Numerical modelling of strongly anisotropic dissipative effectsin MHD
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I ntroduction

Anisotropic diffusion is a common physical phenomenom dbsty processes where the
diffusion of some scalar quantity is directionally depemdé\nisotropic diffusive processes
include Darcy’s flow for porous media, large scale turbuéemdere turbulence scales are
anisotropic in size and heat conduction and momentum @issipin fusion plasmas. Given
the high level of anisotropy in tokamak plasmas, a numeaggroximation may introduce
large perpendicular errors if the magnetic field directi®strongly misaligned with the grid.
Here, misaligned means that the directions of diffusionreotaligned with the grid points.
Problems that may arise with highly anisotropic diffusionlgems on non-aligned meshes are
in general; significant numerical diffusion perpendicutathe magnetic field lines due to grid
misalignment (see e.g. Umansky et al[1]), non-positividanhigh gradients (see e.g. Sharma
et al[2]), mesh locking, stagnation of convergence depeinde anisotropy (see e.g. Babuska
and Suri[3]), convergence loss in case of variable diffusensor (see e.g. Gunter et al[4]). To
confidently perform simulations of phenomena that rely igaw the resolution of the perpen-
dicular temperature gradient we must apply a scheme thabisst in terms of accuracy in the

case of varying anisotropy and misalignment.

Methods

As anovel approach we suggest to use a finite difference setiehis approximately aligned
with the field lines. First, we write the diffusion equatienterms of locally aligned coordinates
(s,n) wheres is aligned with the field line and is perpendicular to the field line, see figure
la. The aligned equation is discretised with central diffieing with fixed stepsizgds, An).

The stepsizeAs, An are free but bounded parameters, as long as the alignedl gte@ints stay



within the interpolation region. The stencil to solve thealetised scheme is found by simply
taking two straight lines through the poifit j) in the directionsb andb, and picking two
points on each line, see figure 1b. This gives us an aligneepbua stencil. The values for
b,D,D, (D) andT on this aligned stencil, i.e. at pointd, u,d,c, are found by interpolation
of the surrounding nodes which are placed on a colocated.rReslthe interpolation we apply
two sets of coefficients, the Vandermonde coefficients anoratpnt (and partially equal) sym-
metric coefficients. The Vandermonde coefficients folloanirc = V—1u whereV is the well-
known Vandermonde matrix andis a vector containing the values for the interpolated guant
ties at the surrounding nodes. Realizing that the coeffisi@approximate differential terms we
can rewrite some of the coefficients to obtain a more symméirmulation. The results for
the aligned method with Vandermonde coefficients and symenatefficients are denoted as
aligned Vandermonde andaligned symmetric respectively. Another approach where the inter-
polation function is applied directly to the diffusion edjoa, is calledinterp. Vandermonde or

interp. symmetric depending on the coefficients used.
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(a) Explanation of symbols (b) locally transformed grid, 5-point stencil

For comparison we apply a symmetric finite difference schéntech is mimetic) and an

asymmetric finite difference scheme, both schemes areidedan Gunter et al[4].

Results

As an example we show tlea-error convergence for a diffusion test with as exact fuorcti
T=1- (x2+y2)3/2, X,y € —0.5,0.5 and an anisotropy ratio of 20The &,-error norm is

given by|T — Te|max/ | Telmax- Here the field lines are tangent to the temperature cormest!
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Figure 1:£..-error of the temperature, anisotropy= 10°
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From the convergence plot (see figure 1) we can see that gaealischeme and interpolation

scheme are competitive with existing schemes. This wasrooedi also for higher anisotropy

ratios. In another test case by Sovinec et al [5] we spedifitabk at the error of the perpen-

dicular diffusion, the exact solution is given by= D—lLl,U, f =2y, = cognx)cogny)
and the error is given by (0,0)"1— D |.
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Figure 2: Error in perpendicular diffusigii —* — 1|
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Here only the symmetric scheme on a staggered grid is ablapgtuie the perpendicular

diffusion accurately and practically independent of thel®f anisotropy. Our aligned schemes

maintain 29 order convergence independent of the anisotropy.

Discussion

We have used a new differencing method on a colocated gridrtiidements the concept

of following the field line track within the stencil area totam the differencing points that are



finally used in the approximation. The aligned scheme canppéieal to the non-linear heat
diffusion problem, performance is comparable to the symmsetheme by Glnter et al as it

conserves the order of accuracy independent of the anggotro
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