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1. Introduction 

A classical result in graph theory due to the topologist Menger [24] concerns 
the existence of pairwise internally vertex-disjoint paths connecting two 
given vertices r and s in an undirected graph G = (V, E). (Two paths are 

internally vertex-disjoint if they do not have any vertex or edge in common, 
except for the end vertices.) 

Menger's theorem states that the maximum number of such paths is 
equal to the minimum size of a set W of vertices with r, s rJ. W such that 
each path from r to s intersects W at least once. (It is assumed that r and 
s are not adjacent.) The interest of Menger in this problem originated from 
characterizing the bifurcation number of certain topological spaces which 
he named K urven. 

A similar theorem holds if we replace 'undirected' by 'directed'. More
over, variants are obtained by replacing 'internally vertex-disjoint' by 'edge
disjoint'. (Two paths are edge-disjoint if they do not have any edge in 
common.) 

Menger's theorem is a basic result in graph theory, and several other 
theorems in graph theory utilize Menger's theorem in some way. Appli
cation in optimization followed when Ford and Fulkerson [6] proved their 
famous max-fiow min-cut theorem: the maximum amount of 'flow' that 
can be transmitted from some 'source' r to some 'sink' s in a capacitated 
network, is equal to the minimum capacity of any r - s cut. (An r - s cut 

is a set of edges intersecting each path from r to s.) This theorem can be 
derived from Menger's theorem (and vice versa). 

Ford and Fulkerson [7] also designed a fast algorithm to determine a 
maximum flow from r to s. This method formed the basis for a wealth of 
applications in operations research, e.g., to problems involving assignment, 
transportation, transshipment, routing, circulation, and communication. 

Menger's theorem and the max-fiow min-cut theorem are of interest 
also because they provide us with a way of 'certifying' that a certain path 
packing or a certain flow is the largest possible. Indeed, to convince some
body that a certain collection of k pairwise internally vertex-disjoint r - s 

paths is the largest possible, it suffices to exhibit a set W of vertices in
tersecting each r - s path and satisfying \W\ = k - by Menger's theorem 
that such a set always exists. In the language of complexity theory, this 
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implies that the problem of finding a maximum path packing belongs to the 
complexity class NPnco-NP. In other words, Menger's theorem is a 'good 
characterization.' 

Similarly, the optimality of a certain r-s flow can be shown by display
ing an r-s cut with capacity equal to the value of the flow. Again it implies 
that the the problem of finding a maximum flow belongs to NPnco-NP. So 
paths and flows connecting one given pair r, s of vertices in a network are 
'well under control.' 

The situation changes however if we need disjoint paths or flows each 
of which connects a different pair of vertices. This is often the case in 
practice, when one is not interested in connecting only one pair of source 
and sink in a network by paths or by a flow, but several pairs of sources 
and sinks simultaneously. 

One may think of a large communication or transportation network, 
where several messages or goods must be transmitted all at the same time 
over the network between different pairs of terminals. A recent application 
is the design of very large-scale integrated (VLSI) circuits, where several 
pairs of pins must be interconnected by wires on a chip in such a way that 
the wires follow given 'channels' and the wires connecting different pairs of 
pins do not intersect each other. 

Mathematically, this gives the disjoint paths problem: 

given: 
find: 

a graph G = (V, E) and vertices ri, s1, ... , rk, sk of G; 
pairwise disjoint paths P1, ... , Pk, where Pi runs from 
Ti to Si (i = 1, ... , k). (1) 

Here a graph can be undirected or directed. Pairwise disjoint can mean: 
pairwise vertex-disjoint (i.e., any two paths do not have any vertex in com
mon) or pairwise edge-disjoint. So there are four variants of Problem (1). 

It turns out that these problems are much less tractable than when we 
would have only one pair of source and sink. In fact, D.E. Knuth (cf. [14]) 
and Lynch [23] proved that each of the variants is NP-complete, even when 
we restrict ourselves to planar graphs. If NP:r!:co-NP, this fact wrecks the 
hopes for a polynomial-time algorithm solving the disjoint paths problem 
and for a good characterization of the existence of disjoint paths, e.g. in 
the spirit of Menger's theorem. 

On the other hand, it is a deep result of Robertson and Seymour [31] 
that, for each fixed k, the undirected variants of the disjoint paths problem 
can be solved in polynomial time, in fact in time O(IVl3 ). The constant 
in this bound depends heavily on k, so the result does not imply P=NP. 
(Recently, B.A. Reed improved the complexity to O(IVl2 log !VI).) 

The result of Robertson and Seymour is one of the products of the 
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great Graph Minors project, with as a landmark the theorem that each 
infinite collection of undirected graphs contains two graphs G, H so that 

G is a 'minor' of H (that is, G can be obtained from H by deletion and 
contraction of edges). 

Part of the proof method of Robertson and Seymour is based on em

bedding a graph on a surface. This makes paths and minors in the graph 
easier to handle by using the topology of the surface, for instance, by classi
fying paths (and more generally graphs) on the surface by their homotopic 
properties. 

In fact, also in the study of the disjoint paths problem for designing 
chips, the idea of utilizing the topology of the chip surface came up. There 
one considers the 'modules' placed on the chip as holes in the surface, and 

one searches for a layout of disjoint paths (wires) as required by enumer
ating (or guessing) homotopy types of such paths. We refer to Pinter [27], 
Cole and Siegel [2], and Lei8crson and Maley [20]. 

The directed versions of the disjoint paths problem are NP-complete 

even when we fix k equal to 2, as was shown by Fortune, Hopcroft, and 
Wyllie [8]. So this is in contrast (for those believing P:f:NP) to Robertson 
and Seymour's theorem for the undirected case. 

In [45] it is shown that, for any fixed k, the vertex-disjoint paths prob
lem is solvable in polynomial time for directed planar graphs. More gen

erally, it suffices to fix the number of faces that are necessary to cover 
the terminab (by their boundaries), and to restrict the directed graphs to 
those embeddable on some fixed compact surface. We do not know the 
complexity of the edge-disjoint paths problem for directed planar graphs if 
we fix k equal to 2. 

The results of Robertson and Seymour and the applications to the 

design of chips have enhanced the research in disjoint paths problems and 
their relations to curves and graphs embedded on surfaces. In this paper we 
give an overvi<~w of some of the results. We focus on graphs embedded on 

compact surfaces and derive results on disjoint paths with a strong bias on 
our own results. (In particular, we do not survey the fundamental results 

of Hu [13], Karzanov [Hi], [16], Lomonosov [22], Seymour [48] and others 
on edge-disjoint paths and multicornmodity flows in general graphs with 
few terminals.) 

In this paper, a path may traverse a vertex or edge more than once. 
However, by convention, 'pairwise vertex-disjoint' is meant to imply that 
each of the paths traverses any vertex (and hence any edge) at most once; 
similarly, 'pairwise edge-disjoint' is meant to imply that each of the paths 

traverses any edge at most once. If a. graph is directed we call its edges arcs. 
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2. The cohomology feasibility problem 

We first consider vertex-disjoint paths in graphs on surfaces. The following 
framework turned out to be helpful. 

Let D = (V, A) be a directed graph and let G be a group. Two functions 
</>, 'ljJ : A ---+ G are called cohomologous if there exists a function p : V ---+ 

G such that 

'lf;(a) = p(u)-1</J(a)p(w) (2) 

for each arc a= (u, w) of D. One directly checks that this is an equivalence 
relation. 

Consider the following cohomology feasibility problem: 

given: a directed graph D = (V, A), a group G, and functions 
</>:A---+ G and H: A---+ P(G); 

find: a function 1/; : A ---+ G such that 'ljJ is cohamologous 
to <P and such that 'lf;(a) E H(a) for each a E A. (3) 

[P(G) is the collection of all subsets of G.] 
There is an obvious necessary condition for the existence of such a 

function 1/J. Let us denote a path P in D as a word a 1 ···at over the 
alphabet {a,a- 1 la EA}. In this way we indicate that P traverses the arcs 
al, ... , at in this order, where a; = a-1 means that arc a is traversed in 
backward direction. A v - w path is a path starting in v and ending in w. 

Define <P(a- 1) := <jJ(a)-1 and H(a- 1) := H(a)- 1 • For any path P = 

ai ···at define <P(P) := </J(a1) ···</>(at) E G and H(P) := H(a1) · · · H(at) ~ 
G. 

A necessary condition for the existence of 'If; in the cohomology feasi
bility problem (3) is: 

for each v E V and each v - v path P there exists an x E G 
such that x- 1</J(P)x E H(P). (4) 

Indeed, we can take x = p(v) where p satisfies (2). 
In some cases this condition is sufficient as well, for instance, if G is 

the infinite group with one generator g and each H(a) is convex (that is, 
if gi,gj E H(a) then also gk E H(a) whenever k is inbetween i and j). 

However, this condition generally is not sufficient (see the Remark be
low). A stronger necessary condition is: 

for each v E V and each two v - v paths P1 , P2 there exists an 
x E G such that x-1</>(Pi)x E H(P1 ) and x- 1</J(P2 )x E H(P2 ), 
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(5) 

since again we can take x = p(v). 

We are going to give a class of groups, the graph groups (or free partially 
commutative groups), for which, for certain subsets H(a), condition (5) is 
sufficient. (Graph groups are studied, inter alia, in [1], [5], and [46], but 
we do not make use of these results.) 

A graph group is constructed as follows. Let 91, ... , gk be generators, 
and let Ebe a collection of pairs {i,j} with i,j E {l, ... ,k} and i -:f:. 
j. Then the group G = G k,E is the group generated by gl, ... , gk with 
relations 

gigj = gjgi for each { i, j} E E . (6) 

So if E = 0 then Gk,E is the free group generated by g1 , ... , gk, while if E 
consists of all pairs from {l, ... , k} then Gk,E is isomorphic to '71}. 

There is the following direct reduction rule for words over the 'symbols' 
gl, g!1, ... , gk, g;; 1: if symbol a: commutes with each symbol occurring in 
wordy, then xaya-1 z = xyz. It can be shown that repeating this reduction 
as long as possible starting with a word w, one reaches the empty word 1 
if w equals 1 in the group. So the word problem can be solved easily ( cf. 
[50]). 

Applying this reduction to a general word w, one obtains a shortest 
possible word w' (shortest among all words w" that are equal tow in the 
group). The length ofw' is denoted by lwl. This defines a 'norm' on Gk,E, 
satisfying Ill = 0, lu- 1 I = lul and luwl ~ lul + lwl. So we can define a 
distance function <list on G by: 

dist(x, y) := lx- 1yl (7) 

for x, y E G. For x, y E G let [x, y] be the set of all z E G satisfying 
dist(x, z) + dist(z, y) = dist(x, y). 

Call a subset H of G closed if 

(i) 1 E H, 

(ii) [x, y] <;;;; H for all x, y E H, 

(iii) [x,y] <;;;; H-1 for all x,y E H- 1. (8) 

Note that if G is the free group then H <;;;; G is closed if and only if H "# 0 
and for each reduced word w E H, also each subsegment of w belongs to 
H. 

In [45] the following theorem is proved. 
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Theorem 1. Let G be a graph group and let each H(a) be closed. Then the 
cohomology feasibility problem (3) has a solution 7/J if and only if condition 
(5) is satisfied. 

The proof is based on a polynomial-time algorithm giving either the 
function 7/J or a pair of paths P1 , P2 violating (5). Therefore we also have: 

Theorem 2. The cohomology feasibility problem (3) is solvable in polyno
mial time if G is a graph group and each H(a) is closed. 

We assume here that membership of H(a) of a given word can be 
checked in polynomial time. 

Remark. We cannot relax condition (5) in Theorem 1 to condition ( 4). To 
see this, let G be the free group generated by g and h. Let D be the directed 
graph with one vertex v and two loops, a and b, attached at v. Define 
cf>(a) := h,H(a) := {1,h,g, g- 1 , g- 1h,hg} and cf>(b) := ghg- 1 ,H(b) := 

{1,h,g,g- 1 ,hg-1 ,gh}. If x- 1cf>(a)x E H(a) then the first symbol of x is 
not equal to g. If x- 1c/>(b)x- 1 E H(b) then the first symbol of x is equal to 
g. So there is no x such that both hold. 

On the other hand, for each path P in D there is an x such that 
x-1cf>(P)x E H(P). Indeed, for each k E Z., <f;(abk) E H(abk) and cf>(bka) E 
H(bka). It follows that if P starts or ends with a or a- 1 , then cf>(P) E H(P). 
Moreover, for each k E Z, g- 1c/>(akb)g E H(akb) and g- 1<f;(bak)g E H(bak). 
So if P starts and ends with b or b- 1 then g- 1cj>(P)g E H(P). D 

3. The k-disjoint paths problem for directed planar graphs 

We first sketch how the polynomial-time solvability of the cohomology fea
sibility problem for closed subsets of graph groups implies that, for each 
fixed k, the k disjoint paths problem for directed planar graphs: 

given: a directed planar graph D = (V, A) and k pairs 
(r1,s1), ... ,(rk,sk) of vertices of D; 

find: k pairwise vertex-disjoint directed paths P1, ... , Pk in 
D, where P; runs from r; to s; (i = 1, ... , k). (9) 

is solvable in polynomial time ( [ 45]). 

Theorem 3. For each fixed k, the k disjoint paths problem for directed 
planar graphs (9) is solvable in polynomial time. 

We sketch the proof. As graph group G we take the free group with k 
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generators gi, ... ,gk. 

Let input D = (V, A), r1, s1, ... , rk, Bk E V for (9) be given. We may 
assume that Dis weakly connected, and that r 1,s1, ... ,rk,Sk are distinct, 
each being incident with exactly one arc. Fix an embedding of D, and let 
F denote the collection of faces of D. 

Call two functions </>, 'ljJ : A ---+ G homologous if there exists a function 
f : F ---+ Q such that 

f(F)- 1</>(a)f(F') = 'lf;(a) (10) 

for each arc a, where F and F' are the faces at the left-hand side and at 
the right-hand side of a, respectively. 

For any solution IT = (P1, ... , Pk) of (9) let </>rr : A ---+ G be defined 
by: 

</>rr(a) := gi if path Pi traverses a (i = 1, ... , k), and 

</>rr (a) : = 1 if a is not traversed by any of the Pi. ( 11) 

Now one can show: 

For each fixed k, we can find in polynomial time functions 
</>1, ... , </JN : A ---+ G with the property that for each solution 
IT of ( 9), </Jn is homologous to at least one of </>1, ... , </> N. ( 12) 

[This is the only reason why we can prove the polynomial-time solvability 
of Problem (9) for fixed k only.] 

It follows that it suffices to describe a polynomial-time method for the 
following problem: 

given: a function <P : A ---+ G; 
find: a solution IT of (9) such that </Jrr is homologous to </J. (13) 

Indeed, we can apply such an algorithm to each </>j in (12). If we find 
no IT for any </>j, (9) has no solution. 

In order to solve (13) with the cohomology feasibility algorithm, we 
consider the dual graph D* = (:F, A*) of D, having as vertex set the col
lection F of faces of D, while for any arc a of D there is an arc of D*, 
denoted by a*, from the face of D at the left-hand side of a to the face at 
the right-hand side of a. (So the dual graph may have loops.) 

Define for any function <P on A the function <P* on A* by 

<P*(a*) := <f>(a) (14) 
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for each a EA. Then any two functions c/> and 'I/; are homologous (in D) if 
and only if</>* and 'I/;* are cohomologous (in D*). 

We extend the dual graph to the 'extended' dual graph D+ = (F,A+) 
by adding in each face of D* all chords. (So D+ need not be planar.) To be 
more precise, for any two vertices F, F' of D* and any (undirected) F - F' 
path 7r on the boundary of any face of D*, extend D* with an arc, called 
a1r, from F to F'. For any</>: A~ G define et>+: A+~ G by: 

Moreover, let 

q;+(a*) :=</>*(a*) for each arc a of D; 

q;+(a7r) := 4>*(7r) for any path 7r as above. 

H(a*) := {1,g1, ... ,gk} and 

H(a7r) := {1,g1,g!1, ... ,gk,gk"1}. 

So each of these sets is a closed subset of the free group G. 

(15) 

(16) 

Now let input c/> of Problem (13) be given. As the cohomology feasibility 
problem is solvable in polynomial time in this case (Theorem 2), we can 
find in polynomial time a function 'I/; that is cohomologous to et>+ in D+, 
with 'l/;(b) E H ( b) for each arc b of D+, provided that such a '!/J exists. If we 
find one, let Pi be any directed ri - Si path traversing only arcs a satisfying 
'l/;(a*) = gi (i = 1, ... ,k). If such paths exist, they form a solution to the 
disjoint paths problem (9). 

If we do not find such a function 'I/; and such paths we may conclude 
that Problem (13) has no solution. For suppose that c/>n is homotopic 
to </> for some II := (P1, ... , Pk). Then there exists a '!/J as above, viz. 
'lj; := (c/>n)+. Moreover, for any'!/;' cohomologous to (c/>n)+ there exists for 
each i = 1, ... , k a directed ri - Si path Pf traversing only arcs a such 
that 9i occurs in '1/;'(a*). So we would find a solution, contradicting our 
assumption. 

This finishes the sketch of the proof of Theorem 3. 

4. Further applications to disjoint paths 

First, by extending (12) we obtain the following generalization. For any 
directed graph G = (V, A) embedded on a compact surface S, and any 
subset X of V, let r(X) denote the minimum number t for which there 
exist faces F1, ... , Ft of D such that X ~ bd(F1 U · · · U Ft)· Then we have: 

Theorem 4. For each fixed t, the disjoint paths problem for directed 
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planar graphs (9) is solvable in polynomial time for inputs satisfying 
1( {r1 , s1 , ... , rk, sk}):::; t. 

This can be shown as (12) can be extended to fixing 

instead of fixing k. Theorem 4 extends a theorem of Robertson and Sey
mour [30] for undirected planar graphs with t = 2. (Recently, Ripphausen, 
Wagner, and Weihe [29] gave a linear-time algorithm for undirected planar 
graphs with t = 2.) 

One may also derive that the following problem: 

given: a directed planar graph D = (V, A), k pairs (r1 , si), ... , 
(rk, sk) of vertices of D, and subsets A1 , ... , Ak of A; 

find: k pairwise vertex-disjoint directed paths P1 , ... , Pk in 
D, where Pi runs from r; to s; and uses only arcs in Ai 
( i = 1, ... ' k)' ( 1 7) 

is solvable in polynomial time, for fixed k. This follows by restricting in 
(16) the H(a*) to those g; for which A; contains a. 

Theorem 5. For each fixed t, problem (11) is solvable in polynomial time 
for inputs satisfying 1({r1,s1 1 ••• ,rk,sk}) 5 t. 

More generally, consider the problem: 

given: a directed planar graph D = (V, A), k pairs (r1, si), 
... ,(rk,sk) of vertices of D, subsets Ai, ... ,Ak of A, 
and a set E consisting of some pairs { i, j} from 1, ... , k; 

find: k directed paths P1 , ... , Pk in D, where P; runs from 
ri to s; and uses only arcs in Ai (i = 1, ... , k) and 
where P; and Pj are disjoint if {i,j} ~E. (18) 

Theorem 6. For each fixed k, problem {18) is solvable in polynomial time. 

Moreover, one has: 

Theorem 7. Problem ( 18) is solvable in polynomial time for inputs satis
fying 1({r1,s1, ... , rk,sk}) 5 2. 

This follows as above from the polynomial-time solvability of the coho
mology feasibility problem applied to the graph group Gk,E· It is unknown 
to me if Theorem 7 holds for any fized bound t on 1( {r1, s1, ... , rk, sk} ). 
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This result was shown fort= 1 by Ding, Schrijver, and Seymour [3]. 
Similar is the following disjoint trees problem: 

given: a directed planar graph D = (V, A) and k pairs (r1, S1), 
... , (rk,Sk) with ri, ... ,rk E V and S1, ... ,Sk ~ V; 

find: k pairwise vertex-disjoint directed rooted trees T1 , ... , Tk 
in D, where Ti has root ri and covers Si (i = 1, ... , k). (19) 

Here we say that a tree covers a set S if S is a subset of the vertex set of 
T. 

Corollary 6a. For each fixed t, problem ( 19) is solvable in polynomial 

time for inputs satisfying r( {r1, ... , rk} U S1 U · · · U Sk) :St. 

This follows from Theorem (6) by taking all pairs (ri, s') with i E 

{ 1, ... , k} and s' E Si, and defining E so that directed paths will be disjoint 
if they correspond to distinct ri and rj. 

These polynomial-time solvability results for directed planar graphs, in 
fact also hold for any directed graph embedded on some compact surface 
S, as long as we keep this surface fixed. We mention the following: 

given: a directed graph D = (V, A) embedded on a compact 
surface and k pairs (r1, s1), ... , (rk, sk) of vertices of D; 

find: k pairwise vertex-disjoint directed paths P1, ... , Pk in 
D, w~ere Pi runs from ri to s; (i = 1, ... , k). (20) 

Theorem 8. For each fixed k and each fixed compact surf ace S, the k 

disjoint paths problem for directed graphs embedded on S {20) is solvable 
in polynomial time. 

One of the most general results in this direction concerns the following 
problem: 

given: a directed graph D = (V, A) embedded on a compact 
surface S, k pairs (r1, s1), ... , (rk, sk) of vertices of D, 
subsets Ai, . .. , Ak of A, and a set E of pairs { i, j} from 
{1,. . .,k}; 

find: k directed paths P1, ... , Pk in D, where Pi runs from 
ri to Si and uses only arcs in Ai (i = 1, ... , k), and 
where P;, and Pj are vertex-disjoint if {i,j} ft E. (21) 

Theorem 9. For each fixed compact surface S and each fixed k, problem 
{21} is solvable in polynomial time. 
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The proof method can also be applied if we fix homotopies. For in
stance, the following disjoint homotopic paths problem is solvable in poly
nomial time, not fixing k or p: 

given: a directed planar graph G embedded in the plane JR.2 , 

faces F1, ... , Fp of G (including the unbounded face), 
and curves C1 , ... , Ck in S := JR.2 \ (F1 u · · · U Fp); 

find: pairwise vertex-disjoint simple directed paths Pi, ... , Pk 
in G so that for each i = 1, ... , k, Pi is homotopic to Ci 
in S. (22) 

As usual, a curve is a continuous function C: [O, l] ~ S. Two curves C, C' 
are homo topic, in notation C ,...., C', if there exists a continuous function 
<I? : [O, l] x [O, 1] ~ S such that <J?(x, 0) = C(x ), <J?(x, 1) = C' (x), '1>(0, x) = 
C(O) and '1>(1,x) = C(l) for each x E [O, l]. 

This result extends a theorem for finite subgraphs of the rectangular 
grid in the plane of Leiserson and Maley [20] and one for undirected planar 
graphs of Schrijver [39]. 

5. Disjoint closed curves in graphs on a compact surface 

Let S be a surface. A closed curve on S is a continuous function C : S 1 ~ 
S, where S 1 is the unit circle in C. Two closed curves C and C' are called 
freely homotopic, in notation C ,...., C', if there exists a continuous function 
<I?: S 1 x[O,1] ~ S such that ol>(z, 0) = C(z) and <J?(z, 1) = C'(z) for each 
z E 8 1 . 

For any pair of closed curves C, Don S, let er( C, D) denote the number 
of crossings of C and D, counting multiplicities. Moreover, mincr(C, D) 
denotes the minimum of cr(C', D') where C' and D' range over closed 
curves freely homotopic to C and D, respectively. That is, 

mincr(C, D) := min{kr(C', D')IC',...., C, D',...., D}. (23) 

Let G = (V, E) be an undirected graph embedded on S. (We identify G 
with its embedding on S.) For any closed curve D on S, cr(G, D) denotes 
the number of intersections of G and D (counting multiplicities): 

cr(G, D) := l{z E S 1 !D(z) E G}!. (24) 

The following was shown in [38] (motivated by [31]): 

Theorem 10. Let G = (V, E) be an undirected graph embedded on a 
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compact surface S and let C1, ... , Ck be pairwise disjoint simple closed 
curves on S, each nonnullhomotopic. Then there exist pairwise vertex
disjoint simple circuits Ci, ... , q in G such that c;, ,....., Ci (i = 1, ... , k), 
if and only if for each closed curve D on S: 

k 

cr(G, D) 2:: L mincr(Ci, D), (25) 
i=l 

with strict inequality if D is doubly odd. 

Here we call a closed curve Don S doubly odd (with respect to G and 
C1, ... , Ck) if Dis the concatenation D1 · Dz of two closed curves D 1 and 
D 2 such that D 1(1) = D2(1) rf. G and such that 

k 

cr(G,Dj) '¥= L:cr(Ci,Dj) (mod 2), (26) 
i=l 

for j = 1,2. 
It is easy to see that the condition in the theorem is necessary, since if 

Ci, ... , Ck exist and D is a closed curve on S then 

k k 

cr(G,D) 2:: I:cr(C;,,D) 2:: I:mincr(Ci,D). (27) 
i=i i=i 

If D is doubly odd, then taking Di and Dz as above we have for each 
i = 1, ... ,k: 

(28) 

since the parity of the number of crossings of two curves is invariant under 
homotopic transformations. Hence by (26), 

cr(G, Di)'¥= I::~=l cr(C;,, D1) (mod 2). (29) 

Since Ci, ... , Ck are pairwise disjoint we know 

(30) 

and hence by (29) we should have strict inequality here. Therefore 

k k 

cr(G, D) = cr(G, Di)+ cr(G, D2) > L cr(C;,, D1) + L cr(C~, Dz) 
i=l i=l 
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k k k 

= I:Cr(c:, D1 · D2) = L cr(c:, D) 2: L mincr(Ci, D). (31) 
i=l i=l i=l 

The essence of the theorem is sufficiency of the condition. 
The theorem can be extended to directed circuits in directed graphs 

embedded on a compact orientable surface, although the condition becomes 
more difficult to describe. (For the torus, see Seymour [48], cf. [4].) In any 
case, the method yields a polynomial-time algorithm finding the directed 
circuits. 

6. Decomposition of graphs on surfaces 

We now shift our attention from vertex-disjointness to edge-disjointness. 
Edge-disjoint paths and curves on a surface are more difficult to keep under 
control as they can cross each other as often as they like. 

De Graaf and Schrijver [11] showed the following result, which was 
proved for the projective plane by Lins [21] (see Corollary 16a below) and 
for compact orientable surfaces by Schrijver [37]. The theorem implies a 
fractional packing result of closed curves to be discussed in the next section. 

For any graph G = (V, E) embedded on a surface S and any closed 
curve D let miner( G, D) denote the minimum value of er( G, D') where D' 
ranges over all closed curves D' ,...., D not intersecting V. 

Theorem 11. Let G = (V, E) be an Eulerian graph embedded on a surface 
S. Then the edges of G can be decomposed into closed curves C1, ... , Ck 
such that 

k 

mincr(G,D) = I:mincr(Ci,D) (32) 
i=l 

for each closed curve D on S. 
Here a graph is Eulerian if each vertex has even degree. (We do not 

assume connectedness of the graph.) Moreover, decomposing the edges into 
C 1, ... , Ck means that for each s E G \ V there is exactly one pair ( i, z) 
such that Ci(z) = s; for s ~ G there is no such pair at all, while for s E V 
there are ~ dcg(s) such pairs. (deg(s) denotes the degree of s.) We assume 
the surface is triangulizable. 

The inequality 2: in (32) trivially holds, for any decomposition of the 
edges into closed curves C1 , ... ,Ck: by definition of mincr(G,D), there 
exists a closed curve D',...., Din S \ V such that mincr(G, D) = cr(G, D'), 
and hence 

k k 

mincr(G,D) = cr(G,D') = I:cr(Ci,D') 2: I:mincr(Ci,D). (33) 
i=l i=l 
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The content of the theorem is that there exists a decomposition attaining 
equality. For a proof we refer to [11]. 

Using surface duality one can derive the following from Theorem 11. If 
G is a graph embedded on a surface S and C is a closed curve in G, then 
minlength0 (C) denotes the minimum length of any closed curve C' ,.._, C 
in G. (The length of C' is the number of edges traversed by C', counting 
multiplicities.) 

Corollary lla. Let G = (V, E) be a bipartite graph embedded on a compact 
surface Sand let C1 , ... , Ck be closed curves in G. Then there exist closed 
curves D1 , ... , Dt on S \ V such that each edge of G is crossed by exactly 
one Dj and by this Dj only once and such that 

t 

minlength0 (Ci) = L:mincr(Ci,Dj) 
j=l 

for each i = 1, ... , k. 

(34) 

In fact we may replace the bipartiteness condition by the condition 
that all faces are even. 

7. Homotopic circulations 

We derive a fractional packing result from Theorem 11. Let G = (V, E) be 
an undirected graph embedded on a compact surface S, and let C1 , ... , Ck 
be closed curves on S. We are interested in the existence of pairwise edge
disjoint closed curves C~, ... , C£ in G such that c: "' Ci for each i = 
1, ... , k. (Here 'pairwise edge-disjoint' includes that each c: should traverse 
any edge at most once.) A necessary condition for the existence of such 
curves is: 

cut condition: for each closed curve D on S \ V: 

er (G, D) ~ I::=l miner (Ci, D). (35) 

This condition generally is not sufficient. However, it is sufficient for 
the existence of a 'fractional packing' of such closed curves. 

Call a function (or vector) f E lRf a circulation (of value 1) if f is a 
convex combination of functions trc', where C' is a closed curve in G, and 
where trcr denotes the function in IR~ given by: tr0 ,(e) :=the number of 
times C' traverses edge e. 

We say that f is freely homotopic to a closed curve C if we can take 
each C' freely homotopic to C. 
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Note that if f is a circulation freely homotopic to C, then for each 
closed curve D on S \ V one has (denoting by er( e, D) the number of times 
D intersects edge e): 

L f(e)cr(e, D) 2': mincr(C, D). (36) 
eEE 

This follow8 from the fact that (36) holds for f := trc1 for each C' freely 
homotopic to C (as LeEE trc1(e)cr(e, D) = cr(C', D) ::'.: mincr(C, D)), and 
hence also for each convex combination of such vectors. 

We now derive the result of [11]: 

Corollary llb. ( Homotopic circulation theorem.) Let G = (V, E) be an 
undirected graph embedded on a compact surface S and let C1 , ... , Ck be 
closed curves on S. Then there exist circulations f 1, ... , f k such that f; is 
freely homotopic to Ci (i = 1, ... , k) and such that I:7=i f;(e) $ 1 for each 
edge e, if and only if the cut condition (35) holds. 

Note that if each f; would be 0,1 valued, we would have an edge-disjoint 
collection of closed curves in G of prescribed homotopies. 

Proof. Necessity. Suppose there exist circulations Ji, ... , fk as required, 
and let D be a closed curve on S \ V. Then by (36): 

k 

cr(G, D) = L cr(e, D) 2': L cr(e, D) L f;(e) 
eEE eEE i=l 

k k 

= L L f;(e)cr(e, D) 2': L mincr(C;, D). (37) 
i=l eEE i=l 

So the cut condition holds. 
Sufficiency. Suppose the cut condition (35) holds. Let I := { l, ... , k}, 

and let K be the convex cone in IR1 x ]RE generated by the vectors 

(c:;;trc) (i E I;C closed curve in G with C"' C;); 
(01;c:e) (e EE). (38) 

Here c:; denotes the ith unit basis vector in IR1 and ce denotes the eth unit 
basis vector in lR E. Moreover, 0 r denotes the all-zero vector in lR 1 . 

We must show that the vector (1 1 ; le) belongs to K. Here 11 and lE 
denote the all-one vectorn in JR1 and IRE, respectively. By Farkas' lemma 
(cf. [33]), it suffices to show that each vector (d; l) E Q1 x QE having non
negative inner product with each of the vectors (38), also has nonnegative 
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inner product with (11; le). (Farkas' lemma applies, since K is finitely 
generated, as one easily proves.) 

Thus let (d; l) E Q1 x Qe have nonnegative inner product with each 
vector among (38). This is equivalent to: 

(i) di+ I:eEe l(e)trc(e) 2 0 (i EI; C closed curve in G with 
C,....., Ci); 

(ii) l(e) 2 0 (e EE) . (39) 

Suppose that (d; l)T(11 ; le) < 0. By increasing l slightly, we may assume 
that l ( e) > 0 for each e E E. Next, by blowing up ( d; l) we may assume 
that each entry in ( d; l) is an even integer. 

Let G' be the graph arising from G by replacing each edge e of G by a 
path of length l(e). That is, we insert l(e) - 1 new vertices on e. Then by 
(39(i)), 

(40) 

for each i E J. Since G' is bipartite, by Corollary lla there exist closed 
curves D 1, ... , Dt not intersecting any vertex of G' such that each edge of 
G' is intersected by exactly one D1 and only once by that D1 and such that 

for each i E J. So 

t 

minlengthc, ( ci) = L miner( ci' D j.) 
j=l 

t 

l(e) = I:cr(e,Dj) 
j=l 

for each edge e of G. Hence (35), (40) and (41) give 

t t t k 

( 41) 

( 42) 

Ll(e) = LLcr(e,DJ) = .L::cr(G,Dj) 2 LLmincr(Ci,DJ) 
eEe j=l eEE j=l j=l i=l 

k t k k 

= LLmincr(Ci,Dj) = 2:minlcngth0 ,(Ci) 2 - Ldi. (43) 
i=l j=l i=l i=l 

So(d;lf(l1;lE)~O. D 

In [37] an example is given showing that generally we cannot take the 
]; 0, 1 valued, even not if certain parity conditions arc satisfied. However, 



Paths in Graphs and Curves on Surfaces 397 

Frank and Schrijver [9] showed that if Sis the torus, C1, ... , Ck are simple 

closed curves, and for each closed curve D one has the 'parity condition' 

k 

mincr(G, D) = 2-:mincr(Ci, D) (mod 2), (44) 
i=l 

then the fi can be taken to be 0, 1 valued. That is, there is the following 
theorem: 

Theorem 12. Let G = (V, E) be a graph embedded on the torus S, and 
let C1, ... , Ck be simple closed curves on S, such that condition (44) holds. 
Then there exist pairwise edge-disjoint closed curves C~, ... , C~ in G such 
that c;,...., Ci for i = 1, ... , k, if and only if the cut condition (35) holds. 

For more results on curves and graphs on the torus, and their relations 

to geometry of numbers, see [10], [43], [44], [42], and [49]. 

8. Homotopic flows 

As a further application we derive a 'homotopic flow-cut theorem' for planar 

graphs. Let G = (V, E) be an undirected planar graph embedded in the 

plane IR2 , let F1 , ... , Fp be some of its faces, including the unbounded face. 

Define S := IR2 \ (F1 U · · · U Fp)· A curve is a continuous function from a 
closed interval into S. So curves have end points, while closed curves have 
not. Throughout, we take homotopy of curves in the space S. 

We define the function miner for curves with end points similarly as 

for closed curves. Thus, for any pair of curves C, D, define miner( C, D) 

to be the minimum number of intersections of C' and D' (counting multi
plicities), where C' and D' range over all curves on S homotopic to C and 

D, respectively. Moreover, mincr(G, D) denotes the minimum number of 
intersections of G and D' (counting multiplicities) where D' ranges over all 

curves on S homotopic to D not intersecting V. 
Let C1 , ... , Ck be curves with end points on bd(S). A direct necessary 

condition for the existence of pairwise edge-disjoint paths P 1 , ... , Pk in G 
such that Pi"' C; for i = 1, ... , k is: 

cut condition: for each curve D on S \ V with end points on bd(S): 
k 

cr(G,D) 2: 2-:mincr(Ci,D). (45) 
i=l 

This condition generally is not sufficient for the existence of paths 
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Pi, ... , Pk, but it is sufficient for a 'fractional packing' of such paths. For 
this we need the concept of a flow. 

Let r and s be vertices of G. Call a function f : E ~ lR+ an r - s 
flow (of value 1) if f is a convex combination of vectors tr p, where P is an 
r - s path in G, and where tr p ( e) denotes the number of times P traverses 
edge e. We say that f is homotopic to some r - s curve C if we can take 
each P homotopic to C (in S). 

Corollary 1 lc. Let C1, ... , Ck be curves in S with end vertices on bd( S). 
Then there exist flows Ji , ... , fk such that fi is homotopic to Ci (i = 
1, ... , k} and such that I:~=l fi(e) ~ 1 for each edge e, if and only if the 

cut condition (45) holds. 

This can be derived from Corollary llb by transforming Stoa compact 
surface S', by adding a 'handle' Hi for each curve Ci between the two faces 
among F1, ... , Fp having the end points of Ci on their boundaries. We 
then extend Ci over Hi to a closed curve C: in S', and extend G similarly 
with an edge over Hi connecting the end points of Ci; this gives the graph 
G' embedded on S'. Applying Corollary 11 b to S', G' and the C~ gives 
Corollary 1 lc. 

One similarly derives a version with 'demands' and 'capacities.' A 
function f : E ~ lR+ is called an r - s flow of value d if 1/ d · f is an r - s 
flow of value l. Moreover, such a flow is homotopic to a curve C if (l/d)f 
is homotopic to C. 

Corollary lld. Let Ci, ... , Ck be curves in S with end vertices on the 
bd(S), let c : E ----+ lR+ {the 'capacity function') and let d1 , ... , dk E lR+ 
{the 'demands'). Then there exist flows Ji, ... , fk such that fi is homotopic 
to Ci and has value di {i = 1, ... , k) and such that 2::7= 1 fi(e) ~ c(e) for 
each edge e, if and only if for each curve D in S with end points on bd(S) 
we have 

k 

L di· mincr(Ci, D) ~ I: c(e)cr(e, D). (46) 
i=l eEE 

It is not always true that we can take the flows fi to be integer valued. 
However in some cases this is true, in particular when also the following 
'parity condition' is satisfied: 

parity condition: for each vertex v of G, the degree of v has 
the same parity as the number of curves Ci having v as one of (47) 
its end vertices. 

The following was shown in [12]: 
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Theorem 13. Let the number p of holes be at most 2, and suppose that the 
parity condition is satisfied. Then there exist pairwise edge-disjoint paths 
P1, ... , Pk in G such that Pi "' Ci for i = 1, ... , k, if and only if the cut 
condition (45) holds. 

This theorem extends the Okamura-Seymour theorem [26] (where p = 1-
cf. Corollary 11 b). 

Another case where the cut condition is enough, was shown in [40]: 

Theorem 14. Let G = (V, E) be a planar graph and let F1, ... , Fp be some 
of its faces, incfoding the unbounded face. Suppose that there exist straight 
line segments Li, ... , Lt in the plane such that 

GU F1 U · · · U Fp = Li u · · · U Lt U Fi U · · · U Fp, ( 48) 

and such that each of the Lj has its end points in Fi U · · · U Fp. Then if the 
parity condition is satisfied, the cut condition is equivalent to the existence 
of paths. 

This was shown by Kaufmann and Mehlhorn [19] for finite subgraphs of 
the rectangular grid in the plane. 

9. Primitive closed curves 

Also the following result in combinatorial topology can be derived from 
Corollary 11 b ( cf. [33]). Call a closed curve D on a compact surface S 
primitive if there does not exist a closed curve C and a natural number n 2: 
2 such that D"' en. Moreover, call two systems of closed curves C1 , ... , Ck 
and C~, ... , C£, equivalent if k = k' and there exists a permutation rr of 
{l, ... ) k} such that c~(i) rv ci or c~(i) rv c;1 for each i = 1, ... , k. Then: 

Theorem 15. Two systems of primitive closed curves C1, ... , C1o and 
Ci, ... , C£, on a compact surface S are equivalent, if and only if for each 
closed curve D on S 

k k' 

L mincr(Ci, D) = L mincr(CI, D). ( 49) 
i=l i=l 

The necessity of the condition is trivial -~ the content of the result is 
sufficiency. 
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It is not difficult to see that one cannot delete the primitivity condition 
in the theorem. However, one can relax the condition to each curve being 
'orientably primitive': a curve D is orientably primitive if there does not 
exist an orientation-preserving closed curve C and a natural number n ~ 2 
such that D ,...., en. In particular, each orientation-reversing closed curve 
is orientably primitive. (On orientable surfaces, 'primitive' coincides with 
'orientably primitive.') 

For an application of this result to the uniqueness of 'kernels' in com
pact orientable surfaces, see [41]. 

10. The Klein bottle 

We finally focus on the Klein bottle and its relations to planar multicom
modity flows. Let G = (V, E) be an undirected graph embedded on the 
Klein bottle S. Call a set B of edges of G a blocker if B intersects each 
orientation-reversing circuit in G. 

In [36] we proved the following min-max relations: 

Theorem 16. 

(i) If G is bipartite, the minimum number of edges in an orientation
reversing circuit in G is equal to the maximum number of pairwise 
disjoint blockers. 

{ii} If G is Eulerian, the minimum size of a blocker is equal to the maximum 
number of pairwise edge-disjoint orientation-reversing circuits. 

Again, in (1) we can relax the bipartiteness condition to each face being 
even. 

As usual, the inequalities min ~ max are easy. The content of the 
theorem is formed by the reverse inequalities. In fact, (ii) can be derived 
from (i), as we indicate below. 

The starting point in the method for proving Theorem 16 is the fol
lowing result proved in [35]: 

Let G = (V, E) be a connected bipartite undirected planar 
graph, and let F1 and F2 be two of its faces. Then there 
exist pairwise disjoint cuts D1 , ... , Dt such that for each two 
vertices u, w with ·u, w E bd ( F 1 ) or u, w E bd ( F2 ), the distance 
in G from u tow is equal to the number of cuts Dj separating 
u and w. (50) 

Here a set D of edges is called a cut if there is a subset X of V such 
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that D = b(X) := {e E Ellen XI = l}. The cut Dis said to separate u 
and w if X contains exactly one of u, w. 

From (50) one derives Theorem 16(i) as follows. First cut the Klein 
bottle open along a minimum-length orientation-reversing circuit C in G. 
This transforms the Klein bottle S to a Mobius strip S', and the graph G 
to a graph G' (in which C is 'doubled'). 

Next we cut S' open along a minimum-length orientation-reversing 
circuit C' in G'. This transforms the Mobius strip S' to an annulus S" and 
the graph G' to a graph G" (in which C' is 'doubled'). 

As G" is a planar bipartite graph, (50) applies to G", with the two 
'holes' of the annulus taken as the faces F1 and F2 . Then the cuts 
D 1 , ...• Dt can be seen to correspond to a maximum packing of ICI blockers 
in G, and we have Theorem 16(i). 

Now by a standard technique in polyhedral combinatorics one derives 
from Theorem 16(i) that each vertex of the polyhedron in JRE determined 
by: 

(i) :i:(e) ;::: 0, for each e E E, 

(ii) LeEe x(e) ;::: 1, for each orientation reversing circuit C. (51) 

is the incidence vector of some blocker. Linear programming duality applied 

to minimizing the function Le EE x( e) over ( 51) then gives the following 
min-max relation: 

the minimum size of a blocker in G is equal to the maximum 

value of Le ye, where Ye E IR+ for each orientation-reversing 
circuit C, such that Le:;,e Ye :S 1 for each edge e of G. (52) 

Now Theorem 16(ii) says that if G is Eulerian, then we can take in 
fact the Ye from {O, 1}. This can be derived from (52) by applying a few 
additional techniques (sec [36]). It implies that for general (non-Eulcrian) 
graphs G we can take the Ye in ( 52) from { 0, 1, 1}. This follows by replacing 
each edge by two parallel edges, thus making the graph Eulerian, and then 
applying Theorem 16(ii). 

We mention some consequences of Theorem 16(ii). First the following 
result of Lins [21] on the projective plane can be derived. (Observe that 
on the projective plane, the orientation-reversing closed curves are exactly 

the nonnullhomotopic closed curves.) 

Corollary 16a. (Lins' theorem.) Let G = ( V, E) be an Eulerian undi

rected graph embedded on the projective plane. Then the maximum number 

of pairw'ise edge-disjoint nonnullhomotopic circuits in G is equal to the 
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minimum number of edges intersected by a nonnullhomotopic closed curve 
not intersecting V. 

This follows directly by adding an extra cross-cap on the projective plane 
(in one of the faces of G), transforming it to a Klein bottle. 

Lins' theorem is equivalent to a theorem on disjoint paths in planar 
graphs, due to Okamura and Seymour [26]. Let G = (V, E) be an undi
rected graph, and let ri,s1 , .. . ,rk,sk be vertices of G (so that ri =f:. si for 
each i). 

We are interested in the existence of 

pairwise edge-disjoint paths P1, ... , Pk where Pi connects 

ri and si (i = 1, ... , k). (53) 

Clearly, the following cut condition is a necessary condition for the existence 
of such paths: 

cut condition: for each X i;;:; V: l8(X)I ~ lp(X)I, (54) 

where p(X) denotes the set of i E {1, ... , k} such that X separates ri and 
Si. 

Generally, the cut condition is not sufficient for the existence of the 
paths. In some cases, the following additional (not-necessary) condition is 
helpful: 

parity condition: l8({v})I = IP({v})I (mod 2), for each vertex v. (55) 

Corollary 16b. (Okamura-Seymour theorem.) Let G = (V, E) be an 
undirected planar graph, let F be one of its faces, and let r 1 , s 1 , ... , rk, Bk 

be vertices on bd( F), so that the parity condition is satisfied. Then the cut 
condition (54) is equivalent to the existence of paths (53). 

In fact also a more general theorem of Okamura [25] can be derived 
from Theorem 16(ii). 

Corollary 16c. (Okamura's theorem.) Let G = (V, E) be an undirected 
planar graph, let F1 and F2 be two of its faces, and let r 1 , s 1 , ... , rki sk be 
vertices such that for each i, ri, Si E bd(Fi) or ri, Si E bd(F2 ), and such that 
the parity condition is satisfied. Then the cut condition (54) is equivalent 
to the existence of paths (53). 

This can be derived from Theorem 16(ii) as follows. First one argues 
that one may assume that, for some t S: k, r 1 , r 2 , ... , ri, s 1 , s2, ... , St occur 
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in this order clockwise around bd(F1) and rt+1, rt+2, ... , rk, St+1, s1+2, ... , 
sk occur in this order clockwise around bd(F2 ). 

We may assume that deleting F1 and F2 from the plane gives an annulus 

S. We extend S by glueing the boundary of a cross-cap (a Mobius strip) at 

bd(F1), and we augment G by t new edges over the cross-cap, connecting 

r1 and s1, r2 and s2, ... ,r1 and s1 , respectively. (This can be done in such 

a way that no two of them intersect.) Similarly, we glue the boundary of 

another cross-cap at bd(F2 ) and we put k- t new edges over this cross-cap, 

connecting rt+1 and s1+1, rt+2 and s1+2, ... , rk and sk, respectively. Let 

G' be the extended graph. So G' is an Eulerian graph embedded on a Klein 

bottle. 
The cut condition now implies that the minimum size of a blocker in 

G' is equal to k. Hence by Theorem 16(ii), G' contains k pairwise edge

disjoint orientation-reversing circuits. Since each of these circuits should 

contain at least one of the new edges over the cross-caps, and since there 

are k such edges, in the original graph G they give k paths as required. 

Another consequence is: 

Corollary 16d. Let G = (V, E) be an undirected planar graph, let F1 

and F2 be two of its faces, and let r 1 , s 1 , ... , rk, Sk be vertices, such that 

r1, ... , rk occur in clockwise order around bd(F1) and s1, ... , sk occur in 

clockwise order around bd(F2 ), and such that the parity condition is satis

fied. Then the cut conditions is equivalent to the existence of paths (53). 

This can be derived by assuming that we obtain an annulus by deleting 

F1 and F2 (so we first make the unbounded face to a bounded face) and 

by glueing a cylinder (an annulus) so as to connect the boundaries of F1 
and F2, in such a way that we obtain a Klein bottle. We extend Gover 

this cylinder by k new edges connecting r 1 and s1, r2 and s2, ... , rk and 

sk, respectively. (This can be done in such a way that no two of them 

intersect.) This transforms G to an Eulerian graph G' embedded on a 

Klein bottle. 
The cut condition now implies that the minimum size of a blocker in 

G' is equal to k. Hence by Theorem 16(ii), G' contains k pairwise edge

disjoint orientation-reversing circuits. Since each of these circuits should 

contain at least one of the new edges over the cylinder, and since there are 

k such edges, in the original graph G they give k paths as required. 

Despite analogies between Theorem 13 and Corollaries 16c and 16d, 

we do not see a common generalization. Karzanov [17], [18] obtained ex

tensions to three or more holes. 
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