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Recently, the so-called Adams-Bashforth-Radau (ABR) methods were proposed by van der Houwen et al. 
(1994). An ABR method is a high-order parallel predictor-corrector method for solving non-stiff initial value 
problems, based on a combination of Adams-Bashforth and Radau formulas. Comparison of ABR with the famous 
sequential 8(7) Runge-Kutta method of Dormand and Prince showed speed-up factors of about 2.7. In this paper we 
improve the ABR methods by making them more accurate without any additional costs. This improved version 
increases the speed-up factor on the average to 3.1. 
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1. Introduction 

We shall consider predictor-corrector methods (PC methods) for solving on parallel comput
ers the (non-stiff) initial value problem 

y'(t) = f(y(t)), y(t0) = y0 , y,f E ~d. (1) 
In [ 4] a class of parallel PC methods has been proposed, including the Adams-Bashforth-Radau 
(ABR) methods. These methods showed a speed-up factor of about 2.7 compared to DOPRl8. 
The DOPRI8 code by Hairer, N0rsett and Wanner [2] is an implementation of the 13-stage, 
8th-order embedded Runge-Kutta method of Dormand and Prince, and is generally accepted 
as one of the best sequential codes. In this paper we improve the ABR methods by increasing 
the order by 1. The convergence and stability characteristics turn out to be even slightly better 
than those of ABR, while the sequential costs and the number of processors are (almost) the 
same. 

The outline of the paper is as follows. In Section 2 we specify a subclass of the large class of 
general linear methods, introduced by Butcher in 1966, and describe how methods that fall into 
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this class can be compared by means of accuracy, stability and convergence. Section 3 briefly 
describes the ABR methods proposed in [4]. In Section 4 we propose a more accurate variant 
of ABR. How this variant can be implemented without any additional costs compared to ABR 
is presented in Section 5. Finally, in Section 6, numerical experiments will show that this new 
variant indeed performs better than ABR. 

2. A subclass of the class of general linear methods 

In the following, the vector with unit entries is denoted bye, the ith canonical basis vector by 
ei, and the d X d identity matrix by (id· Furthermore, 0 11111 is the m X 11 zero matrix and Emn is 
the m X n matrix whose entries arc zero, except for its nth column which equals e. If 1· is a 
vector, l'j stands for the vector whose entries arc the jth powers of the entries of I'. 

To solve ( 1) we use methods of the form 

yn =(A ®f,u)Yn--1 +h(B®/cld)F(Y,, i) +h(C®/clci)F(Yn), 

Yn = Y,1 1 + h(c~· ® ldd)F(Yn)· 

(2) 

(3) 

This type of methods falls into the class of general linear methods introduced by Butcher (see 
[l]). 

Here the s X s matrices A, B, C and the .~·-dimensional vector ,::· contain the method 
parameters, h denotes the stepsize tn - t,, __ 1 and ® denotes the Kronecker product. Y,, is the 
so-called stage vector which represents numerical approximations to the exact solution vectors 
y( et n _ 1 +ah), where the s-dimensional vector a denotes the abscissa vector. Hence Y,, is an 
sd-dimensional vector. In this paper we restrict ourselves to the case where the components of 
a are the Radau IIA collocation points. For any vector V = ( V, ), fl V) contains the derivative 
values (f(V,)). 

Formulas (2) and (3) arc respectively called the stage tiector equation and the step point 
formula. 

Considering (2) as the correction equation we solve this equation by applying the PC scheme 

yn<O> = ( A 0 ® l,lt/ )Y,, . 1 + h( 130 ® ldd)F( Y,. 1 ), (4) 

Yn'n=(A®l"")Y,1 1 +h(B®f"c1)F(Y,1 i)+h(C®l.it1)F(Y,,< 1 11 }, }=" l,. . .,m, (5) 

Y = y<m> 
n n · 

Next we describe how accuracy, stability and convergence of the PC scheme can be defined in 
terms of A, B, C and c,. 

2. I. Accuracy 

The conditions for pth-or<ler consistency of the stage vector equation ( 2) arc given by {sec, 
e.g. [3]) 

Ae =e, AX," + HW,,, + CV," = U,1,, (6) 
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where the s X p matrices Usp• V:.P' U-:P and V:.P are defined by 

U == (2-aj) 
sp j ' 

V := (aj- 1) 
sp ' 

for j = 1, ... , p. 

U-:P := ((a-e)j- 1), 

If (6) is satisfied, then p will be called the stage order. 
Note that, for A= £ 55 , B = Oss' and C fulfilling (6) with p = s, (2) reduces to the s-stage 

Radau IIA method. 
In this paper we use a step point formula that coincides with the formula for the sth stage of 

the Radau IIA method: c'.:" = e"[~sV:.~ 1• We will refer to this formula as the Radau !IA step point 
formula. It can be shown (see [4]) that for this case, the order of Yn (the so-called step point 
order) equals min{2s - 1, p + 1}, where p again denotes the stage order. 

2.2. Stability 

With respect to the scalar test equation y' = Ay, where A runs through the spectrum of the 
Jacobian af(y)/ay, we obtain for (2) the recursion 

~ = M(z)~-t> M(z) ==(I -zC)- 1(A +zB), z := A.h. 

We define the stability region and the real and imaginary stability intervals according to 

S == {z EC I p(M(z)) < l}, 

( -/3re•O) == {z EC I Z ES/\ Z < O}, 

( - /3im, /3im) == { Z E C I Z ES /\ Re( Z) = 0 /\ z * O}, 

respectively, where p( ·) denotes the spectral radius function. l3re and /3im are called the real 
and imaginary stability boundary, respectively. 

For many methods that we consider in the next sections, it turns out that /3im = 0. To 
circumvent the numerical uncertainty we also computed the practical imaginary stability interval 
defined by 

(-/3tm, /3i':n) == {z EC I p(M(z)) < 1+10-3 /\ Re(z) = 0 /\ z * O}. 

In practical computations, /3tm can be safely used as the imaginary stability boundary. 

2.3. Convergence 

For the convergence analysis of (5) we define the iteration error 

e<j) := YY) - Yn. 

Application to the scalar test equation y' = A.y and substitution in (5) yield 

e<n :=zjCjeC0>, z ==Ah, 
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and consequently 

This leads us to defining the region of convergence by 

where 'Ym may be considered as the convergence boundary. 

3. Adams-Bashforth-Radau methods 

Let us write the matrix C in the form 

where C\ and ~2 are square matrices of size q X q and r x r respectively (q + r = s). From now 
on, over- and underbars refer to the first q and last r rows of an array. 

Our first examination of methods of type (2) led to the observation that the convergence 
factors Ym become larger as the order of consistency increases. In particular, we observed that 
the entries of ~2 are relatively small. So ideally we would like to iterate solely with ~2 and 
therefore we considered methods with cl= oqq and C2 = oqr• Thus the first q stages become 
explicit while the remaining r stages are solved by an iteration process that is determined by a 
"small" matrix ~2 • The method can now be viewed as an r-processor method, since the 
iteration process is only invoked on r implicit stages, which can be evaluated in parallel. 

If we choose~= Ors and define the matrices B, ~1 and ~2 by order conditions, while A is 
identified with the matrix Ess• we see that both the q explicit and the r implicit stages are of 
given orders. This method was called Adams-Bashforth-Radau (ABR) in [4]. 

In order to get reasonably large stability intervals, the number of implicit stages has to 
exceed the number of explicit stages (r > q). The characteristics of a few ABR methods are 
listed in Table 1. 

Table 1 
Characteristics for selected ABR correctors 

s = q + r Stage Order f3re /3i~ "Y2 ')'3 "Y4 "Y10 'Yoo 
order 

5 = 2+3 5 6 1.97 1.89 2.45 3.08 3.47 5.80 7.03 
6 = 2+4 6 7 3.35 2.86 2.04 2.61 3.15 5.80 7.74 
7 = 2+5 7 8 5.23 4.57 1.84 2.36 2.85 5.40 8.39 
8 = 3+5 8 9 0.40 0.43 2.19 2.80 3.38 6.35 10.33 
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For the predictor matrices A 0 and B0 we can take A 0 = Ess and B0 = UssW;; 1, i.e. Bo is 
defined by order conditions. In [4] we referred to this predict'2! as the Adams-Bashforth (AB) 
predictor. Note that the first q rows of B0 now coincide with B. Hence for the first q stages we 
do not apply a corrector anymore after the prediction. 

Here and in the following we assume that the costs of an algorithm are mainly determined by 
the number of right-hand side evaluations (denoted shortly by [-evaluations). 

Since f-evaluations of different stage vector components can be done in parallel, the costs of 
ABR on r processors per time step are m sequential /-evaluations for the corrector and, 
provided that q ~ r, 2 sequential I-evaluations for the predictor. If we apply an economization 
by replacing F( Yn _ 1) in ( 4) and (5) by 

then the sequential costs are reduced to m + 1 f-evaluations per time step. 

4. Improved Adams-Bashforth-Radau methods 

For ABR methods, in every row, s + 1 elements in the matrices A, B and C are determined 
by order conditions. Consequently, these methods have stage order s. In order to increase the 
stage order by 1 we have to impose an additional condition on each row of the parameter 
matrices. For the r implicit and q explicit stages this could be done by filling the sth column in 
B and the (s - l)th column in A, respectively. The drawback of this approach is that it leads to 
I;irge elements in A (for instance, if q = 2, s = 6 and A= (a;), then a26 """ 105). However, it 
turns out that this problem does not arise in the first row. Therefore we only use this strategy 
for the first stage. The order of the remaining q - 1 explicit stages will be raised by 1 by using 
the first column of C. Remark that, strictly spoken, the last q - 1 explicit stages become 
implicit in this way. In the next section we will see how to handle this aspect. This approach 
does not lead to large coefficients and, provided that some constraints are put on the size of q 
and r, the sequential costs of the resulting scheme will be the same as for the ABR methods. 
Since these methods are much alike ABR and have a higher stage order, we will refer to them 
as improved ABR. 

As a consequence of the higher order of improved ABR, we expect the convergence 
characteristics to improve. Furthermore, the stability regions should become larger than those 
of ABR, since improved ABR is "somewhat more implicit" by the q - 1 additional elements in 
C 1. Comparing Tables 1 and 2 confirm these expectations. 

If we add the Radau IIA step point formula, the step point order equals min{2s - 1, p + 1} 
= s + 2, provided that s ~ 3. For ABR this step point formula can be applied without any 
additional work, since the sth stage already coincides with the last stage of the Radau IIA 
method. For improved ABR this is no longer true, since the last row of B contains a nonzero 
element. However, this element turns out to be very small (for example, ifs= 7 and B =(bi), 
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Table 2 
Characteristics for selected improl'ed ABR correctors 

s=q+r Stage Order /3re {3i~ 'Y2 ')'3 '}'4 'Y10 'Yoo 
order 

5= 2+3 6 7 2.60 3.27 2.47 3.17 3.66 6.45 7.85 
6=2+4 7 8 3.84 5.85 2.05 2.63 3.20 6.04 8.73 
7= 2+5 8 9 5.24 8.08 1.85 2.38 2.89 5.66 9.55 
8= 3+5 9 10 0.97 1.39 2.20 2.82 3.42 6.56 11.34 

then b77 = -1.3 · 10- 12 ). Therefore in practical applications, where s ~ 3, we observe step 
point order s + 2 without a step point formula (see Section 6). 

5. The computation scheme 

In this section we show how improved ABR methods can be implemented on r processors 
without any additional costs compared to ABR. The idea is to take advantage from the 
observation that the number of implicit stages has to exceed the number of explicit stages in 
order to get reasonably large stability regions. 

If the number of fixed point iterations is again denoted by m, the economized version of the 
ABR algorithm requires m sequential !-evaluations for the r implicit stages, plus 1 sequential 
f-evaluation for the q explicit stages per step. Since r > q, r - q processors are idle during the 
evaluation of the explicit stages. In improved ABR we use these r - q processors to improve 
the last q - 1 explicit stages. To see in more detail how this can be done we present the 
computation scheme of Table 3. The scheme shows which computations have to be done, 
categorized by matrix-vector computations (column 1) and f-evaluations (column 2). The third 
column denotes the number of processors that are involved in the corresponding f-evaluation. 

The symbols have the following meaning: 
• A0 and B0 are q x s matrices defining a slightly modified AB predictor for the first q 

stages: the last q - 1 rows are the same as in AB, but the first stage is given order s + 1 by 
filling the (s - l)th element in the first row of A0 by order conditions as well. 

• dJ1 ~nd !}0 (both r x s matri_ces) are the lower parts of the AB predictor. 
• A, B (q x s matrices) and C1 (a q x q matrix) define a correction formula of order s + 1 

for the first q stages: .A= A0 , B and the last q - 1 components of the first column of c1 

are determined by order conditions. The remaining components in C1 are 0. 
• ~, !l. (r X s matrices), ~1 and ~2 (an r X q and r X r matrix, respectively) correspond to a 

correction formula of order s + 1 by defining the last column of A and B and the whole 
~; (i E {1, 2}) by order conditions. The remaining parts of A and B are 0: 

• Y;(I) and x;<OJ denote the ith COmponentS Of y<l) and y<O) respectively. 
During the evaluation of the q components of ¥<0> we already evaluate the first r - q 

components of the prediction y<0>. Then we improve the last q - 1 components of f <0> by 

Table 3 
The com1 ,_ 
Matrix-V( -ji(O) = (; 
y(O) = C:'. -

y(l) = (~ 

+ 

y(2) = (~ 

+ 

y(m-1) = 

y<m) = ( 

Yn = (i 
F' = ( n } 

Total nu1 
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Table 3 
The computation scheme 

Matrix-vector computation f-evaluations #proc. 

y<lll = (Au®ldd)Y,, .1 + h(Bo®ldd)Fn'--1 

yiOJ = <do®fdd)Yn-1 + h(flu®(1d)Fn'-1 

F(Y(lil) q 

( y<''> -1 

F : r-q 
y<O) 
-r- q 

fill = (A@ldd)Yn-1 + h(B@ldd)Fn'-1 

+ h(C10/dd)F(Y101) 

f'" l 2q -~ r + I 

F . r-q 

y(l) 
q 

(Y'°' l F -;,::' 
q 

y111 = <:1 ®ldd)Yn -1+h(fl0 Idd)Fn'-1 

+ h(f;;_10Idd)F(Y11 )) + h(f;;.2 ®ldd )F(y<0l) 

F(yn 1) r 

ym = (d 0 ldd)Y,, _ l + h(Jl ® Idd )F,,'_ l 

+ h(f;;./MJJ)F(Y 11 l)+ h(~2 0ldd)F(yol) 
F(y<2l) r 

y<m-1) 
= (,10/dt1)Y,,_1 + h(fl®lt1d)F,,'_1 

+ h(~1®ldd)F(yOJ) + h(f;;_z®ldd)F(y<m -Zl) 

F(y<m-1)) r 

y<m) = Ci®ldd)Y,,_1 + h(Jl®ldd)F,,' .. 1 

+ h(C 1®ldd)F(f"Ol)+ h([;_2®1t1<1)F(y<m-ll) 

y = 
n 

(-(!)) ;{m) 

F' - ( F(Y1n) ) 
n - F(Y(m -1)) 

Total number of f-evaluations on r processors m +l 
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means of the first column of C1, which results in f(l). Next we evaluate the remaining part of 
y<0>. Now r - q processors are available for the evaluation of y<t). Since we only benefit from 
the improvements in f <1> if we are able to evaluate all q - 1 improved stages in ¥0 >, we need 
to put a constraint on the size of q and r: q - 1 ~ r - q. Remembering the first restriction for q 
and r (that is, q < r ), we conclude that for improved ABR q and r have to satisfy 

q ~ min{r -1, Hr + 1)}. (7) 

Note that (7) holds for all the correctors in Table 2. The rest of the scheme is ar.alogous to the 
ABR case. 

From the scheme it can be seen that the first q stages are solved in PEC-mode. Numerical 
experiments show that just one single correction is indeed enough to solve these implicit 
equations. 

6. Numerical experiments 

The numerical experiments were performed using 15-digit arithmetic. The accuracies ob
tained are given by the number of correct digits J, defined by writing the maximum norm of 
the absolute error at the endpoint in the form 10-.d. 

We took for s = 7 and r = 5, the 5-processor methods ABR (of order 8) and improved ABR 
(of order 9). We equipped both methods with the same dynamic iteration strategy (with a 
slightly more stringent stopping criterion) as in [4]. 

Euler problem 

slope= 8.93 

1.3 1.4 1.5 1.6 1.7 1.8 1.9 
log(number of steps) 

Fehlberg problem 

slope= 8.94 

ts 1.s 1.1 1.8 1.9 2 2.1 2.2 2.3 2.4 
log(number of steps) 

Fig. 1. Observed order of improved ABR (s = 2 + 5). 
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DOPRIS 415 576 
--~·-·--·-·-·----·~--------------

728 898 11:13 
ABR (s = 2+5) 160 192 1J' ...... ...' 243 379 
Improved ABR (s = 2 + 5) 117 169 221 273 325 

Two well-known test problems were taken from [2], namely the Euler problem 

Y1(0) = 0, Y 11 =y2y3, 

Y~ = -Y1Y3, Y2(0)=1, O~t~20, 

y; = -0.5ly 1y 2 , y 3(0) = 1, 

and the Fehlberg problem 

Y11 =2ty 1 log(max{y 2 , 10- 3}), 

Y~ = -2ty2 log(max{y 1, 10- 3}), 

v (0) = 1 - l , 

y 2(0) = e, 
0 ~ t ~ 5. 

1422 
5011 
377 

(8) 

(9) 

First we investigate to what extent the omission of the step point formula and the PEC-mode 
for solving the first q stages affect the observed order of improced ABR. Therefore we plot the 
.1-values against the 10 log(number of steps). These points should lie on a straight line whose 
slope equals the step point order. Fig. l shows that the expected value 9 is fairly well 
approximated. 

Next we compare the performance of impr011ed ABR with that of ABR. For completeness, 
we also listed the performance of the DOPRI8 code with automatic stepsize control by Hairer. 
N0rsett and Wanner [2]. Tables 4 and 5 show that improred ABR works about 20% mon 
efficiently than ABR, while the averaged speed-up factor of improl'ed ABR compared h 

DOPRI8 (to be considered as one of the best sequential codes) is about 3. L 

7. Concluding remarks 

The attempt to improve the parallel Adams-Bashforth-Radau (ABR) methods proposed in 
[4] has resulted in a more efficient code. More particularly, on five processors, the speed-up of 
the improved version compared to the fully automatic code DOPRI8 is about 3.1. This 
speed-up could be further improved by including a stepsize strategy. 

Table 5 
Comparison of the number of f-evaluations of impro1'ed ABR with ABR and DOPRI8 for the Fehlbcrg probkm 

.1-values 6 7 8 9 10 11 

DOPRI8 759 963 1227 1574 1990 2503 

ABR (s = 2 + 5) 335 430 532 689 846 1067 
lmprol'ed ABR (s = 2 + 5) 256 361 466 571 677 782 
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