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Abstract. In fusion plasmas there is extreme anisotropy due to the teigiperature and large
magnetic field strength. This causes diffusive processead,diffusion and energy/momentum
loss due to viscous friction, to effectively be aligned with magnetic field lines. This align-
ment leads to different values for the respective diffusbedficients in the magnetic field direc-
tion and in the perpendicular direction, to the extent theatdiffusion coefficients can be up to
10'2 times larger in the parallel direction than in the perpenalar direction. This anisotropy
puts stringent requirements on the numerical methods usagdgdroximate the MHD-equations
since any misalignment of the grid may cause the perperatidiffusion to be polluted by the
numerical error in approximating the parallel diffusion.u@ently the common approach is
to apply magnetic field-aligned coordinates, an approact tutomatically takes care of the
directionality of the diffusive coefficients. This apprbacns into problems in the case of
crossing field lines, e.g., x-points and points where them@agnetic reconnection. It is there-
fore useful to consider numerical schemes that are moresoteo the misalignment of the grid
with the magnetic field lines, both to improve existing meéshand to help open the possibility
of applying regular non-aligned grids. To investigate theeveral discretization schemes are
applied to the unsteady anisotropic heat diffusion equmatio a cartesian grid.
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1 INTRODUCTION

Anisotropic diffusion is a common physical phenomenon aggtdbes processes where the
diffusion of some scalar quantity is directionally depemideAnisotropic diffusive processes
are for instance Darcy'’s flow for porous media, large scaleulence where turbulence scales
are anisotropic in size, and heat conduction and momentssipaition in fusion plasmas.
Numerically, high anisotropy in diffusion may lead to theiation where errors in the direction
in which the diffusion coefficient is largest, may signifidgnnfluence the diffusion in the per-
pendicular direction. This may necessitate either a higleioapproximation in the direction
of the largest coefficient value and/or a limitation on thgrée of anisotropy (see e.g. Sovinec
et al [1], Meier et all[2]).

Given the high level of anisotropy in tokamak plasmas, a mgakapproximation may intro-
duce large perpendicular errors if the magnetic field dioecs strongly misaligned with the
grid. Here, misaligned means that the directions of difusire not aligned with the grid lines.
Difficulties that may arise with highly anisotropic diffusi problems on non-aligned meshes
are:

¢ significant numerical diffusion perpendicular to the magngeld lines due to grid mis-
alignment (see e.g. Umansky et/al [3]),

e non-positivity near high gradients (see e.g. Sharma efjpl [4

e mesh locking, stagnation of convergence dependent ontespgo(see e.g. Babuska and
Suri [5]) and

e convergence loss in case of variable diffusion tensor (spe&inter et al [6]).

It is possible to use a field-aligned coordinate system. Hewehis cannot be maintained
throughout the plasma; problems arise at x-points and momnegf highly fluctuating magnetic

field directions (for instance in case of edge turbulence)cdnfidently perform simulations

of phenomena which rely heavily on the resolution of the pedicular temperature gradient
we must apply a scheme that is robust in terms of accuracys@ cfvarying anisotropy and

misalignment.

Although anisotropic diffusion is a well studied probleretnumerical methods to approxi-
mate it are not fully equipped to handle extremely anisotrdgfusion problems in case of a
(sharply) varying diffusion tensor and/or high gradiertthe diffusion quantity.

The focus of this paper is on the order of convergence andaitpepdicular numerical diffusion

for problems with extremely high levels of anisotropy. Wes®nt novel interpolation-based
schemes and compare these with existing schemes.

2 PROBLEM DESCRIPTION

Anisotropic thermal diffusion is described by the folloimodel

oT
whereT represents the temperatukethe unit direction vector of the field ling, some source

term andD the diffusion tensor. For a two-dimensional problem théudibn tensor is given
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by

unit direction vector: b = [cos a, sin a]”,

D= D”bb —+ Dl(I — bb),

D — ( Dybi + Db (D) — Dy)bibs )
(Dy— Dy)bib, Dibi+ Dybs )’

whereD andD, represent the parallel and the perpendicular diffusiofficoent respectively.
We definer, y as the non-aligned coordinate system andas the aligned coordinate system,
see figuréIl. The boundary conditions are discussed perasst dhe diffusion equation is
approximated on a uniform cartesian grid, with: = Ay = h.

In tokamak fusion plasma simulations the diffusion coedfits are often taken as temperature-
dependent. In general the parallel and perpendicularsiliffucoefficients are assumed to be
proportional to7°/? andT~'/2 respectively, i.e., the anisotropy varies strongly witmpera-
ture.

yl\
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»

Figure 1. Explanation of symbols

3 FINITE DIFFERENCE SCHEMES

We limit the discussion to finite difference schemes. Givemigorm grid this can be di-
rectly translated to a finite volume approach. We considegrs¢ second-order accurate finite
difference schemes for the approximation of model equafldn The first two schemes are
described in Gunter et &ll[6]. The difference between tisedemes lies in the treatment of
the flux, particularly the location of the flux. The new schente be presented here, aim to
improve the accuracy of co-located schemes by applyingwisthat lies on an approximation
of the field line. We use sub-indicesy, s, n to denote the respective derivatives.

3.1 Asymmetric finite differences

The first finite difference scheme for heat diffusion we dsscis depicted in figurg 2. For
a spatially constant diffusion tensor this scheme reduzéset standard second-order scheme
for diffusion. The label asymmetry is coined because of ifferént treatment of the- versus
y-differential in each point. The different treatment is gedt result of taking the flux values in



Bram van Es, Barry Koren, and Hugo de Blank

q=-D-VT V.-q
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Figure 2: Semi-staggered grid, asymmetric scheme, terysefais defined on the full indices
and the diffusion tensdDd on the half-indices

i+1jandi,j+1,

or| Ty =Ty

Ox i+ Az ’

8_T _ Ti+1,j+1 + Ti,j+1 — Tz‘,j—l - Tz‘+1,j—1

dy i+l 4Ay ’
or T ATy — T —Tiay

3x ivj‘f'% 4ALE ’
dy ij+1 Ay ’

T T

and similar formulas folZ| , ., 2T
T 1_57] ay

- For the heat conduction term
Z,j—a

T
z‘+§,j>

In case of a co-located grid we use arithmetic averagingiediffusion tensor, so:

i-1; Ovlig=3 Oy

we have

or

oT
iyl = _Dz‘+§,j ) <%

)
i+3. Oy

_ Dip1; +Dij
ZJF%J o #.

D

Finally, the diffusion follows from

v B (Q1)i+§,j - (91)2‘—%,3' n (92)¢,j+% - (92)1‘,3‘—%
4= Ax Ay

Besides this semi-staggered grid approach whenedD are defined on the half-indicé&%,j
andi, j + % we also implement the scheme on a co-located grid whearedefined at the same
points as the temperature.
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3.2 Symmetric finite differences

Another approach is taken by Gunter etlal [6], they use a sytmescheme (with a sym-
metric linear operator) that is mimetic by maintaining tledf-edjointness of the differential
operator. By maintaining the self-adjointness numeryctile following integral identity still
holds at the discrete level:

[ 9 -av s [ a-voav=§ oa s

14 \%4 oS

whereg is an arbitrary real-valued function in y. The total energy of a system described by
the diffusion equation is given by = [, TdV. In absence of any surface and source terms
this should be constant. This means that= 0 or [, V- (D - VT)dV = 0. If we take a
constant value fop we find that

oF

=0
ot ’

10) / V.qdV =
and so energy is preserved exactly.

The approach goes as follows. First, the divergence teremmdetermined at the center points
(see figuréR):

or T+ T —Tijn — Ty

81‘ i+%7j+% 2Al‘ ’

or T+ T — Ty — Ty

dy it+3.+t 28y

=-D-VT V-q
Qj+1 it 1,41

\ /\ pdl ! ! I

R R ~ i+1/2,5+1/2

— > » » n

/ v \ [ u u

Figure 3: Staggered grid, symmetric scheme, temper&tusadefined on the full indices and
the diffusion tensoD on the half-indices

Next, the diffusion tensor is applied to obtain the heat flux

8_T
ox

or
) ay

T
Y
i+5.0+3

q=-D VI, q1;11="Di1;1-
i+3.0+3
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where the diffusion tensor is taken as the arithmetic medheofour surrounding points, so

_ Dis1js1 + Dig1y +Dij1 + D
itig+s T A .

D

Finally, the divergence is taken over the heat flux

()it s+ (@)ipr 1 — (@)t o1 — (@)ig 51
2Ax

(@2) it 43 + (@)t ges — (@) j-1 — (@)ird -1
2Ay

Two cases are considered, a fully staggered grid whenedD are defined on the half-indices
== %,j + % and a co-located grid whei@ is defined at the same points as the temperature.

3.3 Aligned finite differences

The idea is that differencing along the field line yields apragimation less prone to large
false perpendicular diffusion. To do this we have to userpdkation to find the values of
T and D on the field line. The field line itself is approximated, byciray. In the current
implementation, the interpolation @f, b andD is done on a co-located grid. In the following
section we will consider, y as local coordinates where the origin is located in the dtpomt
1, j. By applying the product rule and some vector identities arewrite the diffusion equation
in parts:

V- (D-VT)=A + Ay + A3 + Ay, (2)

where the parts are given by

field line curvature: A, = — (Dy— D.)V-by (b, - VT),
field strength variation: A, = (Dj — D)V -b(b-VT),
temperature diffusion: A3 = Dybb : VVT'+ D, b, b, : VVT,
diffusion variation: A, = (b-VT)(b-VD))+ (b, -VT)(b,-VD,).

Rewriting this ins, n-coordinates yields
Ay =— (D — Dy)NT,,
A; =(Dy — D, )STs,

AB :DHTss + DJ_anm
Ay :D||ST5 + DL"Tn,

3)

where
S = —byby, + b1by,, N = —biby, + boby,.

So we can write
V- (D-VI)=V-(Dyb-VI)b)+V-(Di(b,-VT)b,),
V- (Dy(b-VT)b) = Dy (=NT, + ST, + Tys) + D). T,
V- (Di(by -VT)b,) =D, (NT, — STy + Tpy) + D1, T).

6
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Note thatS = a,, and N = —a.

When applying the equations of magnetohydrodynamics tdeaudusion plasmas, an as-
sumption often made is that the temperature is diffusedmaneously along the field line.
This means that the variation of the temperature in the timeof the field line is zero, i.e.,
b-VT =0, T, = 0. So in that case our set of equations can be reduced to

Ay =D | NT,,
Az =0,

Az =D\ T,
Ay =D, . T,.

Here, we stick to the more general form with the parts givei @y We continue by applying
an aligned stencil to approximate equatioh (2},in-coordinates. The stencil pointg, u, d, ¢
are given in figurél4.

1,7 +1 1+ 1,7+ 1
® —@ ®

1+ 1,7

T, D Ty, Dy

o @ L
Figure 4: Locally transformed grid;point stencil

The values at the locationsl, u, d are determined by bi-quadratic interpolation:
v(:c, y) = Clx2y2 + 62$2y + ngQIE + C4x2 + C5y2 + ey + crxr +cgy +c9, T,y € [—h, h]a (4)

wherev can represerit’, b, b,, D) or D, . For convenience we assume that we have a uniform
Cartesian grid wittAz = Ay = h. Then, forT, the coefficients;, . . . ¢ follow from®)

a1 Rt R —h3 h* R —h* —h  h 1 Ti1j11
Cs R* R h* R R* K h  h 1 Tiv1j1
cs Rt —h® —h3 h* B> h* —h —h 1 Ti1ja
C4 Rt —h* K3 h* R* —h* h —h 1 Tiv1j1
cs | =VIT, V= 0 0 0 A2 0 0 —h 01 |, T=| Ty,
Co 0 0 0 A% 0 0 h 01 Tit1
cr 0 0 0 0 A2 0 0 h 1 T;ji1
cs 0 0 0 0 h? 0 0 —h 1 Tija
Cy 0 0 0 0 0 0 0 01 T;j

Isimilarly for by, b, D, D1
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The matrixV contains the polynomial terms for each node, see figlre 4. cbeéficients
¢, -+, Cg @re NOW given by

1 T . . T . To. T. T . T T T .
1% i,j—1 i—1,j i+1,5 1,7 +1 i—1,7—1 i+1,7—1 i+1,7+1 i—1,54+1
= TZ - — — — ,
Clh4(’f2222+4+4+4+4)
1
cy = e (2T -1 = 2T j i + Ticv i + T jn — Timn i1 — i1 j—1)
1
cy = e (2T —2T541 5+ Tiv1 o1 + Tivrje1 — Ticrjo1 — T i)
1 1
¢ = o2 (Timrg = 210 + Tivayg) cy = o (Tig-1 = 2Ti + Tiga),
1
%

¢ = gz Lmg-1+ T = Tivngr = Timag)

vV _ Tz‘+1,j - Tzel,j cV _ Tz‘,j+1 — Tm'%
! 2h b 2h ’
Cg = CZji,ja

where the superscrigt denotesV andermonde. Note that the coefficients,, . ..cs are all
approximations of differential terms in pointj,

€= %Txxyy + O(h2)7 Cy = %Tarary + O(h2), C3 = %Tyyx + O(hz),
¢ = 5Tee + O0), 5= 5Ty + O(1?),  ¢5=Toy + O(I?),
cr =T, + O(h?), cs =T, + O(h?).

For comparison purposes we change the coefficients thasept’,, 7, 7., andT,, to in-
volve more nodes to approximate the respective differntia

;= # (Tic1jur + Ty = 2T5 51 + 2T 15 — AT 5 + 205105 — 2715 j1 + Tia e + Tiga-1)
s = 8—}112 (Tic1jp1 + Ticvjor — 20545+ 2T 1 — AT + 2T j1 — 205415 + Tigr ji1 + Tig1 1)
5 = 8ih 2T+ Tigr 1 + Tivr o1 — 21520 — Tica jor — Tim1 1)
cg = % 2T i1 +Ticajin + Tiva 1 — 27501 — Tima i1 — T j-1) -

This is equivalent to

Gt = v = o = d
where the superscrigfi denotes symmetric. The reasoning is that the Vandermonel#-co
cients represent the asymmetric scheme for spatially anhdiffusion tensor and likewise the
symmetric coefficients represent the mimetic (or symmgetioheme for a spatially constant
diffusion tensor. These are consistent approximationsetitfferential terms. However, when
using these coefficients in the bi-quadratic interpolati@y do not exactly yield all nodal val-
ues for the given locations.

The locations ofr, [, u, d are based on the field line, a first estimate is to apply a sistgie

8
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in the direction of the field line. Witk the coordinate in field line directiom, the coordinate
normal to it and withAs and An the steps in both directions, the locations then become

(r,yr) = (b1,b2)As,  (z1,1) = (=b1, —b2)As,
(%,yu) = (_b2>bl)An> (xdayd) = (b2, —bl)A”-

Now we apply these coordinated (5) to construct discreteraels ins, n-coordinates for the
individual partsA4;,4,,43; and A,.

(5)

3.3.1 Consistency analysis

The following analysis holds for both the symmetric and tla@mdermonde coefficients, the
superscripts of the coefficients will denote the variablevtoch they apply. We remark that
although the accuracy requirement holds for the stim- A, + A3 + A4, we choose to impose
iton A;,4,,4; and.A, individually.

For the approximation o, we have the following expression:

Dy =DyT =T D1, =D, Tu—Ta
2As 2As 2An 2An

To verify that this scheme approximates palt second-order accurately we substitute the
interpolation functions in equatiohl(6) and we collect tbeféicients:

Ay = (6)

1 D
Oth-order4A 5 <c7 (2, — ) + cp! ) (cF (2, —m) + s (yr —w1))
1
i (o (=) + B yd)<c o= 2a) + = )
1 D
15’f-order4A 5 (07 "z, — 2) + 08 ) cr (J: — :cl) +c; (yf — y?) + g (zpyr — xlyl)) )

1
T (=) + 05 =) (eF (22— 3) + (42— 93) + F (wuva — i)

where the superscripts of the interpolation coefficierpsagent the variable to which the inter-
polation applies. Now thé-order expression must be equaldgand thel*‘-order expression
must be zero. The requirements that can be distilled fromatie

(r, — ;)2 = 42As%,  (y, —y)? = 43As%, (2, — 2)(yr — y1) = 4b1 by As?,
(1, — 3q)* = 4b5AN2, (yu ) = 4b2An (24 — 29) (Yo — Yq) = —4b1byAn?,
x?",u - le,d =0, ynu - yl,d 0, TrulYru — T1dYld = 0.

This holds for the locations given by equatih (5). It appehat the first-order termd, can be
approximated with second-order accuracy.
For the second-order terms.i4y we apply the following finite difference formula

T,—2T+T o T,-2T+ Ty

Az = D|| As? + Dy An2 . (7)
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Substituting the interpolation values in equatioh (7) aoldecting terms by order i gives

—1°*-order A—l (7 (x4 a1) + c5 (yr +31)) +

WOMGZL( (22 +y7) + &t (V2 +y7) + ¢ (zoyr + )

D,
A2®4%+m%wdm+w»

D,
t+ Xz (e (2 + u2) + 5 (W + ¥d) + 6 (Tuhu + Taya))

D
WOMHAQ( 3 (T2y, + aty) + & (o + yim))

D
+Z%(ﬂﬁm+ﬁwﬂfﬂﬁ%+ﬁmﬂ7

where the—1°¢- and1**-order term should be zero, and tbé-order terms should be equal to
Ajs. This gives the following requirements

Ty + Tid = 07 Yru + Y,d = 07 x%,uyr,u + xl%dyl,d = 07 x?‘,uyz,u =+ xl,dyl%d = 07
T,yr + 11y = 2010y As?, y2+yf = 203As?, 22+ af = 203As?,
Tulu + Taya = —2biboAn?, y2 +y2 = 203 An?, 22 + 22 = 203An?.

These requirements are fulfilled by the location set desdrty [5).
We also apply centered differencing for the first-order &ermA.:

_ by, — by, ba, — by, \ T, — T
Az = (DH B Dl) <_b2 2An b 2An 2As ®)

Substituting the interpolation values in equation (8) aolktkecting terms by order in gives

Dy—D,
Oth_order:zllgsTn [( bgc + blc Ty — zq) + (—bgcg1 + blc?)(yu — yd)] [c?(xr —x) + cg(yr — yl)] ,

Dy —D,

1**-order: - 4HA3An b2 {Cil (s — ) + Cgl (Yo —va) + Cgl (Tuyu — xdyd)} [C;F(wr — @) + 5 (yr — yl)] +
Dy —
4£&Anblh?@€ x3) + &5 (Wi — ¥3) + ¢ (Tuyu — xﬂMﬂ[ﬁY%~—m)+C§@r—yﬂ]—
Dy —-D,y
“iaonn b2 [ =)+ F 2 = o)+ e e — )] [ (u = 2a) + (v = va)| +
Dy -

1 ) ,
b [ @~ o) + F @~ )+ e — m)] [ (o — a) + o — 9]

After substitution of the location set we have that 4eorder terms are equal td, and the
1%'-order terms are zero.

Finally we apply centered differencing for the first-ordems in.4; to obtain the approxima-
tion

. b2»,« - b2l bl»,« - bll Tu - Td
Av=—(Dy = D) (_bl 2As o2 2As 2An ®

10
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Substituting the interpolation values in equation (9) aolecting terms by order in gives

Dy—D,
0th-order: — 74HAsAn [(bzcgl — by 2) (@, — x1) + (back — bicR?) (yr — yz)] [F (24 — 2a) + & (Yu — va)] »
15t-ord ._DII_le bor 2 2 bo 2 2 bo _ T(. _ T
order:—— by |¢g* (7 — a7) + ¢5* (yr = i) + 6" (ryr — wayn) | (o7 (vu = wa) + €5 (yu — ya)| +
D —D,
4”A3An b {CZI (5'37% - 5'312) + Cgl (y? - 3112) + Cgl (zryr — wzyl)] [C?(:Uu —xq) + cg(yu — yd)] _
D —D,
4”A3An b1 [CZ(QE% - 953) + Cg(yi - yﬁ) + Cg(xuyu - Zﬂdyd)] [022 (xr — 1) + 022 (yr — yl)} +
Dy —D,
4”A3An bz [CZ(xi — @) + 5 (Y — yid) + 6 (Tuyu — Taya)] {C?I (zr — ) + cgl (yr — yz)} :

After substitution of the location sdfl(5) we have that tHeorder terms are equal td, and

the 15'-order terms are zero.

We call this methodligned Vandermonder aligned symmetridepending on the coefficients.
In practice we decreas®s and An with increasing anisotropy, and we may simply and safely
takeAs = An.

3.3.2 Curvature terms

The aligned schemes presented before assume that théatidees not change up to the in-
terpolation points, [, u, d. Now we consider a numerical treatment of the tebmsh,, , b, , bo,
based on field line curvature. First we write the terms as

bi, = Tss, b1, = Ynn, b2, = Yss, b2, = —Tpp.
This leads to the following equations f6r V:
S = —balYpn — 01Tpn,, N = —b1Yss + boss.
The curvature terms can be approximated by

Ty + 2y Yty . Ty g ~ YutYa
ASQ ) ySS - ASQ 9 nn — A’I’LQ 9 ynn - A'I’LQ Y

where the positions, [, u, d are not to be confused with the positions we used for the atign
stencil depicted in figurie 4. We are now explicitly looking émirvature. Given an interpolation
function for b; andb, within the stencil area we can apply tracing to find subsegpeimts.
We go from the center point to the interpolation points u, d by applying the (second-order
accurate) modified Euler scheme (Heun):

(10)

Tss =

tangential direction:
X), = Xp—1 £ As"b(xp_1, Yr_1)

1
Xk = Xk—1 + §AS* (b(xk—la yk—l) + b(x]tayI:)) ’ k= ]-7 e K7

normal direction:

X), = Xp—1 £ An*b (Tr_1, Yr—1)

1
Xk = Xk—1 + §A’I’L* (bL(xk—la yk—l) + bL(xkayk)) 3 k= ]-7 ot K7

11
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Figure 5: Approximate track of field line

where K is the number of substeps, and whete = y, = 0 (see figurd 5). The values
As = K As* andAn = K An* are used in equation (110).

Repeatedly stepping in n-direction and applying the interpolation bfincreases the com-
putational cost. The benefit though is that we can easilyrobtite accuracy with which we
follow the field line, simply by changing the number of tragisteps.

Still note that the approach to more accurately determiing can only improve the accuracy
of .Al andAg.

3.4 Exact differentiation after interpolation

We can also find a direct approximation of the various spalgivatives involved in the
anisotropic diffusion operator, by writing the interpatat function [4) in terms of, n and by
taking the appropriate derivatives of this rewritten fuoict Then, the interpolation functions
for b; andb, need to be applied to find the final form of the approximatiore Wge the non-
conservative form

T, = Dl + Dol + o T 4 oPrl 4 (Dy— Dy) (Sv! — Nvl),

where the terms with represent the derivatives of the bi-quadratic interpotafunctions for
the quantities denoted by the superscript, i:€.is the interpolation function for the tempera-
ture. The first-order differentials are written as

o2 vl 4ol = (kb + chbg)(cf” by + cé)” by) + (—cFby + clby) (=P by + e by).

The diffusive terms are given by
D||U£ + Dlvgn = 2D|| (C4b% + 0565 + C@blbg) + QDL (C4b§ + C5b% — C@blbg) s

and the curvature-dependent terms by
T T b1 1 ba 1 b1 ba 1 b1 1 b2
(D” — DJ_) (S’US — NUn) = 2DH Cr blC7 + §b108 + 5(?208 + Cg bQCS + 5(?207 + 5()107 +

1 1 1 1
2D | [07 <bgcl§2 - éblc? — §b2c21) + cs (blcgl - 552’321 - 551’322)} :

The geometric term is recursive singeb, depend on:, y whereas the latter depend bn bs.
We call these methodsterp. Vandermonder interp. symmetricdepending on the coefficients
that are used.

12
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4 NUMERICAL RESULTS

In this section we show numerical results for four test calseall test caseb - VT is zero.
This foreknowledge is not used though; the general expmessl;, A,, A; and. A, according
to (3) are used. We define the anisotropy as

whereD, is one by default.

4.1 Constant angle of misalignment

As an initial test we consider a simple steady diffusion pgob The imposed exact solution
reads:
T(x,y) = zy[sin (wz)sin (wy)]", =,y €[0,1],

wheres is large and the angle of misalignmemtis set to a constant value. The solution
simulates a temperature peak. Computational resultsitest case are given in figlire 6. The

10 10
symmetric, G. etal symmetric, G. et al
:Z asymmetric —©— asymmetric
interp. Vandermonde
interp. symmetric
aligned Vandermonde
. aligned symmetric
107 aned sy 10
10 10
10 10
10 . 10
10 10 10 10 10 10
h h
10 T 10
symmetric, G. et al —— symmetric, G. etal
:2: asymmetric —©— asymmetric
interp. Vandermonde

intery
aligne onde
aligned symmetric

1

10° = 1 107 = 1
10 10 10 10° 10 10
h h

Figure 6: Errore,, for test cases with constant angles of misalignment, 10, ¢ = 10°, at
varying mesh width, topa = 5°, bottom: o = 30°, left: co-located, right: staggered. In the
plots for the co-located schemes all symmetric schemes$agpvand likewise do all asymmetric
schemes.
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error norm is defined by )
. |T - T|maa:

0o — )
|T|max

whereT is the approximate temperature. It is clear from the figuae tie symmetric schemes
conserve the order of accuracy independent of the anigo&ogp angle of misalignment. The
co-located schemes are only slightly less accurate thastlggered. For larger values, the
asymmetric schemes are less than second-order convenmgeuacse grids, but they regain
second-order convergence on finer grids.

4.2 \Varying angle of misalignment
Again the problem is considered on a square domain, thisdeseribed by-0.5 < x,y <
0.5. The following steady-state solution is assumed on the doma

T(w,y) =1~ (a* + )2

The direction in which the parallel diffusion acts is givgn b

bo—— Y
“ﬁ( ) ()

Note that botiv -b andb- VT are zero. This implies that the tetdy comes into play only due
to numerical errors. Terml, is exactly zero sinc& D, VD, are zero. Test case 2 stresses
termsA; and.As, with added contribution due to numerical errors in tedm

10° ! 10"
symmetric, G. et al. symmetric, G. et al.

i: asymmetric, G et al. —©— asymmetric, G. et al

interp. Vandermonde

10 % interp. symmetric
aligned Vandermonde
aligned symmetric

107}

107

10°F

107 10°F

1076 -3 -2 -1
10 10 10
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symmetric, G. et al.

:2: asymmetric, G. et al.
107° interp. Vandermonde | 10°L 4
interp. symmetric
% aligned Vandermonde symmetric, G. et al
aligned symmetric . —O— asymmetric, G. et al.
e - -1 e = -1
10 10 10 10 10 10
h h

Figure 7: Errore,, for test cases with varying misalignment, left: co-locateght: staggered,
top: ¢ = 102, bottom:¢ = 10°

In figure[4, we study the accuracy of the various schemes fortvsotropic cases, one being
extremely anisotropic, = 10°. The main observation to be made from figure 7 is that for the
extremely anisotropic = 10° case only the aligned symmetric scheme and the interpolated
symmetric scheme preserve their second-order of acculdlayther schemes fail completely;
they are all inconsistent for the= 10° test case.

A detail to be observed from figuté 7 is that for extremely hig¥els of anisotropy the
staggered, symmetric scheme of Gunter at al shows a wiggheierror convergence. This is
caused by the fact that this scheme becomes less well-cametit with increasing resolution.
Gunter et all[7] had problems with number representatioa flourth-order mimetic finite dif-
ference scheme. They resolved this by increasing the nurepersentation accuracy. Further,
it can be shown that the analytical problem becomes ill-gdees — oo (see Degond et al
[81).

Finally, in figure[8 we make a more extensive study of the bieaf the different schemes
at varying anisotropy. Here, it appears again the bettéopeance of our interpolated symmet-
ric scheme and aligned symmetric scheme; their errors doa@ase at increasing anisotropy.
For the following two test cases we will only proceed with goliemes that appear to be con-

10"

10" .
symmetric, G. et al

T T
symmetric, G. et al

asymmetric —©— asymmetric
o interp. Vandermonde o

10 interp. symmetric 3 10
aligned Vandermonde
aligned symmetric

10" E 107 ~ A~ o

\>4 <
Wt 107 S Q ’i W 107F

10° E 10°F /
10 5 10°F E
? d

.
10° 10° 10° 10° 10° 10 10” 10° 10° 10° 10° 10° 10 10"
3 3

Figure 8:¢..-error norm versus the anisotropyor h = 0.01

sistent in Figurél7.
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4.3 Perpendicular numerical diffusion

Sovinec et al[1] devised a test to directly compare the nigakly computed perpendicular
diffusion to the exact perpendicular diffusion. This tes$e is also considered by Gunter et al
[6] and Sharma et al [4]. The exact solution and the forcimgfion are given by

1
T = D—w, f=2n%p, 1 = cos(mx)cos(my), x,y € [—0.50.5].
1
The error in the perpendicular diffusion is given by
‘T(Ou 0)71 - DJ_‘

We use homogeneous Dirichlet boundary conditions. The lileds are tangential to the con-
tours of constant temperature, i.e.

N ( e ) :
VOZ+ 2\ e
Numerical results, given in Figuke]9a, show second-ordeuracy for all three schemes. How-
ever for this test case we also see some anisotropy dependgtie accuracy, see figurel 9b.

10° ! 10' ! ! ! ! !
10° F ]
107 W .
10" 1
symmetric, G. et al., staggered
symmetric, G. et al., staggered 10 —V— interp. symmetric
_ 100} =X/ interp. symmetric 4 = aligned symmetric
_:T‘ =B aligned symmetric W8
)
E o
10 102
N
107 1
10°}
107 ]
O
1075 -3 ‘72 -1 1074 0 : 2 ‘4 : 6 : 8 ‘10 12
10 10 10 10 10 10 10 10 10 10
h 3
. o 9 . _
(a) varyingh, < = 10 (b) varyings, h = 0.01

Figure 9: Error in perpendicular diffusioff, ! — 1|, ¢ = 10°

4.4 Tilted elliptic temperature distributions

So far, we have used forcing functions which are spatialiyrsetric. Now we will apply a
forcing function that gives the solution for a tilted eliiptemperature distribution. This distri-
bution has no symmetry axes aligned with the coordinate. akies tilted elliptic distribution
has no rotating field lines, basically the field lines go in$hene general direction. The exact
solution is given by

1 _
T(z,y) = 1+ (az +by)(«* +y*)*?, b= ———= ( Ly ) . a2,y €[~05,05].

VIZ+T2\ Te
From the numerical results given in figurel 10 we see that adletlschemes considered have
good accuracy behavior.
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107 10°

symmetric, G. et al, staggered
interp. symmetric interp. symmetric
aligned symmetric aligned symmetric

107}

10°F

. 10° . .
10° 107 10 10° 10° 10 10°
h 3

10°

(a) varyingh, ¢ = 10° (b) varyings, h = 0.01
Figure 10:¢., behaviora = 25,6 = —75

5 CONCLUSION

We have presented a new finite difference approach for prablgith strong anisotropic
diffusion. The approach uses the concept of following thig fime within the stencil area,
to obtain the differencing points that are finally used in digcretization. For the test cases
considered, the approach works well in maintaining the mod€onvergence independent of
the level of anisotropy.
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