
NORTII- Hou.AND

ON TERMINATION OF GENERAL LOGIC PROGRAMS
W.R.T. CONSTRUCTIVE NEGATION

ELENA MARCHIORI

I> The notions of acyclicity and acceptability fail to characterize termination
of general logic programs adequately under sldnf-resolution, as termina
tion due to floundering is not captured. In this paper we establish the
appropriate correspondence by considering sld-resolution with Chan's
constructive negation. In particular, the resulting characterization provides
a class of programs for which Chan's constructive negation is complete.
Moreover, it can be used to formalize and implement problems in non
monotonic reasoning. <1

1. INTRODUCTION

The aim of this paper is to give an exact description of general logic programs that
terminate for all ground queries. This issue was studied by Apt, Bezem and
Pedreschi, where s ldnf-resolution is considered and the notion of acyclic [1] and
acceptable [4] programs are introduced, to deal with an arbitrary and with the
leftmost (Prolog) selection rule, respectively. However, they fail to give a complete
characterization, because termination due to floundering is not captured. For
instance, the program p:

p (X) ~ -,p (Y)

is terminating (floundering) but it is not acyclic (and not acceptable).
In this paper we show that exact descriptions of general logic programs that

terminate for all ground queries with an arbitrary and with the leftmost selection
rule, respectively, can be obtained when Chan's constructive negation [6] is used,
here called s ldcnf-resolution. These results are not very surprising. However,

Address correspondence to Elena Marchiori, CWI, P.O. Box 94079, 1090 GB Amsterdam, The
Netherlands. E-mail: elena@cwi.nl.

Received June 1994; accepted May 1995.

THE JOURNAL OF LOGIC PROGRAMMING
©Elsevier Science Inc., 1996
655 Avenue of the Americas, New York, NY 10010

0743-1066/96/$15.00
SSDI 0743-1066(95)00090-7

70 E. MARCHIORI

they are significant for the following reasons. They provide a characterization of
classes of programs for which Chan's procedure [6] is complete; hence more
involved procedures, like [7, 11, 14] are not needed. Moreover, we shall show how
they can be used to formalize, and implement by means of sldcnf-resolution,
interesting problems in nonmonotonic reasoning.

Let us explain Chan's constructive negation. Informally, for an atom A with
finite derivation tree the answers for the query -, A are produced by negating the
answers for A. However, the procedure is not applicable if A has an infinite
derivation tree, as for instance in the program toy:

p(X) -x=a.
p(X) -x*a.
p(X) -p(X).

Here p(X) has an infinite derivation obtained by selecting always the last clause,
hence we cannot apply the above described procedure to -, p(X). That is, the
concept of sldcnf-derivation for -, p(X) is undefined. This phenomenon renders
problematic to reason about termination, where a neat formalization of derivation
is required. Therefore, we introduce an alternative top-down definition of
sldcnf-resolution. We follow the approach of [2], where to resolve negative
literals subsidiary trees are built by constructing their branches in parallel. If this
subsidiary construction diverges, then the main derivation is considered to be
infinite. As opposed to the procedure by Chan, the formalization of s 1 den f-reso
lution we obtain is always applicable. In particular, as in Chan's procedure, the
main derivation fails as soon as in the construction of the subsidiary tree the
constraint true is produced as disjunction of some leaves, even if the subsidiary tree
is infinite. For instance, in the program toy, the query -, p(X) has one derivation
that is infinite. Moreover, -, p(X) fails, because the derivation tree for p(X) has
the two leaves X =a and X *a, whose disjunction is equivalent to tnte.

We consider programs whose sldcnf-derivations of ground queries are finite
and refer to them as terminating. We give a syntactic characterization of terminat
ing programs, and show that for these programs queries that have only finite
derivations can also be characterized syntactically. Observe that w.r.t. constructive
negation the program p, given at the beginning of this section, is not terminating.
Analogous results are proven when the Prolog selection rule is considered, where
this time also a suitable model of the program is used to provide a quasi-syntactic
characterization of terminating programs.

Thus, sldcnf-resolution allows us to give an exact description of general
programs that terminate for all ground queries. In particular, for these programs
and for a bigger class of queries called bounded, sldcnf-resolution is complete,
and it is enough powerful to be used to formalize and implement interesting
problems in non-monotonic reasoning. For instance, consider the following pro
gram YSP, which formalizes the so-called Yale Shooting Problem ([12]).

(a) holds (alive, [J) - •

(b) holds (loaded, [load[Xs J) - •

(c) holds (dead, [shoot[Xs]) -

holds(loaded, Xs).

ON TERMINATION OF GENERAL LOGIC PROGRAMS

(d) ab(alive, shoot, Xs) -
holds (loaded, Xs).

(e) holds(Xf, [XelXsJ)
-,ab(Xf, Xe, Xs),
holds (Xf, Xs).

71

Here Xf, Xs, and Xe denote variables, representing a generic fluent, situation,
and event, respectively. All other terms occurring in the program denote constants.
In [1] it is proven that YSP is acyclic and that the query Q =holds (alive, [X,
Y l) is bounded. However, Q flounders, so no answer can be obtained by means of
s ldnf-resolution. Instead, using constructive negation the answers X =F shoot and
Y =F load are obtained.

The paper is organized as follows. After some preliminaries on notation and
terminology, in Section 3 a top-down definition of sldcnf-resolution is given, and
the classes of terminating and left-terminating programs are introduced. In Section
4 a syntactic characterization of terminating programs is given, and in Section 5
analogous results are proven for left-terminating programs. In Section 6 we show
the relevance of these programs for formalizing and implementing problems in
nonmonotonic reasoning. Finally, Section 7 contains some conclusions.

2. NOTATION AND TERMINOLOGY

We shall adopt Prolog syntax and assume that a string starting with a capital letter
denotes a variable, while other strings denote constants, terms and relations. A
sequence X 1, ••• , Xn of distinct variables is abbreviated by X, while t indicates a
sequence of terms. The formula X 1 = t 1 /\ ... /\Xn = tn is denoted by X = t. An
equality formula, indicated by E, is an assertion that does not contain any relation
symbols other than the equality symbol =. The formula 3(c1 /\ ... /\en) is called
simple equality formula, where n ~ 0, the c/s are equalities or inequalities and 3
quantifies over some (perhaps none) of the variables occurring in the c/s. The
empty conjunction of assertions and the empty disjunction of assertions are
denoted by true and false, respectively.

Substitutions are indicated by lowercase greek letters a, {3, 8, The domain
dam(8) of a substitution 8 consists of those variables X s.t. XfJ =F X. For a set V of
variables the notation 8w is used to denote the substitution 8' whose domain is
equal to V n dam(8) and s.t. X8' = XfJ for every X in V. For an idempotent
substitution (J = {X1/t 1, ... , Xn/tn}, we define E8 to be the equality formula
X 1 = t1 /\ ... /\ Xn = tn. A substitution p is called renaming, if there exists p' such
that (pp')1dom(p) = E, where E denotes the empty substitution. For a syntactic
object 0 and a renaming p, we call Op a variant of 0. Moreover, 0 is said to be
ground if it does not contain any variable. Given two terms/atoms s and t,
mgu(s, t) denotes a fixed idempotent most general unifier of s and t.

Relation symbols are often denoted by p, q, r. The syntax of a general program
is extended as follows to contain equality formulas. An (extended) literal, denoted
by L, is either an atom p(s), or a negative literal --, p(s), or an equality s = t, or an
inequality V(s =Ft), where p is not an equality relation and V quantifies over some
(perhaps none) of the variables occurring in the inequality. Equalities and inequali
ties are also called constraints, denoted by c. An (extended) general program, called
for brevity program and denoted by P, is a finite set of (universally quantified)

72 E. MARCHIORI

clauses of the form H ~ L 1, ••• , Lm, where m '?. 0 and H is an atom. In the
following the letters A, B are used to indicate atoms, C and Q denote a clause and
a query, respectively. Moreover comp(P) denotes the Clark's completion of a
program P. An inequality V(s =Ft) is said to be primitive if it is satisfiable but not
valid. For instance, X =Fa is primitive. A query Q = L 1, ••• , Ln is called reduced if
n = O or L; is a primitive inequality for all i in [1, n]. If Q is reduced then EQ
denotes the equality formula L 1 /\ .. • /\ Ln. We assume that the Herbrand uni
verse has an infinite number of function symbols, so that reduced queries are
satisfiable. The query obtained by removing L from Q is denoted by Q - {L}.
Finally, c.a.s. is used as shorthand for computed answer substitution.

3. s ldcnf-RESOLUTION

In this section we give an alternative top-down definition of Chan's constructive
negation, which will be used to study termination. First, we introduce informally
Chan's method, and show a drawback of the original formulation for studying
termination. Then, we introduce an alternative definition of Chan's method that
overcomes such drawback.

In s ld-resolution, for a program P and a query Q, if e is a c.a.s. for Q then it
can be written in equational form as 3(X1 = X 1 e /\ · · · /\ Xn = X 11 8), where
X 1, ..• , X 11 are the variables of Q and 3 quantifies over all the other variables.
Suppose that all sld-derivations of Qare finite and do not involve the selection of
any negative literals. Then there are only finitely many successful derivations. Let
81,. • ., (Jk, k '?. 0, be the c.a.s.'s of these successful derivations and let FQ be the
equality formula 3(£01 v · · · V E0), where 3 quantifies over the variables that do
?ot occur in Q. Then the completion comp(P) of P logically implies V(Q tt FQ),
i.e.,

comp(P) I= V(Q tt FQ).

To resolve negative nonground literals Chan in [6] introduced a procedure here
called s ldcnf-resolution, where the answers for -, Q are obtained from the
negation of Fa. However, this procedure is not defined when Q has an infinite
derivation, and hence the concept of derivation is not defined for -, Q. This is a
serious drawback for the study of termination, where the notion of derivation is of
primary importance. Therefore, we propose an alternative definition of sldcnf
resolution, where the subsidiary trees used to resolve negative literals are built in a
top-down way, constructing their branches in parallel. If this subsidiary construc
tion diverges, then the main derivation is considered to be infinite.

Let Tree be the set containing those trees whose nodes are (possibly marked)
queries of (possibly marked) literals, and having substitutions and possibly (variants
of) clauses associated to edges. We consider selected as marker for literals, and
successful or failed as markers for nodes. A marked literal is called selected. As in
Chan [6], we assume that a primitive inequality cannot be selected.

Assumption 3.1. Primitive inequalities cannot be selected;

An element of Tree is called:

• successful if at least one leaf is marked as successful;

ON TERMINATION OF GENERAL LOGIC PROGRAMS 73

• finitely successful if it is finite, all its leaves are marked and there is at least
one leaf marked as successful;

• finitely failed if it is finite and all its leaves are marked as failed.

We introduce now the notion of answer and full answer for a query Q, which will
be used in the definition of pre-sldcnf-tree.

Definition 3.1. (Answer and Full Answer) Let Q be a query and let T be a
successful tree with root Q. Let ~ be a branch of T whose last node is a
reduced query, say Q'. Let a 1, ••• , an be the consecutive substitutions along ~'
and let fJ = (a1 ••• an)Juars(Q)· Then the equality formula 3(E6 /\ EQ,) is called an
answer for Qin T, where 3 quantifies over all the variables that do not occur in
Q. If T is finitely successful, then we call full answer of Qin T, denoted by FQ,
the disjunction of all the answers for Q in T.

We shall assume that answers are normalized according with the procedure
given in [6]. Now we can define the notion of pre-sldcnf-tree. Call subsidiary
function a partial function which maps a query with selected literal of the form
-, A in a tree of Tree with root A.

Definition 3.2. (pre-s ldcnf-tree) Let P be a program. A pre-sldcnf-tree in P is a
triple (9'; T, subs) s.t. :T is a set of trees in Tree, T is an element of :T called
main tree of :T, and subs is a subsidiary function. It is inductively defined as
follows:

1. ({T}, T, subs) is a pre-sldcnf-tree, called initial pre-sldcnf-tree, for every T
consisting of one node Q, which is either reduced or it has a selected literal.
subs is everywhere undefined.

2. If r is a pre-sldcnf-tree, then any extension of r is a pre-sldcnf-tree.

An extension of a pre-sldcnf-tree f (in P) is obtained from f by applying the
following steps. Let f = (9'; Tmain' subs):

1. Mark all leaves consisting of reduced queries as successful.
2. For every unmarked leaf Q in some tree T in r, let L be its selected literal.

Then
A If L =A is an atom then

i. if there is no resolvent of Q in P then mark Q as failed;
ii. otherwise add all the resolvents of Q as sons of Q in T, associate to

every edge the input clause and the mgu used to compute the corre
sponding resolvent, and mark a literal in every nonreduced resolvent.

B. If L = -, A is a negative literal then
i. if subs(Q) is undefined then add the tree T' with the single node A to

:Tand set subs(Q) to T';
ii. if subs(Q) is defined then

a. if subs(Q) is finitely failed then add Q - {L} as son of Q in T, with
one marked literal, if non-reduced;

b. if subs(Q) is successful and the disjunction of its answers is equiva
lent to true then mark Q as failed;

74 E. MARCHIORI

c. if subs(Q) is finitely successful then let NA 1 V ·•· V NAn be the
disjunction of simple equality formulas obtained by negating FA: for
every j E [I, n] add the query obtained from Q by replacing L with
NAj, with one marked literal if nonreduced, as son of Q in T.

C. If L is an equality, say s = t then
i. if s and t are not unifiable then mark Q as failed;
ii. otherwise add (Q - {L})O with one marked literal, if non-reduced, as

son of Q in T, where 8 = mgu(s, t).
D. If L is an inequality, say 'V(s -:/= t), then

i. if it is valid then add Q - {L} with one marked literal, if non-reduced,
as son of Q in T;

ii. if it is unsatisfiable then mark Q as failed.

In the definition of extension of a pre-sldcnf-tree, we assume that full answers
are negated as described in [6]. As a consequence, the disjuncts NA/s remain
within the syntax of a query (see e.g., [6]). Let ext(r} denote the set of extensions
of r.

Let .9'!T denote the set of pre-sldcnf-trees in P. Consider the partial ordered set
(.9'9'; ~),where ~ is the reflexive and transitive closure of the relation Rei, which
is the minimal relation on pre-sldcnf-trees s.t. (f, f') is in Rei, for every f' E ext(f).
It is well known that any partial order can be completed into a complete partial
order, where the limits of ascending chains are incorporated (see e.g., [8]). Then, let
C(.9'9'; ::s;;) be the completion of (.9'9'; ~).

Definition 3.3. (sldcnf-tree) An sldcnf-tree for Q is the limit (in C(.9'9'; ~))of
an ascending chain f 0 ~ ... ~ fn ~ ... , where for every n;::: I, fn is in ext(fn_ 1),
and f 0 = ({Q}, Q, subs); moreover, subs is the subsidiary function everywhere
undefined.

An answer for Qin the main tree of an sldcnf-tree r for Q is simply called an
answer for Q (in f).

To define sldcnf-derivations and finite sldcnf-trees, we use the notion of
path. A path in f is a sequence of nodes N 0,. • ., N;,. . ., s.t. for all i, N;+ 1 is either
an immediate descendent of N; in some tree in r, or N; + 1 is the root of the tree
subs(N).

Definition 3.4. (sldcnf-derivation) Let f be a sldcnf-tree for Q. A sldcnf-de
rivation for Q, denoted by g, is a branch in the main tree of r starting at the
root, together with the set of all trees in r whose roots are reachable from some
node of subs(Q), with Q in g. g is said to be finite if all paths in r fully
contained in this branch and these trees are finite.

Definition 3.5. (finite sldcnf-tree) An sldcnf-tree is finite if it does not contain
any infinite path.

Now we introduce the notions of terminating and left-terminating program.
Intuitively, for a terminating program every ground query has only finite s ldcnf
trees, while for a left-terminating program only the sldcnf-trees of ground
queries that are obtained by using a leftmost selection rule are required to be
finite.

ON TERMINATION OF GENERAL LOGIC PROGRAMS 75

An sldcnf-tree f is via a selection rule R if in the sequence of pre-sldcnf-trees
whose limit is f the selection rule R specifies every marking of literals.

Definition 3.6. (Terminating Program) We say that the program P is terminating if
all sldcnf-trees for ground queries (in P) are finite. A query is terminating if
all sldcnf-trees for Q (in P) are finite.

The leftmost selection rule, also called Prolog selection rule, used to define
left-terminating programs, marks as selected in every nonreduced node of a
pre-sldcnf-tree the leftmost possible literal, where a literal is called possible if it
is not a primitive inequality. We call ldcnf-tree an sldcnf-tree via a leftmost
selection rule.

Definition 3. 7. (Left-Terminating Program) A program P is left-terminating if all
ldcnf-trees for ground queries are finite. A query is left-terminating if all
ldcnf-trees for Q (in P) are finite.

In the following two sections we shall provide a syntactic characterization of
terminating programs, and a quasi-syntactic characterization of left-terminating
programs. We conclude this section with a simple example to illustrate sldcnf
resolution. Here and in the other examples of the paper, a selected literal is
underlined, the empty query is denoted by D , and f and s are used as shorthantl
for the markers failed and successful, respectively.

Example 3.1. Consider the program toy given in the Introduction. The query
--, p(X) fails since its associated tree subs(--, p(X)) is successful and the disjunc
tion of its answers is true. --, p(X) has only one derivation, and this derivation is
not finite because subs(--, p(X)) is not finite. The main tree of the sldcnf-tree
for --, p(X) and the subtree subs(--, p(X)) are represented below.

The main tree:

--, p(X)f

The tree subs(--, p(X)):

4. A CHARACTERIZATION OF TERMINATING PROGRAMS

The formalization of constructive negation given in the previous section allows us
to reason in a rigorous way about termination. In this section we give a syntactic
characterization of terminating programs.

76 E. MARCHIORI

The standard way to prove termination of a program amounts of finding a
suitable function on a well-founded set, and a method that guarantees that for a
terminating program it is possible to associate with every computation a descending
chain of values of that function. For logic programs, functions called level map
pings have been used [l], which map ground atoms to natural numbers. Their
extension to negated atoms was given in [4], where the level mapping of, A is
simply defined to be equal to the level mapping of A. Here, we have to consider
also constraints. Constraints are not themselves a problem for termination, because
they are atomic actions whose execution always terminates. Therefore, we shall
assume that the notion of level mapping is only defined for literals that are not
constraints. However, note that the presence of constraints in a query influences its
termination behavior, because for instance a derivation fails finitely if a constraint
which is not satisfiable is selected.

Definition 4.1. (Level Mapping) A level mapping is a function, denoted by I I, from
ground literals which are not constraints to natural numbers s.t. h Al= IAI.

The notion of acyclic program was introduced in [l], and it amounts to a simple
condition on the literals of program clauses, namely that the level mapping
decreases from the head to each body atom.

Definition 4.2. (Acyclic Program) A program P is acyclic w.r.t a level mapping I I if
for all ground instances H (- L 1, ••• , Lm of clauses of P we have that

IHl>IL;I

holds for all i E [l, m] s.t. IL;I is defined. P is acyclic if there exists a level
mapping I I s.t. P is acyclic w.r.t. I I.

In [l], it was proven that an acyclic program is terminating when sldnf-resolu
tion is used. We prove here that an analogous result holds when s ldcnf-resolu
tion is used. The proof of this result does not present substantial differences with
the original proof of Apt and Bezem, and is given for making the paper self-con
tained.

The concept of bounded query is used, which allows to prove the result for a
bigger class of queries that contains all ground queries.

Definition 4.3. (Bounded Query) A literal L, which is not a constraint, is called
bounded w.r.t. a level mapping I I if the set llLll = {IL'I IL' ground instance of L}
is finite. A query Q = L1' ... , Ln is bounded w.r.t. I I if every L; is bounded w.r.t.
I I, for i E [l, n] s.t. L; is not a constraint.

We shall say that L is bounded by l if l is an upper bound for llLll. If L is
bounded then Jet l[LJI denote the maximum if llLll. Moreover, if Q is bounded
then let l[QJI denote the (finite) multiset (see [10]) consisting of the natural
numbers l[L;i]I, ... , l[L;nll, where for i E [l, n] we have that i E {il, ... , in} iff L; is
not a constraint. These quantities will be used in the sequel.

Recall that a multiset is a unordered collection in which the number of
occurrences of each element is significant. We shall consider here the multiset
ordering on multisets of natural numbers. Formally, a multiset of natural numbers

ON TERMINATION OF GENERAL LOGIC PROGRAMS 77

is a function from the set (N, <) of natural numbers to itself, giving the multiplicity
of each natural number. Then the ordering < mu! on multisets is defined as the
transitive closure of the replacement of a natural number with any finite number
(possibly zero) of natural numbers that are smaller under < . Since < is well
founded, the induced ordering <mu! is also well-founded, as a consequence of the
Konig Lemma for infinite terms. For simplicity we shall omit in the sequel the
subscript mult from < mu/·

The following two lemmas are simple to prove. They were originally introduced
by Apt and Bezem in [l].

Lemma 4.1. Let I I be a level mapping and L a bounded literal. Then, for every
substitution 6, L 8 is bounded and I[Le JI s:: I[L JI.

Lemma 4.2. Let P be acyclic w.r.t. I I. Then, for every clause H <- L 1, •.• , Ln of P and
for euery substitution e we haue: if He is bounded then LJ) is bounded and
l[L;e]I < l[H6JI, for i E [1, n] s.t. L; is not a constraint.

Now we can prove the announced result on acyclic programs.

Theorem 4.1. Let P be an acyclic program. Then every sldcnf-tree for a bounded
query in P contains only bounded queries and is finite.

PROOF. Let Q be a bounded query in a sldcnf-tree, let L be its selected literal,
and let Q' be a resolvent of Q in P. We distinguish the following cases.

L is an atom. Let H <- Lp ... , L 12 be the input clause and e the computed mgu
to derive Q'. By Lemma 4.1, we have that He is bounded and l[He]l.::; l[L]I. Then
by Lemma 4.2 L;6 is bounded and l[L;e]I < l[H8]1. Hence Q' is bounded and l[Q']I
is smaller than l[Q]I in the multiset ordering.

L is a negative literal, say , A. Then subs(Q) has root A that is obviously
bounded, and I[A JI is smaller or equal than I[Q JI in the multiset ordering (since
IAI = l-i Al). Moreover, every resolvent of Q (if any) is obtained from Q by
replacing the selected literal with a (possibly empty) conjunction of constraints.
Then l[Q']I is smaller than l[QJI in the multiset ordering.

L is a constraint. Then the resolvent Q' of Q is obtained by removing the
selected literal and applying the computed (if any) substitution. Then Q' is
bounded and l[Q' JI is smaller or equal than l[Q]I in the multiset ordering.

Note that there can be only finitely many consecutive selections of negative
literals and of constraints. Then, the result follows from the fact that the multiset
ordering is well founded. D

In [1], Apt and Bezem state that terminating programs that do not flounder can
be proven to be acyclic. The authors say that this result is rather weak, because
simple terminating programs having some floundering derivations cannot be cap
tured. Also, they do not give a proof of this result, because they say it would be too
involved. Here we show that an exact characterization of terminating programs can
be obtained by considering Chan 's constructive negation. To this aim, one has to
find a suitable level mapping I I s.t. every ground instance of a clause of P satisfies
the condition of Definition 2 and s.t. every terminating query is bounded.

We first need some preliminary results. The following property of mgu's is
useful.

78 E. MARCHIORI

Proposition 4.1. Lets, t be two terms (atoms) and let 8 be a substitution. Suppose that
a=mgu(s8,t8) exists. Then µ=mgu(s,t) exists and is s.t. 8a=µ,a, for a
suitable a.

PROOF. Observe that 8a is a unifier of s and t. D

The following lemma was originally introduced by Bezem in [5], and is here
extended to deal also with equality constraints.

Lemma 4.3. Let Q be a query and 8 a substitution. Let L be a literal of Q which is
either an atom or an equality. If Q8, with L8 as selected literal, has an sldcnf
resolvent Q', then Q, with L as selected literal, has an sldcnf-resolvent (!' s.t.
Q' = (!181 for some substitution 8'.

PROOF. If L8 is an equality, say s8 = t8, then let Q' = (Q - {L})8a be the
resolvent of Qe, where a= mgu(s8, t8). Then by Proposition 4.1 µ, = mgu(s, t)
exists and ea= µa, for a suitable a. Hence Q" = (Q - {L})µ is a resolvent of Q
and Q' =Q"a.

If L8 is an atom, then let C = H <1:-- R be the input clause and Q' = (L 1,. .. , Lm)a
be the resolvent obtained by replacing L8a with Ra, where a= mgu(H, L8). It is
not restricted to assume that C is also variable disjoint with Q and with vars(8).
Then by Proposition 4.1 µ = mgu(H, L) exists, and 8a = µa, for a suitable a. Let
(!' be the resolvent of Q and C with selected literal L. Then Q"a = Q'. o

To simplify the proofs of the following results, we introduce the notion of
specific path at k.

Definition 4.4. (Specific Path at k) Let f be an sdlcnf-tree, let 1T = Q0 ,. .. , Qk, ...
be a path of r, and let k ~ 0. Then 1T is a specific path at k if the following
conditions hold:

• the selected literal in Qk is not an inequality;

• if the selected literal in Qk is a negative literal then Qk + 1 is the root of
subs(Qk).

Let Q be a terminating query, and let 1T be a path in a sldcnf-tree for Q.
Define 1Tpre = Q 0 , ••• , Q n, called specific prefix of 1T, to be a maximal prefix of 7T s. t.
1T is a specific path at k, for every k < n. Then let 1TQ be the specific prefix of 7T

containing maximal number of nodes, for all paths 1T in all sldcnf-trees for Q.
Let nodes(1T Q) denote the number of nodes of 1T Q. Then a candidate level mapping
is the function that maps a ground atom A to nodes(1TA).

We show that this is a correct choice.

Theorem 4.2. Let Q be a terminating query and let Q' be an instance of Q. Then nodes
(7TQ) ~nodes(1TQ').

We shall prove this theorem by absurd. To this aim we shall need some
preliminary results.

Lemma 4.4. Let P be a program and let Q be a terminating query. Then for all
substitutions 8, 1TQO is finite.

PROOF. By contraposition suppose that 1TQo is infinite. Observe that in 1TQo every
node is either a resolvent obtained via the selection of an atom or an equality, or

ON TERMINATION OF GENERAL LOGIC PROGRAMS 79

the root of a subtree obtained applying subs to its predecessor. Then by Lemma
4.3 we can lift 'TT'Qe to a prefix of a path in a sldcnf-tree for Q. Hence Q is not
terminating. D

Now we can prove Theorem 4.2.

PROOF OF THEOREM 4.2. By Lemma 4.4 we have that nodes('fT'Q,) is defined. By
absurd, suppose that nodes('fT'Q,) > nodes(7T'Q). Then by Lemma 4.3 we can lift 7T'Q'
to a specific prefix of a path in a sldcnf-tree for Q. Hence nodes('TT'Q) ~nodes('fT'Q,).
Absurd. D

We are now ready to prove the converse of Theorem 4.1, thus obtaining that
terminating and acyclic programs coincide.

Theorem 4.3. Let P be a terminating program. Then for some level mapping I
(i) P is acyclic w.r.t. I I,

(ii) for every query Q, Q is bounded w.r.t. I I if! it is terminating.

PROOF. Since P is terminating, then by the Konig's Lemma it follows that for
every ground atom A, the function defined by IAl=nodes(7T'A), hAl=IAI, is a
level mapping. From nodes(7T' ~ A) > nodes(7T'A) it follows that nodes(7T' ~ A) > j--, A I.

(ii+-) Consider a terminating query Q. We prove that Q is bounded by
nodes(7T'Q). The case where l[Q]I is the empty set is immediate. So, let l E l[Q]I.
Then l=IL11, for some ground instance L 1, ... ,Ln of Q and for some iE[l,n].
Then

nodes('TT'Q) 2 {by Theorem 4.2} nodes(7T'<L 1,. • .,L.)).

Observe that 7T'L can be embedded into a prefix of a path for L 1,. .. , Ln,
obtained by replaci~g every element R of 7T'L by L 1,. .. ,L1_ 1,R,L1+ 1, ... ,Ln.
Then '

nodes(7T'(L 1 , ••• ,L) 2

nodes (7T' L)
I

2 {by the definition of I I}
IL1I

=/.

(i) Let He+- L 1 e, ... , Ln 8 be a ground instance of a clause in P. Then we have
to show that IHel > IL1el for i E [1, n] s.t. IL 1el is defined. Since Hee= He, then e
is a unifier of He and H. Then there exists µ, = mgu(He, H) s.t. 8 = µe' and
(L1 µ,, ... , Ln µ,)is a resolvent of He. Then

IHel = {definition of! I}

nodes(7T'H6) >

{He is not an inequality and 7T'cL,µ,, ... ,L.µ.) is a proper subfix of a path for H8}

nodes(7r) (L 1µ,,. .. , L.µ.)

2 {part (ii+-), since L 1e E l[L1 µ,, ... , Ln µ]I}

IL18I.

80 E. MARCHIORI

(ii --').) Consider a query Q which is bounded w.r.t. I I. Then by (i) and Theorem
4.1 it follows that Q is terminating. D

From Theorem 4.1 and Theorem 4.3 it follows that terminating programs
coincide with acyclic programs and that for acyclic programs a query is terminating
if and only if it is bounded.

5. LEFT-TERMINATING PROGRAMS

In this section we consider a fixed selection rule, corresponding to the natural
extension of the Prolog selection rule to programs containing constraints. We show
that results analogous to those of the previous section hold, where the concept of
acyclicity is replaced by that of acceptability. The notion of acceptable general
program was introduced by Apt and Pedreschi [4]. It is based on the same
condition used to define acyclic programs, only that for a ground instance H <-

L 1, •.• , L n of a clause, the test I HI > I L 11 is performed only until the first literal L;;
that fails. This is sufficient since, due to the Prolog selection rule, literals after L;;
will not be executed. To compute n, the class of models of comp(P) is considered.

Definition 5.1. (Acceptable Program) Let I I be a level mapping for P and let I be
a model of cornp(P). P is acceptable w.r.t. I I and I if for all ground instances
H ~ L 1, ... , Ln of clauses of P we have that

holds for i E [1, n] s.t. L 1 is not a constraint, where

n = min ({ n} u { i E [1, n] I I l:F L;}).

P is called acceptable if it is acceptable w.r.t. some level mapping and a model of
comp(P).

We show that a program is left-terminating if and only if it is acceptable. As in
the previous section, to extend the result to nonground queries, the notion of
boundedness is considered. However, due to the fixed selection rule, the order of
the literals in a query is now relevant, and yields the following definition of
boundedness. Let Q = L 1, ••• , Ln be a query, let I I be a level mapping and let I be
a model of comp(P). For every i E [1, n] s.t. L 1 is not a constraint, consider the set

IQI~ = {IL'il II I= L'1, ••• , L'1_ 1, for some ground instance

Definition 5.2. (Bounded Query) Let I I be a level mapping and let I be a model of
comp(P). A query Q = L 1, •.• , Ln is bounded (w.r.t. I I and /) if IQI~ is finite,
for every L 1 which is not a constraint.

If Q is bounded then we denote by I[Q ll / the multiset containing the maximum
of IQl'1, for every L 1 that is not a constraint. Then Q is bounded by k if k ~ l[Q]/1.

Theorem 5.1. Let P be an acceptable program and let Q be a bounded query. Then
every ldcnf-tree for Qin P contains only bounded queries and is finite.

ON TERMINATION OF GENERAL LOGIC PROGRAMS 81

PROOF. Let I I and I be a level mapping and an interpretation, respectively, s.t. P
is acceptable w.r.t. I I and /. Let Q = L 1, ••• , Ln and let L; be its selected literal.
The proof is similar to that of Theorem 4.1 in the cases where L; is an atom or a
constraint, while in the case where L; is a negative literal we have to add an
observation about /. So, suppose L; is equal to -, A. Then subs(Q) has root A,
which is obviously bounded and l[A]l1 is smaller or equal than l[Q]l 1 in the
multiset ordering (since [Al= h A[); moreover every resolvent Q' of Q (if any) is
bounded and [[Q'll1 is smaller than [[Q][1 in the multiset ordering, since it is
obtained from Q by replacing L; with a (possibly empty) conjunction of constraints
c 1, •.. ,ck s.t. /F-L;+-(c1 /\···/\ck). o

To show that also the converse of the above result holds, we proceed in a similar
way as we did for terminating programs.

Formally, let Q be a left-terminating query, and let 1T be a path in a ldcnf-tree
for Q. Define 7TQ to be the specific prefix of 1T containing the maximal number of
nodes, for all paths 1T of a ldcnf-tree for Q. Let nodes(7TQ) be the number of
nodes of 1T Q.

Theorem 5.2. Let Q be a left-terminating query and let Q' be an instance of Q. Then
nodes(1T Q) ~ nodes(1T Q').

We shall prove this theorem by absurd. To this aim we shall use the following
persistence lemma.

Lemma 5.1. Let P be a program and let Q be a left-terminating query. Then for all
substitutions 8, 1TQ8 is finite.

PROOF. By contraposition suppose that 1TQ 8 is infinite. Observe that in 7TQ 8 every
node is either a resolvent obtained via the selection of an atom or an equality, or
the root of a subtree obtained applying subs to its predecessor. Then by Lemma
4.3 we can lift 1TQe to a prefix of a path in a ldcnf-tree for Q. Hence Q is not
terminating. Contradiction. D

Now we can prove Theorem 5.2.

PROOF OF THEOREM 5.2. By Lemma 5.1 we have that nodes(7TQ,) is defined. By
absurd, suppose that nodes(1TQ,) > nodes(7TQ). Then by Lemma 4.3 we can lift 7TQ'
to a specific prefix 1T of a path in a ldcnf-tree for Q. Hence we have that
nodes(7TQ) ~ nodes(77Q,). Absurd. D

Theorem 5.3. Let P be a left-terminating program. Then for some level mapping I
and for a model I of comp(P)

(i) P is acceptable w.r.t. I I and I,
(ii) for every query Q, Q is bounded w.r.t. I I and I iff Q is left-terminating.

PROOF. Since P is left-terminating, then the function that assigns to every ground
atom A the number nodes(7TA) is a level mapping. From nodes(1T~ A)> nodes(7TA)
it follows that nodes(1T ~A)> h Al= IAI. Choose I= {A E Bpi there is an ldcnf
refutation of A in P}. Then I is a model of comp(P).

82 E. MARCHIORI

(ii~) Consider a left-terminating query Q. We show that Q is bounded by
nodes(rrQ). The case where l[Q]l 1 is the empty set is immediate. So, let l E l[Q]l1.

Then for some ground instance L 1, ••• , Ln of Q and i E [l, n] with n = min({n} u {i
E [l, n]I I F;t: L;}), we have l = IL;I. Then

nodes ('7T Q)

2: {Theorem (5.2)}

nodes(rr<L 1 , ..• ,L)

2: {by construction of rr<L 1, .•• ,L"l}

nodes(rr L L_)
t, ... , n

2: {because J 1= L 1, ••• , L;_ i}

nodes(rrL L_).
1, ..• , n

Observe that '1TL can be embedded into a prefix of a path for L;, ... , Ln,
obtained by replacing every element R of 7TL, by R, L;+ 1' ... , Ln. Then

nodes(rr L L_) 2:
1 ••. ,, n

nodes(?Ti)

;::: {by definition of I I}

!Lit
=I.

(i) The proof is similar to the one of case (i) of Theorem 4.3.

(ii~) Consider a query Q, which is bounded w.r.t. I I. Then by (i) and Theorem
5.1 Q is left-terminating. D

6. APPLICATION

In this section we give two examples to illustrate how to formalize and implement
problems in nonmonotonic reasoning by means of terminating and left-terminating
programs, respectively.

6.1. Temporal Reasoning

Various forms of temporal reasoning can be described using acyclic programs. In
particular, the program YSP given in the Introduction is a formalization of the
so-called Yale Shooting Problem in terms of an acyclic program. We recall the
problem following [12]. Consider a person that is alive. The event load implies
the fact that the gun becomes loaded. The event shoot in the situation loaded
implies the fact that the person becomes dead. Moreover, the property of being
alive is abnormal (i.e., it can change its truth value) with respect to a shoot
event, given that the gun is 1 oaded. Finally, facts persist under the occurrence of
events that are not abnormal. The interest on this problem is due to the fact that
its formalization by means of theories about nonmonotonic reasoning yields weak

ON TERMINATION OF GENERAL LOGIC PROGRAMS 83

conclusions. In [1] it is proven that YSP is acyclic w.r.t. the level mapping which
assigns to a ground atom of the form holds(t, t') the natural number 2l(t'), and to a
ground atom of the form ab(t, t', t") the natural number 2/(t") + 1, where for a
ground term t of the universe of YSP, if t is a list then l(t) denotes its length,
otherwise it denotes 0. Consider the query ho 1 ds (a 1 i ve, [X, Y J) • This query
is bounded (by 4), hence it is terminating. The following is an s ldcnf-tree for
holds(alive, [X, Y]).

hold.•(41ive,[X,Y])

l (•)
-.4b(.. live,X ,[Y]) ,kold.1(41ive,[Y])

l ----------x :f.•h.oot, kol da(4live,[Y]) X =shoot, Y:f.l o4d.,kold.1(a.live,(Y])

{Y/Xe) l (e)

X:f.ah.oot,-.4b(41ive,X.,[]),hold.1(4live,[))

{X/•hot} !
Y;i;lo4d,hold.1(41i11e,[Y])

{Y/Xe} l (<)

X:f.1hoot,h.olda(ali11e,[]) Y :;i!lo .. d., -.ab(alive,X •,[]),hold.a(4li11e,[J)

Y:f.lo4d.,h.olda(a.live,[])

where subs(--, ab (alive, X, [Y]), holds(alive, [Y])) is the following tree.

a.b(.. live,X,[Y))

{X/•"•••} l (d)

h.ol d.1(1011d.ed.,[Y])

{Y/load}1(~) ~
D 1 -.ab(lo11d.ed.,Y,[]),h.old.a(loa.ded,[]) f

The two trees subs(Yi=load, --,ab(alive,X2 ,[]), holds(alive,[])) and subs(Xi=
shoot, --, ab(alive, Xe, []), holds(alive, [])) coincide and are represented below.

ab(a.live,X. ,[])

{Xc/•hoot) l (d)

h.old.1(lo11ded.,[])

l
-.ab(lo11d.ed,X. ,[]),h.olda(loaded,[]) f

Notice that by using sldnf-resolution holds (alive, [X, YJ) flounders.

84 E. MARCHIORI

6.2. Search in Graph Structures

To render the notion of acceptability practical, in the original definition of
acceptability, I is required to be a model of P that is also a model of comp(P-),
where p- is defined as follows. Let Negp denote the set of relations in P that
occur in a negative literal in a body of a clause from P. Say that p refers to q if
there is a clause in P that uses the relation p in its head and q in its body and say
that p depends on q if (p, q) is in the reflexive, transitive closure of the relation
refers to. Define Neg; to be the set of relations in P on which the relations in Negp
depend on. Then p- is the set of clauses in Pin whose head a relation from Negj,
occurs. We call good model of P a model of P which is also a model of comp(P-),
and will use it in the following example.

Graph structures are used in many applications, such as representing relations,
situations or problems. Two typical operations performed on graphs are find a path
between two given nodes and find a subgraph, with some specified properties, of a
graph. The following program specialize is an example of the combination of
these two operations.

A relation spec is defined by the clause (a), s.t. spec(nl, n2, n, g) is true if nl, n2
are two nodes of a given graph g, and n is a node that does not occur in any acyclic
path of g connecting nl with n2. The relation spec is specified as the negation of
another relation, called unspec, where unspec(nl, n2, n, g) is true if there is an
acyclic path of g connecting nl and n2 that contains n.

Acyclic paths of a graph are described by the relation path, defined by the
clause (c), where path(nl, n2, g, p) calls the query pathl(nl, [n2], g, p). Here the
second argument of pathI is used to construct incrementally a path connecting nl
with n2: using clause (e), the partial path [xlpl] is transformed in [y, xlpl] if there
is an edge [y,x] in the graph g such that y is not already present in [xlpl]. The
construction terminates if y is equal to nl, thanks to clause (d).

So the relation pathI is defined inductively by the clauses (d) and (e), using the
familiar relation mem, defined by the clauses (f) and (g).

Notice that, from fact (d) it follows that if nl and n2 are equal, then [nl] is
assumed to be an acyclic path from nl and n2, for any term g.

(a) spec(Nl, N2, N, G) ~

-, unspec (Nl, N2 , N, G) .

(b) unspec(Nl, N2, N, G) ~

path(Nl, N2, G, P),

rnern (N, P) .

(c) path(Nl, N2, G, P) ~

pathl (Nl, [N2], G, P).

(d) pathl(Nl, [XliPl], G, [NilPl])~.

(e) pathl (Nl, [XliPl], G, P) ~

rnern([Yl, Xl], G),

-,rnern(Yl, [XllPl]),

pathl (Nl, [Yl, XliPl], G, P).

(f) rnern (X, [X/Y]) - .

(g) rnern(X, [Y/ZJ) -
rnern (X , Z) .

ON TERMINATION OF GENERAL LOGIC PROGRAMS 85

Here a graph is represented by means of a list of edges. For instance spec (a, b,
c, [[a, bl, [b, c], [a, a] J l holds, where a,b,c are constants and the
graph [[a, b], [b, c], [a, a]] is represented below.

(lb __ C

Notice that specialize is not terminating: for instance, the query pathl (a,
[b, c J , d, e) has an infinite derivation obtained by selecting at every resolu
tion step the rightmost literal of the query and by choosing as input clause (a
variant of) the clause (e).

However, we will show that specialize is acceptable and that the query
Q = spec (a, b, x, [[a, bl, [b, c], [a, a]]) is bounded. Then one
obtains the following finite ldcnf-tree for Q, where edges denotes the list
[[a, b], [b, c], [a, a]].

apec(a.,b,X,edgea)

-.unapec(Gt,b,X ,edgea)

The tree subs(...., unspec(a, b, X, edges)) is given below.

Cl •

unapec(a.,b,X ,edgea)

l (b)

pa.th(Gt,b,edgea ,P),mem(X ,P)

l (c)

pGtthl(Gt,[b],ed.gea,P),mem(X,P)

l (<)

mem([Yl,b],edgea),-.mem(Yl,[b]),pGtthl(Gt,[Yl,b],edgea,P),mem(X,P)

{Yl/•) l (f)

.:..mem(Gt,[b]),pGtthl(Gt,[Gt,b],ed.gea,P),mem(X,P)

l
pGtthl(Gt,[Gt,b],edgea,P),mem(X,P)

{P/[o,b]} l (a)

mem(X,[Gt,b])

~
mem(X,[b])

{X/b) 1 {!)

Cl •

86 E. MARCHIORI

Note that for simplicity we omitted to draw the derivations whose leaves are
marked as failed, and the tree (subs(-,mem(a,[b]), pathl(a,[a,b],P),

mem(X, P)) is the finite failed tree

mem(a,[b])

l (g)

mem(a,[]) f

Notice that by using ldnf-resolution Q does flounder.
We prove now that spec i a 1 i z e is acceptable. To this end, one has to find a

proper level mapping and a model of specialize that is a model of the
completion comp(specialize-). Notice that specialize- consists of six
clauses (b)-(g). One can argue that such an expressive model is not needed.
Indeed, since clause (a) introduces the new relation spec using the relations
defined in (b)-(g), then to prove that spec(nl, n2, n, g) is left-terminating it is
sufficient to show that the program specl consisting of the clauses (b)-(g) is
acceptable and that unspec(nl, n2, n, g) is bounded. In this way one has just to
consider a model of specl that is a model of comp(specl), i.e., of the two clauses
(f) and (g). Alternative definitions of acceptability that employ less semantic
information are investigated in [13].

We introduce the function I I defined on ground terms as follows: \[tltsll = \t) + 1
and \j(t)\ = 0 if f * [-1-].

For a list !, let set(!) denote the set of its elements, i.e., set(l) = { } if I= [] and
set(/) = {x} U set(y) if I= [x \y]. Moreover, for a list p and a graph g, let p n g be
the list containing as elements those x that are elements of p and such that there
exists a y s.t. [x,y] is an element of g.

Consider the interpretation I= lunspec U !path U !path I U Imem' with

lunspec= [unspec(Nl,N2,N,G)],

where [A] denotes the set of all ground instances of A;

!path= {path(nl,n2,g,p)\ \g\ + 1 :2:\p\};

Iparhl = {pathl(nl,pl,g,p)\ \pl\- \pl ng[z_ \p\- \p ng\};

Im em = { mem(s, t) It list s.t. s E set(t)}.

Lemma 6.1. I is a model of specl.

PROOF.

• It follows immediate that I is a model of clause (b).

• Consider clause (c). Suppose that If::: pathl(nl, [n2], g, p). Note that \[n2]1-
\[n2] n g\ s 1. Then \p\-[pnglsl. But \png\slg\. Then \pls\gl+l,
hence l i= path(nl, n2, g, p).

• We have that I models pathI(nl, [nl\pl], g,[nl\pl]), hence it models clause
(d).

• Consider clause (e). Suppose that

I I= mem([yl, xl], g), -i mem(yl, [xl\pl]) , path(nl, [y1, xllpl}, g ,p).

ON TERMINATION OF GENERAL LOGIC PROGRAMS 87

Then l[yl, xll pl]l - l[yl, xllpl] n gl ::2: I pi - Ip n gl, where yl ~ [xllpl] and
[yl, xlJ E g. Then l[yl, xllpl] ngl = 1 + l[xllpl] ngl. So l[yl, xllpl]l -
l[yl, xllpl] ngl = l[xllpl]l-l[xllpl] ngl. Then l[xllpl]l - l[xllplJ ngl ::2: lpl
- Ip ngl. Hence IF= pathl(nl, [xllpl], g, p).

• Finally it is easy to check that I models clauses (f) and (g). o

Consider specl - = {(f), (g)}: it is easy to check that Im em is a model of
comp(specl -).

Finally, we define the level mapping I I as follows:

lmem(s, t)I = ltl;

lpathl(nl,pl, g,p)I = lpll + lgl + 2(lgl- lpl ngl) + 1;

I path(nI, n2, g, p)I= 3lgl + 3,

lunspec(nl, n2, n, g) I= 3lgl + 4.

Observe that from lgl:2:lplngl it follows that lpath(nl,pl,g,p)I is well de
fined.

It is not difficult to check that specl is acceptable w.r.t. I I and I. We present
the proofs for clauses (b) and (e). The proofs for the other clauses are similar.

For clause (b) we obtain the following inequalities:

• lunspec(nl, n2, n, g)I > 3lgl + 3,

• lunspec(nl, n2, n, g)I> lpl, under the hypothesis I I= path(nl, n2, n, p).

The first condition is easy to check. For the second one, observe that from
I I= path(nl, n2, n, p) it follows that lgl + 1 ~ lpl.

For clause (e) we obtain the following inequalities:

• lpath(nl,[xllplJ, g, p)I > lgl;

• lpathl(nl,[xllpl],g,p)l:2'.:l[xl,pl]I, under the hypothesis H=mem([yl,xl]
g);

• lpathl(nl, [xllpl], g, p)I > lpathl(nl, [yl, xl lpl], g, p)I, under the hypothesis
I I= mem([yl, xl], g), -, mem(yl, [xllpl]).

The first two inequalities are easy to check. For the third one, observe that from
I I= mem([y l, xl], g), -, mem(yl, [xllpl]) it follows that l[yl, xllpl] n gl = 1 +
l[xllpl] n gl, hence (lgl - l[yl, xll pl] n gl) = (lgl - l[xllpl] n gl) - 1.

7. CONCLUSION

In this paper we studied termination of general logic programs, when s ld-resolu
tion with constructive negation is considered as execution model. We introduced a
top-down definition of the Chan's procedure [6], and use this definition to give a
syntactic characterization of programs that terminate for all ground queries, for an
arbitrary selection rule. We proved that for these programs queries that have only
finite derivations can be described syntactically. We proved analogous results for
programs that terminate for all ground queries when the Prolog selection rule is
assumed, by means of a quasi-syntactic criterion obtained by taking into account
also a model of the considered program.

88 E. MARCHIORI

These results are not surpnsmg, and the concepts used to prove them are
extensions to constructive negation of already existing concepts. However, such
extensions are not immediate; moreover, they provide a neat formalization of
Chan's procedure, and a characterization of two classes of general programs for
which there is no need to resort to more sophisticated approaches for constructive
negation and the 1988 procedure by Chan [6] is sufficient.

Various approaches to constructive negation were proposed: among them the
procedure by Chan [7] based on coroutining, the sldfa-resolution by Drabent [11],
and the constructive negation for constraint logic programming by Stuckey [14].
These procedures are more general than sldcnf-resolution, because they aim at
completeness (w.r.t. three-valued completion) for all programs. To this end they
have a mechanism to use (partial) information from infinite derivations which is far
more general than the one described above. As a consequence, the termination
behavior of programs executed with these procedures, seems to be rather difficult
to capture, because of its irregularity.

This research was partly supported by the Esprit Basic Research Action 6810 (Compulog 2). The author
would like to thank Krzysztof Apt for proposing the topic of this paper, and the members of the
Compulog 2 project for interesting discussions. Moreover, the author would like to thank Jan Rutten for
his help and support, and Frank Teusink for useful discussions. Finally, the author would like to thank
the referees: their constructive comments and suggestions helped to improve both the content and the
presentation of this paper.

REFERENCES
1. Apt, K. R., and Bezem, M., Acyclic programs, New Generation Computing 9:335-369

(1991).

2. Apt, K. R., and Doets, H. C., A new definition of SLDNF-resolution, The Journal of
Logic Programming 18:177-190 (1994).

3. Apt, K. R., Marchiori, E., and Palamidessi, C., A declarative approach for first-order
built-in's of Prolog, Applicable Algebra in Engineering, Communication and Computing
5(2, 4):151-191 (1994).

4. Apt, K. R., and Pedreschi, D., Proving termination of general Prolog programs, in:
Proceedings of the Int. Conf. on Theoretical Aspects of Computer Software, no. 526 in
Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1991, pp. 265-289.

5. Bezem, M., Strong termination of logic programs, The Journal of Logic Programming
15:79-97 (1993).

6. Chan, D., Constructive negation based on the completed database in: Proceedings of the
Fifth International Conference and Symposium on Logic Programming, 1988, pp. 111-125.

7. Chan, D., An extension of constructive negation and its application in coroutining; in:
Proceedings of the North American Conference on Logic Programming, 1989, pp. 477-493.

8. Davey, B. A., and Priestley, H. A., Introduction to Lattices and Order, Cambridge
University Press, 1990.

9. De Schreye, D., and Decorte, S., Termination of logic programs: The never-ending story,
The Journal of Logic Programming 19, 20:199-260 (1994).

10. Dershowitz, N., Termination of rewriting, Journal of Symbolic Computation 3:69-115
(1987).

11. Drabent, W., What is failure? An approach to constructive negation, Acta lnformatica
32:27-59 (1995).

ON TERMINATION OF GENERAL LOGIC PROGRAMS 89

12. Hanks, S., and McDermott, D., Nonmonotonic logic and temporal reasoning, Artificial
Intelligence 33:379-412 (1987).

13. Marchiori, E., A methodology for proving termination of general logic programs, in:
Proceedings of the l 4th International Joint Conference on Artificial Intelligence, (IJCAI-95),
Montreal, 1995, pp. 356-361.

14. Stuckey, P. J., Constructive negation for constraint logic programming, in: Proceedings of
the 6th Annual Symposium on Logic in Computer Science (LICS), Amsterdam, 1991, pp.
328-339.

