
WSSIAA 5 (1995) pp. 1-16 
©World Scientific Publishing Company 

Static Optimization of Queueing Systems 

Onno J. Boxma 

CW/ 

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands; 

Tilbuf'K University, Faculty of Economics 

P. 0. Box 90l53, 5000 LE Ti/burg, The Netherlands 

Abstract 

This paper discusses some recent developments in the static: optimization of queueing systems. Special at­

tention is given to three problem classes: (i) the optimal allocation of servers, or service capacity, to queues 

in a network; (ii) the optimal allocation of the visits of a single server to several queues (a polling system); 

(iii) the optimal allocation of a single arrival stream to several single server queues. 

l. INTRODUCTION 

When several users compete for the use of a common resource, the limited capacity of 
the resource can give rise to congestion. This situation occurs in a plethora of every­
day situations: people queue at a counter in a bank or supermarket, congestion occurs 
in road traffic, products encounter delays at machines during their production process, 
messages wait for access to a common transmission channel and computer jobs for the 
use of a set of processors. 
Queueing occurs even when the service capacity of the resource strongly exceeds the de­
mand. This is due to the fact that the interarrival times of the users, and their required 
service times, are generally not fixed. A mathematical model of congestion phenomena 
therefore usually represents interarrival and service times of users by random variables. 
The resources are called service facilities, with a single server or multiple servers, and 
the users are called customers. Customers often visit a number of service facilities, 
encountering several queues during their stay in the system. 
Queueing theory is devoted to the description, analysis and optimization of such queue­
ing systems. It concentrates on a few key performance measures, like queue lengths 
and waiting times. Due to the stochastic nature of the arrival and service processes, 
and of the routing process of customers through a network of queues, the main per­
formance measures are also random variables (or moments thereof). Generally, costs 
are in a natural way associated with these performance measures. The ultimate goal 
of performance analysis is optimization - and that is the subject of this paper. 
While an enormous amount of literature has been devoted to the probabilistic analysis 
of queueing systems, their optimization is somewhat lagging behind. This is partly due 
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to the mathematical complexity of queueing systems: only rarely does one find nice 
structural properties or simple explicit expressions that allow straightforward optimiza­
tion. Still, a sizable literature discusses the optimization and control of queues. One 
possible classification of this literature is according to the aspect of the queueing sys­
tem to which it refers: (i) facility lay-out, (ii) admission control, (iii) customer routing, 
(iv) processing capacity ((re-)allocation of numbers of servers, and also control of the 
speed of servers), (v) service order, and (vi) buffer allocation. Some of these problems 
(facility lay-out, buffer allocation) typically occur in the design and fine-tuning phases 
of a service facility, whereas other problems mainly arise in its daily operation. 
This brings us to another classification: static versus dynamic queueing system op­
timization. Consider for example a stream of jobs that have access to N parallel 
processors, possibly with different processing speeds. Suppose that the jobs must be 
allocated to the processors in a way that minimizes the mean waiting cost, different 
costs being assigned to one unit of delay at each of the processors. An important 
element in this customer assignment problem is the available information; this can 
range from 'complete observation', i.e., total knowledge about the system at any point 
in time (including exact queue lengths and service times), to only information about 
some basic characteristics like arrival rates or mean service times. In general, the term 
dynamic is used for policies which operate under time-dependent information, whereas 
policies operating under time-independent characteristics are called static. 
Clearly, the more information is available for making decisions, the better the allocation 
can be. Dynamic policies in general perform better than static policies. However, static 
allocation policies are also of considerable interest. First of all, the situation of total 
knowledge at all times is unrealistic. From a viewpoint of costs, overhead grows as the 
amount of information to be exchanged, stored and processed increases. Furthermore, 
dynamic policies are not always that effective: there will always be some delay between 
updates of the system's current state, and this may have a considerable effect upon 
the quality of the policy. Moreover, it may be extremely difficult or time-consuming 
to solve a control problem under time-dependent information, while only rarely the 
structure of the optimal policy can be fully determined. Static policies, which often 
lend themselves more easily to performance analysis, can then be employed to provide 
performance indications (e.g., bounds) for dynamically controlled systems. 

In this paper we restrict ourself to (a selection of) static queueing optimization prob­
lems. We refer to Stidham and Weber [29] for a survey of dynamic control problems 
in queueing networks, with an emphasis on models based on Markov decision theory; 
Chapter 8 of Walrand [32] is also highly recommended, for the structural insight it 
provides in the dynamic control of queues. 
In Section 2 we discuss the optimal (re-)allocation of servers to queues in a network; we 
also pay attention to the assignment of service capacity, in the form of service speeds, 
to the single server queues of a network. Section 3 is devoted to the optimization of a 
polling system, i.e., a multiqueue system with only one server who moves from queue 
to queue. The service disciplines of the server at the various queues are studied, as well 
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as the optimal route of the server along the queues. Section 4 considers a problem that 
is in some sense dual to the latter problem: the earlier mentioned optimal allocation 
of customers to several queues in parallel. We always assume that buffer capacity is 
unlimited; for buffer allocation problems we refer to the survey [34]. 

Remark 1.1 
Most of the optimization problems that are discussed in this paper have the follow­
ing property: the objective function to be minimized by choosing a set of parameters 
v1, ..• , VN can be separated into N terms, the ith being a function of v; only, that is con­
vex in V;, i = 1, ... , N. This is characteristic of a class of resource allocation problems 
discussed in the book of Ibaraki and Katoh [18]. They present several algorithms for 
such problems. The required convexity/concavity properties of the performance mea­
sures of queueing systems have only recently been studied systematically; see Liyanage 
and Shanthikumar [25] and Buzacott and Shanthikumar [11] and references therein. 
Important references are in particular a series of papers by Shaked, Shanthikumar 
and Yao that develop a sample-path based approach to obtain structural properties of 
queueing systems; see e.g. Shaked and Shanthikumar [28]. 

2. STATIC SERVICE CAPACITY ALLOCATION 

Consider an open Jackson network of M/M/. queues Q1,Q2, ... ,QN. We discuss 
the following problems. (i) The server reallocation problem: how should a pool of 
M servers be distributed over the queues such as to minimize a weighted sum of the 
mean numbers of customers? (ii) The server allocation problem: how many servers 
should be allocated to each station, such that a weighted sum of the mean numbers of 
customers is below a certain level while minimizing costs? Or, dually: how many servers 
should be allocated to each station, such that server investment costs are kept below 
a certain level while minimizing a weighted sum of the mean numbers of customers? 
(iii) Kleinrock's capacity assignment problem: allocate server speeds to N single-server 
stations such that investment costs are kept below a certain level while minimizing the 
mean sojourn time of a customer in the network. The dual problem is also considered. 

(i) The server reallocation problem 
Let ,\; be the total arrival rate (external plus internal, the latter being determined by 
the Markovian routing matrix) at Q; of the Jackson network, and let µ; be the service 
rate of each server at Q;. Hence rnf := L>.;f µ;J + 1, with l J the integer rounddown 
operation, denotes the minimal number of servers at Q; such that the traffic intensity 
at Q; is less than one. The server reallocation problem (SR) for the open Jackson 
network is formulated as follows: 
SR 

N 

Minm,, ... ,mN L c;EL;(m;) 
i=l 

(2.1) 
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N 
s.t. L:m;=M, m;;::::mf, i=l, ... ,N. 

i=l 

Here EL,(m;) denotes the mean number of customers at Q; w.hen this queue has. m; 
servers, and c; is a cost factor. It is proven in [9] that the followmg gree~y, or ~argmal 
allocation, algorithm is optimal for the SR problem. Start by allocatmg m; servers 
to Q;, i = 1, ... , N. At each iteration step add one server to that. queue where th.e 
greatest decrement in the objective function is achieved. Repeat this pr?cedure ~nt1l 
all M servers have been allocated. The optimality of this marginal allocat10n algonthm 
is typical for resource allocation problems in which the objective function is separable 
into convex terms while the constraints are linear. 

(ii) The server allocation problem 
Again consider the open Jackson network. The server allocation problem (SA) is 
formulated as follows: 
SA 

N 

Minm,, .. ,mN L F;(m;), (2.2) 
i=l 

N 

s.t. L c.EL,(m;) S W, m;;::::: mf, i = 1, ... , N. 
i=l 

Here F';(m;) is a convex and decreasing function of m;, that denotes the investment 
costs involved in allocating m; servers to Q;; W is a given number. If, e.g., c; = 1/ µ; 
then W indicates an upper bound on the mean total workload in the system. 
Problem SA can be regarded as a generalization of the knapsack problem. Hence it 
is NP-complete. In [9] a simple greedy heuristic is proposed that represents a useful 
approach to the solution of problem SA: Start by allocating mf servers to Q;. At each 
iteration step, allocate one server to the queue for which the ratio of the increment of 
the objective function and the decrement of the weighted sum of mean queue lengths 
is the smallest. Stop as soon as adding a server makes the allocation feasible. 
In [14] two algorithms are proposed that build upon this algorithm. They lead to 
substantially better results, at the expense of the complexity increasing by a factor 
N respectively N2• For those two algorithms also worst-case performance ratios of 2 
respectively 3/2 are proven in [14], whereas for the greedy heuristic it has only been 
proven that the minimal value of the objective function lies in between the values of the 
one-but-last (infeasible) and last allocations. Van Vliet and Rinnooy Kan [31] extend 
the greedy heuristic of [9] in another way. They allow general external interarrival 
time distributions and general service time distributions at the queues, and they use a 
two-moment parametric decomposition approach to estimate the first two moments of 
all interarrival times; subsequently they approximate the mean numbers of customers 
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in the queues, based on the first two moments of interarrival and service times at 
each queue in isolation. For the latter approximation they use a known approximation 
formula that is convex in the number of servers. 
Aarts [1] considers the dual server allocation problem (DSA): 
DSA 

N 

Minm,, .. ,mN L c;EL;( mi), 
i=l 

N 

s.t. L F;(m;) ::; F, m; 2 mf, i = 1, ... , N, 
i=l 

(2.3) 

with F some constant. He discusses the greedy heuristic and two refinements, similar 
to the three algorithms mentioned for (2.2). He observes that if F;(m;) = dm;, i = 
1, ... , N, then problem (2.3) amounts to the server reallocation problem (2.1), which 
is solved exactly by the greedy heuristic. 

(iii) The capacity assignment problem 
Consider an open Jackson network of M/M/1 queues, with service capacityµ; at queue 
Q;. Let A; denote the total (external plus internal) arrival rate at Q;. The mean total 
sojourn time ET of an arbitrary customer in the network is given by 

ET=~t~. 
I i=l A; - µ; 

Here 1 denotes the total external arrival rate in the network. Kleinrock [20] has posed 
and solved the following capacity assignment problem (CA); he has formulated it in 
the framework of assigning channel capacities in a communication network. 
CA 

(2.4) 

N 

s.t. L d;µ; ~ D, µ; > A;, i = 1, ... , N. 
i=l 

Again the separability /convexity structure appears. This time the problem even allows 
an explicit solution, that is easily obtained using the Lagrange multiplier technique. 
The optimal service rates turn out to be [20]: 

i = 1, .. . ,N. (2.5) 
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After having allocated ,\, service capacity to Q;, the remaining funds are invested 
proportionally to the square root of A; and d;. 

Remark 2.1 
The dual capacity assignment problem (DCA) reads: 
DCA 

.v 
Minµ,, .,µNL d;µ;, 

i=l 

s.t. ET '.S T, µ, > \, i = 1, ... , N, 

(2.6) 

with T some positive constant. It is solved in exactly the same way, yielding a very 
similarlv structured solution. One easily verifies [l] that, if T equals the optimal value 
in problem CA, then the optimal value of r;;:, 1 d;µ; in the dual problem equals D. 

Remark 2.2 
Problems CA and DCA have been extended in several directions. We refer to Bitran 
and Tirupati [2] for a heuristic approach (related to those for SA) to DCA in the case 
of general service time distributions. 

3. STATIC POLLING OPTIMIZATION 

The standard polling system is a queueing system in which a single server, S, visits 
N queues Qi, ... , Q N in some order. Polling systems presently receive much atten­
tion, partly because of their ability to model many resource allocation phenomena in 
computer-communications. After a brief model description, we discuss: (i) optimal 
server routing and (ii) optimal service behaviour at the queues. 

Model description 
S serves N infinite-capacity queues Q1, ... , QN. Customers arrive at all queues accord­
ing to independent Poisson processes. The arrival intensity at Q; is A;, i = 1, ... , N. 
Customers arriving at Q; are called class-i customers; their service times are indepen­
dent random variables B; with mean /3; and second moment 13;2), i = 1, ... , N. After 
their service at Q; they leave the system. The offered traffic load, p;, at Qi is defined as 
p, := \/],, i = 1, ... , N, and the total offered load is called p. When swapping out of 
Q,, the serYer incurs a switchover period of type i; the switchover durations of type i are 
independent random variables Si with mean s; and second moment s)2l, i = 1, ... , N. 
All interarrival, service and switchover processes are independent stochastic processes. 
The service discipline at Q; determines how many customers are served when S visits 
Q,. Important disciplines are: 

• Exhaustive (E): S serves Qi until it has become empty. 

• Gated (G): S serves exactly the customers that were present at the beginning of 
the visit. 
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• k-limited (k - L): S serves k customers or empties Q;, whichever happens first. 

Furthermore, for some applications (traffic lights, timed-token protocol in a local area 
network), the visit period is restricted by a fixed time limit. In the application of a 
signalized traffic intersection, it may be natural to leave the server (green light) at a 
queue even if it is empty; but in the now following discussion of polling optimization 
we shall restrict ourself to the case in which S never resides at an empty queue. In the 
sequel we assume the traffic parameters to be such that the polling system is ergodic. 
A necessary condition for this to hold is p < l; it is known to be also sufficient when 
the service discipline at all queues is E or G, but not when, e.g., a queue is k - L. 

(i) The optimal server routing problem 
We start with a simple result for a probabilistic polling model, viz., a polling model 
in which S visits the queues according to a probabilistic routing mechanism: with 
probability p; it chooses Q; for its next visit, i = 1, ... , N. Suppose that all switchover 
times between the various queues have mean a and second moment a(2l, and that 
service at a set of queues e is exhaustive while it is gated at the remaining set, g. 
Let EW; denote the mean waiting time at Q;, i = 1, ... , N. Consider the following 
optimal server routing problem (OSR): 
OSR 

N 

Minp, ,. .. ,pN L p;EW; 
i::::l 

N 

s.t. LPi = 1, Pi 2: 0, ... ,pN ~ 0. 
i=l 

(3.1) 

It is easily seen that minimizing this objective function is equivalent to minimizing the 
mean workload. In this model 

N "N ,\ ·(3(2) p2 a N p a(2) L p;EW; = PL.i=t ' i - _a_ L 2. + -- L ~ - pa+ p-. (3.2) 
i=l 2(1-p) 1-pkEePk 1-pk=iPk a 

We now have a classical non-linear optimization problem with linear constraints. Using 
standard Lagrange multiplier techniques we find the following solution (cf. [7]): 

k Ee: (3.3) 

k E g: (3.4) 
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We refer to [27] for an extensive study of the optimization of Markovian server routing 
(i.e., server routing probability Pii from Qi to Q;). Below we turn to the follow­
ing related problem, again for a mixture of E and G queues and i.i.d. switchover 
times. S is allowed to visit the queues according to a fixed pattern, a polling table 
(like Q1Q2Q3 ... QN, which is called cyclic polling, or Q1Q2Q1Q3Q1 .. . Q1QN, which 
is called star polling). We seek the polling table that minimizes the mean workload, 
or equivalently, '2:!1 p;EWi. An implicit expression for this sum is known, but it does 
not allow a straightforward optimization. If an upper bound on the table size is given, 
then an integer programming problem results; but without such a restriction it is not 
clear a priori whether a given 'good' table cannot be improved by taking a much larger 
table with a very similar structure. In [7] an approximate approach is proposed to the 
problem of choosing an optimal polling table, and shown to perform well. It consists 
of three steps. 

Step 1. Choose the occurrence frequencies of the queues in the table by taking the 
optimal frequencies P1e obtained in (3.3} and (3.4) for the probabilistic polling model 
with the same traffic parameters. 
Step 2. Based on those occurrence frequencies, determine a 'good' table size M (take 
the smallest possible M such that for all k, Mp1: is within a predetermined small 
distance from a positive integer}. 
Step 3. Given the round-off occurrence numbers, say n;, find a table such that Q; 
occurs n; times with the visits to each particular queue as evenly spaced as possible. 
This spacing problem is handled using the so-called Golden Ratio policy, cf. Itai and 
Rosberg [19]. 

Remark 3.1 
Comparison of the optimal mean workloads in the cases of probabilistic polling and 
polling tables reveals that the latter minimum is considerably lower. The explanation 
is that the variance of the time between successive visits to a particular queue is 
much smaller in a polling table; this more regular behaviour leads to a smaller mean 
workload. Still, the occurrence frequencies of the queues in the optimal polling table 
are well predicted by the occurrence frequencies in the probabilistic polling model. 

Remark 3.2 
The Golden Ratio policy has recently been applied to several 'even spacing' problems. 
In [5], in the context of optimizing the time limits in a polling model, an algorithm 
is proposed which seems to outperform Golden Ratio; it is based on a neat result of 
Hajek [16] concerning the optimal splitting of point processes. 

Let us now consider the somewhat more general polling table optimization problem 
with objective function: 

N 

Min L c.;>.;EW;. (3.5) 
i=l 
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Here c; are nonnegative constants that reflect the cost of waiting one unit of time at Q;. 
The choice C; = /3; again yields the objective function of (3.1), while c; = 1 leads to the 
minimization of the mean total number of waiting customers in the system (note that 
Little's formula implies that A;EW; equals the mean number of waiting customers at 
Q1). Let us also allow 1 - L service at one or more of the queues, and non-identically 
distributed switchover times. Even probabilistic polling no longer yields an explicit 
analytic solution when one of these changes is introduced. For the corresponding (and 
practically more important) polling table minimization problem, step 1 above now has 
to be adapted after which steps 2 and 3 can again be used. In [8] some approaches are 
developed for this adaptation. One of them is based on the following approximations 
for EW;, for a polling table with n; evenly spaced occurrences of Q;: 

i E e : 

i E g: 

LN n s 
EW; ~ A(l - p;) FI J j; 

n; 

LN n s 
EW; ~ A(l + p;) 1= 1 1 7 ; 

n; 

iEl-L: 

(3.6) 

(3.7) 

(3.8) 

A denotes some positive constant which we don't need to specify, as only the ra­
tio of the various mean waiting times matters for the optimization. Minimization of 
I:f:1 c;A;EW; easily yields the optimal n; values, up to a multiplicative constant: 

i Ee: n ~ Jd.(1 - p·)/s·· i i i i i, (3.9) 

i E g: (3.10) 

iEl-L: 

If all queues are 1 - L and we add the constraint l:f=i n1s1/(l - p) = C*, which 
amounts to prescribing that the mean cycle time of the polling table equals C*, then 
the resulting I-limited polling table problem (LPT) is: 
LPT 

(3.12) 
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N 

s.t. L njSj/(l - p) = c·. 
j=l 

It has a similar form as problem CA of Section 2. The solution is given by (3.11) when 
its righthand side is multiplied by c·. Its interpretation is that Q; should be visited at 
least >.;C* times per cycle, as this is the mean number of arrivals at Q; during a cycle 
of mean C*; the remaining 'capacity' is allocated according to a square root rule. In 
[8] the resulting rule is shown to perform quite satisfactorily. 

Remark 3.3 
An interesting application of polling table optimization occurs in stochastic economic 
lot scheduling, where several items need to be produced in a common facility. A. 
Federgruen (personal communication) studies the problem of determining an optimal 
production sequence (with a somewhat more involved objective function), using a three­
step procedure as outlined above. 

Remark 3.4 
We refer to Yechiali [35] for an interesting overview of semi-dynamic control of the 
server route in a polling system. Yechiali (see also Browne and Yechiali [10]) considers 
one-cycle look-ahead policies. For various service disciplines, he determines the visit 
order of the queues in the next cycle - in which all queues are visited exactly once -
that minimizes the expected duration of that cycle. 

(ii) Optimal service behaviour at the queues 
Given a route of S along the queues, the question arises which service discipline should 
be used at each queue. Borst et al. [6] consider a cyclic polling model, viz., a polling 
model in which S visits the queues in cyclic order. The service discipline at Q; is 
k;-limited, i = 1, ... , N. They consider the following unconstrained k-limited problem 
(UkL) for this cyclic polling model: 
UkL 

N 

Mink1, .. .,kN L CiAiEWi. 
i=l 

(3.13) 

Next to this unconstrained optimization problem, they also consider the constrained 
k-limited problem (CkL) where the objective function in (3.13) must be minimized 
under the additional condition that 2:~ 1 [;k; :::; K for some nonnegative parameters ri 
and constant K. Such a condition could reflect a limit on the (expected) cycle time of 
the server, which is relevant in some access protocols in local area networks. 
Problem CkL is tackled in two different ways (both necessarily approximative: an 
exact analysis of polling models with k-limited service seems to be prohibitive in all 
but a few exceptional cases). One approach is to take such k; values that the ratios 
k; : ki agree with the ratios of the visit frequencies for a corresponding polling table 
with 1-limitedservice at all queues (see (3.11)). A minor adaptation of (3.8) has to be 
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made to incorporate the fact that switchover times out of Q; occur once instead of k; 
times. That results in the following mean waiting time approximation, with D1 some 
constant and s := Ef.:1 s;: 

EW, '.:::= D 1 l - p + p; 
k,(l - p) - >.;s 

(3.14) 

A second approach is to use the Fuhrmann-Wang approximation [15] for EW; in the 
cyclic polling model with k-limited service: 

(1 - p;)(l - p) + (2 - p)p;jk; 
EW; '.:::= D2 I ; 

1 - p- A;S k; 
(3.15) 

here D2 is some constant. There is no need to specify the constants D1 and D2 , as 
only the ratio of the mean waiting times plays a role in the optimization. Taking into 
account the constraint Ef:1 /;k; :5 K, the optimal solution ki, i = 1, ... , N of (3.13) 
using either {3.14) or (3.15) is found in a straightforward way. We mention only the 
one based on (3.15), as it is slightly better: 

>. s N >. s Jc·>.·[p·(2 - p) + >.·s(l - p·)]/T 
k: = -·- + (K - L 11-1-) • • • • • ' • {3.16) 

1 - P i=l 1 - P Ef=111Jci>.i[P1(2 - p) + >.1s(l - Pi)Jhi 

Again the resemblance with problem CA of Section 2 should be noted. 
In [6] slightly better results for CkL are obtained by sharpening {3.15) somewhat, 
at the expense of no longer obtaining explicit expressions for the k;; that improved 
approximation also yields good results for UkL. 

Remark 3.5 
An unproven conjecture in [6], that is used in the optimization procedure, is that EW; 
is decreasing ink; and non.decreasing in k1 for all j i- i. Using a sample-path argument, 
Levy et al. [22] show that the service discipline that minimizes the mean workload, or 
equivalently Ef:1 p;EW;, in the unconstrained case is to serve all queues exhaustively 
(i.e., k; = oo). Liu et al. [23], also allowing idling policies, in more generality discuss 
the server behaviour that stochastically minimizes the unfinished work and the number 
of customers in the system. 

Remark 3.6 
In the so-called Bernoulli service discipline, S serves after each service completion yet 
another customer with probability q; and leaves with probability 1 - q;. This discipline 
can be viewed as the stochastic counterpart of the k-limited discipline. Analogous to 
UkL, Blanc and Van der Mei [3] try to find those q; that minimize the objective function 
(3.5). Their main approach is a numerical one, based on the use of the so-called power 
series algorithm. 
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Remark 3. 7 
A pioneering polling optimization study is due to Klimov [21]. It combines elements 
of both problem types studied in this section. Klimov studies a polling model without 
switchover times, but with probabilistic customer routing along the queues. After each 
service completion a decision is made as to which queue S should visit next. Klimov 
shows that the optimal server routing policy has an index structure: the optimal policy 
corresponds to an ordering of the queues such that S always chooses to serve a customer 

from the first nonempty queue in that order. 

4. STATIC TRAFFIC ALLOCATION 

Consider the following situation. Customers arrive according to a Poisson process with 
rate A. At the instance of arrival, a customer has to be assigned to one of N parallel 
single servers Q1i ... , QN. The service time of a customer that is assigned to Qi has 
distribution B;(-) with mean (3; and second moment f3} 2l, i = l, ... ,N. All service 
times are independent. Let P denote an allocation policy. Our aim is to minimize 

N 

Minp I:CJ;(P)EW;(P). ( 4.1) 
i::::=l 

The notation is as before, with now (P) indicating a dependency on the allocation 
policy P; the factors f;(P) are load-dependent weight factors. For example, if under P 
a fraction p; of the customers is assigned to Q;, then f;(P) = Ap; yields the objective 
function in (3.5). 
We refer to Wang and Morris [33] for a survey on load balancing, including numerical 
comparisons of various dynamic and static allocation policies. We restrict ourself again 
to static policies. Buzen and Chen [12] have studied the probabilistic allocation, in 
which a customer is sent to Q; with probability p;, i = 1, ... , N. The arrival process at 
each queue now is a Poisson process, and hence each queue is an M/G/l queue. They 
have used mathematical programming techniques to minimize the mean sojourn time 
of a customer. Let us also consider the class of probabilistic allocation policies, but 
with objective function (4.1). First take f; = p;, and put A; := Ap;. The probabilistic 
allocation problem (PA) now reduces to: 
PA 

N 

s.t. 2: >.;=A, 
i:=l 

1 
0 <JI·< -

- t - f3i' i = 1, .. . ,N. 

(4.2) 

It can also be verified that this optimization problem has a feasible solution provided 
that 1:~ 1 1/ (3; > A, i.e., the arrival rate does not exceed the total service capacity. 
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Here and in the remainder of the section that is assumed to be the case. 
Note that the objective function in (4.2) is separable into N terms, the ith term being 
strictly convex in>.;; cf. Remark 1.1, where the reader is referred to the book of Ibaraki 
and Katoh [18]. Just like CA, this case is so simple that it can be solved explicitly, 
using Lagrange multiplier techniques; we find that the unique optimal rates >.; • are ( cf. 
[13]): 

• 1 1 [ 2/3;6 i-1 
>.; = -(3. - -(3· 1 + -w , 

' 1 cif3i 
i = l, ... ,N, (4.3) 

in which the Lagrange multiplier 6 is determined by the constraint 2=~1 >.; = A. If in 
(4.1) f; = 1 instead off; = p;, then problem PA has the same separable structure, 
with the control variables only interacting through the linear restriction 2=~ 1 >.; = /\.. 
In this case an explicit analytic solution is not obtained (in fact some of the >.; • now 
are equal to zero), but one can easily solve the problem numerically, using for example 
the algorithm RANK in [18], p. 19. 
Algorithm RANK strongly depends on the strict convexity of the N terms. The con­
vexity property implies that there is only one local minimum, which consequently has 
to be the optimal solution for the allocation problem. One of the cases in which the 
property of strict convexity may not hold is the probabilistic traffic allocation problem 
with a general arrival process, as studied in Tang and Van Vliet [30]. Their method 
involves the Frank-Wolfe algorithm, which was originally developed for quadratic pro­
gramming and which provides a local minimum; they claim that it should be close to 
the global minimum. 

Just like in polling optimization, in customer allocation one may expect to improve 
considerably upon a probabilistic allocation by allocating according to a fixed pattern. 
This expectation is based on the reduced variability of the arrival processes at the 
queues. In the sequel we assume that allocation is being done according to a fixed 
pattern, and we consider the problem of finding a 'good' pattern (w.r.t. the objec­
tive function ( 4. 1)). Only in exceptional cases optimality of a pattern can be proven. 
We refer to Liu and Towsley [24] for such a result and further references. Liu and 
Towsley [24] consider the case of identical service time distributions at all queues, with 
an increasing failure rate. They show that the round-robin policy (send customers 
consecutively to Q1, Q2 , .•. , Q N, Q1, ... ) minimizes, in the sense of a separable increas­
ing convex ordering, the customer sojourn times and the numbers of customers in the 
queues. 
Let (a1 , a2, ... , aM) denote an allocation table, a; indicating the number of the queue 
to which every ( i + kM)-th customer is being sent, k = 1, 2, ... ; i = 1, ... , M. Combe 
and Boxma [13] observe that the resulting arrival processes at the queues fall into the 
class of Markovian Arrival Processes (MAP), cf. [26]. Subsequently they present a 
three-step algorithm, similar to the three-step polling optimization algorithm of Sec­
tion 3, to construct a 'good' pattern. The occurrence frequencies of the queues in 
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the allocation table are estimated in step 1, after which a suitable table size M and 
an even spacing are determined. It turns out that the optimal probabilistic alloca­
tion again gives a reasonable indication for the occurrence frequencies. However, the 
optimal probabilistic allocation seems to underestimate the traffic assignment to the 
queues with relatively high mean service time. The explanation is that the effect of 
'regularizing' the arrival stream in pattern allocation is strongest for the queues with 
relatively large service times, so relatively small assignment probabilities. E.g., if the 
optimal probabilistic allocation fractions in a two-queue case are 8/9 and 1/9, then Q2 

would receive an Erlang-9 arrival process under pattern allocation, and Q1 something 
close to Poisson (far less regular than Erlang-9). In step 1, instead of using the optimal 
probabilistic allocation, it is better to approximate the interarrival time distributions to 
the queues by Gamma distributions, subsequently approximate the mean waiting time 
in a Gamma/G/l queue in a suitable way (cf. [13]) and solve the resulting non-linear 
optimization problem. That problem again has the separability/ convexity structure as 
found in (4.2), and can be easily solved numerically (cf. [13]). 

Remark 4.1 
The approach using MAP and Gamma approximations seems applicable to several 
generalizations of the problem described above, like: the original arrival process is not 
a Poisson process; some of the queues also receive a 'dedicated' arrival stream; the 
arrival process must be allocated to multiserver queues in parallel. 

Remark 4.2 
Hordijk, Koole and Loeve [17] study the class of pattern allocation policies, for the 
special case of exponentially distributed service times, by using Markov Decision theory. 
Their algorithm leads to results of similar quality as those of [13]. 

Remark 4.3 
Borst [4] considers the probabilistic allocation of not one but several heterogeneous 
customer classes to a set of parallel servers with different speeds. Each customer class 
has a Poisson arrival process and generally distributed service requirements. He studies 
the minimization of a weighted sum of the mean waiting times, exposing the structure 
of the optimal allocation. [11] considers a version of this problem in which all servers 
have the same speed, and in which the overall mean waiting time is the objective 
function. It would be interesting to study allocation patterns for this type of model. 
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