, 3, 4. Wewant to compare the SW
and DP strategies with fixed scaled cost parameter KV and scaled reward param-
eter KR as defined in (6.15). Let Wstatopt be the optimal static service composition.
We choose to dimension the deadline δp such that the optimal static composition
has at least a fraction of successful requests within the δp equal to pe2e :

P(DWstatopt < δp) ≥ pe2e . (6.19)

Furthermore we tailor the reward and penalty parameters for optimal static compo-
sition "path" such that the expected reward R∗

SW for the static composition equals a
predefined value. For the SW strategy R∗

SW is given by

R∗
SW = R · pe2e − V · (1− pe2e)− cW SW . (6.20)

The expression above is similar to (6.5) with workflow cost cW SW as defined in (6.4).
In Section 6.5.1weobserved thatmost relative gain in benefit can be expectedwhere
the expected benefit of static composition is small. Therefore, we use the SW strat-

6.5 Numerical experiments 129

Relative difference dynamic v.s. static approach

− 0% − 10%

− 10% − 25%

− 25% − 50%

− 50% − 100%

− 100% − 250%

− 250% − 500%

− 500+%

Relative difference dyn,stat for N=8, p
e2e

=90%

K
R

K
V

1 2 3 4 5

5

10

15

20

25

30

35

40

45

0−1

2−3

4−5

Figure 6.11: Contour plot for relative gain G with N = 8 and pe2e = 90%.

egy for the benchmarking and we set the value R∗
SW = 0.01. Taking into account

(6.20) the values for parameters R and V satisfy the following equations:

R =
R∗

SW + cW SW + KV · (1− pe2e) · c
pe2e

, (6.21)

V =
R∗

SW + cW SW − KR · pe2e · c
pe2e − 1

.

We have conducted simulations for two general scenarios: symmetric and asym-
metric. These scenarios are defined based on the selection of cost parameters, as
well as µ and σ2 for a concrete service.

The goal of the symmetric scenario simulations is to illustrate the importance of the
position of, and the number of, service alternatives within the workflow. The choice
of the parameters for symmetric scenario is given in Table 6.6; here the parameters
of the concrete service alternatives are the same for all tasks. When the number of
alternatives for task is e.g. two, we always consider alternative 1 and alternative 2 in
our experiments.

In the asymmetric scenario, which corresponds to parameter Table 6.7, the concrete
services have different mean response times for tasks at different positions in the

130
Chapter 6: Run-time Optimization of CompositeWeb Services with Response Time
Commitments

Relative difference dynamic v.s. static approach

− 0% − 10%

− 10% − 25%

− 25% − 50%

− 50% − 100%

− 100% − 250%

− 250% − 500%

− 500+%

Relative difference dyn,stat for N=15, p
e2e

=90%

K
R

K
V

1 2 3 4 5

5

10

15

20

25

30

35

40

45

0−1

3−4

6−7

Figure 6.12: Contour plot for relative gain G with N = 15 and pe2e = 90%.

Task (i , ·)
i ∈ {1, 2, 3, 4}

c(i ,j) µi ,j σ2
i ,j

Service
alternative

(·, j)

(·, 1) 1 5 4
(·, 2) 5 2.5 4
(·, 3) 10 1.25 16
(·, 4) 50 0.5 0.0009

Table 6.6: Concrete service alternatives symmetric scenario
.

service composition chain. For example at position 2, alternative j = 1 has cost
c(2,1) = 5, mean µ2,1 = 10 and variance σ2

2,1 = 16, while alternative j = 2 is cheaper
(, i.e. c(2,2) = 1), has a lower mean µ2,2 = 9.5 but higher variance, σ2

2,2 = 64.
Furthermore, at position 3 an expensive service with zero variance is added. The
goal of the asymmetric scenario is to illustrate the importance of the variance in
addition to mean and cost for the service selection, which is usually neglected in
state of the art service composition solutions.

6.5 Numerical experiments 131

Relative difference dynamic v.s. static approach

− 0% − 10%

− 10% − 25%

− 25% − 50%

− 50% − 100%

− 100% − 250%

− 250% − 500%

− 500+%

Relative difference dyn,stat for N=20, p
e2e

=90%

K
R

K
V

1 2 3 4 5

5

10

15

20

25

30

35

40

45

0−1

4−5

8−9

Figure 6.13: Contour plot for relative gain G with N = 20 and pe2e = 90%.

CS(1,1)

CS(1,2)

CS(1,3)

CS(2,1)

CS(2,2)

CS(2,3)

CS(2,4)

CS(3,1) CS(4,1)

CS(4,2)
request response

T1 T2 T3 T4

M1=3 M2=4 M3=1 M4=2

CS(1,4)

CS(3,2)

CS(3,3)

CS(3,4)

CS(4,3)

CS(4,4)

Figure 6.14: Example workflow where number of alternative concrete services are repre-
sented by permutation (M1, M2, M3, M4) = (3, 4, 1, 2).

The calculated values for reward and penalty parameters (and given pe2e = 0.9) are
then used for the simulations of the DP strategy, for both symmetric and asymmetric
scenarios.

132
Chapter 6: Run-time Optimization of CompositeWeb Services with Response Time
Commitments

6.5.5 Results

For all possible permutations of the number of concrete service alternatives (see
Table 6.8) the expected benefit E[R] is calculated for both symmetric and asymmet-
ric scenarios and DP and SW algorithms. The results are summarized in Figure 6.15
(symmetric scenario) and Figure 6.16 (asymmetric scenario). For both figures, the al-
ternative count configurations are ordered on expected benefit for the DP algorithm.

In Figure 6.15we observe that the DP solution achieves the lowest benefit for the per-
mutation (M1, M2, M3, M4) = (4, 3, 2, 1). In this case, there are many alternatives at
the first position and no alternatives at the end of the workflow resulting in no possi-
bility to recover from (possible) large service response time accumulated from the
previous tasks in the workflow. Furthermore, the DP-based solution always picks
the same alternative for the first service in the workflow, not taking any advantage
of available alternatives for this service. On the other hand, the highest benefit for
the DP solution is achieved for the permutation (M1, M2, M3, M4) = (1, 2, 3, 4). The
largest number of alternatives are then available at the last service within the work-
flow, thus increasing the possibility to recover from (possible) large response times
accumulated at the beginning of the workflow. From Figure 6.15 seven regions can
be identified labeled by capital letters A, B, C , D, E , F , G . Each region is separated
by line where the configuration change resulted in a significant increase in expected
benefit. The changes that correspond to the most significant increase in benefit are
listed in Table 6.10. In this table, labels M3 and M4 correspond to the number of
alternatives available at the end of the workflow. We observe from Figure 6.15 that
six configurations in regions F and G with the highest benefit are those where the

Task (i , ·)
(1, ·) (2, ·)

c(i ,j) µi ,j σ2
i ,j c(i ,j) µi ,j σ2

i ,j

Service
alternative

(·, j)

(·, 1) 1 5 4 5 10 16
(·, 2) 5 2.5 4 1 9.5 64
(·, 3) 10 1.25 16 10 1.5 0.25
(·, 4) 50 0.5 0.0009 50 1 0.0025

Task (i , ·)
(3, ·) (4, ·)

c(i ,j) µi ,j σ2
i ,j c(i ,j) µi ,j σ2

i ,j

Service
alternative

(·, j)

(·, 1) 1 0.5 0.04 1 2.5 1
(·, 2) 5 0.4 0.04 5 2.45 2.25
(·, 3) 10 0.3 0.0025 10 1 4
(·, 4) 100 0.05 0 50 0.25 0.0004

Table 6.7: Concrete service alternatives asymmetric scenario.

6.5 Numerical experiments 133

label
a b c d e f g h i j k l

p
o
si
tio
n 1 4 3 4 2 3 2 4 3 4 1 3 1

2 3 4 2 4 2 3 3 4 1 4 1 3
3 2 2 3 3 4 4 1 1 3 3 4 4
4 1 1 1 1 1 1 2 2 2 2 2 2

label
m n o p q r s t u v w x

p
o
si
tio
n 1 4 2 4 1 2 1 3 2 3 1 2 1

2 2 4 1 4 1 2 2 3 1 3 1 2
3 1 1 2 2 4 4 1 1 2 2 3 3
4 3 3 3 3 3 3 4 4 4 4 4 4

Table 6.8: Indices of alternative configurations.

number of alternatives for task 4 is the highest. Configurations in region G perform
better than configurations F as the number of alternatives for task 3 is 3 in region G ,
and either 1 or 2 in region F . Additionally, the benefit "jump" between regions E and
F is due to the number of alternatives (3 and 4, respectively) for task 4. The "jump"
between regionsD and E is caused by the fact that in regionD for abstract service 3
only alternatives 1 and 2 are available while for region E 4 alternatives are available
for task 3. The largest DP benefit improvement is when for the task i = 4, concrete
service alternative 4 is considered (see Table 6.6). When this alternative with low
mean and variance is considered, enough certainty to proceed with the workflow
execution exists and the high price of concrete alternative 4 will be compensated
by the increase in expected benefit. Another (smaller) benefit increase can be ob-
served when concrete service alternative 3 becomes available for task at position
3. This can be explained by the fact that the 90th percentile for alternative 3 is still
lower than 1 and 2 (see Table 6.9) despite its higher variance.

Alternative
1 2 3 4

Percentile 7.61 4.81 2.74 0.54
µ 5 2.5 1.25 0.5
σ 2 2 4 0.03

Table 6.9: Concrete service alternative 90th percentile.

In Figure 6.16 the results are given for the asymmetric scenario. For the asymmetric
scenario it is harder to observe any structure, because the different alternatives have
different impact on the response time and the DP takes advantage of the properties
of all available concrete service alternatives.

134
Chapter 6: Run-time Optimization of CompositeWeb Services with Response Time
Commitments

c a g i d j b h f e k l m o n p q r t s u v w x
0

10

20

30

40

50
Performance of configurations

Alternative configuration

E
[B

e
n

e
fi

t]

A B C D E F G

DP
SW

Figure 6.15: Expected benefits per request in case of asymmetric scenario; comparison be-
tween static SW (static workflow) and DP (dynamic programming) for different configura-
tions. See Table 6.10 for quick comparison of characteristics for regions D, E , F , G .

Region
D E F G

Task i #
alternatives: Mi

M3 < 3 4 < 3 3
M4 3 3 4 4

Table 6.10: Symmetric scenario regions from Figure 6.15.

For alternative configurations (M1, M2, M3, M4) = (4, 3, 2, 1) and (M1, M2, M3, M4) =
(1, 2, 3, 4) the lowest expected and the highest benefit are achieved, respectively.
The largest benefit increase is achieved when the near-zero variance service al-
ternative is considered at position 4 and when the cheaper second alternative at
position 2 is included despite its higher variance.

In Figure 6.17 we show the comparison of the rewards for the symmetric and asym-
metric scenarios. The comparison is done when the same service configuration is
used for both scenarios. The indices of service configuration are shown in Table 6.8.

The main conclusions and some "rules of a thumb" that could be drawn from the
Figures 6.15 - 6.17 are as the following:

• Dynamic, on-the-fly service composition results in higher benefits for the
CSP, compared to optimal "static" service composition (Figures 6.15 and 6.16).
While the expected reward per request for the SW strategy is 0.01, for the

6.6 Discussion 135

a b c d g f t k e v l h n r i p u q w m j o s x
0

20

40

60

80
Performance of configurations

Alternative configuration

E
[B

e
n

e
fi

t]

DP
SW

Figure 6.16: Expected benefits per request in case of asymmetric scenario; comparison be-
tween static SW (static workflow) and DP (dynamic programming) for different configura-
tions.

symmetric and asymmetric DP scenarios, the expected rewards per request,
depending of the configuration, may be greater than 40 or greater than 60,
respectively.

• It is more beneficial to have a higher number of concrete service alternatives
closer to the end of the sequential workflow (Figures 6.15 and 6.16).

• The variability of the response-times may have significant impact to the bene-
fits achieved. When the end-to-enddeadline is in jeopardy, itmay bebetter to
select a more expensive service with a smaller response-time variability (and
smaller mean) than less expensive one with large response-time variability
(Figure 6.16).

• In general it is better to have more response-time versatility with respect to
mean and variance, (Figure 6.17). However, this needs to be investigated fur-
ther.

6.6 Discussion

In this work, we have developed a model to maximize benefit for composite ser-
vices by on-the-fly dynamic service selection. The selection decisions are based

136
Chapter 6: Run-time Optimization of CompositeWeb Services with Response Time
Commitments

a b c d g f t k e v l h n r i p u q w m j o s x
0

20

40

60

80
Performance of policies

Alternative configuration

E
[B

e
n

e
fi

t]

Sym
Asym

Figure 6.17: Benefit comparison between symmetric and asymmetric scenarios.

on observed response times, the response-time characteristics of the alternative,
the end-to-end response-time objectives, and the reward and penalty parameters.
The results not only indicate that there is enormous potential gain compared to other,
non-dynamic approaches, but also show how one can realize such gain. Webelieve
that this work is a significant step in realizing cost-efficient provisioning of complex
composite services.

We end this chapter with a number of challenging areas for follow-up research.

First, in this chapter we have considered the case when SLAs are time invariant,
i.e. once established, response-time SLOs, represented by respective PDFs, do not
change (see also Remark 6.3.1). However, in practice the response-time distribu-
tions may be subject to change over time (e.g., due temporary failure or overload of
a concrete service). Moreover, the empirical PDFs are typically determinedbased on
response-timemeasurements over a finite time horizon, and hencewill change over
time. In this context, an important next step is to devise and implement models and
methods to support closed-loop control, where the lookup table is re-calculated in
an optimal way (e.g., with respect to the frequency of updates). Note that the results
presented in this chapter form an excellent basis for extension towards closed-loop
controlled system.

Second, the DP solution may tend to slow down when number of services is ex-
tremely large. Therefore, to provide good service quality for complex composite
services composed of many services, there is a need for the development of fast yet
efficient heuristic solutions, which opens up a challenging area for further research.

6.A Workflow aggregation example 137

Third, in this model a specific reward-and-penalty cost structure was assumed,
where the CSP pays an amount of money to the ISP for the execution of a single
request, and gets a reward for execution of a single request within penalty deadline
but pays penalty to the end customer when the agreed end -to-end deadline is not
met. In practice, many other cost structures (e.g., discount structures) are conceiv-
able. Extension of the results to include other cost structures is an interesting area
for follow-up research.

Finally, another interesting and practically useful extension of the model is to in-
clude the possibility of re-attempts when the response-time of a given individual
service exceeds some threshold value. Such reattempts may be particularly ben-
eficial when the response-time distribution has a decreasing hazard rate of failure.
Investigation of the potential for cost reduction and the cost-benefit trade-off of
reattempts is another promising venue for further research.

Appendix 6.A Workflow aggregation example

We illustrate some basic aggregation rules using an exampleworkflow (represented
by Figure 6.18) and show how it can be mapped into the (relatively simple) sequen-
tial workflow. The proposed aggregation could be done as long as there is no data
dependence among the services. The aggregation rules are given for the case when
probabilistic (i.e. stochastic) QoS models are used for different web service QoS
parameters, e.g. response-time. The calculation of the composite service QoS has
been analysed inmany papers (e.g., [96, 29, 66, 63, 118]). However, none of these pa-
pers considered stochastic QoS models, except [96], in which the authors calculate
the composite service QoS parameters using Monte-Carlo simulations.

The workflow in Figure 6.18 consists of four elementary but frequently used work-
flow composition patterns, namely sequential, flow, switch and loop. There are
two alternatives for tasks 1, 2 and 5, three alternatives for task 3, and tasks 4 and
6 have one alternative. The flow pattern represents (part of a) workflow in which
all tasks are executed in parallel, and the response is not available till all services
finish their execution (tasks 2 and 3 at Figure 6.18). The switch statement represents
workflow that executes one of the tasks with given probabilities. Referring back
to Figure 6.18 we identify the switch pattern for tasks 4 and 5, which are executed
with probabilities p4 and p5, respectively, where p4 + p5 = 1. In general, the loop
control statement consists of K consecutive invocations of the single task (service
6 in Figure 6.18). Each service within the workflow is represented by an probabilis-
tic response-time SLO, i.e. the response-time probability-density function (PDF)
and/or response-time cumulative distribution function (CDF). For concrete service
j of task i within the given workflow, the PDF and CDF are f (i ,j)(t) and F (i ,j)(t),
respectively. The execution cost in this case is c(i ,j), and response-time random

138
Chapter 6: Run-time Optimization of CompositeWeb Services with Response Time
Commitments

CS(1,1)

CS(3,1)

CS(4,1)

CS(5,1)

K

CS(6,1)

f(3,1)
 ,c

(3,1)

f(2,1)
 ,c

(2,1)

f(1,1)
 ,c

(1,1)

f(4,1)
 ,c

(4,1)

f(5,1)
 ,c

(5,1)

f(6,1)
 ,c

(6,1)

p4

p5

CS(2,2)

CS(2,1)

CS(3,3)

CS(3,2) CS(5,2)

CS(1,1) T2,3 T4,5 T6

CS(1,2)

Figure 6.18: Example workflow reduced and aggregated into the sequential workflow.

variable is D(i ,j). The aggregation rules for concrete services depicted in Figure 6.18
are as follows:

• The resulting response-time PDF for the flow pattern is expressed by the term
f T2,3(t) = F (2,1)(t) · f (3,1)(t) + f (2,1)(t) · F (3,1)(t). The execution cost is given
as cT2,3 = c(2,1) + c(3,1).

• The resulting response-time PDF for the switch pattern (services 4 and 5) is
given as f T4,5(t) = p4 · f (4,1)(t) + p5 · f (5,1)(t). The execution cost is cT4,5 =
p4 · c(4,1) + p5 · c(5,1).

• The resulting response-time PDF of the loop pattern is expressed as the K-
fold convolution of the PDF f (6,1)(t), i.e. f T6(t) = f (6,1)(t) ∗ f (6,1)(t) ∗ · · · ∗
f (6,1)(t) =

[
f (6,1)(t)

]K
, where ∗ represents convolution operator. The CDF

F T6(t) is calculated similarly, and the execution cost is K · c(6,1).

For the case where aggregation of the tasks with multiple alternatives the aggrega-
tion should take place for each combination of the alternatives for considered tasks.
Therefore, aggregation of tasks 2 and 3, T2,3 has 6 alternatives, T4,5 has 2 alternatives,
and so on. The response-time PDFs for the aggregation of more complex workflow

6.1 Workflow aggregation example 139

patterns could be efficiently numerically calculated using the methods described in
[34].

140
Chapter 6: Run-time Optimization of CompositeWeb Services with Response Time
Commitments

Autonomous Runtime QoS Control for

Composite Services in SOA 7
In this chapter, we propose a runtime closed loop control mechanism that dynami-
cally optimizes service composition in real time by learning and adapting to changes
in third party service response time behaviors.

Negotiating multiple SLAs in itself is not sufficient to guarantee end-to-end QoS lev-
els as SLAs in practice often give probabilistic QoS guarantees and SLA violations
can still occur. Moreover probabilistic QoS guarantees do not necessarily capture
time-dependent behavior, (e.g., short term service degradations). Therefore, the
negotiation of SLAs needs to be supplemented with run-time QoS-control capabil-
ities that give providers of composite services the capability to properly respond to
short-term QoS degradations (real-time composite service adaptation). Motivated
by this we developed an approach that captures (temporarily) QoS degradations by
tracking the behavior of third party services.

In our approach response-time realizations are used for learning an updating the
response-time distributions. The currently known response-time distribution is
compared against the response-time distribution that was used for the last pol-
icy update. Using well known statistical tests we are able to identify if an sig-
nificant change occurred and the policy has to be recalculated. Our approach is
based on fully dynamic, run-time service selection and composition, taking into
account the response-time commitments from service providers and information
from response-time realizations. The main goal of this run-time service selection
and composition is benefit maximization for the composite service provider and
ability to adapt to changes in response-time behavior of third party services. To
demonstrate the usefulness of themechanism, we have implemented our approach
in a simulation environment. Moreover, we evaluate the influence of the control pa-
rameter settings on the effectiveness of our control mechanism.

7.1 Background

By tracking response times the actual response-time behavior can be captured in
empirical distributions. In [122] we apply dynamic programming (DP) and we derive
a service-selection policy based on response-time realizations. With this approach
we assume that the response-time distributions are known or derived from histori-

7This chapter is based on [21], [120] and [122].

142 Chapter 7: Autonomous Runtime QoS Control for Composite Services in SOA

cal data. This results in a lookup-tablewhich determineswhat third party alternative
should be used based on actual response-time realizations.

We extend this work such that we can learn an exploit response-time distributions
on the fly. Reinforcement-learning techniques are known to be able to do this but
our model has a special structure that complicates the use of the classical TD learn-
ing approaches. The solution of our DP formulation searches the stochastic shortest
path in a stochastic activity network [34]. Typically RL techniques solve complex
learning and optimization problems by using a simulator. This involves a Q value
that assigns utility to state-action combinations. Most algorithms run off-line as a
simulator is used for optimization. RL has also been widely used in on-line applica-
tions. In such applications, information becomes available graduallywith time. Most
RL approaches are based on environments that do not vary over time. We refer to
[53] for a good survey on reinforcement learning techniques.

The dynamic program (DP) in our solution has a special structure, such that the solu-
tion of a smaller sub-problem can be used to solve our problem at a more complex
level. This DP can be characterized as a hierarchical DP [53, 8]. Therefore classical
RL is not suitable and hierarchical RL has to be applied [8]. Also changes in response-
time behavior are likely to occur which complicates the problem even more. Both
the problem structure and volatility are challenging areas of research in RL.

In our approachwe tackle both the hierarchical structure, and time varying behavior
challenges. To this end we are using empirical distributions and updating the lookup
table if significant changes occur. As we are considering a sequence of tasks, the
number of possible response time realizations combinations explodes. By discretiz-
ing the empirical distribution over fixed intervals we overcome this issue. Further-
more this enables the approach where the empirical distribution is updated using
a smoothing approach. An advantage of this is that no bookkeeping of previous
response-time values is necessary as all samples are already represented in the
smoothed distribution.

The remainder of this chapter is as follows. We start in section 7.3 with the intro-
duction of our closed loop control learning approach. Next in Section 7.2 we intro-
duce the workflow model that needs to be optimized. In Section 7.4 we introduce
the tools for handling empirical distributions and change point detection. Using the
Empirical distributions we define comprising a dynamic program that optimizes ex-
pected benefit. Experiments on our approach are performed in Section 7.5. Results
are presented and discussed in Section 7.6. Finally we conclude in Section 7.7.

7.2 Model 143

7.2 Model

We consider a composite service that comprises a sequential workflow consisting
of N tasks identified by T1, ... , TN . The tasks are executed one-by-one in the sense
that each consecutive task has to wait for the previous task to finish. Our solution is
applicable to any workflow that could be aggregated and mapped into a sequential
one. Basic rules for aggregation of non-sequential workflows into sequential work-
flows have been illustrated in, e.g. [122, 119, 34]. However, the aggregation leads to
coarser control, since decisions could not be taken for a single service within the
aggregated workflow, but rather for the aggregated workflow patterns themselves.

Figure 7.1: Orchestrated compositeweb service depicted by a sequential workflow. Dynamic
run-time service composition is based on a lookup-table. Decisions are taken at points A-D.
For every used concrete service (CS) the response-time distribution is updated with the new
realization. In this example a significant change is detected. As a result for the next request
concrete service 2 is selected at Task 1.

The workflow is based on an unambiguous functionality description of a service
(``abstract service''), and several functionally identical alternatives (``concrete ser-
vices'') may exist that match such a description [93]. Each task has an abstract

144 Chapter 7: Autonomous Runtime QoS Control for Composite Services in SOA

service description or interface which can be implemented by external service
providers.

The workflow in Figure 7.1 consists of four tasks, and each task maps to a num-
ber of concrete services (alternatives), which are deployed by (independent) third-
party service providers. For each task Ti there are Mi concrete service providers
CS(i ,1), ... ,CS(i ,Mi) available that implement the functionality corresponding to task
Ti . For each request processed by CS

(i ,j) cost c(i ,j) has to be paid. Furthermore
there is an end-to-end response-time deadline δp . If a request is processed within
δp a reward of R is received. However, for all requests that are not processedwithin
δp a penalty V had to be paid. After the execution of a single task within the work-
flow, the orchestrator decides on the next concrete service to be executed, and
composite service provider pays to the third party provider per single invocation.
The decision points for given tasks are illustrated at Figure 7.1 by A, B, C and D. The
decision taken is based on (1) execution costs, and (2) the remaining time tomeet the
end-to-end deadline. The response time of each concrete service provider CS(i ,j)

is represented by the random variable D(i ,j). After each decision the observed re-
sponse time is used for updating the response time distribution information of the
selected service. Upon each lookup-table update the corresponding distribution
information is stored as reference distribution. After each response the reference
distribution is compared against the current up-to date response time distribution
information.

7.3 Closed loop control

In this section we explain our closed loop approach. The main goal of this ap-
proach is benefit maximization for the composite service provider, and ability to
adapt to changes in response-time behavior of third party services. We realize
this by monitoring/tracking the observed response-time realizations. In the intro-
duction we explained that the response-time based selection comprises a lookup-
table that is calculated using DP (see Section 7.4.1). The DP needs information about
response-time distributions and costs in order to determine lookup-table. This
lookup-table corresponds to a strategy that optimizes expected benefit. In our
approach, observed response-time realizations are used for learning an updating
empirical response-time distributions. The currently known response-time distri-
bution is compared against the response-time distribution that was used for the
last policy update. Using well known statistical tests we are able to identify if an
significant change occurred and the policy has to be recalculated. Our approach
is based on fully dynamic, run-time service selection and composition, taking into
account the response-time commitments from service providers and information
from response-time realizations. We illustrate our approach using Figure 7.2.

7.3 Closed loop control 145

Significant
change detected

No

Yes

2

Send probe
5b

Update info with
probe

6b

6a

No significant
change detected

Response time
realizations dn

(i,j)

Update response
time info

3

Probe time
expired?

4

Get DP reference
& current info

5a

Initial lookup-
table

1

Execute DP

Calculate DP
7

Test distribution
change

Store DP
reference info

8

Figure 7.2: Closed loop control approach.

The execution startswith an initial lookup table at step (1). This could be derived from
initial measurements on the system. After each execution of a request in step (2) the
empirical distribution is updated at step (3). A DP based lookup-table could leave
out unattractive concrete service providers. In that casewe do not receive any infor-
mation about these providers. These could become attractive if the response-time
behavior changes. Therefore in step (4), if a provider is not visited for a certain time,
a probe requestwill be sent at step (5b) and the corresponding empirical distribution
will be updated at step (6a). After each calculation of the lookup-table, the current
set of empirical distributions will be stored. These are the empirical distributions
that were used in the lookup-table calculation and form a reference response-time
distribution. Calculating the lookup-table for every new sample is expensive and un-
desired. Therefore we propose a strategy where the lookup-table will be updated if
a significant change in one of the services is detected. For this purpose the reference
distribution is used for detection of response-time distribution changes. In step (5a)
and step (6a) the reference distribution and current distribution are retrieved and a
statistical test is applied for detecting change in the response-time distribution. If
no change is detected then the lookup-table remains unchanged. Otherwise the
lookup-table is updated using the DP. After a probe update in step (5b) and step

146 Chapter 7: Autonomous Runtime QoS Control for Composite Services in SOA

(6b) we immediately proceed to updating the lookup-table as probes are sent less
frequently. In step (7) and step (8) the lookup-table is updated with the current em-
pirical distributions and these distributions are stored as new reference distribution.
By using empirical distributions we are directly able to learn and adapt to (temporar-
ily) changes in behavior of third party services.

Using a lookup-table based on empirical distributions could result in that certain al-
ternatives are never invoked. When other alternatives break down this alternative
could become attractive. In order to deal with this issuewe use probes. A probe is a
dummy request that will provide new information about the response time for that
alternative. As we only receive updates from alternatives which are selected by the
dynamic program, we have to keep track of how long ago a certain alternative has
been used. For this purpose to each concrete service provider a probe timer U(i ,j)

is assigned with corresponding probe time-out t(i ,j)p . If a provider is not visited in

t(i ,j)p requests (U(i ,j) > t(i ,j)p) then the probe timer has expired and a probe will be

collected incurring probe cost c(k,j)
p . If for example, in Figure 7.1, the second alter-

native of the third task has not been used in the last ten requests, the probe timer
for alternative two has value U(3,2) = 10. After a probe we immediately update the
corresponding distribution. No test is applied here as probes are collected less fre-
quent compared to processed requests. Probe cost introduces a typical trade-off
between benefit due to up-to date information and cost on acquiring information.
In Section 7.5 we explore the probe frequency-cost trade-off.

7.4 Algorithms

In this section we elaborate on the algorithms and detection mechanisms that are
used in the closed loop control approach. These include dynamic programming (DP)
in Section 7.4.1, empirical distribution discretization in Section 7.4.2, sliding window
smoothing in Section 7.4.3 and exponential smoothing in Section 7.4.4. In Sections
7.4.3, and 7.4.4we also cover change point detection using the Kolmogorov-Smirnov
statistical test.

7.4.1 Determining the lookup-table

Wenowmodify the dynamic program in Section 6.4 that calculates the optimal strat-
egy given the current empirical distributions. Therefore we need distretized empir-
ical distributions. Let h be the discretization step size. Let T ∗ be the end to end

deadline: T ∗ =
⌈
δp
h

⌉
. Furthermore we define q(i ,j)

k as the discretized empirical dis-

tribution of concrete service alternative j at task j at t = hk . Using the discretization

7.4 Algorithms 147

approach of [34] we discretized the empirical distributions as follows for i = 1, ... , N ,
j = 1, ... , Mi , k = 0, ... , T ∗:

q(i ,j)
k =

if k < T ∗,

W∑
t=1

1{
h[k − 0.5] < d(i ,j)

n−t ≤ h[k + 0.5]
}

otherwise.
W∑

t=1
1{

d(i ,j)
n−t > h[k − 0.5]

} (7.1)

Here is d(i ,j)
t the t-th response-time realization for service alternative j at task i ,

and 1{A
} is the indicator function over A which is 1 if A is true and 0 otherwise.

More details about determining and using the discretized empirical distribution can
be found in Section 7.4.2. Using the discretized empirical distributions backward
recursion formulae can be formulated. We start with the terminal reward function
for b = 0, ... , T ∗:

P(N+1,∗)
b =

{
if b > 0,R
otherwise.− V

(7.2a)

Using this function we iterate backwards using the following equations for i =
1, ... , N, j = 1, ... , Mi , b = 0, ... , T ∗:

P(i ,∗)
b = max

j

{
− c(i ,j) + R(i ,j)

b + V (i ,j)
b

}
, (7.2b)

R(i ,j)
b =

b∑
k=0

q(i ,j)
k P(i+1,∗)

k−b and (7.2c)

V (i ,j)
b =

T∗∑
k=b+1

q(i ,j)
k P(i+1,∗)

0 . (7.2d)

Here, the term P(i ,∗)
b represents the expected benefit per request given time bud-

get b at task i under the optimal dynamic programming decision strategy. The term
R(i ,j)

b represents the expected reward, when concrete service j (assigned to task i)

is executed for the given time budget value b. Finally the term V (i ,j)
b represents the

expected penalty for exceeding the overall deadline at task i while executing con-
crete service j for the given time budget value b. The expected reward and penalty
functions take into account the impact of future decisions as represented by terms

relating to P(i+1,∗)
b in (7.2c) and (7.2d).

148 Chapter 7: Autonomous Runtime QoS Control for Composite Services in SOA

While applying formulae (7.2b)-(7.2d), the corresponding decisions (actions) A(∗,i)
k

can be obtained by storing the maximum arguments for i = 1, ... , N, j =
1, ... , Mi , k = 0, ... , T ∗:

A(i ,∗)
k = argmax

j

{
− c(i ,j) + R(i ,j)

k + V (i ,j)
k

}
.

7.4.2 Empirical distribution

In 7.4.1 we introduced an approach for discretizing empirical distributions such that
these become suitable for using in DP. This is derived from the discretization ap-
proach in [34] for i = 1, ... , N , j = 1, ... , Mi , t = 0, ... , T ∗:

q(i ,j)
k =

{
k < T ∗,P

(
D̂(i ,j) ≤ h[k + 0.5]

)
− P

(
D̂(i ,j) ≤ h[k − 0.5]

)
,

k = T ∗,P
(
D̂(i ,j) > h[k − 0.5]

)
,

=

k < T ∗,

W∑
t=1

1{
h[k − 0.5] < d(i ,j)

n−t ≤ h[k + 0.5]
},

k = T ∗.
W∑

t=1
1{

h[k − 0.5] < d(i ,j)
n−t
},

(7.3)

In Equation (7.3), D̂(i ,j) is the empirical response-time process for concrete alterna-
tive j at task i , and
d(i .j)

n is the response time of the nth sample for concrete alternative j at task i .

Consider the discretized distribution q(i ,j)
k . Actually q(i ,j)

k is a histogram where kth
bin is bounded by[

h(k − 0.5); h(k + 0.5)
)
and where the sum of the frequencies is normalized to 1.

There is a tradeoff in choosing the bin size. When h has a small value the histogram
will consist of many bins. In the case that a few large bins are used, too much infor-
mation about sample location is lost. A usual method for constructing an empirical
distribution histogram q̃(i ,j)n from samples is as follows: Let n be the number of sam-
ples that are already included in the histogram. Let d(i ,j)

n+1 be a new sample from the
distribution we want to estimate. Then the histogram is updated as follows:

q̃(i ,j)
n+1 =

n
n + 1

[
q̃(i ,j)

n + 1{
(k − 0.5)h ≤ d(i ,j)

n+1 < (k + 0.5)h
}] , (7.4)

k = 0 ... , K .

7.4 Algorithms 149

note that this corresponds to the definition of the empirical distribution defined in
(7.3). Define:

F̂n(t) =
1

n

n∑
i=1

1{[xi ≤ t
]} (7.5)

the empirical distribution over t based on samples xi . The central limit theorem
states that pointwise, F̂n(t) has asymptotically a normal distribution (see [102, p265]
for more details). Essentially 1{xi ≤ t

} has a Bernoulli distribution with success
probability F

(
xi ≤ t

)
.

√
n
(
F̂n(t)− F (t)

) d→N
(
0, F (t)

(
1− F (t)

))
. (7.6)

Using the empirical distribution over all samples is a suitable approach when the
distribution does not change over time. However, note that new samples will have
a decreasing impact on the empirical distribution. If the distribution changes over
time this is an undesired property.

7.4.3 Empirical distribution based on sliding window

A natural approach for tracking changes is that we define a sliding window of W
samples. Let Xn =

{
dn−n+1, dn−W+2, ... , xn

}
be the current set of samples in the

sliding window after inserting the nth sample dn. These sets are used to determine
the empirical distribution that serves as an input for the dynamic program. A disad-
vantage of this method is that the samples that are included in the sliding window
need to be stored for the sliding window. The empirical distribution of the nth sam-
ple in the sliding window approach is defined by:

F̂n(t) =
1

W

W−1∑
i=0

1{dn−i ≤ t
}. (7.7)

If we take a Xn and Xm, m > n we could apply statistical tests (e.g. the two sample
Kolmogorov Smirnov test) in order to determine if a significant change occurred in
the distribution. LetDn,n′ be the Kolmogorov-Smirnov (KS) statistic on two empirical
distributions with n and n′ observations respectively. Let F̂ (x) and F̂ ′(x) be the
corresponding empirical distribution functions. Then the KS statistic is defined as:

Dn,n′ := sup
x

|F̂ (x)− F̂ ′(x)| and

√
nn′

n + n′ Dn,n′ (7.8)

150 Chapter 7: Autonomous Runtime QoS Control for Composite Services in SOA

has a Kolmogorov distribution.

7.4.4 Exponentially smoothed empirical distribution

To prevent overhead of sliding window bookkeeping, we apply a smoothing ap-
proach. In this approach new samples can be included using the followingweighting
scheme:

p̃(i ,j)
n+1 = κp̃(i ,j)

n + (1− κ)1{
(k − 0.5)h ≤ d(i ,j)

n+1 < (k + 0.5)h
}. (7.9)

This is similar to the exponentially weighted moving average estimate in [32]. Here
0 < κ < 1 is a smoothing factor. When κ is close to one new samples have a
relatively small impact and it will take a long time before the empirical distribution
converges to a new distribution. If κ is close to zero new samples have a big impact
resulting in an empirical distribution that quickly follows changes in the real sample
distribution but with more noise in the histogram.

Modified Kolmogorov-Smirnov test As we use smoothed empirical distributions,
a statistical test on smoothed distributions is required. To this end we modified the
two sample Kolmogorov-Smirnov test, suitable for comparing two smoothed em-

pirical distribution functions q(n)
k and q(m)

k . The Kolmogorov Smirnov test is based
on the result that the empirical distribution as defined in (7.7) converges pointwise to
a normal distribution then the number of samples goes to infinity. The original Kol-
mogorov Smirnov test relates this to the Brownian bridge on which the test statis-
tic is based [102]. We want to apply a similar central limit theorem result for the
smoothed process such that we can apply statistics like the Kolmororov Smirnov
statistic. We try to relate κ to a virtual window size W such that the variance of
any point in the smoothed empirical distribution corresponds to the variance of the
original sliding-window empirical distribution consisting ofW i.i.d. samples.

Let q(n)
k , q(m)

k be empirical distributions, discretized according to (7.3), let Xi be i.i.d.
random variables, and let Yi be the smoothing process on the variables. For expo-
nential smoothing (ES) the variance results from geometric terms:

Var(Yi) = κ2 Var(Yi−1) + (1− κ)2 Var(Xi)

= (1− κ)2
∞∑

k=0

κ2i Var(Xi−k) =
1− κ

1 + κ
Var(Xi).

7.5 Experimental setup 151

Thus for for given κ the virtual window size isW =
1 + κ

1− κ
. LetKα is the critical value

of the Kolmogorov distribution corresponding to significance level α. We replace n
and n′ in Equation (7.8) with the virtual window sizeW :√

1 + κ

2(1− κ)
Dκ > Kα. (7.10)

The statistic is obtained from smoothed, discretized empirical distributions q(n)
k , and

q(m)
k as follows:

Dκ := sup
k

|q(n)
k − q(m)

k |. (7.11)

7.5 Experimental setup

To test the closed-loop approach defined in Section 7.3 we define an experimental
workflow that can be used for investigating the impact of the closed-loop control ap-
proach parameters. We emphasize that this experimental set-up is tailored for eval-
uating responsiveness of our closed-loop approach with respect to response-time
distributions and does not limit us in tracking other systems with different response-
time models.

Figure 7.3 represents awork flow consisting of four tasks: For each task four concrete

Figure 7.3: Default experimental work flow. For task T4 alternatives 1, 3 and 4 are slow. The
optimal strategy should detect this and use alternative 2.

152 Chapter 7: Autonomous Runtime QoS Control for Composite Services in SOA

service alternatives are available. At each alternative j for task Ti the response-time

distribution is summarized in terms of mean µ(i ,j) and variance
(
σ(i ,j))2.

7.5.1 Experimental model

We model the burstiness of response-time behaviors using the classical Gilbert-
Elliott [51, 45] Discrete Time Markov Chain (DTMC) model. Each concrete service
is modeled with its own DTMC with underlying state which can be either fast or
slow. For sake of readability we omit the superscript indexing for all variables in the
experimental model definition (�(i ,j) → �), but we emphasize that each concrete
service has its own set of parameters. The DTMC enables us to capture the rate
of change between fast and slow response-time behavior. Essentially the DTMC
model results in taking a mixture of distributions represented by the fast and slow
states. The DTMC is defined by the following transition matrix corresponding to

state the vector
[
fast slow

]T
and corresponding state probabilities

[
pfast pslow

]T
:

P =

[
1− α α
β 1− β

]
. (7.12)

The transition probabilities α and β are parametrized by factors a, b, tcycle , and k . In
the parametrization 0 < a < 1 is the scaling factor for the fast state mean µfast , b > 1
is the scaling factor for the slow state mean µslow . We define the expected cycle
time tcycle > 0 as the expected time it takes to leave the current state and return to its
original state e.g. fast→slow→fast or slow→fast→slow. Furthermore the variances
of the fast and slow states are related by scaling factor k > 0where k > 1 if σ2

fast >
σ2

slow and k < 1 if σ2
fast < σ2

slow . Both high and low states are represented by log-
normal distributions with means µslow , µfast and variances σ2

slow , σ2
fast . A motivation

that supports this burstinessmodel is that randomvariables, holding times of various
message typeswere found to be log-normalmixtures (conversation time in land and
mobile telephone networks, voicemail message length, facsimile transmission time)
[17] The log-normal distributions are related to the parametrization as follows:

µfast = aµ, µslow = bµ, 0 < a < 1, 1 < b,
σ2

fast = vσ2, σ2
slow = kvσ2, v > 0, k > 0.

In order to obtain the desired mean µ and variance σ2 we need:

µ = pslowµslow + pfastµfast , (7.13)

σ2 + µ2 = pfast(σ
2
fast + µ2

fast) + pslow (σ
2
slow + µ2

slow). (7.14)

7.6 Results 153

From Equations (7.13) to (7.14) and the properties αpfast = βpslow , and
1

α
+

1

β
= tcycle

we obtain the following parameter values in terms of a, b, tcycle , and k :

α =
pfast
tcycle

, β =
pslow
tcycle

, pfast =
1− b
a − b , pslow = 1− pfast ,

v =
σ2 + µ2(1− pfasta2 − pslow b2)

σ2(pfast + kpslow)
.

7.5.2 Experimental set-up

The parameters µ(i ,j), σ(i ,j), c(i ,j) of our experiments (Figure 7.3) are summarized in
Table 7.1. We consider a run consisting of 10000 requests with a warm-up of 1000
requests. Each run is replicated 48 times. Furthermore, we consider a time horizon
of 40 time units. Each successful response to a request will gain a reward of R = 20
money units while for a failed request V = 50 money units has to be paid. All con-
crete service response-time distributions use the same scaling factors for the low
and high response-time means a(i ,j) = 0.85, b(i ,j) = 2, and the same variance factor
k(i ,j) = 100 for all i = 1, ... , N , j = 1, ... , Mi . Furthermore, we keep the values of

t(i ,j)cycle , W (i ,j) and t(i ,j)p fixed for all concrete services. Therefore, we omit index (i , j)
for tcycle , W , and tp in our experiment values. We vary tcycle and Wp in the range
{10, 15, 20, 50, 100} and vary tcycle in the range {200, 500, 1000, 2000, 4000}. The pa-
rameter effects thatwewant explore are samplewindow size, test significance level,
test type (e.g. Kolmogorov Smirnov), and probe interval. All experiments has been
run until the confidence interval was less than 1%.

Table 7.1: Concrete service alternatives for task i

Parameter
c µ σ

Service
alternative

(·, j)

(·, 1) 1 5 2
(·, 2) 2 3 2
(·, 3) 5 2.5 2
(·, 4) 10 1.25 3

7.6 Results

Using the experimental set-up in Section 7.5.2 we obtained the following perfor-
mance measures:

154 Chapter 7: Autonomous Runtime QoS Control for Composite Services in SOA

• Expected benefit (see Section 7.6.1),

• Number of updates (see Section 7.6.2),

• Number of probes (see Section 7.6.3),

• Average probe cost per request (see Section 7.6.4).

For expected benefit we compare three approaches: (KS) the sliding window ap-
proach based on Kolmogorov Smirnov statistic for change detection, (KSS) the
smoothing approachwith adjusted Kolmorov Smirnov statistic for change detection,
and theoretical (TH) from the policy based on the known in advancemixture of log-
normal distributions. The TH is compared as benchmark where analysis is done on
historical data from services and short term changes in response-time distributions
are aggregated in to one long term response-time distribution. For all other perfor-
mancemeasureswe only compare KS and KSS as no updating or probing is involved
in the TH approach as the distribution is known/analyzed in advance. However the
mixture of log-normal distributions is controlled by a Markov Chain and therefore
we expect the KS and KSS approach to perform better.

7.6.1 Expected benefit

Figure 7.4 presents the experimental results on average benefit per request with KS,
KSS, and TH as functions of cycle time tcycle (Figures 7.4a, 7.4b), probe time-out tp
(Figure 7.4c), and sliding window sample count W (Figure 7.4d). If not specified we
kept tcycle = 1000 requests, tp = 100 requests, W = 20 requests, and α = 0.01.
Note that in Figure 7.4 probe cost is not incorporated and so all probes have cost

c(i ,j)
p = 0, i = {1, ... , N}, j = {1, ... , Mi}. In Figure 7.4a we observe that (as ex-
pected) for short cycle time tcycle KS and KSS perform close to TH. This is because for
small tcycle the distribution becomes effectively amixture of log-normal distributions
on which the dynamic program in the TH approach is solved. For very small tcycle
the TH approach performs better but this is the case where effectively no change in
response-time distributions occurs. Here we are simply comparing learning versus
knowing the response-time distributions. For larger tcycle the difference increases
as all concrete services are slowly alternating between two distribution states. Fig-
ure 7.4c illustrates that a higher probe time-out tp will decrease expected benefit
for KS and KSS. This corresponds to the fact that a higher probe time-out will cause
the system to respond slower to changes in less frequently used alternatives which
could have become attractive. Also a larger sliding window size W decreases ex-
pected benefit for KS and KSS as new response-time observations are smoothed
out across more samples.

7.6 Results 155

(a)
Effect of cycle time tcycle on benefit
(W = 20).

0 1000 2000 3000 4000
0

5

10

15

Cycle time t
cycle

B
e

n
e

fi
t

KS
KSS
TH

(b)
Effect of cycle time tcycle on
benefit(W = 100).

0 1000 2000 3000 4000
0

5

10

15

Cycle time t
cycle

B
e

n
e

fi
t

KS
KSS
TH

(c) Effect of probe time-out tp on benefit.

0 20 40 60 80 100
0

5

10

15

Probe time−out t
p

B
e

n
e

fi
t

KS
KSS
TH

(d) Effect of window sizeW on benefit.

0 20 40 60 80 100
0

5

10

15

Window size W

B
e

n
e

fi
t

KS

KSS

TH

Figure 7.4: Effect of cycle time, probe time-out and window size on expected benefit per
request.

7.6.2 Number of updates

In the experiments we also recorded the number of lookup table updates. Figure
7.5 contains the required number of lookup-table updates for KS, KSS, and TH as
function of cycle time, probe time-out and window size. If not specified we kept
tcycle = 1000 requests, tp = 100 requests, W = 20 requests, and α = 0.01. As
expected Figure 7.5a illustrates that a larger cycle time corresponds to less updates.
This corresponds to the behavior of our experimental set-up that a larger cycle time
results in less jumps in the distribution (Markov Chain). Therefore less significant
changes should be detected. In Figure 7.5b we observe that the probe time-out has
a big impact on the number of lookup table updates. As we update the lookup-table
after each probe, the probe time-out should be not too low. In Figure 7.5c we ob-
serve quite constant behavior over the window sizes. For large sliding window size
the number of updates slightly reduces as the empirical distributions approaches

156 Chapter 7: Autonomous Runtime QoS Control for Composite Services in SOA

the actual response-time distributions. However as we observed in Figure 7.4d we
obtain a distribution aggregated over a longer time span and are not able to track
short term changes in response times.

(a)
Effect of cycle time tcycle on lookup-
table updates.

0 1000 2000 3000 4000
0

500

1000

Cycle time t
cycle

U
p

d
at

e
s

KS
KSS

(b)
Effect of probe time-out tp on lookup-
table updates.

0 20 40 60 80 100
0

2000

4000

6000

Probe time−out t
p

U
p

d
at

e
s

KS
KSS

(c)
Effect of sliding window size W on
lookup-table updates.

0 20 40 60 80 100
0

200

400

600

800

1000

Window size W

U
p

d
at

e
s

KS
KSS

Figure 7.5: Effect of cycle time, probe time-out and window size on the required number of
lookup-table updates.

7.6.3 Number of probes

Another interesting measure is the total number of probes that is sent as result of
our closed-loop approach. In Figure 7.6 we present the effect of cycle time, probe
time-out and window size on the total number of probes sent, for KS, KSS, and TH.
If not specified we kept tcycle = 1000 requests, tp = 100 requests,W = 20 requests,
and α = 0.01. We observe in Figure 7.6a the interesting behavior that the total num-
ber of probes sent increases as the cycle time increases. An explanation for this

7.6 Results 157

behavior is that all concrete service alternative distributions in our experimental set-
up are controlled by independent Markov Chains. Therefore, a certain combination
of response-time distribution states is observed for a longer time which allows the
lookup table to adapt to these specific situations. As a result services that would
rarely be invoked are invoked more frequently resulting in less probes (less probe
time-outs). As expected we observe in Figure 7.6b that the probe time-out has big
effect on the total number of probes sent. This is a result of the probing strategy we
proposed in Section 7.3. Figure 7.6c illustrates that the window size has hardly effect
on the number of probes sent. A larger window sizewill make distribution estimates
more accurate and will not cause the lookup to change dramatically. So rarely in-
voked concrete service alternatives are not necessarily visited more frequently as
result of a change sliding window size.

(a)
Total number of probes sent as func-
tion of cycle time tcycle .

0 1000 2000 3000 4000
0

500

1000

Cycle time t
cycle

#
P

ro
b

e
s

KS
KSS

(b)
Total number of probes sent as func-
tion of probe time-out tp .

0 20 40 60 80 100
0

5000

10000

15000

Probe time−out t
p

#
P

ro
b

e
s

KS
KSS

(c)
Total number of probes sent as func-
tion of window sizeW .

0 20 40 60 80 100
0

500

1000

Window size W

#
P

ro
b

e
s

KS

KSS

Figure 7.6: Effect of cycle time, probe time-out andwindowsize on the total number of probes
sent.

158 Chapter 7: Autonomous Runtime QoS Control for Composite Services in SOA

7.6.4 Mean probe cost

In Section 7.6.3 we discussed the results on the total number of probes sent for the
different algorithms. Alternatively this can be seen as the behavior of probe cost
when cost of probing for all concrete service alternatives is equal to 1. In our experi-
ments we also individually tracked the number of probes sent of each concrete ser-
vice alternative individually. The graphs in Figure 7.7 represent the expected probe
cost per request (total cost

/
#probes) if the probe costs are proportional to the costs

of invoking a concrete service alternative: c(i ,j)
p ∝ c(i ,j)

p . The graphs represent the

case where c(i ,j)
p = c(i ,j)

p , for i = {1, ... , N}, and j = {1, ... , Mi}. For this case we
observe similar behavior of the graphs compared to Figure 7.6 in Section 7.6.3. If not
specified we kept tcycle = 1000 requests, tp = 100 requests, W = 20 requests, and
α = 0.01.

(a)
Expected probe cost as function of cy-
cle time tcycle .

0 1000 2000 3000 4000
0

0.2

0.4

0.6

Cycle time t
cycle

P
ro

b
e

 c
o

st
 p

e
r

re
q

u
e

st

KS
KSS

(b)
Expected probe cost as function of
probe time-out tp .

0 20 40 60 80 100
0

2

4

6

8

Probe time−out t
p

P
ro

b
e

 c
o

st
 p

e
r

re
q

u
e

st

KS
KSS

(c) Expected probe cost as function of
window sizeW .

0 20 40 60 80 100
0

0.2

0.4

0.6

Window size W

P
ro

b
e

 c
o

st
 p

e
r

re
q

u
e

st

KS
KSS

Figure 7.7: Effect of cycle time, probe time-out and window size on the expected probe cost
per request.

7.7 Discussion 159

7.7 Discussion

We modeled and implemented a closed-loop approach where dynamic program-
ming is applied on empirical distributions resulting from the actual realized response-
time distributions of concrete service providers. Our approach is robust to changes
in the sense that it adapts to changes in response-time distributions of concrete ser-
vice alternatives. To achieve this we use a smoothing approach or sliding window
approach on the empirical distribution. The smoothing approach has advantage that
there is no overhead in bookkeeping of slidingwindow sampleswhile past response-
time realizations have limited impact in the smoothed empirical distributions. When
using our approach there is a trade-off between parameters that we need to opti-
mize. These parameters are the slidingwindowW or exponential smoothing param-
eter κ and the change point detection test significance α. The constraints are here
determined by computational power and probe cost. Typically we would like to up-
date our lookup table every request and probe frequently. However it takes time
to compute a new strategy. Furthermore cost is connected with probes. It would
be a waste if a new probe is sent while a previous lookup table computation is still
running. We should choose probe time-outs such that we can exploit information
about improved service without spending too much cost on probing and using too
much computational power. Experimental results indicate that in an environment
with changing response-time behavior our closed-loop approach has a significant
advantage compared to a static lookup table as our approach has the strong advan-
tage that it learns and exploits response-time behavior on the fly.

Tuning window size W (or corresponding smoothing factor κ) and α creates a sec-
ond layer of control where these parameters are adapted to optimal values. The
update of these parameters is typically on a larger time scale that is not in the scope
of our experiments. This is a interesting direction for further research.

160 Chapter 7: Autonomous Runtime QoS Control for Composite Services in SOA

Publications of the author

Refereed papers

1. J.W. Bosman and R. Núñez-Queija. A spectral theory approach for extreme value
analysis in a tandemof fluid queues. Queueing Systems. Accepted for publication
in Queueing Systems (subject to minor revision). 2013.

2. J.W. Bosman, G.J. Hoekstra, R.D. van derMei, and S. Bhulai. A simple index rule for
efficient traffic splitting over parallel wireless networks with partial information.
Performance Evaluation, 70(10):889 - 899. 2013.

3. X. Gao, Y. Lu, M. Sharma, M.S. Squillante, and J.W. Bosman. Stochastic optimal
control for a general class of dynamic resource allocation problems. SIGMETRICS
Performance Evaluation Review, 41(2):3-14. 2013.

4. G.J. Hoekstra, R.D. van der Mei, and J.W. Bosman. Efficient traffic splitting in par-
allel TCP-based wireless networks: modelling and experimental evaluation. In:
Proceedings of the 25th International Teletraffic Congress, ITC (Shanghai, China,
September 2013). 2013.

5. S. Bhulai, G.J. Hoekstra, J.W. Bosman, and R.D. van der Mei. Dynamic traffic split-
ting to parallel wireless networks with partial information: A Bayesian approach.
Performance Evaluation, 69(1):41-52. 2012.

6. J.W. Bosman, R.D. van der Mei, and R. Núñez-Queija. A fluid model analysis of
streaming media in the presence of time-varying bandwidth. In: Proceedings
of the 24th International Teletraffic Congress, ITC (Krakow, Poland, September
2012). 2012.

7. M. Živković, J.W. Bosman, J.L. van den Berg, R.D. van der Mei, H.B. Meeuwissen,
and R. Núñez-Queija. Run-time revenue maximization for composite Web ser-
vices with response time commitments. In: Proceedings of the IEEE 26th Interna-
tional Conference on Advanced Information Networking and Applications con-
ference, AINA (Fukuoka, Japan, March 2012), pages 589-596. 2012.

8. M. Živković, J.W. Bosman, J.L. van den Berg, R.D. van der Mei, H.B. Meeuwissen,
and R. Núñez-Queija. Dynamic profit optimization of composite Web services
with SLAs. In: Proceedings of the IEEE Global Telecommunications conference,
GlobeCom (Houston, TX, December 2011), pages 1-6. 2011.

162 Publications of the author

9. G.J. Hoekstra, R.D. van derMei, and J.W. Bosman. On comparing the performance
of dynamic multi-network optimizations. In: Proceedings of the IEEE Global
Telecommunications Conference, GlobeCom (Miami, FL, December 2010), pages
1-5. 2010.

Submitted papers

10. J.W. Bosman, J.L. van den Berg, and R.D. van der Mei. Autonomous runtime QoS
control for composite services in SOA.

11. M. Živković, J.W. Bosman, J.L. van den Berg, and R.D. van der Mei. Profit maxi-
mization with dynamic service selection in SOA.

12. L. Duijvestijn, J.W. Bosman, R.D. van der Mei, H.B. Meeuwissen, and M. Živković.
A QoS control framework for real-time orchestration of composite services.

Summary

Optimal QoS control in Communication Systems

In current practice, quality of composite services is usually controlled on an ad-hoc
basis, while the consequences of failures in service chains are often not well under-
stood. A main concern is that, although such an approach might work for small
chains, it will become unfeasible for future complex global-scale service chains.
This raises the need for mechanisms that enable efficient usage of available shared
resources while preserving the desired Quality of Service (QoS) as perceived by the
end user. There are many optimization mechanisms available that could accom-
plish this. The problem is that in general these mechanisms are not suitably tailored
for the current and evolving information and communication systems. The controls
and thresholds are often based on simple improvised rules. As a consequence, the
enormous potential of QoS mechanisms to enhance service quality remains largely
unexploited.

The main challenge that is faced in this dissertation is: how to effectively use QoS
mechanisms for large-scale complex ICT systems with shared resources.

To this end, we develop, analyze, optimize and evaluate quantitative models that
capture the dynamics of QoS-control mechanisms and their implications on the
user-perceived QoS. The development of efficient QoS mechanisms is complicated
by the omnipresence of the phenomenon of uncertainty. Stochastic models are in-
strumental to capture such uncertainties and provide a basis for educated control
of systems with uncertainty. One may distinguish the following three types of un-
certainty.

Uncertainty about demand for resources. An inportant deal of demand for re-
sources is driven by predictable user behavior. However, there are also many fac-
tors that are inherently unpredictable butmay have a huge impact on resource avail-
ability (cyber attacks, flash crowds). For this purpose, mechanisms are required that
can respond to this unpredictable behavior and provide robustness to threats and
undesired behavior.

Variability in resource availability (shared resources). Various factors contribute to
variability in resource availability such as resource sharing, network or system fail-
ure, chaotic behavior, and temporary overload. For a majority of Internet resources,
capacity is shared among the different users. As a result, in the perspective of the
users, the availability of resource capacity varies. Another contributing factor to vari-
ablity that may need explanation here is chaotic behavior. Chaotic behavior may for

164 Summary

example be caused by unexpected interactions between systems, often due to mis-
configuration. In worst cases misconfiguration causes network or system failures.
This is especially the case for (global) systems where demand volumes are so high
that individual systems cannot handle all demand.

Limited information. Many existing models assume that the stochastic behavior of
demand and resources is known. In practice, however this is rarely the case. Typ-
ically external parties at best have limited information about the internal behavior
of a system. Also external factors impact the challenge of limited information from
system behavior. Systems possibly operate in changing environments driven by un-
certain, unpredictable factors. To respond in a fashionable way, mechanisms are
required that can adapt to these changes.

Over the past fewyears, the tremendous popularity of smartmobile enddevices and
services (like YouTube) has boosted the demand for streaming media applications
offered via the Internet. As the Internet provides no more than best-effort service
quality, packet streams generated by streaming media applications are distorted by
fluctuations in the available bandwidth, which may be significant over the duration
of a typical streaming application. To cope with these distortions, play-out buffers
temporarily store packets so as to reproduce the signal with a fixed delay offset. In
Chapters 2 and 3 we study a video stream model where the network is modeled
as a Markov Modulated fluid queue. In this model a Contineous Time Markov Chain
represents the actual transmission rate through the network. Chapter 2 considers a
two-state transmission rate model while Chapter 3 considers a more general trans-
mission rate model. For the play-out buffer an initial buffer level binit is determined
such that the probability that the video will stall during play-out will not exceed an
agreed service level probability pempty . We show that the probability of this event
corresponds to the probability of the event where the maximum congestion level
M(t) exceeds the initial buffer level binit . From this insight we derive an expression
that maps pempty , Tplay and the network and video parameters to a minimal buffer
level binit . Simulation results indicate that the buffer level that is obtained from our
analysis is a conservative estimate, i.e., it overestimates the true minimal required
buffer level.

In Chapter 4 we consider the transmission of file flows across multiple parallel wire-
less networks. Each wireless network is modeled as a processor sharing node. In
this setting background flows are generated by clients with only one available net-
work connection while foreground flows are generated by clients with multiple net-
work connections. The goal is to minimize the expected transfer time of elastic data
traffic by smartly dispatching the jobs of foreground flows to the networks. However
only partial information is available in the sense that only the sum of the numbers of
foreground and background flows can be observed. To this end, we propose a sim-
ple index rule called the convex combination (CC) rule. Extensive simulations with
real networks show that this method performs extremely well under practical cir-

Summary 165

cumstances for a wide range of realistic parameter settings. The method presented
in this chapter is a simple index rule that is essentially a convex combination of tech-
niques that are found to work well extreme cases. To assess the effectiveness of the
CCmethod, we have performed extensive simulation experiments in a real network
simulator that implements the full wireless protocols stack. The results show that
the CC method leads to close-to-optimal performance for a wide range of realistic
parameter settings.

In Chapter 5 we investigate a general class of dynamic resource allocation prob-
lems that involve different types of resources and uncertain/variable demand. Aim-
ing to maximize the expected net-benefit based on rewards and costs from the
different resources, an optimal dynamic control policy has been derived within a
singular stochastic optimal control setting. The mathematical analysis includes ob-
taining simple expressions that govern the dynamic adjustments to resource alloca-
tion capacities over time under the optimal control policy. Based on this analysis, a
wide variety of extensive numerical experiments have been constructed. The results
demonstrate and quantify significant benefits of the optimal dynamic control policy
over recently proposed alternative optimization approaches in addressing a general
class of resource allocation problems across a diverse range of application domains.
Moreover, our results strongly suggest that the approach taken in this chapter can
provide an effective means to develop easily-implementable online algorithms for
solving stochastic optimization problems.

In Chapter 6we address dynamic decisionmechanisms for compositeweb services.
We represent the composite web-service as a (sequential) workflow of tasks. For
each task within this workflow, a number of third-party service alternatives may be
available, offering the same functionality at different price-quality levels. Before a
task in the workflow can be executed, a service alternative must be selected that
implements the task functionality. We have developed a model to maximize ben-
efit for composite services by on-the-fly dynamic service selection. The selection
decisions are based on observed response times, the response-time characteristics
of the alternative, the end-to-end response-time objectives, and the reward and
penalty parameters. The results not only indicate that there is an enormous poten-
tial gain compared to other, non-dynamic approaches, but also show how one can
realize such gains. We believe that this work is a significant step in realizing cost-
efficient provisioning of complex composite services.

In Chapter 7we propose a runtime closed-loop controlmechanism that dynamically
optimizes service composition in real time by learning and adapting to changes in
third party service response time behaviors. We extend the dynamic programming
approach of Chapter 6 to a closed-loop approach where dynamic programming is
applied on empirical distributions resulting from the actual realized response-times
of third party service providers. Our approach is robust to changes in the sense that
it adapts to changes in response-time distributions of concrete service alternatives.

166 Summary

To achieve this we use a smoothing approach or a sliding window approach on the
empirical distribution. The smoothing approach has the advantage that there is no
overhead in bookkeeping of sliding window samples. When using our approach
must strike a balance between parameters that we use in the optimization such as
the sliding windowW or exponential smoothing parameter κ and the change point
detection test significance α. These parameter values are constrained by computa-
tional power and probe cost. Experimental results indicate that in an environment
with changing response-time behavior our closed-loop approach has a significant
advantage as it learns and exploits response-time behavior on the fly compared to
a static lookup table that does not account for environment changes.

Samenvatting (Dutch Summary)

Optimale besturing van serviceniveaus in ICT-systemen

De hedendaagse, complexe, samengestelde ICT-systemen worden vaak op een on-
gecentraliseerde wijze bestuurd zonder dat er een goed inzicht is in de gevolgen
van storingen in ketens van ITC-diensten. Hoewel deze aanpak goed kan werken
voor kleine ketens, wordt dit onhaalbaar voor complexe wereldwijde dienstenke-
tens. Daarom zijn er mechanismen nodig die op een efficiënte wijze beschikbare
(netwerk)systeemcapaciteit kunnen benutten zonder aan het gewenste serviceni-
veau voor de eindgebruikers in te boeten.

Het belangrijkste vraagstuk dat in deze dissertatie wordt behandeld is: hoe kunnen
serviceniveaumechanismen effectief worden toegepast op complexe grootscha-
lige ICT-systemen met gedeelde systeemcapaciteit?

Om deze vraag te beantwoorden worden er in deze dissertatie kwantitatieve mo-
dellen ontwikkeld, geanalyseerd, geoptimaliseerd en geëvalueerd die de essentiële
dynamiek beschrijven van op service gerichte besturingsmechanismen enwordt het
gevolg bestudeerd van het gebruik van deze modellen op het (door de gebruikers
ervaren) serviceniveau. Het achterliggende doel van deze aanpak is om schaalbare,
robuuste algoritmen, beslistabellen en vuistregels te ontwikkelen die het mogelijk
maken om service gerichte besturingsmechanismen optimaal toe te passen. Bij de
toepassing hiervan worden drie complicerende factoren onderscheiden:

Veranderlijkheid van de vraag naar systeemcapaciteit. Een groot deel van de vraag
naar systeemcapaciteit wordt bepaald door voorspelbaar gedrag van gebruikers.
Naast voorspelbaar gedrag zijn er ook moeilijk te voorspellen fenomenen die een
grote invloed hebben op de beschikbaarheid van systeembronnen, zoals aanvallen
via het internet of onverwachte drukte door bijvoorbeeld het bekend worden van
een grote gebeurtenis in de media.

Onzekerheid over de beschikbaarheid van systemen. Verschillende zaken dragen
bij aan de variatie in beschikbaarheid van systemen. Voorbeelden hiervan zijn het
delen van systeemcapaciteit, uitval van netwerken en systemen, chaotisch gedrag
van systemen en tijdelijke overbelasting. In de meeste ICT-systemen is het delen
van systeemcapaciteit de belangrijkste bron van variabiliteit in de beschikbaarheid.
Een andere belangrijke factor is chaotisch gedrag van systemen als gevolg van een
onverwachte wisselwerking tussen verschillende systemen. Vaak wordt dergelijk
gedrag veroorzaakt door configuratiefouten. In het uiterste geval kunnen netwerken
en systemen vastlopen. Dit is in het bijzonder het geval voor globale systemenwaar

168 Samenvatting

de vraagvolumes dusdanig groot zijn dat losse systemen niet in staat zijn om alle
vraag individueel af te handelen.

Beperkte informatie over wat zich afspeelt in externe systemen. Veel gebruikte mo-
dellen veronderstellen dat het stochastische gedrag van vraag en systeemcompo-
nenten of capactiteit bekend is. In de praktijk is dit zelden het geval. Meestal hebben
gebruikers slechts beperkt zicht op wat er zich afspeelt in de systemen van externe
partijen die zij gebruiken. Bovendien is het mogelijk dat de systemen draaien in een
omgeving die onderhevig is aan onzekere en onvoorspelbare factoren. Om met die
beperkte informatie om te kunnen gaan, zijn mechanismen nodig die zich kunnen
aanpassen aan deze onzekere en veranderende factoren.

Hoofdstukken 2 en 3 beschouwen een vloeistofmodel dat het gedrag van video over
het internet, bijvoorbeeld YouTube, beschrijft. Een storende factor in video's over
het internet is dat deze kunnen gaan haperen tijdens het afspelen. Uit het vloeistof-
model volgt een aanpak waarmee de laadtijd en andere parameters zoals video-
kwaliteit en bandbreedte zo kunnen worden gekozen dat een video met een grote
waarschijnlijkheid onafgebroken afspeelt.

In hoofdstuk 4 wordt de situatie beschouwd waarin bestanden kunnen worden ver-
stuurd over meerdere draadloze netwerken. Voor deze situatie wordt een eenvou-
dig toepasbare beslisregel geformuleerd, genaamd convexe combinatie (CC), die
bepaalt over welk netwerk een bestand moet worden verstuurd, gebruikmakend
van de geobserveerde drukte in de netwerken. De beslisregel is gebaseerd op een
combinatie van twee regels die goed werken in verschillende situaties. Om de ef-
fectiviteit van onze beslisregel te evalueren is de CC regel geïmplementeerd in een
simulatieomgeving die het gedrag van netwerken realistisch nabootst. Uit de resul-
taten blijkt dat de CC regel goed presteert bij een breed scala aan belastings- en
capaciteitsparameters van draadloze netwerken.

In hoofdstuk 5 wordt een toewijzingsprobleem behandeld. Er zijn twee diensten
aanwezig: een interne (goedkopere) dienst en een (duurdere) dienst van een ex-
terne partij. Verder is er een variërend vraagproces dat zowel lange termijn patro-
nen vertoond als korte termijn schommelingen. De uitdaging is om de interne capa-
citeit goed te kiezen, zodat de schommelingen kunnen worden opgevangen. Indien
er meer vraag is dan toegewezen interne capaciteit gaat er vraag verloren. In het
geval dat teveel capaciteit is toegewezen, wordt er betaald voor ongebruikte capa-
citeit. Echter, aan het aanpassen van de interne capaciteit zijn ook kosten verbonden.
Het is van belang om een goede afweging te maken tussen aanpassingskosten van
de interne capaciteit en de door schommelingen in het vraagproces veroorzaakte
onder- of overcapaciteit. In dit hoofdstuk wordt een eenvoudig te implementeren
mechanisme geformuleerd dat goed met deze schommelingen om kan gaan. Om
dit mechanisme te demonstreren is er een simulatieomgeving opgezet. Uit de expe-
rimenten blijkt dat het beschreven besturingsmechanisme zeer goed functioneert.

Samenvatting 169

Hoofdstuk 6 beschouwt dynamische compositie van samengestelde webdiensten.
Daarbij wordt de samengestelde webdienst als een keten van taken gerepre-
senteerd die sequentiëel moeten worden uitgevoerd. Voor elke taak in de ke-
ten zijn implementaties beschikbaar van externe partijen met elk hun eigen prijs-
kwaliteitsverhouding. De samengestelde webdienst is onderdeel van een service-
overeenkomst waarin staat dat de respons op elke vraag binnen een vastgestelde
termijn plaats moet vinden. Met deze overeenkomst voor ogen is in dit hoofdstuk
een algoritmeontwikkeld dat een dynamische beslisstrategie berekent voor de gege-
ven serviceovereenkomst en prijs-kwaliteitsverhouding van de gebruikte diensten
van externe partijen. Het algoritme neemt beslissingen op basis van de resterende
responstijd voordat het in de serviceovereenkomst gestelde tijdsdoel wordt over-
schreden. Uit experimenten blijkt dat er enorme winst valt te behalen door de com-
positie dynamisch te laten aanpassen aan de resterende responstijd.

In hoofdstuk 7 wordt uitgegaan van de dynamische beslisstructuur van hoofdstuk
6. Echter, dit maal wordt er verondersteld dat het gedrag in termen van respons-
tijd van derde partijen niet bekend is en geleerd moet worden uit geobserveerde
responstijden. Dit hoofdstuk een ontwikkelt aanpak waarbij een dynamische pro-
grammeertechniek wordt toegepast die is gebaseerd op de empirische responstijd-
verdelingen. De empirische responstijdverdelingen worden actueel gehouden door
middel van tweemogelijke principes het vensterprincipe en het uitdoofprincipe. Op
de empirische verdelingen worden statistische toetsen toegepast om te kijken of er
significante veranderingen zijn geweest in de responstijdverdelingen. Op deze ma-
nier hoeft het dynamisch programmeeralgortime niet voor elke waarneming een
nieuwe beslistabel te berekenen. Om te voorkomen dat bepaalde diensten nooit
bezocht worden, omdat deze diensten niet in de dynamische beslistabel zitten. Mo-
gelijk vormen deze onbezochte diensten toch een aantrekkelijk alternatief, omdat ze
beter zijn gaan presteren. Daarom worden er testaanvragen verstuurd. Dit zijn aan-
vragen die informatie inwinnen over de onbezochte diensten. Om de beschreven
aanpak goed te laten werken moeten verschillende parameters worden afgewogen.
Uit de simulatie-experimenten blijkt dat de beschreven aanpak in veranderende om-
gevingen veelwinst kan opleveren ten opzichte van statische aanpakken dieworden
berekend over een langere termijn.

170 Samenvatting

Bibliography

[1] M. Abundo, V. Cardellini, and F. Lo Presti. An MDP-based admission control
for Service-Oriented Systems. DISP, Univ. of Roma" Tor Vergata", Tech. Rep.
RR-11.86. 2011.

[2] S.C. Albright. Structural results for partially observable Markov Decision Pro-
cesses. Operations Research, 27:1041-1053. 1979.

[3] H. Amur, J. Cipar, V. Gupta, Gregory R. Ganger, M.A. Kozuch, and K. Schwan.
Robust and flexible power-proportional storage. In: Proceedings of the 1st
ACM symposium on Cloud computing, SoCC (Indianapolis, IN, June 2010),
SoCC '10, pages 217-228. ACM, New York, NY, USA. 2010.

[4] S. Asmussen. Busy period analysis, rare events and transient behavior in
fluid flow models. Journal of Applied Mathematics and Stochastic Analysis,
7(3):269-299. 1994.

[5] S. Asmussen. Extreme value theory for queues via cycle maxima. Extremes,
1(2):137-168. 1998.

[6] S. Asmussen and M. Bladt. A sample path approach to mean busy periods
for Markov-modulated queues and fluids. Advances in applied probability,
pages 1117-1121. 1994.

[7] H. Bannazadeh and A. Leon-Garcia. Online optimization in application admis-
sion control for service oriented systems. In: Proceedings of the IEEE Asia-
Pacific Services Computing Conference, APSCC '08 (Yilan, Taiwan, Decem-
ber 2008), pages 482-487. 2008.

[8] A.G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement
learning. Discrete Event Dynamic Systems, 13(4):341-379. 2003.

[9] J.V.L. Beckers, I. Hendrawan, R.E. Kooij, and R.D. van der Mei. Generalized
processor sharing models for Internet access lines. In: Proceedings of the
IFIP Conference on PerformanceModelling and Evaluation of ATM and IP net-
works (Budapest, Hungary, June 2001), pages 101-112. Budapest. 2001.

[10] R.E. Bellman. Adaptive control processes: A guided tour. Princeton University
Press. 1961.

[11] R.E. Bellman. Dynamic Programming. Dover Books on Mathematics. Dover.
2003.

172 Bibliography

[12] V.E. Beneš, L.A. Shepp, and H.S. Witsenhausen. Some solvable stochastic
control problems. Stochastics, 4(1):39-83. 1980.

[13] S.M. Berman. Limiting distribution of the maximum term in sequences of de-
pendent random variables. The Annals of mathematical statistics, 33(3):894-
908. 1962.

[14] S. Bhulai, G.J. Hoekstra, J.W. Bosman, and R.D. van der Mei. Dynamic traf-
fic splitting to parallel wireless networks with partial information: A Bayesian
approach. Performance Evaluation, 69(1):41-52. 2012.

[15] N. Bléfari-Melazzi, V. Eramo, andM. Listanti. Dimensioning of play-out buffers
for real-time services in a B-ISDN. Computer Communications, 21(11):980 -
995. 1998.

[16] K. Boloor, R. Chirkova, T. Salo, and Y. Viniotis. Analysis of response time per-
centile service level agreements in SOA-based applications. In: Proceedings
of the IEEE Global Telecommunications Conference, GlobeCom (Houston, TX,
December 2011), pages 1-6. 2011.

[17] V.A. Bolotin, Y. Levy, and D. Liu. Characterizing data connection andmessages
by mixtures of distributions on logarithmic scale. In: Proceedings of the 16th
International Teletraffic Congress, ITC (Edinburgh, UK, June 1999), pages 887-
894. 1999.

[18] S.C. Borst, O.J. Boxma, and N. Hegde. Sojourn times in finite-capacity
Processor-Sharing queues. In: Proceedings of the 1st Conference onNext Gen-
eration Internet Networks Traffic Engineering, NGI (Rome, Italy, April 2005).
2005.

[19] J.W. Bosman, G.J. Hoekstra, R.D. van der Mei, and S. Bhulai. A simple index
rule for efficient traffic splitting over parallel wireless networks with partial
information. Performance Evaluation, 70(10):889 - 899. 2013.

[20] J.W. Bosman and R. Núñez-Queija. A spectral theory approach for extreme
value analysis in a tandem of fluid queues. Queueing Systems. Accepted for
publication in Queueing Systems (subject to minor revision). 2013.

[21] J.W. Bosman, J.L. van den Berg, and R.D. van der Mei. Autonomous runtime
QoS control for composite services in SOA. Submitted for publication.

[22] J.W. Bosman, R.D. van der Mei, and R. Núñez-Queija. A fluid model analysis of
streaming media in the presence of time-varying bandwidth. In: Proceedings
of the 24th International Teletraffic Congress, ITC, (Krakow, Poland, Septem-
ber 2012). Krakow, Poland. September 2012.

[23] O.J. Boxma and V. Dumas. The busy period in the fluid queue. 26(1). 1998.

Bibliography 173

[24] R.I. Brafman. A heuristic variable grid solution method for POMDPs. In:
Proceedings of the Fourteenth National Conference on Artificial Intelligence
(Providence, RI, July 1997), pages 727-733. 1997.

[25] A.N. Burnetas and M.N. Katehakis. Optimal adaptive policies for Markov De-
cision Processes. Mathematics of Operations Research, 22:222-255. 1997.

[26] G. Canfora, M. Di Penta, R. Esposito, and M.L. Villani. An approach for QoS-
aware service composition based on genetic algorithms. In: Proceedings of
the 2005 conference on Genetic and evolutionary computation, pages 1069-
1075. ACM. 2005.

[27] G. Canfora, M. Di Penta, R. Esposito, and M.L. Villani. A framework for QoS-
aware binding and re-binding of composite web services. Journal of Systems
and Software, 81(10):1754-1769. 2008.

[28] V. Cardellini, E. Casalicchio, V. Grassi, and F. Lo Presti. Adaptive management
of composite services under percentile-based Service Level Agreements. In:
Proceedings of the 8th International Conference on Service-Oriented Com-
puting, ICSOC (San Francisco, CA, December, 2010), volume 6470, page 381.
Springer-Verlag New York Inc. 2010.

[29] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut. Quality of service for
workflows and web service processes. Web Semantics: Science, Services
and Agents on the World Wide Web, 1(3):281 - 308. 2004.

[30] A.R. Cassandra. Exact and approximate algorithms for Partially Observable
Markov Decision Processes. Ph.D. thesis, Brown University. 1998.

[31] R. Chandra, P. Bahl, and P. Bahl. MultiNet: Connecting to multiple IEEE 802.11
networks using a single wireless card. In: Proceedings of the The 23rd Con-
ference of the IEEE Communications Society, INFOCOM (Hong Kong, China,
March 2004). 2004.

[32] F. Chen, D. Lambert, and J.C. Pinheiro. Incremental quantile estimation for
massive tracking. In: Proceedings of the sixth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, KDD (Boston, MA, August
2000), pages 516-522. 2000.

[33] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao. Energy-aware
server provisioning and load dispatching for connection-intensive Internet
services. In: Proceedings of the 5th USENIX Symposium on Networked Sys-
tems Design and Implementation, NSDI (San Fransisco, CA, April 2008), vol-
ume 8, pages 337-350. 2008.

[34] G.L. Choudhury and D.J. Houck. Combined queuing and activity network
based modeling of sojourn time distributions in distributed telecommunica-
tion systems. The Fundamental Role of Teletraffic in the Evolution of Telecom-

174 Bibliography

munications Networks (Eds. J. Labetoulle and JWRoberts), Proceedings of ITC
14, 14:525-534. 1994.

[35] D.F. Ciocan and V. Farias. Model predictive control for dynamic resource allo-
cation. Mathematics of Operations Research, 37(3):501-525. 2012.

[36] Cisco. Visual Networking Index: Forecast andMethodology, 2012–2017. Cisco
white paper, Cisco. 05 2013.

[37] Cisco. Visual Networking Index: Global Mobile Data Traffic Forecast Update
2012–2017. Cisco white paper, Cisco. 02 2013.

[38] J.F. Claerbout. Fundamentals of geophysical data processing. Pennwell
Books, Tulsa, OK. 1985.

[39] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield. Live migration of virtual machines. In: Proceedings of the 2nd
conference on Symposium on Networked Systems Design & Implementation,
NSDI (Boston, MA, May 2005), volume 2 of NSDI'05, pages 273-286. USENIX
Association, Berkeley, CA, USA. 2005.

[40] D. Cox. Fundamental limitations on the data rate in wireless systems. IEEE
Communications Magazine, 46(12):16-17. 2008.

[41] A. Dua and N. Bambos. Buffer Management forWireless Media Streaming. In:
Proceedings of the IEEE Global Telecommunications Conference, GlobeCom
(Washington, DC, November 2007), pages 5226-5230. 2007.

[42] L. Duijvestijn, J.W. Bosman, R.D. van der Mei, H.B. Meeuwissen, and
M. Živković. A QoS control framework for real-time orchestration of com-
posite services. Submitted for publication.

[43] J. Duncanson. Inverse multiplexing. IEEE Communications Magazine,
32(4):34-41. 1994.

[44] R. El-Yaniv, R. Kaniel, and N. Linial. Competitive optimal on-line leasing. Al-
gorithmica, 25(1):116-140. 1999.

[45] E.O. Elliott. Estimates of error rates for codes on burst-noise channels. Bell
System Technical Journal, 42:1977-1997. September 1963.

[46] FCC. Report of the spectrum efficiency working group. Technical report, Fed-
eral Communications Commission Spectrum Policy Task Force. November
2002.

[47] F.R. Gantmacher. Matrix Theory vol. 1. AMS Chelsea Publishing. 2000.

[48] X. Gao, Y. Lu, M. Sharma, M.S. Squillante, and J.W. Bosman. Stochastic optimal
control for a class of dynamic resource allocation problems. Technical report,
IBM Research Div. 2012.

Bibliography 175

[49] X. Gao, Y. Lu, M. Sharma, M.S. Squillante, and J.W. Bosman. Stochastic optimal
control for a general class of dynamic resource allocation problems. SIGMET-
RICS Performance Evaluation Review, 41(2):3-14. 2013.

[50] S. Ghosh, J. Kalagnanam, D. Katz, M. Squillante, and Xiaoxuan Zhang. Integra-
tion of demand response and renewable resources for power generationman-
agement. In: Proceedings of the IEEE PES conference on Innovative Smart
Grid Technologies, ISGT (Berlin, Germany, October 2012), pages -. 2011.

[51] E.N. Gilbert et al. Capacity of a burst-noise channel. Bell Syst. Tech. J,
39(9):1253-1265. 1960.

[52] C. Gkantsidis, M. Ammar, and E. Zegura. On the effect of large-scale deploy-
ment of parallel downloading. In: Proceedings of the Third IEEEWorkshop on
Internet Applications, WIAPP (San Jose, CA, June 2003), page 79. IEEE Com-
puter Society, Washington, DC, U.S.A. 2003.

[53] A. Gosavi. Reinforcement learning: a tutorial survey and recent advances.
INFORMS Journal on Computing, 21(2):178-192. 2009.

[54] The Multipath TCP (MPTCP) working group. Multipath TCP (mptcp) charter.
http://datatracker.ietf.org/wg/mptcp/charter/. April 2011.

[55] B. Guenter, N. Jain, and C. Williams. Managing cost, performance, and re-
liability tradeoffs for energy-aware server provisioning. In: Proceedings of
the 30th IEEE International Conference on Computer Communications, IN-
FOCOM (Shanghai, China, April 2011), pages 1332-1340. 2011.

[56] Y. Hasegawa, I. Yamaguchi, T. Hama, H. Shimonishi, and T. Murase. Deploy-
able multipath communication scheme with sufficient performance data dis-
tribution method. Computer Communications, 30(17):3285-3292. 2007.

[57] M. Hauskrecht. Planning and Control in Stochastic Domains with Imperfect
Information. Ph.D. thesis, Massachusetts Institute of Technology. 1997.

[58] G.J. Hoekstra and F.J.M. Panken. Increasing throughput of data applications on
heterogeneous wireless access networks. In: Proceedings of the 12th IEEE
Symposium on Communication and Vehicular Technology in the Benelux,
SCVT (Twente, The Netherlands, 2005). 2005.

[59] G.J. Hoekstra and R.D. van der Mei. Effective load for flow-level perfor-
mance modelling of file transfers in wireless LANs. Computer Communica-
tions, 33(16):1972-1981. 2010.

[60] G.J. Hoekstra, R.D. van der Mei, and J.W. Bosman. On comparing the per-
formance of dynamic multi-network optimizations. In: Proceedings of the
IEEE Global Telecommunications Conference, GlobeCom (Miami, FL, Decem-
ber 2010), pages 1-5. 2010.

http://datatracker.ietf.org/wg/mptcp/charter/

176 Bibliography

[61] G.J. Hoekstra, R.D. van der Mei, and J.W. Bosman. Efficient traffic splitting
in parallel TCP-based wireless networks: modelling and experimental eval-
uation. In: Proceedings of the 25th International Teletraffic Congress, ITC
(Shanghai, China, September 2013). 2013.

[62] H.Y. Hsieh and R. Sivakumar. A Transport Layer approach for achieving aggre-
gate bandwidths on multi-homed mobile hosts. Wireless Networks, 11(1):99-
114. 2005.

[63] S. Hwang, H. Wang, J. Tang, and J. Srivastava. A probabilistic approach to
modeling and estimating the QoS of web-services-based workflows. Infor-
mation Sciences, 177(23):5484 - 5503. A selection of the very best extended
papers of the IMS-2004 held at Sarkaya University in Turkey. 2007.

[64] IEEE Standard 802.11n. Part 11: Wireless LAN Medium Access Control (MAC)
and physical layer specifications enhancements for higher throughput. Octo-
ber 2009.

[65] D.L. Iglehart. Extreme values in the GI/G/1 queue. The Annals ofMathematical
Statistics, 43(2):627-635. 1972.

[66] M.C. Jaeger, G. Rojec-Goldmann, and G. Muhl. QoS aggregation for Web ser-
vice composition using workflow patterns. In: Proceedings of the 14th IEEE
International Enterprise Distributed Object Computing Conference, EDOC
(Vitória, Brazil, October 2010), pages 149-159. 2004.

[67] K. Jagannathan, I. Menache, E. Modiano, and G. Zussman. Non-cooperative
spectrum access - The dedicated vs. free spectrum choice. IEEE Journal on
Selected Areas in Communications, 30(11):2251-2261. 2012.

[68] I. Karatzas and S. E. Shreve. Methods of mathematical finance, volume 39.
Springer-Verlag. 1998.

[69] I. Karatzas and S.E. Shreve. Brownianmotion and stochastic calculus, volume
113. Springer-Verlag, Second edition edition. 1991.

[70] Taehyun Kim, N. Avadhanam, and S. Subramanian. Dimensioning Receiver
Buffer Requirement for Unidirectional VBR Video Streaming over TCP. In: Pro-
ceedings of the International Conference on Image Processing, ICIP (Atlanta,
GA, October 2006), pages 3061-3064. 2006.

[71] K.P. Kontovassilis, J.T. Tsiligaridis, and G.I. Stassinopoulos. Buffer dimensioning
for delay- and loss-sensitive traffic. Computer Communications, 18(5):315 -
328. 1995.

[72] G.P. Koudouris, R. Agüero, E. Alexandri, J. Choque, K. Dimou, H.R. Karimi,
H. Lederer, J. Sachs, and R. Sigle. Generic link layer functionality for multi-

Bibliography 177

radio access networks. In: Proceedings of the 14th IST Mobile and Wireless
Communications Summit (Dresden, Germany, June 2005). 2005.

[73] N.V. Krylov. Controlled diffusion processes, volume 14. Springer-Verlag. 1980.

[74] V.G. Kulkarni. Fluid models for single buffer systems. Frontiers in queueing:
Models and applications in science and engineering, pages 321-338. 1997.

[75] V.G. Kulkarni and E. Tzenova. Mean first passage times in fluid queues. Oper-
ations Research Letters, 30(5):308-318. 2002.

[76] P.R. Kumar. A survey of some results in stochastic adaptive control. SIAM
Journal of Control and Optimization, 23:329-380. 1985.

[77] P. Leitner. Ensuring cost-optimal SLA conformance for composite service
providers. In: ICSOC/ServiceWave 2009 PhD Symposium, page 43. 2009.

[78] M. Littman, A. Cassandra, and L. Kaelbling. Learning policies for partially ob-
servable environments: Schaling up. In: Proceedings of the twelfth Interna-
tional Conference on Machine Learning, ICML (Tahoe City, CA, July, 1995),
pages 362-370. 1995.

[79] J.A. Loeve. Markov Decision Chains with Partial Information. Ph.D. thesis,
Leiden University. 1995.

[80] W.S. Lovejoy. A survey of algorithmic methods for Partially Observed Markov
Decision Processes. Annals of Operations Research, 28:47-66. 1991.

[81] A. Mahajan and D. Teneketzis. Multi-armed bandit problems. In: Foun-
dations and Applications of Sensor Management, pages 121-151. Springer-
Verlag. 2007.

[82] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP selective acknowledg-
ment options. RFC 2018, Internet Engineering Task Force. 1996.

[83] L. Minghong, A. Wierman, L.L.H. Andrew, and E. Thereska. Dynamic right-
sizing for power-proportional data centers. In: Proceedings of the 30th IEEE
International Conference on Computer Communications, INFOCOM (Shang-
hai, China, April 2011), pages 1098-1106. 2011.

[84] Farid Molazem Tabrizi, Joseph Peters, and Mohamed Hefeeda. Dynamic Con-
trol of Receiver Buffers in Mobile Video Streaming Systems. Mobile Comput-
ing, IEEE Transactions on, 12(5):995-1008. 2013.

[85] G.E. Monahan. A survey of Partially Observable Markov Decision Processes:
theory, models, and algorithms. Management Science, 28:1-16. 1982.

[86] J.R. Norris. Markov chains. 2008. Cambridge university press. 1998.

178 Bibliography

[87] OPNET Technologies Inc. OPNET Modeler.
http://www.opnet.com/solutions/network_rd/modeler.html. Novem-
ber 2011.

[88] G. Pacifici, M. Spreitzer, A.N. Tantawi, and A. Youssef. Performance manage-
ment for cluster-based web services. IEEE Journal on Selected Areas in Com-
munications, 23(12):2333-2343. 2005.

[89] C.H. Papadimitriou and J.N. Tsitsiklis. The complexity of Markov Decision Pro-
cesses. Mathematics of Operations Research, 12(3):441-450. 1987.

[90] R. Parr and S. Russell. Approximating optimal policies for partially observable
stochastic domains. In: Proceedings of the International Joint Conference on
Artificial Intelligence, pages 1088-1094. 1995.

[91] H. Pham. Continuous-time stochastic control and optimization with financial
applications, volume 61. Springer. 2009.

[92] S.S. Pillai and N.C. Narendra. Optimal replacement policy of services based
on Markov Decision Process. In: Proceedings of the IEEE International Con-
ference on Services Computing, SCC (Bangalore, India, September 2009),
pages 176-183. 2009.

[93] C. Preist. A conceptual architecture for semantic web services. The Semantic
Web-ISWC 2004, pages 395-409. 2004.

[94] M.L. Puterman. Markov Decision Processes: discrete stochastic dynamic pro-
gramming. John Wiley & Sons. 1994.

[95] P. Rodriguez, A. Kirpal, and E. Biersack. Parallel-access for mirror sites in the
Internet. In: Proceedings of the IEEE Nineteenth Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings, INFOCOM
(Tel Aviv, Israel, March 2000), pages 864-873. 2000.

[96] S. Rosario, A. Benveniste, S. Haar, and C. Jard. Probabilistic QoS and soft con-
tracts for transaction-based Web services orchestrations. IEEE Transactions
on Services Computing, 1(4):187-200. 2008.

[97] D. Sarkar, P.D. Amer, and R. Stewart. Guest Editorial: Concurrent multipath
transport. Computer Communications, 30(17):3215-3217. 2007.

[98] W.R.W. Scheinhardt. Markov-modulated and feedback fluid queues. Ph.D.
thesis, Faculty of Mathematical Sciences, University of Twente, Enschede, The
Netherlands, 1998, http://www. ub. utwente. nl/webdocs/tw/1/t0000008.
pdf. 1998.

[99] W.R.W. Scheinhardt and A.P. Zwart. A tandem fluid queue with gradual input.
Probability in the Engineering and Informational Sciences, 16(1):29-45. 2002.

http://www.opnet.com/solutions/network_rd/modeler.html

Bibliography 179

[100] B. Sengupta and D.L. Jagerman. A conditional response time of the M/M/1
processor-sharing queue. AT&T Technical Journal, 64(2):409-421. 1985.

[101] B. Sericola and M.A. Remiche. Maximum level and hitting probabilities in
stochastic fluid flows using matrix differential riccati equations. Methodology
and Computing in Applied Probability, 13(2):307-328. 2011.

[102] A.W. van der Vaart. Asymptotic Statistics. Cambridge University Press. 1998.

[103] K.M. van Hee. Bayesian control of Markov Chains. Ph.D. thesis, Technical
University of Eindhoven. 1978.

[104] P.P. Varaiya, F.F. Wu, and J.W. Bialek. Smart operation of smart grid: Risk-
limiting dispatch. Proceedings of the IEEE, 99(1):40-57. 2011.

[105] H. Wang and X. Guo. An adaptive solution for Web service composition. In:
Proceedings of the 6th World Congress on Services, SERVICES-1 (Miami, FL,
July 2010), pages 503-510. 2010.

[106] H. Wang, X. Zhou, X. Zhou, W. Liu, W. Li, and A. Bouguettaya. Adaptive
service composition based on reinforcement learning. In: Service-Oriented
Computing, volume 6470 of Lecture Notes in Computer Science, pages 92-
107. Springer Berlin Heidelberg. 2010.

[107] C.C. White III. A survey of solution techniques for the Partially Observed
Markov Decision Process. Annals of Operations Research, 32:215-230. 1991.

[108] C. Wu, K. Chen, C. Huang, and C. Lei. An Empirical Evaluation of VoIP Play-
out Buffer Dimensioning in Skype. In: Proceedings of the 19th International
Workshop on Network and Operating Systems Support for Digital Audio and
Video, NOSSDAV, (Williamsburg, VA, June 2009). 2009.

[109] Y. Wu, C. Williamson, and J. Luo. On processor sharing and its applications
to cellular data network provisioning. Performance Evaluation, 64(9-12):892-
908. 2007.

[110] J. Young and X.Y. Zhou. Stochastic controls: Hamiltonian systems and HJB
equations, volume 43. Springer-Verlag. 1999.

[111] A. Yousefi and D.G. Down. Request Replication: An alternative to QoS aware
service selection. In: Proceedings of the IEEE International Conference on
Service-Oriented Computing and Applications, SOCA (OC Irvine, CA, Decem-
ber 2011), pages 1-4. 2011.

[112] T. Yu, Y. Zhang, and K.J. Lin. Efficient algorithms for Web services selection
with end-to-end QoS constraints. ACM Transactions on the Web (TWEB),
1(1):6. 2007.

180 Bibliography

[113] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang.
QoS-aware middleware forWeb services composition. IEEE Transactions on
Software Engineering, 30(5):311-327. 2004.

[114] L. Zeng, C. Lingenfelder, H. Lei, and H. Chang. Event-driven quality of service
prediction. Proceedings of the 6th International Conference on Service Ori-
ented Computing, ICSOC (Sydney, Australia, December 2008), pages 147-161.
2008.

[115] L. Zhang andH. Fu. Dynamic bandwidth allocation andbuffer dimensioning for
supporting video-on-demand services in virtual private networks. Computer
Communications, 23(14–15):1410 - 1424. 2000.

[116] N.L. Zhang andW. Liu. Region-based approximations for planning in stochas-
tic domains. In: Proceedings of the Thirteenth Annual Conference on Uncer-
tainty in Artificial Intelligence, UAI (Providence, RI, August 1997), pages 472-
480. 1997.

[117] H. Zheng, J. Yang, W. Zhao, and A. Bouguettaya. QoS analysis for Web ser-
vice compositions based on probabilistic QoS. In: G. Kappel, Z. Maamar, and
H.R.Motahari-Nezhad, editors, Service-Oriented Computing, volume 7084 of
Lecture Notes in Computer Science, pages 47-61. Springer Berlin Heidelberg.
2011.

[118] H. Zheng,W. Zhao, J. Yang, and A. Bouguettaya. QoS analysis forWeb service
composition. In: Proceedings of the IEEE International Conference on Ser-
vices Computing, SCC '09 (Bangalore, India, September 2009), pages 235-
242. 2009.

[119] H. Zheng,W. Zhao, J. Yang, and A. Bouguettaya. QoS analysis forWeb service
composition. In: Proceedings of the 2009 IEEE International Conference on
Services Computing, ICSOC (Stockholm, Sweden, June 2009), pages 235-242.
IEEE. 2009.

[120] M. Živković, J.W. Bosman, J.L. van den Berg, and R.D. van der Mei. Profit max-
imization with dynamic service selection in SOA. Submitted for publication.

[121] M. Živković, J.W. Bosman, J.L. van den Berg, R.D. van der Mei, H.B. Meeuwis-
sen, and R. Núñez-Queija. Dynamic profit optimization of composite web
services with SLAs. In: Proceedings of the IEEE Global Telecommunications
Conference, GlobeCom (Houston, TX, December 2011), pages 1-6. 2011.

[122] M. Živković, J.W. Bosman, J.L. van den Berg, R.D. van der Mei, H.B. Meeuwis-
sen, and R. Núñez-Queija. Run-time revenue maximization for composite
web services with response time commitments. In: Proceedings of the IEEE
26th International Conference on Advanced Information Networking and Ap-
plications, AINA (Fukuoka, Japan, March 2012), pages 589-596. IEEE. 2012.

	Acknowledgements
	Table of Contents
	Introduction
	Goals
	Challenges
	Overview of the dissertation

	A Fluid Model Analysis of Streaming Media in the Presence of Time-Varying Bandwidth
	Background
	Model
	Analysis
	Dimensioning the initial buffer size
	Numerical experiments
	Discussion

	A Spectral Theory Approach for Extreme Value Analysis in a Tandem of Fluid Queues
	Analysis
	Numerical experiments
	Discussion
	Appendix Proof of Lemma 3.1.2

	Efficient Traffic Splitting over Parallel Wireless Networks with Partial Information
	Background
	Model
	Splitting algorithms
	Numerical experiments
	Discussion

	Stochastic Optimal Control for a General Class of Dynamic Resource Allocation Problems
	Background
	Model
	Optimal control policy
	Numerical experiments
	Discussion
	Appendix Proofs

	Run-time Optimization of Composite Web Services with Response Time Commitments
	Background
	Motivating example
	Model
	Algorithm description
	Numerical experiments
	Discussion
	Appendix Workflow aggregation example

	Autonomous Runtime QoS Control for Composite Services in SOA
	Background
	Model
	Closed loop control
	Algorithms
	Experimental setup
	Results
	Discussion

	Publications of the author
	Summary
	Samenvatting (Dutch Summary)
	Bibliography

