
..--· ~~~~~------------.. .

~ m
~

ELSEVIER Applied Numerical Mathematics 18 (1995) 387-396

~ APPLIED
.NUMERICAL

MATHEMATICS

Efficient parallel predictor-corrector methods "'

Abstract

J.J.B. de Swart
CW[, P.O. Box 94079, 1090 GB Amsterdam, Netherlands

Received 19 September 1994; accepted 3 October 1994

Recently, the so-called Adams-Bashforth-Radau (ABR) methods were proposed by van der Houwen et al.
(1994). An ABR method is a high-order parallel predictor-corrector method for solving non-stiff initial value
problems, based on a combination of Adams-Bashforth and Radau formulas. Comparison of ABR with the famous
sequential 8(7) Runge-Kutta method of Dormand and Prince showed speed-up factors of about 2.7. In this paper we
improve the ABR methods by making them more accurate without any additional costs. This improved version
increases the speed-up factor on the average to 3.1.

Keywords: Numerical analysis; Predictor-corrector iteration; Runge-Kutta methods; Parallelism

1. Introduction

We shall consider predictor-corrector methods (PC methods) for solving on parallel comput­
ers the (non-stiff) initial value problem

y'(t) = f(y(t)), y(t0) = y0 , y,f E ~d. (1)
In [4] a class of parallel PC methods has been proposed, including the Adams-Bashforth-Radau
(ABR) methods. These methods showed a speed-up factor of about 2.7 compared to DOPRl8.
The DOPRI8 code by Hairer, N0rsett and Wanner [2] is an implementation of the 13-stage,
8th-order embedded Runge-Kutta method of Dormand and Prince, and is generally accepted
as one of the best sequential codes. In this paper we improve the ABR methods by increasing
the order by 1. The convergence and stability characteristics turn out to be even slightly better
than those of ABR, while the sequential costs and the number of processors are (almost) the
same.

The outline of the paper is as follows. In Section 2 we specify a subclass of the large class of
general linear methods, introduced by Butcher in 1966, and describe how methods that fall into

"'The research reported in this paper was supported by STW (Netherlands Foundation for the Technical
Sciences).

0168-9274/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved
SSDI 0168-9274(95)00061-5

-

388 1.1.B. de Swart/ Applied Numerical Mathematics Iii I /W5J 3/i7-391i

this class can be compared by means of accuracy, stability and convergence. Section 3 briefly
describes the ABR methods proposed in [4]. In Section 4 we propose a more accurate variant
of ABR. How this variant can be implemented without any additional costs compared to ABR
is presented in Section 5. Finally, in Section 6, numerical experiments will show that this new
variant indeed performs better than ABR.

2. A subclass of the class of general linear methods

In the following, the vector with unit entries is denoted bye, the ith canonical basis vector by
ei, and the d X d identity matrix by (id· Furthermore, 0 11111 is the m X 11 zero matrix and Emn is
the m X n matrix whose entries arc zero, except for its nth column which equals e. If 1· is a
vector, l'j stands for the vector whose entries arc the jth powers of the entries of I'.

To solve (1) we use methods of the form

yn =(A ®f,u)Yn--1 +h(B®/cld)F(Y,, i) +h(C®/clci)F(Yn),

Yn = Y,1 1 + h(c~· ® ldd)F(Yn)·

(2)

(3)

This type of methods falls into the class of general linear methods introduced by Butcher (see
[l]).

Here the s X s matrices A, B, C and the .~·-dimensional vector ,::· contain the method
parameters, h denotes the stepsize tn - t,, __ 1 and ® denotes the Kronecker product. Y,, is the
so-called stage vector which represents numerical approximations to the exact solution vectors
y(et n _ 1 +ah), where the s-dimensional vector a denotes the abscissa vector. Hence Y,, is an
sd-dimensional vector. In this paper we restrict ourselves to the case where the components of
a are the Radau IIA collocation points. For any vector V = (V,), fl V) contains the derivative
values (f(V,)).

Formulas (2) and (3) arc respectively called the stage tiector equation and the step point
formula.

Considering (2) as the correction equation we solve this equation by applying the PC scheme

yn<O> = (A 0 ® l,lt/)Y,, . 1 + h(130 ® ldd)F(Y,. 1), (4)

Yn'n=(A®l"")Y,1 1 +h(B®f"c1)F(Y,1 i)+h(C®l.it1)F(Y,,< 1 11 }, }=" l,. . .,m, (5)

Y = y<m>
n n ·

Next we describe how accuracy, stability and convergence of the PC scheme can be defined in
terms of A, B, C and c,.

2. I. Accuracy

The conditions for pth-or<ler consistency of the stage vector equation (2) arc given by {sec,
e.g. [3])

Ae =e, AX," + HW,,, + CV," = U,1,, (6)

].J.B. de Swart/ Applied Numerical Mathematics 18 (1995) 387-396 389

where the s X p matrices Usp• V:.P' U-:P and V:.P are defined by

U == (2-aj)
sp j '

V := (aj- 1)
sp '

for j = 1, ... , p.

U-:P := ((a-e)j- 1),

If (6) is satisfied, then p will be called the stage order.
Note that, for A= £ 55 , B = Oss' and C fulfilling (6) with p = s, (2) reduces to the s-stage

Radau IIA method.
In this paper we use a step point formula that coincides with the formula for the sth stage of

the Radau IIA method: c'.:" = e"[~sV:.~ 1• We will refer to this formula as the Radau !IA step point
formula. It can be shown (see [4]) that for this case, the order of Yn (the so-called step point
order) equals min{2s - 1, p + 1}, where p again denotes the stage order.

2.2. Stability

With respect to the scalar test equation y' = Ay, where A runs through the spectrum of the
Jacobian af(y)/ay, we obtain for (2) the recursion

~ = M(z)~-t> M(z) ==(I -zC)- 1(A +zB), z := A.h.

We define the stability region and the real and imaginary stability intervals according to

S == {z EC I p(M(z)) < l},

(-/3re•O) == {z EC I Z ES/\ Z < O},

(- /3im, /3im) == { Z E C I Z ES /\ Re(Z) = 0 /\ z * O},

respectively, where p(·) denotes the spectral radius function. l3re and /3im are called the real
and imaginary stability boundary, respectively.

For many methods that we consider in the next sections, it turns out that /3im = 0. To
circumvent the numerical uncertainty we also computed the practical imaginary stability interval
defined by

(-/3tm, /3i':n) == {z EC I p(M(z)) < 1+10-3 /\ Re(z) = 0 /\ z * O}.

In practical computations, /3tm can be safely used as the imaginary stability boundary.

2.3. Convergence

For the convergence analysis of (5) we define the iteration error

e<j) := YY) - Yn.

Application to the scalar test equation y' = A.y and substitution in (5) yield

e<n :=zjCjeC0>, z ==Ah,

390 J.J.B. de Swart/ Applied Numerical Mathematics 18 (1995) 387-396

and consequently

This leads us to defining the region of convergence by

where 'Ym may be considered as the convergence boundary.

3. Adams-Bashforth-Radau methods

Let us write the matrix C in the form

where C\ and ~2 are square matrices of size q X q and r x r respectively (q + r = s). From now
on, over- and underbars refer to the first q and last r rows of an array.

Our first examination of methods of type (2) led to the observation that the convergence
factors Ym become larger as the order of consistency increases. In particular, we observed that
the entries of ~2 are relatively small. So ideally we would like to iterate solely with ~2 and
therefore we considered methods with cl= oqq and C2 = oqr• Thus the first q stages become
explicit while the remaining r stages are solved by an iteration process that is determined by a
"small" matrix ~2 • The method can now be viewed as an r-processor method, since the
iteration process is only invoked on r implicit stages, which can be evaluated in parallel.

If we choose~= Ors and define the matrices B, ~1 and ~2 by order conditions, while A is
identified with the matrix Ess• we see that both the q explicit and the r implicit stages are of
given orders. This method was called Adams-Bashforth-Radau (ABR) in [4].

In order to get reasonably large stability intervals, the number of implicit stages has to
exceed the number of explicit stages (r > q). The characteristics of a few ABR methods are
listed in Table 1.

Table 1
Characteristics for selected ABR correctors

s = q + r Stage Order f3re /3i~ "Y2 ')'3 "Y4 "Y10 'Yoo
order

5 = 2+3 5 6 1.97 1.89 2.45 3.08 3.47 5.80 7.03
6 = 2+4 6 7 3.35 2.86 2.04 2.61 3.15 5.80 7.74
7 = 2+5 7 8 5.23 4.57 1.84 2.36 2.85 5.40 8.39
8 = 3+5 8 9 0.40 0.43 2.19 2.80 3.38 6.35 10.33

de
pr
de

th

A
pr
b)

tt

4

J.J.B. de Swart/ Applied Numerical Mathematics 18 (1995) 387-396 391

For the predictor matrices A 0 and B0 we can take A 0 = Ess and B0 = UssW;; 1, i.e. Bo is
defined by order conditions. In [4] we referred to this predict'2! as the Adams-Bashforth (AB)
predictor. Note that the first q rows of B0 now coincide with B. Hence for the first q stages we
do not apply a corrector anymore after the prediction.

Here and in the following we assume that the costs of an algorithm are mainly determined by
the number of right-hand side evaluations (denoted shortly by [-evaluations).

Since f-evaluations of different stage vector components can be done in parallel, the costs of
ABR on r processors per time step are m sequential /-evaluations for the corrector and,
provided that q ~ r, 2 sequential I-evaluations for the predictor. If we apply an economization
by replacing F(Yn _ 1) in (4) and (5) by

then the sequential costs are reduced to m + 1 f-evaluations per time step.

4. Improved Adams-Bashforth-Radau methods

For ABR methods, in every row, s + 1 elements in the matrices A, B and C are determined
by order conditions. Consequently, these methods have stage order s. In order to increase the
stage order by 1 we have to impose an additional condition on each row of the parameter
matrices. For the r implicit and q explicit stages this could be done by filling the sth column in
B and the (s - l)th column in A, respectively. The drawback of this approach is that it leads to
I;irge elements in A (for instance, if q = 2, s = 6 and A= (a;), then a26 """ 105). However, it
turns out that this problem does not arise in the first row. Therefore we only use this strategy
for the first stage. The order of the remaining q - 1 explicit stages will be raised by 1 by using
the first column of C. Remark that, strictly spoken, the last q - 1 explicit stages become
implicit in this way. In the next section we will see how to handle this aspect. This approach
does not lead to large coefficients and, provided that some constraints are put on the size of q
and r, the sequential costs of the resulting scheme will be the same as for the ABR methods.
Since these methods are much alike ABR and have a higher stage order, we will refer to them
as improved ABR.

As a consequence of the higher order of improved ABR, we expect the convergence
characteristics to improve. Furthermore, the stability regions should become larger than those
of ABR, since improved ABR is "somewhat more implicit" by the q - 1 additional elements in
C 1. Comparing Tables 1 and 2 confirm these expectations.

If we add the Radau IIA step point formula, the step point order equals min{2s - 1, p + 1}
= s + 2, provided that s ~ 3. For ABR this step point formula can be applied without any
additional work, since the sth stage already coincides with the last stage of the Radau IIA
method. For improved ABR this is no longer true, since the last row of B contains a nonzero
element. However, this element turns out to be very small (for example, ifs= 7 and B =(bi),

392 J.J.B. de Swart/ Applied Numerical Mathematics 18 (1995) 387-396

Table 2
Characteristics for selected improl'ed ABR correctors

s=q+r Stage Order /3re {3i~ 'Y2 ')'3 '}'4 'Y10 'Yoo
order

5= 2+3 6 7 2.60 3.27 2.47 3.17 3.66 6.45 7.85
6=2+4 7 8 3.84 5.85 2.05 2.63 3.20 6.04 8.73
7= 2+5 8 9 5.24 8.08 1.85 2.38 2.89 5.66 9.55
8= 3+5 9 10 0.97 1.39 2.20 2.82 3.42 6.56 11.34

then b77 = -1.3 · 10- 12). Therefore in practical applications, where s ~ 3, we observe step
point order s + 2 without a step point formula (see Section 6).

5. The computation scheme

In this section we show how improved ABR methods can be implemented on r processors
without any additional costs compared to ABR. The idea is to take advantage from the
observation that the number of implicit stages has to exceed the number of explicit stages in
order to get reasonably large stability regions.

If the number of fixed point iterations is again denoted by m, the economized version of the
ABR algorithm requires m sequential !-evaluations for the r implicit stages, plus 1 sequential
f-evaluation for the q explicit stages per step. Since r > q, r - q processors are idle during the
evaluation of the explicit stages. In improved ABR we use these r - q processors to improve
the last q - 1 explicit stages. To see in more detail how this can be done we present the
computation scheme of Table 3. The scheme shows which computations have to be done,
categorized by matrix-vector computations (column 1) and f-evaluations (column 2). The third
column denotes the number of processors that are involved in the corresponding f-evaluation.

The symbols have the following meaning:
• A0 and B0 are q x s matrices defining a slightly modified AB predictor for the first q

stages: the last q - 1 rows are the same as in AB, but the first stage is given order s + 1 by
filling the (s - l)th element in the first row of A0 by order conditions as well.

• dJ1 ~nd !}0 (both r x s matri_ces) are the lower parts of the AB predictor.
• A, B (q x s matrices) and C1 (a q x q matrix) define a correction formula of order s + 1

for the first q stages: .A= A0 , B and the last q - 1 components of the first column of c1

are determined by order conditions. The remaining components in C1 are 0.
• ~, !l. (r X s matrices), ~1 and ~2 (an r X q and r X r matrix, respectively) correspond to a

correction formula of order s + 1 by defining the last column of A and B and the whole
~; (i E {1, 2}) by order conditions. The remaining parts of A and B are 0:

• Y;(I) and x;<OJ denote the ith COmponentS Of y<l) and y<O) respectively.
During the evaluation of the q components of ¥<0> we already evaluate the first r - q

components of the prediction y<0>. Then we improve the last q - 1 components of f <0> by

Table 3
The com1 ,_
Matrix-V(-ji(O) = (;
y(O) = C:'. -

y(l) = (~

+

y(2) = (~

+

y(m-1) =

y<m) = (

Yn = (i
F' = (n }

Total nu1

J.J.B. de Swart/ Applied Numerical Mathematics 18 (1995) 387-396 393

Table 3
The computation scheme

Matrix-vector computation f-evaluations #proc.

y<lll = (Au®ldd)Y,, .1 + h(Bo®ldd)Fn'--1

yiOJ = <do®fdd)Yn-1 + h(flu®(1d)Fn'-1

F(Y(lil) q

(y<''> -1

F : r-q
y<O)
-r- q

fill = (A@ldd)Yn-1 + h(B@ldd)Fn'-1

+ h(C10/dd)F(Y101)

f'" l 2q -~ r + I

F . r-q

y(l)
q

(Y'°' l F -;,::'
q

y111 = <:1 ®ldd)Yn -1+h(fl0 Idd)Fn'-1

+ h(f;;_10Idd)F(Y11)) + h(f;;.2 ®ldd)F(y<0l)

F(yn 1) r

ym = (d 0 ldd)Y,, _ l + h(Jl ® Idd)F,,'_ l

+ h(f;;./MJJ)F(Y 11 l)+ h(~2 0ldd)F(yol)
F(y<2l) r

y<m-1)
= (,10/dt1)Y,,_1 + h(fl®lt1d)F,,'_1

+ h(~1®ldd)F(yOJ) + h(f;;_z®ldd)F(y<m -Zl)

F(y<m-1)) r

y<m) = Ci®ldd)Y,,_1 + h(Jl®ldd)F,,' .. 1

+ h(C 1®ldd)F(f"Ol)+ h([;_2®1t1<1)F(y<m-ll)

y =
n

(-(!)) ;{m)

F' - (F(Y1n))
n - F(Y(m -1))

Total number of f-evaluations on r processors m +l

394 J.J.B. de Swart/ Applied Numerical Mathematics 18 (1995) 387-396

means of the first column of C1, which results in f(l). Next we evaluate the remaining part of
y<0>. Now r - q processors are available for the evaluation of y<t). Since we only benefit from
the improvements in f <1> if we are able to evaluate all q - 1 improved stages in ¥0 >, we need
to put a constraint on the size of q and r: q - 1 ~ r - q. Remembering the first restriction for q
and r (that is, q < r), we conclude that for improved ABR q and r have to satisfy

q ~ min{r -1, Hr + 1)}. (7)

Note that (7) holds for all the correctors in Table 2. The rest of the scheme is ar.alogous to the
ABR case.

From the scheme it can be seen that the first q stages are solved in PEC-mode. Numerical
experiments show that just one single correction is indeed enough to solve these implicit
equations.

6. Numerical experiments

The numerical experiments were performed using 15-digit arithmetic. The accuracies ob­
tained are given by the number of correct digits J, defined by writing the maximum norm of
the absolute error at the endpoint in the form 10-.d.

We took for s = 7 and r = 5, the 5-processor methods ABR (of order 8) and improved ABR
(of order 9). We equipped both methods with the same dynamic iteration strategy (with a
slightly more stringent stopping criterion) as in [4].

Euler problem

slope= 8.93

1.3 1.4 1.5 1.6 1.7 1.8 1.9
log(number of steps)

Fehlberg problem

slope= 8.94

ts 1.s 1.1 1.8 1.9 2 2.1 2.2 2.3 2.4
log(number of steps)

Fig. 1. Observed order of improved ABR (s = 2 + 5).

maining part of

ily Jienefit from
Y(l)

n , we need
restriction for q ·
:isfy

(7)

r.alogous to the

Jde. Numerical
these implicit .

accuracies ob·
:imum norm of

'mproved ABR ··
:rategy (with a

J.J.B. de Swart/ Applied Nwnenrnl .Hath<'m,mn 18 1 /W5! 387-·3\ln

DOPRIS 415 576
--~·-·--·-·-·----·~--------------

728 898 11:13
ABR (s = 2+5) 160 192 1J'' 243 379
Improved ABR (s = 2 + 5) 117 169 221 273 325

Two well-known test problems were taken from [2], namely the Euler problem

Y1(0) = 0, Y 11 =y2y3,

Y~ = -Y1Y3, Y2(0)=1, O~t~20,

y; = -0.5ly 1y 2 , y 3(0) = 1,

and the Fehlberg problem

Y11 =2ty 1 log(max{y 2 , 10- 3}),

Y~ = -2ty2 log(max{y 1, 10- 3}),

v (0) = 1 - l ,

y 2(0) = e,
0 ~ t ~ 5.

1422
5011
377

(8)

(9)

First we investigate to what extent the omission of the step point formula and the PEC-mode
for solving the first q stages affect the observed order of improced ABR. Therefore we plot the
.1-values against the 10 log(number of steps). These points should lie on a straight line whose
slope equals the step point order. Fig. l shows that the expected value 9 is fairly well
approximated.

Next we compare the performance of impr011ed ABR with that of ABR. For completeness,
we also listed the performance of the DOPRI8 code with automatic stepsize control by Hairer.
N0rsett and Wanner [2]. Tables 4 and 5 show that improred ABR works about 20% mon
efficiently than ABR, while the averaged speed-up factor of improl'ed ABR compared h

DOPRI8 (to be considered as one of the best sequential codes) is about 3. L

7. Concluding remarks

The attempt to improve the parallel Adams-Bashforth-Radau (ABR) methods proposed in
[4] has resulted in a more efficient code. More particularly, on five processors, the speed-up of
the improved version compared to the fully automatic code DOPRI8 is about 3.1. This
speed-up could be further improved by including a stepsize strategy.

Table 5
Comparison of the number of f-evaluations of impro1'ed ABR with ABR and DOPRI8 for the Fehlbcrg probkm

.1-values 6 7 8 9 10 11

DOPRI8 759 963 1227 1574 1990 2503

ABR (s = 2 + 5) 335 430 532 689 846 1067
lmprol'ed ABR (s = 2 + 5) 256 361 466 571 677 782

Acknowledgements

J

~
1.1.B. de Swart/ Applied Numerical Mathematics 18I1995) 387-396 396

The author is very grateful to Prof. Dr. P.J. van der Houwen and Dr. B.P. Sommeijer for EL:
their help during the preparation of this paper.

References

[1] J.C. Butcher, The Numerical Analysis of Ordinmy Differential Equations, Runge- Kutta and General Linear
Methods (Wiky, New York, 1987).

[2] E. Hairer, S.P. N0rsett and G. Wanner, Soll'ing Ordinary Differential Equations l: Non-Stiff Problems, Springer
Series in Computational Mathematics vol. 8 (Springcr-Vcrlag, Berlin, 1987).

[3) P.J. van der Houwen and B.P. Sommeijer, Block Runge-Kutta methods on parallel computers, Z. Angew. Math.
Mech. 72 (1992) 3-18.

[4] P.J. van dcr Houwcn, B.P. Sommcijcr and J.J .B. de Swart, Parallel predictor-corrector methods, CW!, Report
NM-R9408 (1994).

A

-

