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Introduction

Anisotropic diffusion is a common physical phenomenom describing processes where the

diffusion of some scalar quantity is directionally dependent. Anisotropic diffusive processes

include Darcy’s flow for porous media, large scale turbulence where turbulence scales are

anisotropic in size and heat conduction and momentum dissipation in fusion plasmas. Given

the high level of anisotropy in tokamak plasmas, a numericalapproximation may introduce

large perpendicular errors if the magnetic field direction is strongly misaligned with the grid.

Here, misaligned means that the directions of diffusion arenot aligned with the grid points.

Problems that may arise with highly anisotropic diffusion problems on non-aligned meshes are

in general; significant numerical diffusion perpendicularto the magnetic field lines due to grid

misalignment (see e.g. Umansky et al[1]), non-positivity near high gradients (see e.g. Sharma

et al[2]), mesh locking, stagnation of convergence dependent on anisotropy (see e.g. Babuška

and Suri[3]), convergence loss in case of variable diffusion tensor (see e.g. Günter et al[4]). To

confidently perform simulations of phenomena that rely heavily on the resolution of the perpen-

dicular temperature gradient we must apply a scheme that is robust in terms of accuracy in the

case of varying anisotropy and misalignment.

Methods

As a novel approach we suggest to use a finite difference scheme that is approximately aligned

with the field lines. First, we write the diffusion equation in terms of locally aligned coordinates

(s,n) wheres is aligned with the field line andn is perpendicular to the field line, see figure

1a. The aligned equation is discretised with central differencing with fixed stepsizes(∆s,∆n).

The stepsizes∆s,∆n are free but bounded parameters, as long as the aligned stencil points stay



within the interpolation region. The stencil to solve the discretised scheme is found by simply

taking two straight lines through the point(i, j) in the directionsb and b⊥ and picking two

points on each line, see figure 1b. This gives us an aligned five-point stencil. The values for

b,D‖,D⊥, (D) andT on this aligned stencil, i.e. at pointsr, l,u,d,c, are found by interpolation

of the surrounding nodes which are placed on a colocated mesh. For the interpolation we apply

two sets of coefficients, the Vandermonde coefficients and equivalent (and partially equal) sym-

metric coefficients. The Vandermonde coefficients follow from c = V−1u whereV is the well-

known Vandermonde matrix andu is a vector containing the values for the interpolated quanti-

ties at the surrounding nodes. Realizing that the coefficients approximate differential terms we

can rewrite some of the coefficients to obtain a more symmetric formulation. The results for

the aligned method with Vandermonde coefficients and symmetric coefficients are denoted as

aligned Vandermonde andaligned symmetric respectively. Another approach where the inter-

polation function is applied directly to the diffusion equation, is calledinterp. Vandermonde or

interp. symmetric depending on the coefficients used.

(a) Explanation of symbols (b) locally transformed grid, 5-point stencil

For comparison we apply a symmetric finite difference scheme(which is mimetic) and an

asymmetric finite difference scheme, both schemes are described in Günter et al[4].

Results

As an example we show theε∞-error convergence for a diffusion test with as exact function;

T = 1− (x2+ y2)3/2, x,y ∈ −0.5,0.5 and an anisotropy ratio of 109. The ε∞-error norm is

given by|T −Te|max/|Te|max. Here the field lines are tangent to the temperature contourlines.
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Figure 1:ε∞-error of the temperature, anisotropyς = 109

From the convergence plot (see figure 1) we can see that our aligned scheme and interpolation

scheme are competitive with existing schemes. This was confirmed also for higher anisotropy

ratios. In another test case by Sovinec et al [5] we specifically look at the error of the perpen-

dicular diffusion, the exact solution is given byT = 1
D⊥

ψ, f = 2π2ψ, ψ = cos(πx)cos(πy)

and the error is given by|T (0,0)−1−D⊥|.
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(a) ς = 109, co-located
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(b) ς = 109, staggered

Figure 2: Error in perpendicular diffusion|T−1−1|

Here only the symmetric scheme on a staggered grid is able to capture the perpendicular

diffusion accurately and practically independent of the level of anisotropy. Our aligned schemes

maintain 2nd order convergence independent of the anisotropy.

Discussion

We have used a new differencing method on a colocated grid that implements the concept

of following the field line track within the stencil area to obtain the differencing points that are



finally used in the approximation. The aligned scheme can be applied to the non-linear heat

diffusion problem, performance is comparable to the symmetric scheme by Günter et al as it

conserves the order of accuracy independent of the anisotropy.
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