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Abstract. In fusion plasmas there is extreme anisotropy due to the hightemperature and large
magnetic field strength. This causes diffusive processes, heat diffusion and energy/momentum
loss due to viscous friction, to effectively be aligned withthe magnetic field lines. This align-
ment leads to different values for the respective diffusivecoefficients in the magnetic field direc-
tion and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to
1012 times larger in the parallel direction than in the perpendicular direction. This anisotropy
puts stringent requirements on the numerical methods used to approximate the MHD-equations
since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the
numerical error in approximating the parallel diffusion. Currently the common approach is
to apply magnetic field-aligned coordinates, an approach that automatically takes care of the
directionality of the diffusive coefficients. This approach runs into problems in the case of
crossing field lines, e.g., x-points and points where there is magnetic reconnection. It is there-
fore useful to consider numerical schemes that are more tolerant to the misalignment of the grid
with the magnetic field lines, both to improve existing methods and to help open the possibility
of applying regular non-aligned grids. To investigate this, several discretization schemes are
applied to the unsteady anisotropic heat diffusion equation on a cartesian grid.
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1 INTRODUCTION

Anisotropic diffusion is a common physical phenomenon and describes processes where the
diffusion of some scalar quantity is directionally dependent. Anisotropic diffusive processes
are for instance Darcy’s flow for porous media, large scale turbulence where turbulence scales
are anisotropic in size, and heat conduction and momentum dissipation in fusion plasmas.
Numerically, high anisotropy in diffusion may lead to the situation where errors in the direction
in which the diffusion coefficient is largest, may significantly influence the diffusion in the per-
pendicular direction. This may necessitate either a high-order approximation in the direction
of the largest coefficient value and/or a limitation on the degree of anisotropy (see e.g. Sovinec
et al [1], Meier et al [2]).
Given the high level of anisotropy in tokamak plasmas, a numerical approximation may intro-
duce large perpendicular errors if the magnetic field direction is strongly misaligned with the
grid. Here, misaligned means that the directions of diffusion are not aligned with the grid lines.
Difficulties that may arise with highly anisotropic diffusion problems on non-aligned meshes
are:

• significant numerical diffusion perpendicular to the magnetic field lines due to grid mis-
alignment (see e.g. Umansky et al [3]),

• non-positivity near high gradients (see e.g. Sharma et al [4]),

• mesh locking, stagnation of convergence dependent on anisotropy (see e.g. Babuška and
Suri [5]) and

• convergence loss in case of variable diffusion tensor (see e.g. Günter et al [6]).

It is possible to use a field-aligned coordinate system. However, this cannot be maintained
throughout the plasma; problems arise at x-points and in regions of highly fluctuating magnetic
field directions (for instance in case of edge turbulence). To confidently perform simulations
of phenomena which rely heavily on the resolution of the perpendicular temperature gradient
we must apply a scheme that is robust in terms of accuracy in case of varying anisotropy and
misalignment.
Although anisotropic diffusion is a well studied problem, the numerical methods to approxi-
mate it are not fully equipped to handle extremely anisotropic diffusion problems in case of a
(sharply) varying diffusion tensor and/or high gradients of the diffusion quantity.
The focus of this paper is on the order of convergence and the perpendicular numerical diffusion
for problems with extremely high levels of anisotropy. We present novel interpolation-based
schemes and compare these with existing schemes.

2 PROBLEM DESCRIPTION

Anisotropic thermal diffusion is described by the following model

q = −D · ∇T,
∂T

∂t
= −∇ · q+ f, (1)

whereT represents the temperature,b the unit direction vector of the field line,f some source
term andD the diffusion tensor. For a two-dimensional problem the diffusion tensor is given
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by

unit direction vector: b = [cosα, sinα]T ,

D = D‖bb+D⊥(I − bb),

D =

(

D‖b
2
1 +D⊥b

2
2 (D‖ −D⊥)b1b2

(D‖ −D⊥)b1b2 D⊥b
2
1 +D‖b

2
2

)

,

whereD‖ andD⊥ represent the parallel and the perpendicular diffusion coefficient respectively.
We definex, y as the non-aligned coordinate system ands, n as the aligned coordinate system,
see figure 1. The boundary conditions are discussed per test case. The diffusion equation is
approximated on a uniform cartesian grid, with∆x = ∆y = h.
In tokamak fusion plasma simulations the diffusion coefficients are often taken as temperature-
dependent. In general the parallel and perpendicular diffusion coefficients are assumed to be
proportional toT 5/2 andT−1/2 respectively, i.e., the anisotropy varies strongly with tempera-
ture.

Figure 1: Explanation of symbols

3 FINITE DIFFERENCE SCHEMES

We limit the discussion to finite difference schemes. Given auniform grid this can be di-
rectly translated to a finite volume approach. We consider several second-order accurate finite
difference schemes for the approximation of model equation(1). The first two schemes are
described in Günter et al [6]. The difference between theseschemes lies in the treatment of
the flux, particularly the location of the flux. The new schemes, to be presented here, aim to
improve the accuracy of co-located schemes by applying a stencil that lies on an approximation
of the field line. We use sub-indicesx, y, s, n to denote the respective derivatives.

3.1 Asymmetric finite differences

The first finite difference scheme for heat diffusion we discuss is depicted in figure 2. For
a spatially constant diffusion tensor this scheme reduces to the standard second-order scheme
for diffusion. The label asymmetry is coined because of the different treatment of thex- versus
y-differential in each point. The different treatment is a direct result of taking the flux values in
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Figure 2: Semi-staggered grid, asymmetric scheme, temperatureT is defined on the full indices
and the diffusion tensorD on the half-indices
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∣
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. For the heat conduction term

we have

qi+ 1

2
,j = −Di+ 1

2
,j ·

(

∂T

∂x

∣

∣

∣

∣

i+ 1

2
,j

,
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∣

∣

∣

∣
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.

In case of a co-located grid we use arithmetic averaging for the diffusion tensor, so:

Di+ 1

2
,j =

Di+1,j +Di,j

2
.

Finally, the diffusion follows from

∇ · q =
(q1)i+ 1

2
,j − (q1)i− 1

2
,j

∆x
+

(q2)i,j+ 1

2

− (q2)i,j− 1

2

∆y
.

Besides this semi-staggered grid approach whereq andD are defined on the half-indicesi± 1

2
, j

andi, j± 1

2
, we also implement the scheme on a co-located grid whereD is defined at the same

points as the temperature.
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3.2 Symmetric finite differences

Another approach is taken by Günter et al [6], they use a symmetric scheme (with a sym-
metric linear operator) that is mimetic by maintaining the self-adjointness of the differential
operator. By maintaining the self-adjointness numerically the following integral identity still
holds at the discrete level:

∫

V

φ∇ · qdV +

∫

V

q · ∇φdV =

∮

∂S

φ(q · n)dS,

whereφ is an arbitrary real-valued function inx, y. The total energy of a system described by
the diffusion equation is given byE =

∫

V
TdV . In absence of any surface and source terms

this should be constant. This means that∂E
∂t

= 0 or
∫

V
∇ · (D · ∇T )dV = 0. If we take a

constant value forφ we find that

φ

∫

V

∇ · qdV =
∂E

∂t
= 0,

and so energy is preserved exactly.
The approach goes as follows. First, the divergence terms are determined at the center points
(see figure 3):

∂T

∂x

∣

∣

∣

∣

i+ 1

2
,j+ 1

2

=
Ti+1,j+1 + Ti+1,j − Ti,j+1 − Ti,j

2∆x
,
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∂y
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∣

∣
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2
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2

=
Ti,j+1 + Ti+1,j+1 − Ti+1,j − Ti,j

2∆y
.

Figure 3: Staggered grid, symmetric scheme, temperatureT is defined on the full indices and
the diffusion tensorD on the half-indices

Next, the diffusion tensor is applied to obtain the heat flux

q = −D · ∇T, qi+ 1

2
,j+ 1

2

= −Di+ 1

2
,j+ 1

2

·

(

∂T

∂x

∣

∣

∣

∣

i+ 1

2
,j+ 1

2

,
∂T

∂y

∣

∣

∣

∣

i+ 1

2
,j+ 1

2

)T

,

5



Bram van Es, Barry Koren, and Hugo de Blank

where the diffusion tensor is taken as the arithmetic mean ofthe four surrounding points, so

Di+ 1

2
,j+ 1

2

=
Di+1,j+1 +Di+1,j +Di,j+1 +Di,j

4
.

Finally, the divergence is taken over the heat flux

∇ · q =
(q1)i+ 1

2
,j+ 1

2

+ (q1)i+ 1

2
,j− 1

2

− (q1)i− 1

2
,j+ 1

2

− (q1)i− 1

2
,j− 1

2

2∆x

+
(q2)i+ 1

2
,j+ 1

2

+ (q2)i− 1

2
,j+ 1

2

− (q2)i− 1

2
,j− 1

2
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2
,j− 1

2

2∆y
.

Two cases are considered, a fully staggered grid whereq andD are defined on the half-indices
i± 1

2
, j ± 1

2
and a co-located grid whereD is defined at the same points as the temperature.

3.3 Aligned finite differences

The idea is that differencing along the field line yields an approximation less prone to large
false perpendicular diffusion. To do this we have to use interpolation to find the values of
T andD on the field line. The field line itself is approximated, by tracing. In the current
implementation, the interpolation ofT,b andD is done on a co-located grid. In the following
section we will considerx, y as local coordinates where the origin is located in the stencil point
i, j. By applying the product rule and some vector identities we can write the diffusion equation
in parts:

∇ · (D · ∇T ) = A1 +A2 +A3 +A4, (2)

where the parts are given by

field line curvature: A1 = −
(

D‖ −D⊥

)

∇ · b⊥ (b⊥ · ∇T ) ,

field strength variation: A2 =
(

D‖ −D⊥

)

∇ · b (b · ∇T ) ,

temperature diffusion: A3 = D‖bb : ∇∇T +D⊥b⊥b⊥ : ∇∇T,

diffusion variation: A4 = (b · ∇T )(b · ∇D‖) + (b⊥ · ∇T )(b⊥ · ∇D⊥).

Rewriting this ins, n-coordinates yields

A1 =− (D‖ −D⊥)NTn,

A2 =(D‖ −D⊥)STs,

A3 =D‖Tss +D⊥Tnn,

A4 =D‖sTs +D⊥n
Tn,

(3)

where
S = −b2b1n + b1b2n , N = −b1b2s + b2b1s .

So we can write

∇ · (D · ∇T ) = ∇ ·
(

D‖(b · ∇T )b
)

+∇ · (D⊥(b⊥ · ∇T )b⊥) ,

∇ ·
(

D‖(b · ∇T )b
)

= D‖ (−NTn + STs + Tss) +D‖sTs,

∇ · (D⊥(b⊥ · ∇T )b⊥) = D⊥ (NTn − STs + Tnn) +D⊥n
Tn.
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Note thatS = αn andN = −αs.
When applying the equations of magnetohydrodynamics to nuclear fusion plasmas, an as-
sumption often made is that the temperature is diffused instantaneously along the field line.
This means that the variation of the temperature in the direction of the field line is zero, i.e.,
b · ∇T = 0, Ts = 0. So in that case our set of equations can be reduced to

A1 =D⊥NTn,

A2 =0,

A3 =D⊥Tnn,

A4 =D⊥n
Tn.

Here, we stick to the more general form with the parts given by(3). We continue by applying
an aligned stencil to approximate equation (2) ins, n-coordinates. The stencil pointsr, l, u, d, c
are given in figure 4.

Figure 4: Locally transformed grid,5-point stencil

The values at the locationsr, l, u, d are determined by bi-quadratic interpolation:

v(x, y) = c1x
2y2 + c2x

2y + c3y
2x+ c4x

2 + c5y
2 + c6xy + c7x+ c8y + c9, x, y ∈ [−h, h], (4)

wherev can representT, b1, b2, D‖ orD⊥. For convenience we assume that we have a uniform
Cartesian grid with∆x = ∆y = h. Then, forT , the coefficientsc1, . . . c9 follow from1
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1similarly for b1, b2, D‖, D⊥
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The matrixV contains the polynomial terms for each node, see figure 4. Thecoefficients
c1, · · · , c9 are now given by

cV1 =
1

h4

(

Ti,j −
Ti,j−1

2
−
Ti−1,j

2
−
Ti+1,j

2
−
Ti,j+1

2
+
Ti−1,j−1

4
+
Ti+1,j−1

4
+
Ti+1,j+1

4
+
Ti−1,j+1

4

)

,

cV2 =
1

4h3
(2Ti,j−1 − 2Ti,j+1 + Ti−1,j+1 + Ti+1,j+1 − Ti−1,j−1 − Ti+1,j−1) ,

cV3 =
1

4h3
(2Ti−1,j − 2Ti+1,j + Ti+1,j−1 + Ti+1,j+1 − Ti−1,j−1 − Ti−1,j+1) ,

cV4 =
1

2h2
(Ti−1,j − 2Ti,j + Ti+1,j) , cV5 =

1

2h2
(Ti,j−1 − 2Ti,j + Ti,j+1) ,

cV6 =
1

4h2
(Ti−1,j−1 + Ti+1,j+1 − Ti+1,j−1 − Ti−1,j+1) ,

cV7 =
Ti+1,j − Ti−1,j

2h
, cV8 =

Ti,j+1 − Ti,j−1

2h
,

cV9 = Ti,j,

where the superscriptV denotesV andermonde. Note that the coefficientsc1, . . . c8 are all
approximations of differential terms in pointi, j,

c1 =
1

4
Txxyy +O(h2), c2 =

1

2
Txxy +O(h2), c3 =

1

2
Tyyx +O(h2),

c4 =
1

2
Txx +O(h2), c5 =

1

2
Tyy +O(h2), c6 = Txy +O(h2),

c7 = Tx +O(h2), c8 = Ty +O(h2).

For comparison purposes we change the coefficients that representTx, Ty, Txx andTyy to in-
volve more nodes to approximate the respective differentials,

cS4 =
1

8h2
(Ti−1,j+1 + Ti−1,j−1 − 2Ti,j−1 + 2Ti−1,j − 4Ti,j + 2Ti+1,j − 2Ti,j+1 + Ti+1,j+1 + Ti+1,j−1) ,

cS5 =
1

8h2
(Ti−1,j+1 + Ti−1,j−1 − 2Ti−1,j + 2Ti,j−1 − 4Ti,j + 2Ti,j+1 − 2Ti+1,j + Ti+1,j+1 + Ti+1,j−1) ,

cS7 =
1

8h
(2Ti+1,j + Ti+1,j+1 + Ti+1,j−1 − 2Ti−1,j − Ti−1,j+1 − Ti−1,j−1) ,

cS8 =
1

8h
(2Ti,j+1 + Ti−1,j+1 + Ti+1,j+1 − 2Ti,j−1 − Ti−1,i−1 − Ti+1,j−1) .

This is equivalent to

cS4 = cV4 + cV1
1

2
h2, cS5 = cV5 + cV1

1

2
h2, cS7 = cV7 + cV3

1

2
h2, cS8 = cV8 + cV2

1

2
h2,

where the superscriptS denotes symmetric. The reasoning is that the Vandermonde coeffi-
cients represent the asymmetric scheme for spatially constant diffusion tensor and likewise the
symmetric coefficients represent the mimetic (or symmetric) scheme for a spatially constant
diffusion tensor. These are consistent approximations of the differential terms. However, when
using these coefficients in the bi-quadratic interpolationthey do not exactly yield all nodal val-
ues for the given locations.
The locations ofr, l, u, d are based on the field line, a first estimate is to apply a singlestep
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in the direction of the field line. Withs the coordinate in field line direction,n the coordinate
normal to it and with∆s and∆n the steps in both directions, the locations then become

(xr, yr) = (b1, b2)∆s, (xl, yl) = (−b1,−b2)∆s,

(xu, yu) = (−b2, b1)∆n, (xd, yd) = (b2,−b1)∆n.
(5)

Now we apply these coordinates (5) to construct discrete schemes ins, n-coordinates for the
individual partsA1,A2,A3 andA4.

3.3.1 Consistency analysis

The following analysis holds for both the symmetric and the Vandermonde coefficients, the
superscripts of the coefficients will denote the variable towhich they apply. We remark that
although the accuracy requirement holds for the sumA1+A2+A3+A4, we choose to impose
it on A1,A2,A3 andA4 individually.
For the approximation ofA4 we have the following expression:

A4 =
D‖r −D‖l

2∆s

Tr − Tl

2∆s
+
D⊥u

−D⊥d

2∆n

Tu − Td

2∆n
. (6)

To verify that this scheme approximates partA4 second-order accurately we substitute the
interpolation functions in equation (6) and we collect the coefficients:

0th-order:
1

4∆s2

(

c
D‖

7 (xr − xl) + c
D‖

8 (yr − yl)
)

(

cT7 (xr − xl) + cT8 (yr − yl)
)

,

1

4∆n2

(

c
D⊥
7 (xu − xd) + c

D⊥
8 (yu − yd)

)

(

cT7 (xu − xd) + cT8 (yu − yd)
)

,

1st-order:
1

4∆s2

(

c
D‖

7 (xr − xl) + c
D‖

8 (yr − yl)
)

(

cT4
(

x2r − x2l
)

+ cT5
(

y2r − y2l
)

+ cT6 (xryr − xlyl)
)

,

1

4∆n2

(

c
D⊥
7 (xu − xd) + c

D⊥
8 (yu − yd)

)

(

cT4
(

x2u − x2d
)

+ cT5
(

y2u − y2d
)

+ cT6 (xuyd − xuyd)
)

,

where the superscripts of the interpolation coefficients represent the variable to which the inter-
polation applies. Now the0th-order expression must be equal toA4 and the1st-order expression
must be zero. The requirements that can be distilled from this are

(xr − xl)
2 = 4b21∆s

2, (yr − yl)
2 = 4b22∆s

2, (xr − xl)(yr − yl) = 4b1b2∆s
2,

(xu − xd)
2 = 4b22∆n

2, (yu − yd)
2 = 4b21∆n

2, (xu − xd)(yu − yd) = −4b1b2∆n
2,

x2r,u − x2l,d = 0, y2r,u − y2l,d = 0, xr,uyr.u − xl,dyl,d = 0.

This holds for the locations given by equation (5). It appears that the first-order termA4 can be
approximated with second-order accuracy.
For the second-order terms inA3 we apply the following finite difference formula

A3 = D‖
Tr − 2Tc + Tl

∆s2
+D⊥

Tu − 2Tc + Td

∆n2
. (7)

9



Bram van Es, Barry Koren, and Hugo de Blank

Substituting the interpolation values in equation (7) and collecting terms by order inh gives

−1st-order:
D‖

∆s2
(

cT7 (xr + xl) + cT8 (yr + yl)
)

+
D⊥

∆n2

(

cT7 (xu + xd) + cT8 (yu + yd)
)

,

0th-order:
D‖

∆s2
(

cT4 (x
2

r + y2l ) + cT5 (y
2

r + y2l ) + cT6 (xryr + xlyl)
)

+
D⊥

∆n2

(

cT4 (x
2

u + y2d) + cT5 (y
2

u + y2d) + cT6 (xuyu + xdyd)
)

,

1st-order:
D‖

∆s2
(

cT2 (x
2

ryr + x2l yl) + cT3 (y
2

rxr + y2l xl)
)

+
D⊥

∆n2

(

cT2 (x
2

uyu + x2dyd) + cT3 (y
2

uxu + y2dxd)
)

,

where the−1st- and1st-order term should be zero, and the0th-order terms should be equal to
A3. This gives the following requirements

xr,u + xl,d = 0, yr,u + yl,d = 0, x2r,uyr,u + x2l,dyl,d = 0, xr,uy
2
r,u + xl,dy

2
l,d = 0,

xryr + xlyl = 2b1b2∆s
2, y2r + y2l = 2b22∆s

2, x2r + x2l = 2b21∆s
2,

xuyu + xdyd = −2b1b2∆n
2, y2u + y2d = 2b21∆n

2, x2u + x2d = 2b22∆n
2.

These requirements are fulfilled by the location set described by (5).
We also apply centered differencing for the first-order terms inA2:

A2 =
(

D‖ −D⊥

)

(

−b2
b1u − b1d
2∆n

+ b1
b2u − b2d
2∆n

)

Tr − Tl

2∆s
. (8)

Substituting the interpolation values in equation (8) and collecting terms by order inh gives

0th-order:
D‖ −D⊥

4∆s∆n

[

(−b2c
b1
7
+ b1c

b2
7
)(xu − xd) + (−b2c

b1
8
+ b1c

b2
8
)(yu − yd)

]

[

cT7 (xr − xl) + cT8 (yr − yl)
]

,

1st-order:−
D‖ −D⊥

4∆s∆n
b2

[

c
b1
4
(x2u − x2d) + c

b1
5
(y2u − y2d) + c

b1
6
(xuyu − xdyd)

]

[

cT7 (xr − xl) + cT8 (yr − yl)
]

+

D‖ −D⊥

4∆s∆n
b1

[

cb2
4
(x2u − x2d) + cb2

5
(y2u − y2d) + cb2

6
(xuyu − xdyd)

]

[

cT7 (xr − xl) + cT8 (yr − yl)
]

−

D‖ −D⊥

4∆s∆n
b2
[

cT4 (x
2
r − x2l ) + cT5 (y

2
r − y2l ) + cT6 (xryr − xlyl)

]

[

cb1
7
(xu − xd) + cb1

8
(yu − yd)

]

+

D‖ −D⊥

4∆s∆n
b1
[

cT4 (x
2
r − x2l ) + cT5 (y

2
r − y2l ) + cT6 (xryr − xlyl)

]

[

c
b2
7
(xu − xd) + c

b2
8
(yu − yd)

]

.

After substitution of the location set we have that the0th-order terms are equal toA2 and the
1st-order terms are zero.
Finally we apply centered differencing for the first-order terms inA1 to obtain the approxima-
tion

A1 = −
(

D‖ −D⊥

)

(

−b1
b2r − b2l
2∆s

+ b2
b1r − b1l
2∆s

)

Tu − Td

2∆n
. (9)

10
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Substituting the interpolation values in equation (9) and collecting terms by order inh gives

0th-order:−
D‖ −D⊥

4∆s∆n

[

(b2c
b1
7
− b1c

b2
7
)(xr − xl) + (b2c

b1
8
− b1c

b2
8
)(yr − yl)

]

[

cT7 (xu − xd) + cT8 (yu − yd)
]

,

1st-order:−
D‖ −D⊥

4∆s∆n
b1

[

c
b2
4
(x2r − x2l ) + c

b2
5
(y2r − y2l ) + c

b2
6
(xryr − xlyl)

]

[

cT7 (xu − xd) + cT8 (yu − yd)
]

+

D‖ −D⊥

4∆s∆n
b2

[

cb1
4
(x2r − x2l ) + cb1

5
(y2r − y2l ) + cb1

6
(xryr − xlyl)

]

[

cT7 (xu − xd) + cT8 (yu − yd)
]

−

D‖ −D⊥

4∆s∆n
b1
[

cT4 (x
2
u − x2d) + cT5 (y

2
u − y2d) + cT6 (xuyu − xdyd)

]

[

cb2
7
(xr − xl) + cb2

8
(yr − yl)

]

+

D‖ −D⊥

4∆s∆n
b2
[

cT4 (x
2
u − x2d) + cT5 (y

2
u − y2d) + cT6 (xuyu − xdyd)

]

[

c
b1
7
(xr − xl) + c

b1
8
(yr − yl)

]

.

After substitution of the location set (5) we have that the0th-order terms are equal toA1 and
the1st-order terms are zero.
We call this methodaligned Vandermondeor aligned symmetricdepending on the coefficients.
In practice we decrease∆s and∆n with increasing anisotropy, and we may simply and safely
take∆s = ∆n.

3.3.2 Curvature terms

The aligned schemes presented before assume that the direction does not change up to the in-
terpolation pointsr, l, u, d. Now we consider a numerical treatment of the termsb1s , b1n , b2s , b2n
based on field line curvature. First we write the terms as

b1s = xss, b1n = ynn, b2s = yss, b2n = −xnn.

This leads to the following equations forS,N :

S = −b2ynn − b1xnn, , N = −b1yss + b2xss.

The curvature terms can be approximated by

xss =
xr + xl

∆s2
, yss =

yr + yl

∆s2
, xnn =

xu + xd

∆n2
, ynn =

yu + yd

∆n2
, (10)

where the positionsr, l, u, d are not to be confused with the positions we used for the aligned
stencil depicted in figure 4. We are now explicitly looking for curvature. Given an interpolation
function for b1 andb2 within the stencil area we can apply tracing to find subsequent points.
We go from the center point to the interpolation pointsr, l, u, d by applying the (second-order
accurate) modified Euler scheme (Heun):

tangential direction:

x∗
k = xk−1 ±∆s∗b(xk−1, yk−1)

xk = xk−1 ±
1

2
∆s∗ (b(xk−1, yk−1) + b(x∗k, y

∗
k)) , k = 1, · · ·K,

normal direction:

x∗
k = xk−1 ±∆n∗b⊥(xk−1, yk−1)

xk = xk−1 ±
1

2
∆n∗ (b⊥(xk−1, yk−1) + b⊥(xk, yk)) , k = 1, · · ·K,

11
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Figure 5: Approximate track of field line

whereK is the number of substeps, and wherex0 = y0 = 0 (see figure 5). The values
∆s = K∆s∗ and∆n = K∆n∗ are used in equation (10).
Repeatedly stepping ins, n-direction and applying the interpolation ofb increases the com-
putational cost. The benefit though is that we can easily control the accuracy with which we
follow the field line, simply by changing the number of tracing steps.
Still note that the approach to more accurately determineS,N can only improve the accuracy
of A1 andA2.

3.4 Exact differentiation after interpolation

We can also find a direct approximation of the various spatialderivatives involved in the
anisotropic diffusion operator, by writing the interpolation function (4) in terms ofs, n and by
taking the appropriate derivatives of this rewritten function. Then, the interpolation functions
for b1 andb2 need to be applied to find the final form of the approximation. We use the non-
conservative form

Tt = D‖v
T
ss +D⊥v

T
nn + v

D‖
s vTs + vD⊥

n vTn +
(

D‖ −D⊥

) (

SvTs −NvTn
)

,

where the terms withv represent the derivatives of the bi-quadratic interpolation functions for
the quantities denoted by the superscript, i.e.,vT is the interpolation function for the tempera-
ture. The first-order differentials are written as

v
D‖
s vTs + vD⊥

n vTn = (cT7 b1 + cT8 b2)(c
D‖

7 b1 + c
D‖

8 b2) + (−cT7 b2 + cT8 b1)(−c
D⊥
7 b2 + c

D⊥
8 b1).

The diffusive terms are given by

D‖v
T
ss +D⊥v

T
nn = 2D‖

(

c4b
2

1 + c5b
2

2 + c6b1b2
)

+ 2D⊥

(

c4b
2

2 + c5b
2

1 − c6b1b2
)

,

and the curvature-dependent terms by

(

D‖ −D⊥

) (

SvTs −NvTn
)

= 2D‖

[

c7

(

b1c
b1
7 +

1

2
b1c

b2
8 +

1

2
b2c

b1
8

)

+ c8

(

b2c
b2
8 +

1

2
b2c

b1
7 +

1

2
b1c

b2
7

)]

+

2D⊥

[

c7

(

b2c
b2
7 −

1

2
b1c

b2
8 −

1

2
b2c

b1
8

)

+ c8

(

b1c
b1
8 −

1

2
b2c

b1
7 −

1

2
b1c

b2
7

)]

.

The geometric term is recursive sinceb1, b2 depend onx, y whereas the latter depend onb1, b2.
We call these methodsinterp. Vandermondeor interp. symmetric, depending on the coefficients
that are used.
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4 NUMERICAL RESULTS

In this section we show numerical results for four test cases. In all test casesb · ∇T is zero.
This foreknowledge is not used though; the general expressionsA1,A2,A3 andA4 according
to (3) are used. We define the anisotropy as

ς =
D‖

D⊥

,

whereD⊥ is one by default.

4.1 Constant angle of misalignment

As an initial test we consider a simple steady diffusion problem. The imposed exact solution
reads:

T (x, y) = xy [sin (πx) sin (πy)]s , x, y ∈ [0, 1],

wheres is large and the angle of misalignmentα is set to a constant value. The solution
simulates a temperature peak. Computational results for this test case are given in figure 6. The
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Figure 6: Errorǫ∞ for test cases with constant angles of misalignment,s = 10, ς = 109, at
varying mesh width, top:α = 5◦, bottom:α = 30◦, left: co-located, right: staggered. In the
plots for the co-located schemes all symmetric schemes overlap and likewise do all asymmetric
schemes.
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error norm is defined by

ǫ∞ =
|T̃ − T |max

|T |max

,

whereT̃ is the approximate temperature. It is clear from the figure that the symmetric schemes
conserve the order of accuracy independent of the anisotropy and angle of misalignment. The
co-located schemes are only slightly less accurate than thestaggered. For larger values, the
asymmetric schemes are less than second-order convergent on coarse grids, but they regain
second-order convergence on finer grids.

4.2 Varying angle of misalignment

Again the problem is considered on a square domain, this timedescribed by−0.5 ≤ x, y ≤
0.5. The following steady-state solution is assumed on the domain

T (x, y) = 1− (x2 + y2)3/2.

The direction in which the parallel diffusion acts is given by

b =
1

√

x2 + y2

(

−y
x

)

. (11)

Note that both∇·b andb·∇T are zero. This implies that the termA2 comes into play only due
to numerical errors. TermA4 is exactly zero since∇D‖, ∇D⊥ are zero. Test case 2 stresses
termsA1 andA3, with added contribution due to numerical errors in termA2.
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Figure 7: Errorǫ∞ for test cases with varying misalignment, left: co-located, right: staggered,
top: ς = 103, bottom:ς = 109

In figure 7, we study the accuracy of the various schemes for two anisotropic cases, one being
extremely anisotropic,ς = 109. The main observation to be made from figure 7 is that for the
extremely anisotropicς = 109 case only the aligned symmetric scheme and the interpolated
symmetric scheme preserve their second-order of accuracy.All other schemes fail completely;
they are all inconsistent for theς = 109 test case.

A detail to be observed from figure 7 is that for extremely highlevels of anisotropy the
staggered, symmetric scheme of Günter at al shows a wiggle in the error convergence. This is
caused by the fact that this scheme becomes less well-conditioned with increasing resolution.
Günter et al [7] had problems with number representation for a fourth-order mimetic finite dif-
ference scheme. They resolved this by increasing the numberrepresentation accuracy. Further,
it can be shown that the analytical problem becomes ill-posed for ς → ∞ (see Degond et al
[8]).

Finally, in figure 8 we make a more extensive study of the behavior of the different schemes
at varying anisotropy. Here, it appears again the better performance of our interpolated symmet-
ric scheme and aligned symmetric scheme; their errors do notincrease at increasing anisotropy.
For the following two test cases we will only proceed with theschemes that appear to be con-
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Figure 8:ǫ∞-error norm versus the anisotropyς for h = 0.01

sistent in Figure 7.
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4.3 Perpendicular numerical diffusion

Sovinec et al [1] devised a test to directly compare the numerically computed perpendicular
diffusion to the exact perpendicular diffusion. This test case is also considered by Günter et al
[6] and Sharma et al [4]. The exact solution and the forcing function are given by

T =
1

D⊥
ψ, f = 2π2ψ, ψ = cos(πx) cos(πy), x, y ∈ [−0.5, 0.5].

The error in the perpendicular diffusion is given by

|T (0, 0)−1 −D⊥|.

We use homogeneous Dirichlet boundary conditions. The fieldlines are tangential to the con-
tours of constant temperature, i.e.

b =
1

√

ψ2
x + ψ2

y

(

−ψy

ψx

)

.

Numerical results, given in Figure 9a, show second-order accuracy for all three schemes. How-
ever for this test case we also see some anisotropy dependence of the accuracy, see figure 9b.
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Figure 9: Error in perpendicular diffusion,|T−1 − 1|, ς = 109

4.4 Tilted elliptic temperature distributions

So far, we have used forcing functions which are spatially symmetric. Now we will apply a
forcing function that gives the solution for a tilted elliptic temperature distribution. This distri-
bution has no symmetry axes aligned with the coordinate axes. The tilted elliptic distribution
has no rotating field lines, basically the field lines go in thesame general direction. The exact
solution is given by

T (x, y) = 1 + (ax+ by)(x2 + y2)3/2, b =
1

√

T 2
x + T 2

y

(

−Ty
Tx

)

, x, y ∈ [−0.5, 0.5].

From the numerical results given in figure 10 we see that all three schemes considered have
good accuracy behavior.
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Figure 10:ǫ∞ behavior,a = 25, b = −75

5 CONCLUSION

We have presented a new finite difference approach for problems with strong anisotropic
diffusion. The approach uses the concept of following the field line within the stencil area,
to obtain the differencing points that are finally used in thediscretization. For the test cases
considered, the approach works well in maintaining the order of convergence independent of
the level of anisotropy.
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