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We d~scuss a Petrov-Galerkin mixed finite element formulation of the semiconductor continuity 

equations o? a rec~angular domain. We give error estimates for equations that are in principle 

degenerate m the smgularly perturbed case. We give arguments that indicate that the method is 

also effective ~n the singularly perturbed case. We develop a discretization that gives a higher-order 

accurate solution for use in an a posteriori error estimator. © 1995 John Wiley & Sons, Inc. 

I. INTRODUCTION 

The use of a form of exponential fitting for the semiconductor continuity equation 

is suggested by the success of the Scharfetter-Gummel discretization [ l] in one di

mension and variations on that discretization in two dimensions. Numerous derivations 

of Scharfetter-Gummel type discretizations are given in the literature, for instance by 

Selberherr [2], Markowich [3], Bank et al. [4], Brezzi et al. [5], and others. This article 

extends a one-dimensional exponential fitting technique, discussed by Hemker [6], to the 

two-dimensional context. 
In Section II we introduce a model equation for the semiconductor continuity equations 

and several bilinear forms, related to the coefficients in this equation. In Sections IIJ 

and IV we treat the discretization. In Section V we collect some technical results, 

and in Section VI we derive two error estimates. These error estimates are based on 

the techniques used by Douglas and Roberts [7]. The proofs in Section VI take all 

characteristics of our special discrete system into account, in particular the quadrature 

rule for the approximation of certain integrals in the discrete system. Note that the error 

estimates in Section VI are degenerate if the problem is singularly perturbed, i.e., if the 

convection dominates in the problem. On the other hand, an indication for good behavior 

of the method for singular problems is that-for constant coefficients-it reproduces the 

solution C exp(-{3 1x 1 - f32x2) exactly. In Section IX, we develop an a posteriori error 

estimator, and in the last section we discuss our findings. 
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II. EQUATION 

We consider the following problem, find u E H2(fl) such that 

-div( ~ (grad u + u/3)) + yu = f in n and 

u = - g on an ' (1) 

where n is a bounded rectangular domain in R2. We impose the following restrictions 
on the coefficients: 

a E W~(fl) and 3 A ER: a;:::: A> 0 in 0, 

a 
E W~(D), 

/3 = (/3i./32f with /31,/32 E W7(0), 

y E W7(0) and y;:::: 0 in 0., 

where W~(O), H2(0.) are the usual Sobolev spaces [8], and 

H(div, 0.) :={TE L2(0)2 I div TE L2(0)}, 

with scalar product 

(u,T)H(div,!l) = f0 u · Tdµ + f0 div u div Tdµ, 

(2) 

(3) 

(4) 

(5) 

is a Hilbert space (see also Girault and Raviart [9] formula 2.15 in Section 2.2). We assume 
that the equation has a solution and that f E L2(0.), g E H312(a0). 

The stationary semiconductor continuity equations take the form ( 1 ). Here f3 corresponds 
to the electric field, the term y u corresponds to a linear approximation to the recombination 
term, and 1/ a corresponds to the electron or hole mobility. The exact correspondence 
depends on the choice of scaling [ l 0]. 

In order to formulate the weak mixed form of this equation, we use the following 
bilinear forms 

(s, t) = fa st dµ, 'V s, t E L2(0), 

a(u,T) =fa au· Tdµ V u,T E H(div,O), 

b(u, t) = fa /3 · ut dµ, Vu E H(div, 0), t E L2(0), 

c(s, t) = J0 yst dµ \Is, t E L2(0), 

(g,h) = f ghdA 'V g,h E L2(iJO). 
an 

Given these definitions, we see immediately that any solution u E H2(0.) of (1) 
generates a solution (u, u) E H(div, 0) X L2(11) of 

a(u, T) - (div T, u) + b(T, u) = {g, T · nan) 'VT E H(div, 0), (6a) 

(div u, t) + c(u, t) = (f, t) \I t E L2(0), (6b) 
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where 

l 
u = - - (grad u + u/3). 

ll' 

In order to simplify the notation, we denote the Cartesian product of a normed linear 
space E with itself by E in boldface type, E := E X E. We define 

Ill. PREPARATIONS 

We introduce a partition of the domain and define the adjoint problem of (I), which we 
use in the derivation of one of our error estimates. Next, we introduce several special 
projections that are needed in the definition of our approximation spaces and in the 
derivation of the error estimates. Finally, we give an error estimate for the projections. 

A. Partitioning the Domain 

We assume that our domain 0 is rectangular. On 0, we use Cartesian coordinates, with the 
unit vectors e 1 and e2 parallel to the edges of 0. We define 7; := T · e; for TE L 2(0) and 
x; := x · e; for x E R 2 . Before we treat our discretization, we define our approximation 
space. We assume that our partition is the cartesian product of partitions 

P = {0 = Po < Pi < .. · < P:v, = L,}, (7) 

and 

(8) 

of the sides of our domain. We define the index set K, 

K ={(i + 1/2,j + 1/2)\i =0,l, ... ,N1 - l,j =O,l, ... ,N2 - l}, 

with the obvious index pair for a given cell, 

O;+u2,J+112 = {x Ip;< x1 < p;+i,qJ < x2 < qJ+1}. 

We define xk to be the center of Ok and hk to be the diagonal of Ok, with the notation Xk 
for the characteristic function of Ok. (The characteristic function of a set is the function 
that is equal to one in all points of the set and zero elsewhere.) The edges of Ok are the sets: 

rk,i,j = {x E Ok Ix . e; = (xk + (j - l/2)hk) . e;} for i = 1.2,j = 0, l. (9) 

Xk,i,J is the characteristic function of edge fk.i.J· So (i,j) = (l,0),(1,l),(2.0),(2,1) 

denote the left, right, bottom and top edges. 
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B. Adjoint Problem 

We use the following definition for the adjoint problem of ( 1) ( cf. Douglas and Roberts [7]), 
w E H2 (fl), 

-div( ~ grad w) + ! . grad w + yw = f in n ' w = 0 on an . (I 0) 

The adjoint problem is called regular, if there is a unique solution w for every f E L 2(fl) 
and this solution satisfies llwllH2cm :s CllJllucnl for every f E L2(fl). 

Throughout this article the upper case C, without a subscript, denotes a generic constant, 
which may have a different value at each appearance. 

The weak mixed form of the adjoint problem is: 

(T,w) E H(div,0) X L2(0), (11) 

a(T, u) - (div u, w) = 0 'Vu E H(div, 0) and 

(div r,t) - b(r,t) + c(w,t) = (f,t) 'V t E L2(fl). 

(I la) 

(1 lb) 

Any solution w E H2(0) of ( l 0) generates a solution (-1/ a grad w, w) of this problem. 
If (10) is regular, then this solution satisfies 1lwllH2(!1l + llTllH1(nl :s Cll!llL2(n)· 

C. Projections 

We introduce several local projections, and use these to define four global mappings, Ph, 
Ph, IIh, and fih that map function spaces to finite dimensional function spaces. First, 
we define P[Ok] to be the orthogonal projection from L2(0.k) to the space of constant 
functions on 0.k. and we define P[fk,i,j] to be the orthogonal projection from L 2(fk.i,j) 
to the space of constant functions on rk,i,j· 

We use P[Ok] to create two global mappings, Ph: L2(0)-> L2(fl), 

Phf = L XkP[Ok](f) 'V f E L2(0), (l2a) 
kEK 

and Ph: L 2(0)-> L 2(0), 

Php = L Xk(P[Ok](p · ei)e1 + P[O.k](p · e1)e2) 'VP E L 2(0.). (12b) 
kEK 

Next, we introduce two mappings, based on P[f k,i,j]. These have as their domain the 
space I, 

This space is similar to that introduced by Roberts and Thomas in formula ( 1.10) of their 
report [ 11 ]. 

To simplify the definition of these mappings, we introduce local coordinates on each 
cell nk, 

(13) 
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The mappings are defined as follows: 

where 

2 

IlhT = L Xk L ((I - ~k.;)P[rk,i,o](T;) + 6.;P[fu. 1](T;))e;, ( 14) 
kEK i=l 

2 

iLT = L Xk L((l - bk,;)P[fk.i,o](T;) + b'uP[fk,i, 1](T;))e;, (15) 
kEK i=I 

{
exp(gk,ihk.iP[Dd(,B;)) - 1 

bk,i = exp(huP[Dd(,B;)) - I 

gk,i 

if P[Dk](,8;) t 0, 

if P[Ok] (,B;) = 0. 

For II1iT we get the ith component on nk by linear interpolation between the projections 

of this component on the two sides orthogonal to e;. For n h T' however, we obtain the 
same component by using an exponential function to interpolate between the projections 
of this component on the two sides orthogonal to e;. 

The following finite dimensional function spaces are now introduced as the ranges of 
the above projections: 

Vh X W1i is the lowest order Raviart-Thomas-Nedelec space for rectangles. This space 
and the above projections were described by Douglas and Roberts [7], Raviart and 
Thomas [12], and, for D C R 3 , by Nedelec [13]. In this article, we use the usual space, 

V" X Wh as the trial function space and X" x Wh as the test function space. In effect. we 
use exponential test functions instead of the usual linear test functions. Thus. we obtain a 

Petrov-Galerkin mixed finite element discretization. 

D. Error Estimates for Projections 

A lemma on the accuracy of our projections is now found. Considering the number and 
diversity of articles on error estimates, e.g., the classical projection estimates from Ciarlet 

and Raviart [ 14 ], this may seem superfluous, but we shall see that the relative simplicity 

of the case under consideration makes it possible to derive sharp error estimates under 

minimal assumptions. 

Lemma l. If f is a square integrable function with square integrable derivatives on a 
rectangle D = [O,h 1] X [O,h2] with sides f 1,1 = {h1} X [O,h2], f2.1 = [O,h1] X {h2}, 
f 1,0 = {O} X [O, h2 ], and f 2, 0 = [O, h1 J X {O}, then the following inequalities hold: 

llf - P[D]fllL2(m ~ (2hf + 2h~) 112 llgrad JllL2rfll. (16a) 

Ifs is a continuous function with domain [O, h1 J and range [O, l], then we have 

II! - (1 - s)II[f1, 0]f - sII[f1,1J!llL2(nJ ~ (2hi + 2hD 112 1igrad !llutm. (16b) 

If f E L00 (D), grad f E L 00 (0), then 

II f - P[DJJllL~(nl ~ (h1 + h2) llgrad !llv<nJ. (16c) 
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Proof. We start by proving the above inequalities for f E C1 (!l). We can then extend 
them by the usual density argument to H1(D). To prove the first inequality, we write 

II/- P[O]Jl1[2(0) = f~10 i~:(h 11h2 i~o i~:f(x,y) -f(w,z)dwdzf dxdy, 

by definition, 

l x aj (Y aj 
f(x,y) - f(w,z) = a=w aa (a,z)da + Jb=z ab (x,b)da. 

If we substitute this into the above expression, then we find 

Iii - P[O]Jlli2(n1 = 

f h1 J h, ( 1 J h1 Jh' [Jx af 1Y af J )2 - -(a,z)da + -(x,b)db dwdz dxdy. 
x=O y=O h1h2 w=O z=O a=w aa b=z ob 

We apply the Holder inequality to the inner integrals and extend the integrations over a 
and b, where appropriate, 

Iii - P[OJilli2(0J :s 

f h1 J hi ( h 112 (J hi ( af )2 ) 112) 2 -kllai/axillL'(!ll+hi'2 -b(x,b) db dxdy. 
x=O y=O hz b=O O 

We use (IAI + IBl)2 :s 2(A 2 + B2) to write this as 

f h1 J"2 h II! - P[O]flli2(n) :5 2 x=O y=O h~ llof/oxilli2(n)dxdy 

This reduces to, 

Now, we consider the second inequality, (16b), we write, 

/If - (I - s)IT[f1.o]f - sTI[f1.iJflli2(n) = 

!.~~ f~~(h12 f~~[(I - s(x))(f(x,y) -J(O,z)) + s(x)(f(x,y) - f(h1,z))]dzrdxdy. 

We use partial derivatives to rewrite the expression, 

II! - (I - s)TI[f1,o]f - sTI[f1,1Jilli2(n) = 

J~~ f ~2 
( ~ j~' [(I - s(x)) { Jx aaf (a, z) da + fY af (x, b) db} 

x y 0 2 z-0 a=O a ) b=z ob 

+s(x){J: aaf(a,z)da+ (Y 01 (x,b)db}]dz) 2 dxdy. 
a-h1 a J b=z ab 
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Using the Holder inequality we extend the integrals where appropriate, so that 

II f - (1 - s)Il[f 1,o]f - sll[f1,1]JllL2wi :s 

! ~1 f~' (hh:;: ll<Jf/<JxillL2 (i1J + hi12 ( e2 ((Jj (x,b)) 2 db)lll)l dxdv, 
x-0 y-0 2 .I b=O <Jb · 

We use (!Al + IBD2 :5 2(A2 + B2 ) to write this as 

II! - (1 - s)Il[f1,o]f - sll[f1,1]fllt2w 1 :5 

f h, J h, ( hi h, a f z 

2 x=O y=O h2 ll<Jj/axillu1n1+h2i=o(<Jb(x,b)) Jb)dxd.v, 

which reduces to 

11! - (I - s)Il[f,,o]f - sll[f1,1]fllt2w1 :s 2hi!laf/ox1llt2(l!J + 2h~llaf/ilx2 11~.'im· 

Lastly we verify (16c), 

Jx af e af 
f(x,y) - f(w,z) = a=w aa (a,z)da + Jh=: ab (x,b)da. 

So, 

I f 1i, f 11, 
-11 h f(x,y) - f(w,z)dxdy = 

l 2 x=O y=O 

J f h, f h, (f' af iv 
-- -(a z)da + 
h I h2 x=O v=O a=w (Ja , , b=• 

' 
. 

af ) 
ab (x,b)da dxdy 

:5 (hi + h2) llgrad filL·1m. 

II 

Note that the above inequalities imply 

llu - Il1iullu1m :5 max(2hf 1 + 2hf, 2) 112 llullH'illJ, 
kEK ' 

(l 7a) 

(I 7b) 

(I 7c) 

for suitable u and u. 

IV. DISCRETIZATION 

We describe our discretization. The basic idea of mixed finite elements with a lowest 

order Raviart-Thomas trial space and exponentially fitted test subspace for the vector 

valued functions is complicated by the use of a quadrature rule, needed to keep the 

M-matrix property for the system without Lagrange multipliers for nonzero y. This 

quadrature rule is discussed in Section IVA. Another complication is the approximation 

of the coefficients by piecewise constant functions, as described below. In Section IVB 

we give the resulting discretization. 
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We replace the coefficients a, f3 and y by two-dimensional step functions. To write our 
modified problem in weak form, we need to define three new bilinear forms: 

a( O", T) = f n O" . T p ha d µ y O", T E 2, ' 

b(u, t) := ( tu · Ph/3 dµ Y O" E !,, t E L2(fl), Jn 
c(s, t) := ( stPhy dµ Y s, t E L2(fi). Jn 

The bar on the bilinear forms denotes that the coefficients are replaced by their cell
wise averages. We then replace a by Ziq, the subscript q indicates that a-not yet 
specified-quadrature rule will be used in the evaluation of this bilinear form. 

A. Quadrature Rule 

We construct a quadrature rule ah, 1 by imposing the condition that, if a, f3 are constant, 
y = 0, and the solution satisfies u = C exp(-,81x1 - f32x2 ) + K, with C,K ER, then 
the discrete solution should satisfy O"h = rr,,u and Uh = Phu. We see that for the u given 
above u = -K{J/a, so O" is constant. We define ah separately for each basis function 
7/;. 1+112 where 

and 1/;+ 112•1, where 

?u-112.1+112)e1 E fi;-112. 1+112, 

- fo+112.1+1121)e1 E fi;+112.1+u2, 

0 elsewhere, 

?u+112.1-112ie2 E D;-112. 1-112, 

- ?u+112.1-112i)e2 E 0;+112. 1+112, 

0 elsewhere . 

We denote the set of all possible indices for the basis functions 1J by 

E ={e = (i,j - 1/2)li = 0, 1,2,. . .,Ni,j = 1,2, .. .,N2}LJ 
{e = (i - 1/2,j)li = l,2, ... ,N1,j = 0,1,2, ... ,N2}. 

Our quadrature rule should satisfy the following condition: 

ah,1(0", 1Jr) = a(O", rJr)' (A) 

for all constant u and all :__ E E. Due to our assumption that the coefficients are constant, 
we have a = a and b = b. The above condition guarantees that for constant coefficients 
and constant O", 

a(U,Th) - (u,div Th)+ b(Th,u) = ah.l(IlhO",Th) - (Phu,div T1z) 

+ b(rh, Phu) 'V Th E Xh, 

and we also have 

(div O", t) = (div Ilhu, t) = O Y t E L2(0). 
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So our con~ition (A) on ah, 1 is sufficient for our purposes. We now select the quadrature 
rule by takmg the following definition for ah, j, 

2 

ah, 1 (u, T) = I I µ(Ok)P[Od (a)(P[Ok]((k,;)P[f k,i,1](0";7;) 
kEK i=l 

+ P[Ok](l - (u)P[fu,o](O";T;)). (18a) 

We introduce a new problem dependent norm on Xh 
2 

llThllh = I I µ(fld(P[Od((k,i)P[fk,i,1](7~) 
kEK i=l , 

+ P[Ok](l - (k,i)P[fk,;, 0 ](7~,;)) 112 . (18b) 

From this point onward, we take aq = ah, 1• 

B. Discrete System 

We approximate the solution (u, u) of (6) by (uh, uh) E Vh x Wh, where 

aq(o-h,T) - (uh,div T) + b(T,uh) = <r · '1/an,g) V TE Xh, (l9a) 

(div uh, t) + c(uh, t) = (f, t) V t E wh. (19b) 

If we use 7i instead of aq, then this means that our discrete problem does not always 

yield an M-matrix for uh. Consider, for instance, the corresponding djscretization on a 

uniform mesh with mesh width h in one dimension with a = I, fJ = 0, and y constant. 

If a-y h2 / 6 > 1, then the off-diagonal elements of the discretization matrix for u1i after 

elimination of o-h through static condensation have the same sign as the elements on 

the diagonal. 
The idea of using linear trial functions and exponential test functions was used by 

Hemker for singularly perturbed two-point boundary problems [6]. For the one-dimensional 

case, the introduction of exponential test functions follows from the requirement that it 

must be possible to approximate the Green's function of the problem by the test functions. 

In the following sections, we prove that the solution of our discretization ( 19) is an 

O(h) approximation to the solution of our original problem. 

V. TECHNICAL RESULTS 

This section contains some technical results, collected for later reference. 

Lemma 2. 
flh 0 nh = flh' (20a) 

nh o flh = nh, c2ob) 

(div u, Pht) = (div Il1iu, t) V lT EL, t E L2(0), (20c) 

Il1i 7 · nan = flh7 · nan V 7 E L. (20d) 

Proof. Both mappings are based on the same projections P[f k.i.J so (20a) and (20b) 

are trivial. 
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To prove (20c) we use a special case of Green's theorem: 

( div udµ = ± µh(O_d (P[fk,i,1](u;) - P[fk,i,o](u;)). 
Jn, i=I k,1 

If we combine this with the definition of ITh, the proof of (20c) is complete. Equation (20d) 
follows immediately from the definitions. • 

Lemma 3. If u E ~and we define ak,i = P[fk,i,o](u;) and bk.i = P[fk,i, 1](u;), then 
the following inequalities hold for llIThullv(n,) and 1lflhullL2(n;J: 

µ(Od ~ 2 ? II ll2 µ(Od ~ ( 2 b2 ) -- L. (ak.i + h'k) ::S IThu L2(nk) ::S - 2- L ak.i + k,i · 
6 i=I i=I 

(21 a) 

- ? - 2 2 
llIT11ulli.2<nkl ::S 2llIThullh ::S 12llllhullu(n,). (2lb) 

Proof. Formula (21 a) follows immediately from 

(IThu, IThu) =I I f ((I - gk,;)ak,i + 6,;bk,i)2 dµ. 
i=l kEK flk 

Next, we derive (2lb) from 
? 

(tihu, fihu) = ! I f ((I - (k,;)ak.i + (k,ibk,;)2 dµ. 
i=I kEK fl1 

We see immediately that 

f ((I - (k.i)au + (k.ibk.i) 2 dµ ::S ( 2(1 - (k,i)2a~; + 2{f ;hi; dµ ::S n1 Jn, · · · 

2f (I - (u)a~.; + (k,ibf,;dµ = 2µ(0k)(P[Ok](I - (k,i)a~.i + P[Ok]((k,;)bL). 
01 

This implies (21 b). • 
Lemma 4 shows, that 7i is L 2(0)-bounded and L2(0)-elliptic. 

Lemma 4. Let a E \.V;'(O), a ~A> 0 E 0 and 7i(u, T) := f n Ph(a)u · T dµ 
't/ u, TE L2(0), then 

a(u, T) :S llallv(n)llullu(n)llTliv(!l) \;/ O", TE L 2(0)' (22a) 
and 

7i(T, T) ~ AllTllL2(!l) \;/TE L 2(0). (22b) 
Proof. From (2) it follows that 

fadµ 

A ::S :k(Ok) ::S llallL~{nJ, 
together with the definitions of P and a, this implies (22a) and (22b). • 

We introduce the minimum mesh width hmin and the maximum mesh width hmax, 

hmin = min min lhk ;I, 
kEK i=I,2 ' 

hmax = max max lhk i I . 
kEK i=l,2 ' 

(23a) 

(23b) 
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A. Properties of Bq 

We discuss the properties of the quadrature rule 7i and assume that 7i = ah 1 where a1 1 q q • ' I, 

is given by (18a). We also discuss the interaction between IT, ri, and 7iq. We show that 

7iq is L2(0)-bounded on Vh, and we also show that a4 is L2(l1)-elliptic on Vh and Xh· 

Lemma 5. If u, T E ~. then 

7iq(IThu, IThT) = aq(IThT, IThu) = aq(u, IThT) = aq(il1iu. T) = aq(u, fI,,T) = 

aq(Ilhu, T) = Gq(fiha. fi1zT)' (24a) 

7iq(ITha, il1iT):::::: 6llallv(nillrihuilL'1rnllfi1zTll1z, 

AllIT1iTll~ s aq(T, Il1zT):::::: llallv1n1llfI1zTll~. 

(24c) 

(24d) 

Proof. The definitions of Il1z, TI 11 , and liq imply (24a). Inequality (24b) follows im

mediately from (l 8a), (I Sb), and (21 b ). To prove (24c ), we need some auxiliary variables. 

ak.i = P[fk,;,o](u), hk.i = P[fk.i.1](u), ck.i = P[fu.o](T), and dk,i = P[fu.1](T). 
Cauchy-Schwarz is used twice, we obtain 

2 

aq(IT O", fr T) = L. P[Dd (a) µ,(flk) L (P[flk] (I - ?u )ak,ick.i + P[fld ((u )budk, i) 
kEK i=l 

s L P[Dk] (a)µ,(fld ( ± (a~.i + bLl) 112 

kEK i=l 

x (~[P[Dk](l - ?k.il2d.i + P[fld(?ul2dL) uz_ 

We use 

to rewrite the term in c and d, and we use (2 I a) to replace the term in a and b by 

1if11zui1L2(H)> 

_ II fl1zullum1 
aq(IT1iu, fl11T) ::::; 2. P[Dk] (a)µ.,(Ok)6 (n )112 

kEK µ, k 

7 )In 
x (~ (P[Od ((1 - (k_,) 2)cf.i + P[Ok](((k,,l2)d~) 

We see immediately that this implies 

aq(IT1io", fihT) ::::::: 61iallL"(HlliflhullL'm11lfi1zTll11 · 

This proves (24c ). Inequality (24d) follows immediately from ( 18 ). • 
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B. Difference between a and Bq 

For our error estimates, we need an upper bound for the difference between the value of 
a(uh, T) and that ofaq(uh, T) for uh E Vh, TE H 1(0). As we already know from (16c) 
(see also Lemmas 8 and 9) that 

ia(u, 'Th) - a(u, Th)I ::::; 2hmaxllallw~cnJ!lullL2(.n)llThllL2(.n), 

an estimate for la(u, Th) - aq(u, Th)I suffices. Such an estimate is derived in Lemma 6. 

Lemma 6. Let Th E Xh and u E H 1 (0 ), then 

(25) 

Proof. To simplify our notation, we introduce ak.i = P[fk,;,o](Th). bk,i = 
P[fk,i, 1] (Th), o-k.i.O = P[fk,;,o](u;), and O"k,i, 1 = P[fk.i.1](u;). We prove the lemma 
for u with a 1,o-2 E C1(0), and extend by density. 

We consider the difference between the two forms on one subdomain Ok with 
P[Od(a) = 1. 

l fn, u · Th dµ - µ(Ok) ~ (P[Ok](l - (k,;)P[f k.i.o] (u;rh,;) 

+ P[Od((k,;)P[fk.i.l](u;rh,;)) l=I [ I((l - ?k.i)ak.i + Ck.ibk.i)u;dµ - µ(Ok) 
},nk i=I 

? 

X ~(P[Ok](I - (k,i)P[fu,oHak.iu;) + P[Ok]((k,;)P[fk,i,i](bk.io-;)) I= 
I [ I ((I - ?u)auo-; + ?k.ibk,;cr; - P[Ok](l - (k,;)ak.io-k.i.O J .nk i=I 

- P[Od(Ck,i)bk.io-k.i.l)dµ l=I [ I<o -Ck.;)ak,i(u; - a-k.i.o) 
),nk i=I 

+ ck.ibk.;(O"; - O"k,i.1)) dµ 1 

The application of the Cauchy-Schwarz inequality to this last term and insertion of a 
yields the following result: 

la(u, rh) - aq(u, rh)I :s: hmaxllallL"<nJllThllhC~ t t llu; - u;,k,jllti(.nt>) 112
• 

If we take s = j in (16b) then this implies 

( 
2 1n 

la(u, Th) - aq(O', 'Th)I s llallL"(!l)llThllh ~ 4h~axllgrad a-;llv(n)) 

:S: 2hmaxllallL"(n)llThllhllullu1(n). 

Because C 1(fi) is dense in H1(!1), the formula also holds for ui,o-2 E H1(!1). • 
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VI. ERROR ESTIMATES 

We use the standard estimates for 11'7' - Il1iallurni and llu - P1iullL'(flJ, as described 
in Section HID, to reduce the problem to deriving bounds for llP1iu - u1i llL2(.!1J and 
llIThu - 0"1i llvmi- We discuss two possible derivations of an O(h) error bound. The first 
needs the assumption that hmax is "small enough," while the second places a condition on 
an approximation of the discrete version of the adjoint problem. 

A. Errors Due to Approximation of the Bilinear Forms 

As preparation for the derivation of a priori error estimates, we derive some upper bounds 
on the errors caused by the piecewise constant approximation of the coefficients a, {3, 
and y. We use the following well-known notation. If V and W are normed linear spaces, 
then L(V, W; R) is the space of bounded bilinear forms on V and W, the standard norm 
of an element b E L (V, W; R) is given by 

lb(v, w)I 
llbllL(v. W;R) = ~~~ :~~ llvllv llwllw · 

Lemma 7. If a E W~(fl), then 

Ila - aqllL(H'(!i),(Xhll·ll,,);R) :::; 6hmaxllallw~(fl), 

where (X1i, 11 ·llh) is a normed linear space with, as elements, the elements of X1z but with 
11 · llh as norm. 

Proof. From Eqs. (16c) and (2lb) it follows that 

la(a,Th) - a(u,T1i)I:::; 4hmaxllallw~(flJllall1,;({l)llT1zllh · 

When combined with Lemma 6, this implies 

Ila - ZZqliL(H'WJ.(Xd·ll,,J;R) :::; 6hmaxllallw~ml · 

• 
Lemma 8. If f3 E W~(fl), then 

lib - h1llL(L'(f1). L'(!l); RJ :::; 4hmaxllf311w~(!l) · 

Proof. This follows immediately from (16c). • 
Lemma 9. If y E W~(fl), then 

lie - Cqlll(L2(HJ,L'(f1);R) :::; 2hmaxlh1 llw{(f1J · 

Proof. This follows immediately from (16c). • 

B. An a priori Error Estimate 

The following two lemmas show nice properties of our discretization, which are needed 
to derive the error bound. 
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Lemma 10. let TE::£. t E L2(0), then 

IJ(flhT, t - P1it) - (div fihT, t - Pht) = 0. (26) 

Proof. A straightforward calculation shows that P1i(/J) · IThT - div fihT is constant 
on Ok. From this, (26) easily follows. 111 

Lemma H. /f (u, u) is a solution of(6) and (uh, uh) is a solution of (19), then 

(div(u - uh), P,,t) + c(u - uh, P1it) = 0 't;/ t E L 2(D). (27) 

Proof. We take (19b), 

(div u1i,Pht) + c(u;,,Pht) = (f,Pht), 

c is derived by orthogonal L2(0k) projection, so this implies 

(div lT1i,Pht) + c(u;,,P1zt) = (f,P1it). 

If we subtract this from (6b ), (div u, P11 t) + c(u, P11 t) = (f, P1i t ), then we find (27). • 

We are now ready to give an estimate for llI11iu - u1ill1i. 

Theorem 1. If (u, u) is the solution of (6), (u1i, u1i) is the solution of (19) and (u, u) E 
H 1(D) X H2(D), then there exist positive real numbers C and D such that 

12 
C :S A max(l, llallw1(nh ll.Pllw1(m. llYllwrwJ) max(l, llullH'(flJ, llullL2(oJ), (28) 

D :s 2 11/JllL'(lll 
A ' 

llTI1iu - <T1ill7, :S ChmaxCllI11iu - u;,IL, + llPhu - uhllt'(ll)) 

+ DllII1iu - u"ll1illP"u - uhlll)(l1J. 

Proof. According to (24d), Allil1i(u - u;,)llh :S Ziq(u - u1i, fI"(a - u")). This is 
the starting point for the derivation of our error bound. Equations (6a) and (l 9a) imply that 

aq(u - lT1i, tI"(u - uh)) = (a4 - a) (u, fI"(u - u1i)) + a(u, fI1i(u - u1i)) 

- Ziq(0-11, fih(O" - U1i)) 

= (Zi4 - a) (u, fih(u - u1i)) + (div Il1i(u - uh), u) 

- b(fi1i(u - uh), u) + (g,nau · fih(u - uh)) 

+ b(fi,i(u - uh), u1i) - (div fih(u - u1i), u1i) 

- (g,nan · Il1i(u - uh)) 

= (Ziq - a) (u, fih(u - u1i)) + (div Il 1Ju - u1i), u)1,2mJ 

- (b - b) (IT1i(u - uh), u) - b(IT;,(u - uh), u) 

+ b(fi1i(u - u;J, u;,) - (div fI"(u - u1i), u1i), 

where we give b - b, a,1 - a, etc., their obvious meaning. If we use Lemma 10, we find 

AJlfl,Ju - u,/)11~ :S (liq - a) (u, fih(u - u1i)) - (b - Ii) (fih(u - u;,), u) 

+ (div fih (u - u;,), P 1iu - uh )r)(fl) - 7i(fI 1i(u - U1z ), Phu - uh). 
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If we use (20b) and (20c) to prepare the way, then the application of Lemma I l to this 
expression results in 

Allfih(u - uhlilh ::s (Ziq - a) (u, flh(u - uh)) - (b - h)(fih(u - uh), u) 

- c(u - uh, P1iu - uh) - h(fI1.(a - uh), Phu - u1i). 

As y is nonnegative according to (5), we may add c(P1iu - u1i, P1i u - uh) on both sides 
of the inequality, we find 

AllITh(u - a1i)ll~ + c(Phu - uh, Phu - u1i) ::S (Ziq - a) (u, IT,,(u - u1i)) 

-(b - b) (fi 11 (u - uh), u) - (c - c) (u - Phu, P1iu - uh) 

- b(fi1i(u - U1i), P1iu - U1i). 

We use Lemmas 7, 8, and 9 to reduce this to 

Allfi11(u - u1i)ll~ ::S hmax(6llallwt(mllullH 1(nJ + 4llPllw~(nJllullL'(H)) llfr11(u - u1iJll1i 

+ 2hmaxll'Yllw~(lllllu - P1iullL'(nJllP1iu - u11llL'(ill 

+ 211/Jllv(nillfih(u - uhJll1zllP1iu - u1zllL2 (nJ. 

Note that for all u E L2(D), llu - P1iuliL'(!lJ ::S llullL'(llJ, and llII11ull1z = llfihull1z. 1111 

Next, we prepare for the second part of our error estimate. 

Lemma 12. If(u, u) is the solution of(6), (ah,u1i) is a solution of(l9), and (T,q) is the 
solution of the adjoint problem for an arbitrary right-hand side p E L 2(0), then 

(div T,P1iu - u,,) - b(T,Phu - u11 ) = a(u,fI1iT) - aq(u1z,IT1iT) 

+ (b - h)(Il1iT,u) + b(IlhT - T,P1iu - u1J + (b - b)(r,P11u - U1i). 

Proof. We start by replacing b by b, 

(div T, Phu - u1i) - b(T,P11 u - u1i) = (div T, P1zu - uh) - b(r, Phu - uh) 

+ (ii - b) (r,P1iu - u1i). 

We use (20a) and (20c) to get 

(div T,Phu - u1i) - b(T,P1iu - u1i) = (div fihT.Phu - uh) - b(IlhT,P1iu - u1i) 

+ b(fi,,T - T,P/Ju - u1i) + (b - b)(T,Phu - uh), 

Lemma 10 to find 

(div T,P1zu - u1i) - b(r,P,,u - u1i) = (div fI,,T,u - uh) - b(fI1iT,U - uh) 

+ b(fI1iT - T,P1iu - u1i) + (b - b)(T,P1iu - U1i), 

and Eqs. (6a) and (19a) to produce 

(div T,P,,u - uh) - b(T,Phu - uh)= a(u,Il1iT) - (g,fi1iT ·Dan) -aq(O"J,,fihr) 

+ <g. Il1iT · Dan)+ (b - b) (Il1ir,u) + b(IlhT - T,Phu - uh) 

+ (b - b)(T,P1iu - uh). 

Ill 
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Lemma 13. If ( u, u) is the solution of ( 6), ( U1z, u1i) is a solution of (19), and ( T, w) is the 
solution of the adjoint problem for an arbitrary right-hand side p E L 2(D ), then 

c(P1zw, u - uh) = -a(T, flh(o- - o-,,)) + b(ITh(u - uh), w - Phw). 

Proof. From Lemma 11, 

and according to (20b) and (20c) we can rewrite the right-hand side, 

c(Phw, u - uh) = -(div fih(u - uh), Ph w). 

We wish to use Eq. (26) from Lemma 10 to remove Ph. To do this, we must add and 
subtract a term b(fi1i(u - uh), Ph w) on the right-hand side of our equation. We apply 
Lemma l 0 and gather terms in b together, 

c(Phw,u - u1z) = -(div fih(u - uh),w) + b(ITh(u - uh),w - P1iw). 

Finally, we use (I la), 

c(P,,w,u - u1i) = -a(T,fih(u - O"h)) + b(fih(u - uh),w - P1zw). 

II 

Theorem 2. Assume the adjoint problem (11) has a unique solution for all square 
integrable right-hand sides, and assume that there is a constant C, such that, if ( T, w) 
is the solution of ( 11) for a given right-hand side f, then 

l!TllH'(fl) + llwllH 1(fll :::; Crllfllu(fl). 

Now, if(u,u) E H 1(fl) X W(fl) is the solution of(6), and (u1i, u1z) is a solution of(19), 
then there are constants 

0 < C, D, E :'.S 4C,(1 + 2hmax) max(ila llw~(fl), llPl!w~(!1), llyllw~(!1)), 

such that 

II P h U - U1z llL'(!1) :::; Chmax (llullu(!1) + llo-11 H1(!1)) + Dhmax llfi1i ( U - O"h )lih 

+ EfzmaxllP1iu - u11llL'(!1). 

Proof. If we have an estimate for (Phu - U1z,p) for all p E L2(fl), then we can use 

( p, t) 
lltllL'C!1J = sup , 

pEL'(!1J.p7'0 llpllucni 

to find llPh u - U1z llL'(!I)- We use the regularity of the adjoint problem (11) to find a 
solution (T, w) E H 1(D) X L 2(D) of (11) for a given right-hand side p E L2 (D). We 
may write 
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If we apply Lemma 12, we find 

(p,Phu - uh)= a(u,fihT) - a4 (0-h,Il1iT) + (b - b)(fi1iT,u) 

+ b ( fi h T - T, p h U - Uh ) + (b - b) ( T, p h U - Uh ) 

+ c(w - Phw,Phu - u1,) + c(P11 w,P1iu - u1z). 

Using Lemma 13, we find that 

( p, Phu - U1i) = a(o-, fi1zT) - aq(U1z, fi11T) + (b - b) (fihT, u) 

which can be written as 

+ b ( fl h T - T, P h U - uh ) + (b - b ) ( T, P h u - uh ) 

+ C ( W - p h W, p h U - Uh) - a ( T, fI /,( O" - O"h ) ) 

+ b(fih(o- - uh), w - P11 w), 

(p,P11u - u,,) =(a - aq)(o-,Il1iT) + a4 (0" - 0"1i,fI1iT) + (b - h)(fI1ir,u) 

+ b(fihT - T,Phu - uh)+ (b - b)(T,P1iu - u1i) 

+ c(w - Phw, P11 u - u,,) - a(T, fi 11 (a - u1i)) 

+ b(fi1i(u - uh), w - P11w). 

We use (24a) to write this as 

(p,P11u - u1i) =(a - Gq)(o-,fi1iT) - (a - aq)(T,fih(<T - u1i)) + (b - b)(fi1zr,u) 

+ lJ ( fi h T - T, p h U - U J,) + (b - b) ( T, p h U - Uh) 

+ c(w - P1iw, P1iu - u1,) + h(fi 1,(u - o-1,), w - P,,w). 

Use of the regularity of the adjoint problem ( 11), Lemmas 7, 8, and 9, and the projection 

error estimates (l 6a,b,c) leads to 

llPhu - U1z!IL2(!l) ::; C,.(l + 2hmaxl2hmaxllallwt(nJ(!lallH'(llJ + llfi1i(O" - 0"1i)l!1i) 

+ 4C r hmax l!/311w,"(!l) (1 + 2hmaxl !lull L'(!ll + 2C ,.hmax ll.PllvwJ!IP1iu - llh II L'(fll 

+ 2C,.hnrnx(hmaxllYllw1(nJllP1iu - uhllvmi + llPllv(nJllfi1z(U - uh)llL2(!1J). 

This can be written as 

l!P1iu - ll1zllL2(!l)::; Chmax(l + hmaxl + Dhmax(l + hmaxl llfi11(<T - 0"1i)ll1i 

+ EhmaxO + hmaxl llP1iu - u1illL'(il). 

If hmax is small enough, Theorems 1 and 2 together give an O(hmaxl error estimate. 
• 

An important limit on hmax is implied by the form of the estimates in Theorems 1 and 

2. The main problem is that large values of llallwt(!l), 11.Pllwt(!lJ, and llYllwt(fl) decrease 

the range of hmax for which the estimate is valid. Specifically, in Theorem 2 we need to 

bring the term with coefficient E to the left-hand side, so we need, for example, 

4hmaxC,.(l + 2hmax) max(liallw1(n), 11.Pllwt(fll, llyllwt(nJ)::; 1/2. 

Note that C,., the condition of the dual problem, may also depend on a. 
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If the above inequality holds, then Theorem 2 implies 

llPhu - uhllurni :5 2Chmax(llullL2(.!l) + llullH1(n)) + 2Dhmaxllflhu - uhllh, 

with C, D as in Theorem 2. Insertion of this estimate in Theorem 1 leads to a similar 
problem. Here we need an assumption of the form 

to bring the square of the error from the right-hand side to the left-hand side. Theorem 1 
then gives 

llfl:hu - uhll~ :5 2Khmax(llfl:hu - uhllh + 2Chmax(llullu(O) + llullH 1(0)) 

+ 2Dhmaxllflhu - uhllh), 

with K the constant C from Theorem 1 and C, D as in Theorem 2. If llfl:hu - uh llh is 
smaller than hmax. then we find 

llfl:hu - uhll~ :::; 2Khmax(hmax + 2Chmax(llullu(O) + 1iullH1(n)) + 2Dhmax), 

i.e., an O(hmax) error estimate for llfl:hu - uhllh and, if it is larger than hmax• then we 
may divide terms in the right-hand side either by llfl:hu - uhllh or by hmax• so 

llfl:hu - uhllh :::; 2Khmax0 + 2C(llullL2(!ll + llullH1(0J) + 2Dhmax), 

so again we find an O(hmax) error estimate for llflhu - uhllh· 

C. Another Approach 

To improve our estimate of llPhu - uhllL2(0), we consider the adjoint of the discrete 
problem. This means, that we look for (Th, vh) E Xh X Wh, such that 

7iq( '1'h, Uh) - (div lTh, vh) = 0 \;/ uh E Vh, (29a) 

(div '1'h, th) - b(Th, th) + c(vh, th) = (f, th) V th E Wh. (29b) 

We call this system regular, if there is at least one solution for each f E Ph(L2(0)), and 
that all solutions for a particular f satisfy 

(29c) 

with C independent of the mesh size. This is a somewhat less stringent regularity condition 
than that given for the continuous ad joint problem (10). Note, that Th E Xh, so Th.; is a 
piecewise exponential function on Ok for i = 1, 2. 

An example of a general condition under which this system is regular is the following: 

a 2:: A> 0, 'Y 2:: Co > 0, (30) 

(31) 
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(3 la) 

(3 lb) 

We know, that (div fihu, Pht) = (div IThu, Pht), so, if we take the sum of (29a) and 
(29b) with u = IThTh and t = vh, we find 

Ciq(Th, IThTh) - b(Th, vh) + c(vh, vh) = (f, vh). (32) 

According to (24a), O:q(Th, IThTh) = aq(llh'Th, tih'Th), and by (24b) we have 

1 - - - -4 a(IThu, IIhu) ::::; aq(Ilhu, IT1zu). 

Hence, 

(33) 

This expression is identical to (31), so (3la) is smaller than (J, vh); combined with (30), 
this implies 

(34a) 

In the same way, we find that (3lb) is smaller than (f, vh); together with (30) and (34a), 
this implies 

(A~~) 112 i1ThllL2(!1) ::::; l\f\b(n) · 

From (32) we see that this implies 

A\\Thli~ ::s aq('Th, Th)::::; ll!llv<mllvhllL2(nJ + llJJllv<nillThilL21mllv1zllL2(nJ 

+ \\y\\L"(D.llivh li~2(n), 

this implies that there is a C such that 

llT1zilh ::::; CllJllL2(0). 

Theorem 3. If we assume that (29c) holds, then 

(34b) 

l\Phu - uhi1L2(!1l ::s hmaxC61iallw1<mllullu 1(nJ + 2(11J111w1(n) + llyllw1u1illullu(n)) · 
(35) 

Proof. We use (29b), 

(Phu - Uh,P,,j) = (div Th, Phu - U1z) - b(Th,Phu - uh)+ c(P,,u - Uh, Vh). 

Hence, according to Lemma 10 and the definition of c, 

(Phu - uh, P1zf) = (div 'Th,u - U1z) - h(T1z, u - uh) + c(u - U1z, vh). 
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We use ( 6a) and ( l 9a) to find 

(P,,u - U1i,P1J) = (div T1i,U - u,,) - (b - b)(;,,,u) - b(T1i,u) + b(T1i,U11) 

+ c(u - u,,, v1i) 

= (b - b)(T11 ,u) + a(a,T11) - Ziq(O"f,,T1i) + (c - c)(u,v,,) 

+ c(u - u1,, v1i). 

According to (24a) and Lemma 11, this implies 

(P1iu - U1i,PiJ) = (b - b)(T1i,u) +(a - aq)(<T,T1i) + Ziq(fI,,u - <T1i,T1i) 

+ (c - c)(u, v,,) - (div(Il1iu - <Tfi), v1i). 

Now, (29a) implies 

Finally, we use Lemmas 7, 8, and 9 and (29c) to obtain our error estimate (35). 11111 

VII. VERIFICATION OF THE LOCAL MAXIMUM PRINCIPLE 

We use the discrete adjoint problem to show that, for this quadrature rule, the matrix after 
elimination of u by static condensation is an M-matrix. The discrete adjoint problem is 
defined in (29). 

We assume a regular uniform mesh. We denote the matrix corresponding to (29), after 
elimination of u,,, by A. We see that the matrix A has nonpositive off-diagonal elements. 
We shall show that A is an M-matrix. To do this, we use Theorem 5.12, Chapter 5, 
page 124 of (15]. This theorem states that, for irreducible matrices with nonpositive off
diagonal elements, the M-matrix property is equivalent to the existence of a positive vector 
with a non negative image that is not identically zero. In our case, the vector ( 1, 1, ... , I )7' 
has such an image, because all row sums are nonnegative, and any row corresponding to 
an edge or comer has a positive row-sum. 

The fact that the matrix A is irreducible follows from Theorem 3.6 (15], which states 
that, for a square matrix, irreducibility is equivalent to its di-graph being strongly 
connected. Inspection shows that the di-graph of the matrix under consideration is indeed 
strongly connected. 

According to Theorem 5.6 (15], Ar is an M-matrix, too. This implies that the discrete 
equations for the original uh satisfy a local maximum principle. 

The M-matrix property implies that the system for uh has a unique solution. From the 
form of the equations for u 1,, we see that a given uh induces a unique qh. This implies that 
our system is always uniquely solvable. A quick calculation of the coefficients of u,, in 
(19a) shows that, for constant coefficients and large {1, i.e., with large convection diffusion 
ratios, we get a relation between u1i and u1i, where the "upwind" point is weighed more 
heavily. If {1/cx remains bounded and we go to the limit I.Sil + l,821-+ oo, then we get 
a first-order upwind scheme. This suggests that the scheme, in which the coefficients are 
continuously dependent on this ratio, remains useful close to such a limit. 
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VIII. A POSTERIORI ESTIMATOR 

We use a special quadrature rule and obtain a higher-order discretization. We seek an 
ah, 3(·, ·),that minimizes 7i - ah, 3 • To do this, we choose a special quadrature rule for 
each a(-, 11), where fJ is one of the basis functions introduced earlier. Due to the nature 
of our test functions, the quadrature rule is essentially a one-dimensional rule. 

A. Derivation of the Rule 

For fJ;, 1+ 112 , we proceed as follows. We replace the two-dimensional integral by a repeated 
integral, we integrate exactly in the e2 direction, and then use a three-point rule to 
approximate the remaining integral. As nodes for the last integration, we take either the 
Centers of f;-1/2,j+l/2,0· f;+l/2,j+l/2,0· and ri+l/2,j+l/2,l· Or, if we are at a boundary, the 
edge center on the boundary and the two next closest edge centers. We choose the weights 
as follows: 

for all u with x 1 -components that are second-order polynomials in x1, i.e., for all 
a, b, c E R, and all 'T/i.J+l/z, we have 

ah(Ilh((axf + bx1 + c)ei), fJ;,J+l/2) = a((ax~ + bx1 + c)ei, fJ;.1+112). 

In a similar manner, we define the rule for 1];+ 112,1. 

B. Estimator for the Local Discretization Error and a Lower 
Bound for the Global Error 

We use this rule to obtain an a posteriori estimator for the local discretization error and a 
lower bound for the global error. It is immediately obvious that 

7ih,3(U,f],} - 7ih,1(U,f],) ~ O(h~ax}, 

where r is a possible index-tuple. Moreover, 

7i(u, 11,) - ah,3(u, 'T/r) = O(h~aJ, 

if u is smooth enough. If 

lah,3(Ph· 'T]r) - (div 'T/r - /3 · '1Jr, Wh)I ~ K, 

then we have either 

or 
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We see immediately that, if (uh, uh) is the solution of (19) with 7iq = ah.I, then 

7h 1(I1;,o- - <F;,, 1Jr) - ((div - /3)71" P,,u - u1i) = O(hk), 

with k = 1 or 2 depending on the coefficients in (1) and 

7h 1(l11i<F - <Fh,1Jr) - ((div - f3)71,,P1iu - uh)= O(h1~:D + 7i1i.1(<Th,1Jr) 

- 7ih,3(<T1i, 'Y/r) · 

So, (a1i. i - ah,3) (uh, l/r) is an estimate for the local discretization error. Moreover, this 
implies that there is a constant C such that 

l\H1iu - u1iilL'(lll + llP1i11 - u1illv(fll 2: Cl7ih.1(u1i,1Jr) - 7i1i.3(<TJi,l'Jr)I + O(h~1:;). 

If we assume that 

we see that, for hmax small enough, 
1 

llI11i0" - u1iliL·1m + llPhu - u1illv(fl)::.::: 2Cla1i,1(Uh,1Jr) - 7ih,3(u1i,1Jr)I. 

This provides a lower bound on the global discretization error. We expect the solution for 
7iu to be two orders of magnitude more accurate than the solution for 7i1i. t. 

IX. NUMERICAL RESULTS 

We consider problem (I) with 

u = tanh(a(.J2x 1 - ((.J2 1)/2 + x2))), 

a = 100. /31 = 100, 132 = 100J2, r, = an, g = u Ian, 
f = _ div(grad u + u/3) . 

a 
The smallest upper bound on hmax now follows from the second condition given in 
Section VIB. This condition reduces to 

3200hmaxCr(l + hmax) < 1/2, 

so, neglecting the factor l + hmax' for the theorems to apply we would need hmax s 
l/(3200C,). 

We find the following results for the two discretizations. The directional components of 
the error vectors for the fluxes were the equal to the accuracy given. 

The log2 of the errors for a" = Zi1i, 1 

Meshwidth Iog2llP1iu - 111111 log2ll(D1zu - u1i) · e1 II log2ll(I11iu - U1z) · e211 

1/4 -1.3 -1.3 -1.1 
1/8 -1.8 -1.7 -1.4 
l/16 -2.5 -2.4 -2.1 
1/32 -3.6 -3.4 -3.1 
1/64 -5.1 -5.0 -4.6 
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The log2 of the errors for aq = ah.3 

Meshwidth Iog2llPhu - uhll Iog21i(Ilhu - uh) · e1 II logz ll(Ilhu - uh) · e211 

1/4 -2.2 -2.9 -2.6 
1/8 -3.5 -4.0 -3.6 
1/16 -5.4 -6.1 -5.6 
1/32 -8.0 -9.2 -8.7 
1/64 -10.5 -13.0 -12.4 

We see that the order of convergence is indeed higher for the second method. We also 
see that the difference in order for the fluxes approaches 2. Deviations from the expected 
order may be caused by the steepness of the solution relative to the mesh. 

To test the stability of the low order method, we applied it to problem (1) with 

u = tanh(a(.J2x1 - (( .J2 - 1)/2 + x2))), 

with 

/31 =a, /32 = a.J2, 

for a = 1000 and a = 1000000, with 

r1 =an, g = u Ian , f = _ div(grad u + u/J) . 
a 

This gave the following results for a = 1000. 

The Iog2 of the errors for Ziq = ah. I 

Meshwidth Iog2llPhu - u1ill log2 ll(Ilhu - uh) · eiil log2ll(I1hu - uh) · e211 

1/4 -0.8 -1.0 -0.8 
1/8 -1.0 -1.2 -0.8 
1/16 -1.3 -1.4 -1.0 
1/32 -1.6 -1.7 -1.2 
1/64 -2.0 -2.0 -1.5 

And for a = 1000000. 

The log2 of the errors for aq = ah, I 

Meshwidth Iog2llPhu - uhll log2llCI11iu - uh) · eill log2ll(Ilhu - uh) · ezll 

1/4 -0.8 -1.0 -0.8 
1/8 -1.0 -1.2 -0.8 
1/16 -1.3 -1.4 -1.0 
1/32 -1.5 -1.6 -1.2 
1/64 -1.8 -1.8 -1.4 

The bound given in Section VIB reduces to 

32ahmaxCA1 + hmax) < 1/2, 
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so, neglecting the factor 1 + hmm for the theorem to apply we need hmax ::5 1 / (32a C r ). 

Evidently, this criterion is not met; nevertheless, convergence occurs, because the scheme 
reduces to an upwind discretization in cases of large a, i.e., for small diffusion constants. 

X. CONCLUSIONS 

The Petrov-Galerkin mixed finite element method with exponentially fitted test functions 
for the fluxes has several nice properties. For instance, just as for a finite volume method, 
if the true solution u is divergence-free, then the same holds for uh. Furthermore, we have 
a formal a priori error estimate, and, after elimination of ah by static condensation, the 
two-dimensional discretization results in an M-matrix for uh. We can extend the method to 
three dimensions without additional difficulties. Section IX suggests that the scheme with 
the three-point quadrature rule 7ih, 3 can serve as a source for a posteriori error estimates. 
To judge the effectiveness of the method for singularly perturbed problems is very difficult. 
However, the fact that it incorporates exponential fitting, copes well with the exponential 
solution of the constant coefficient case, and approaches a two-dimensional upwind scheme 
if the convection goes to infinity suggests that the method based on ah, 1 can be applied 
to such problems. 
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