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In this paper we present a relatively simple proof of Tutte's charac­
terization of graphic matroids. The proof uses the notion of 'signed 
graph' and it is 'graphic' in the sense that it can be presented almost 
entirely by drawing (signed) graphs. © 1995 John Wiley & Sons, Inc. 

1. INTRODUCTION: TUTTE'S CHARACTERIZATION 
OF GRAPHIC MATROIDS 

The aim of this paper is to present a proof of the following result. 

Theorem 1 (Tutte [8]). Let .Jvl be a binary matroid. Then .Jvl is graphic 
if and only if M has no F7 , F;, .Jvl *(K5 ), or .Jvl * (K>,3) minor. 

We assume the reader to be familiar with matroid terminology. In fact we 
need the following notions (cf. Oxley [3], Truemper [7]. or Welsh [11]): 
binary matroid; representation (matrix) (over GF (2)) of a binary matroid; 
matroid-isomorphism (denoted by ~ ); contraction, deletion and minor; and 
graphic matroid, i.e., the cycle matroid (=polygon matroid) of a graph. 
Representation matrices over GF(2)) of the four matroids mentioned in 
Theorem I are 

[~ ~ ~ ~ 
0 0 1 0 

I 0 
0 1 

1 

l ll 0 0 0 I l I J 0100110 * 
l] (F7 ), 0 0 I 0 I 0 I (F7 )' 

1 0001011 
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100000 100 
0 1 0 0 0 0 l 0 1 0 
0010001001 * 
0 0 0 1 0 0 0 1 1 0 :M. (Ks)), 

0 0 0 0 l 0 0 l 0 1 
0 0 0 0 0 l 0 0 1 

[~ ~ 1 ~ ~ l ~ O n~*(K,,)). 
Besides Tutte' s original proof in [8] there exist proofs of Theorem l derived 
by: Ghouila-Houri [1]: Inukai and Weinberg [2], using Tutte's "wheels and 
whirls theorem" (Tutte [9]); Seymour [5], using results from [4]; Wagner 
[10] and Truemper [6]. Our proof of Theorem l is in Section 3. The notions 
we need for it are given in Section 2. To motive them and to guide the reader 
into the proof we have included the key ideas of our proof as observations 
in Section 2. 

2. PRELIMINARIES-THE KEY IDEAS 

Signed Graphs 

A signed graph is a pair (G, 2,) where G = (V(G), E(G)) is an undirected 
graph, possibly with loops and parallel edges, and I is a subset E(G). Edges 
in l are called odd. The other edges are called even. A circuit in G is called 
odd (even) in (G, l), if it contains an odd (even) number of odd edges. 

The extended even cycle matroid, S ( G, l ), of ( G, L) is the binary matroid 
represented over GF(2) by the matrix 

[ 1 x~ J 
0 Ma . 

Here x~ denotes the characteristic vector of l as a subset of E(G). 
Mc denotes the node-edge incidence matrix of G, i.e., the matrix in 
G F(2) V(GJXE(G) defined by 

(Mc)u.e = { ~ if e = uv, for some node v * u; 
else. 

The element of 5(G,l) which is not in E(G) will be denoted by u. The 
circuits of S ( G, l) are: even circuits in ( G, L ), the union of two odd circuits 
in (G, l) when they have at most one node in common, and the union of 
an odd circuit in (G, l) with {u}. 
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Re-signing (G, I) on U ~ V(G), means replacing ~ by lii8(U) 
(ii := symmetric difference, o(U) := {uv E E(G) I u E U, v ff:. U}). As 
re-signing leaves odd (even) circuits odd (even), it does not affect S (G, I). 

A signed graph that comes from (G, I) by a series of the following 
operations: re-signing, deletion of an edge, and contraction of an even edge, 
is called a minor of (G, I). Obviously, the extended even cycle matroid of a 
minor of (G, l) is a minor of S(G, I). Moreover, contracting rr in S(G, I) 
yields the cycle matroid, .M(G), of G. 

The following observation makes clear why we are interested in signed 
graphs. 

Observation 1. Let .M be a binary matroid, with representation M over 
GF(2). If all its proper minors are graphic and M =fa 0, then .M is the 
extended even cycle matroid of a signed graph. 

Proof We may assume that, possibly after applying row operations over 
GF(2), 

[ I a T J M = 0 N . 

Matrix N represents a minor of .M. Hence N represents the cycle matroid 
of a graph, G say. If I := {e E E(G) I a, = 1}, then .M - S(G, I). I 

Examples-The Four Forbidden Minors 

In view of Observation I one might expect that the four matroids in 
Theorem I are extended even cycle matroids of signed graphs. Indeed, the 
four signed graphs, depicted in Figure I satisfy 

Observation 2. S(K4) - F;, S(K~) - F7, 5(P3) - .M*(K5), and 

S(K~)- :M.*(K3,3). 

Convention. In all figures bold lines denote odd edges and thin lines denote 
even edges. Dashed and dotted lines stand for pairwise openly disjoint paths. 
Dashed lines correspond to paths with at least one edge, dotted lines may 
have length zero. The word odd in a region denotes that the circuit bounding 
that region is odd. 

FIGURE 1 
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Almost Bipartite Signed Graphs 

A signed graph (G, };) is bipartite if L = o(U) for some U i;;;; V(G), in 
other words, if one can re-sign ( G, L) to ( G, 0). So a signed graph is 
bipartite if and only if it contains no odd circuits. A signed graph (G, 2.',) is 
called almost bipartite if there exists a node u E V ( G ), calJed a blocknode, 
such that u E V(C) for each odd circuit in C in (G, l). 

Observation 3. Let (G, 2.) be a signed graph. If (G, l) is almost bipartite, 
then S ( G, 2.) is graphic. 

Proof Let u be a blocknode in (G, l). Re-sign such that l i;;;; 8(u). 
We construct a new graph H as follows (see Fig. 2). We split node u into 
two new nodes u 1 and u1. We split o(u) into 8(ui) and 8(u1) such that 
8(u 1 ) = 8(u)\}; and 8(u1 ) = 2:. (One should understand this in such a way 
that an odd loop with endpoint u becomes an edge from u 1 to u2.) Finally we 
addanedgee,,fromu 1 tou2.Itisnothardtoseethat5(G,2.) ~ Jvt(H) I 

Switching-Essentially Almost Bipartite Signed Graphs 

Let ( G, l) be a signed graph. Moreover let G 1 and G2 be two sub graphs of 
G, and let L; := 2. n E(G;) for i = 1,2. We say that [(G 1,2. 1),(G2,2.2)] 
is a k-partition if the following holds: 

E(G 1 ) U E(G2) = E(G), E(G1) n E(G2) = 0, 
V(G1) U V(G2) = V(G), !V(Gi) n V(G2)I = k. 

We call the k-partition strong if both (G 1, 2. 1) and (G2, 2.2) are not bipartite, 
and IE(G1)I, IE(G2)I ;::: 3. 

If (G, l) has a I-partition [ ( G 1, l 1 ), ( G2, 2: 2)], and the signed graph (H, 8) 
consists of two disjoint copies of (G 1, 2: 1) and (G2, 2.2), then we say that 
(H, 8) comes from (G, l) by breaking (at a cutnode). Conversely we say 
that (G,l) comes from (H,0) by glueing (ata node). 

Let (G, l) have a 2-partition [(G 1, l 1), (G2 , 2d]. Let u and v be the two 
nodes that G1 and G2 have in common. Consider disjoint copies (H1,@i) 
and (H2 , 82) of (Gi, l 1) and (G2, 2.2), respectively. For i = 1, 2, let u; and 
v; be the copies of u and v in H;. Construct (H,@) from (H1, 0 1) and 

~~ 
"·--resign-·-' 

FIGURE 2 
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(H2, 02) by identifying u1 with v2 and u2 with v I· The operation carrying 
(G, l) into (H, 8) is called switching. (See Fig. 3.) 

We call a signed graph essentially almost bipartite if it can be turned 
into an almost bipartite graph by a series of breakings, glueings and 
switchings. It is obvious that these operations leave S ( G, 2:) in variant. Hence 
Observation 3 yields 

Observation 4. Let ( G, l) be a signed graph. If ( G, 2:) is essentially 
almost bipartite, then S ( G, 2:) is graphic. 

3. THE PROOF 

Let Jvl be a binary matroid with no F 7, F;, Jvl*(K5), or JvL*(K3, 3) minor. 
We have to prove that Jvl is graphic. We may assume that all its proper 
minors are graphic. Hence, by Observation I, Jvl is the extended even cycle 
matroid of a signed graph, ( G, 2:) say. The graphicness of Jvl follows from 
Observations 2 and 4 and the result below (which is the special case of 
Tutte' s Theorem I when restricted to extended even cycle matroids of signed 
graphs, see the remark toward the end of the paper). 

- -? - -? 

Theorem 2. Let (G, 2:) be a signed graph with no K4, Kj, P3, or K4 
minor. Then ( G, 2.) is essentially almost bipartite. 

- -1 - -1 

Proof Let (G, 2:) be a signed graph with no K4 , K], P3, or K4 minor. 
Assume that all the proper minors of ( G, 2.) are essentially almost bipartite. 
We consider three cases. 

Case 1. ( G, l) has a 0- or I-partition. 
We may assume that in fact (G, 2.) has a 0-partition. (If not, break.) As 
all components are proper minors of (G,l), we may assume that they are 
almost bipartite. (If not, switch.) Glueing the blocknodes of the components 
to one new node yields an almost bipartite graph. So ( G, 2.) is essentially 
almost bipartite. 

FIGURE 3 
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Case 2. ( G, 2:) has no 0- or I-partition, but has a strong 2-partition. 

Let [(G1,2: 1)],(G2,2:2)] be a strong 2-partition of (G,l). Let u and v be 
the two nodes that G I and G2 have in common. For i = L 2, let (G t' kn 
denote the signed graph obtained from (G;, l;) by adding two edges, e; and 
f; say, from u to v, with e; odd, and f; even. (Gt, 2-7) and (G{, Ii) are 
minors of (G, I). Indeed, as the partition is strong, (G2 , 2: 2 ) contains an odd 
circuit, C say. As (G, 2:) has no 0- or 1-partition, by Menger's Theorem, 
in G2 there exist two node disjoint paths P and Q from C to {u, v} (see 
Fig. 4). From this it is easy to see that (G(, Ii) is a minor of (G, 2:). By 
symmetry, so is (G{, Ii). 

It is not hard to see that every switching in ( G ~, 2: i) or in ( G{, 2,{) 
can be carried out in (G, 2,). As (Gt, Ii) and (G2+, I{) are proper minors 
of ( G, 2, ), they are essentially almost bipartite. Carry out all the switchings 
needed to make (G(, Ii) and (Gi°, 2,{) almost bipartite in (G, 2:). Then all 
odd circuits in (Gt, 2, ~) contain u, or all these odd circuits contain v (since 
e 1 and f 1 form an odd circuit). The same is true for (G2+, l{ ). So ( G, 2,) is 
almost bipartite or can be made almost bipartite by just one switching. 

Case 3. (G, 2:) has no 0-, 1-, or strong 2-partition. 

An odd-K4 and an odd-Ki are as depicted in Figure 5. 

Claim 1. (G, I) contains no odd-K4 and no odd-Ki. Moreover (G, 2,) 
contains no pair of node-disjoint odd circuits. 

Proof of claim 1. It is an easy exercise to show that if (G, 2:) would 
contain an odd-K4 or an odd-Ki, then it has a K 4 or a K; minor. Suppose that 
C1 and C2 are two node-disjoint odd circuits. Assume that IV(C1)1 + IV(C2)1 
is as large as possible. First we show that C 1 or C2 has two nodes only. 
Indeed, if this is not the case then ( G, 2:) contains a signed subgraph as in 
Figure 6a. (This follows from Menger's Theorem and the fact that (G, 2,) 
has no 0-, 1-, or strong 2-partition.) As ( G, 2:) contains no odd-K4 , each of 
the regions marked with "*" in Figure 6a is bounded by an even circuit. 
But this is impossible, as (G, 2:) has no P3 minor. So we may assume that 

FIGURE 4 
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V(C 1) := {ui, u2}. Again by Menger's Theorem and the fact that (G, ~)has 
no 0-, 1-, or strong 2-partition, it follows that there exist two paths P/ and 
Pf from u1 to C2 which have only u1 in common and do not contain u2• 

Similarly we have Pi and Pi from u2 to C2 • Pi and Pi are node-disjoint, 
except possibly at their endpoints on C2• (If not, we could find an odd circuit 
disjoint from C2 and with more edges than C1.) Hence (G, L) contains one 
of the signed graphs in Figure 6b and 6c. One easily sees now that ( G, L) 
has K! or Kl (see Fig. 7) as minor. As K 4 is a minor of kl, this contradicts 
our assumptions on (G, :L). I 

Let C1 and C2 be two odd circuits such that their intersection graph 
P, i.e., V(P) = V(C 1) n V(C2), E(P) = E(Ci) n E(C2) is a path. It is 
easy to see that such two odd circuits exist. Assume they are chosen such 
that IE(P)I is as small as possible. Let u be one of the endpoints of P. 
For i = 1, 2, let e; E (E(C;) n 8(u))\E(P). (See Figure 8(a) and (b).) Let 
H denote the union graph of C1 and C2, i.e., V(H) = V(Ci) U V(Cz), 
E(H) = E(C 1) U E(C2). We re-sign such that~ n E(H) = {e,,ez}. An 
st-arc is a path from s E V(H)\{u} to t E V(H)\{u} which is internally 
node-disjoint from H. The arc is odd (even) if it contains an odd (even) 
number of odd edges. 

----?------ c, 

odd 

' 
c, 

' 
, .Q p._ -, 

' , 
Q' 

* 

(a) 

",0 

odd 

(b) 

FIGURE 6 
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4 

FIGURE 7 

Claim 2. If Q is an odd st-arc then s E V(C1)\V(C2) and t E V(C2)\ 

V(C 1 ) (or conversely). Moreover in that case E(P) = 0. 

Proof of claim 2. Let Qu be the unique st-path with edges only in 
E(H)\{e 1, e2}. Then QH and Q form an odd circuit. Hence€; := IE(QH) n 
E(C;)I :::::: IE(P)I for i = 1, 2. lf €1 = 0 (or if €2 = 0), then IE(P)I = 0, and 
one of the endpoints of Q is u, which contradicts the definition of an arc. So 
€1, €2 > 0. Hence s E V(C1)\ V(C2) and t E V(C2)\V(C1) (or conversely). 
If IE(P)I > 0, then Q and H form an odd-K4 (see Fig. 8(c)). I 

Claim 3. If E(P) = 0, then there exists no pair of internally node­
disjoint paths of different parity from V(C1)\V(C2) to V(C2)\V(C1) 

-7 

Proof of claim 3. If such paths would exist, then Kj is a minor of 
(G, 2:) (see Fig. 8(d)). I 

We now prove that u is a blocknode. Suppose this is not the case. Let 
C be an odd circuit not containing u. As it meets both C 1 and C2 it is the 
disjoint union of paths on H (disjoint from u) and of arcs. As C is odd an odd 
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number of the arcs is odd. By Claims 2 and 3 it follows that E(P) = 0 and 
that C contains an odd number of arcs from V(Ci)\V(C2 ) to V(C2)\V(C 1). 

This is absurd. Ill 

Remark. That Theorem 2 is a special case of Theorem 1, is quite easy to 
see. First observe that the only signed graphs with an extended even cycle 

. * * * - -2 - -2 matro1d among F1, F7 , Jv1. (Ks) and :M. (K3,3) are K4, K 3, ?3, and K4. 
So if a signed graph (G, Z:) has none of these four signed graphs as a minor, 
then, by Theorem 1, S ( G, l) is graphic. Let H be a graph such that S ( G, :2,) 
is isomorphic to Jv1. (H). Let e" be the edge in H corresponding to the special 
element a- in S(G,l). Let fi be obtained from H by contracting ea-. Then 
G and ff have isomorphic cycle matroids. Hence, by Whitney's switching 
theorem (Whitney [ 12]), it follows that G can be turned into fi by breaking, 
glueing and switching. From this it easily follows that ( G, l) is essentially 
almost bipartite. This shows how Theorem 2 follows from Theorem 1. 
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