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Abstract

We develop decomposition/composition tools for efficiently solving maximum weight
stable sets problems as well as for describing them as polynomially sized linear programs
(using “compact systems”). Some of these are well-known but need some extra work to
yield polynomial “decomposition schemes”.

We apply the tools to graphs with no even hole and no cap. A hole is a chordless cycle
of length greater than three and a cap is a hole together with an additional node that is
adjacent to two adjacent nodes of the hole and that has no other neighbors on the hole.

1 Introduction

A vast literature about efficiently solvable cases of the stable set problem focuses on “perfect
graphs”. Based on the ellipsoid method, Grötschel, Lovász, and Schrijver [13] have developed
a polynomial-time algorithm that computes a stable set of maximum weight in a perfect
graph. Perfect graphs have no odd holes. (A hole is a chordless cycle of length greater than
three.) It is conceivable that the stable set problem is polynomially solvable for all graphs
without odd holes, and this may even extend to graphs with all holes having the same parity,
so either all even or all odd. To our knowledge the case that all holes are odd has not received
much attention and in this paper we take a first step in exploring this topic by considering
“cap-free” graphs with no even holes. A cap is a hole together with an additional node that
is adjacent to two adjacent nodes of the hole and that has no other neighbors on the hole.

Theorem 1.1. The stable set problem for cap-free graphs with no even holes is polynomially
solvable.

The stable set polytope of a graph is the convex hull of the characteristic vectors of the
stable sets of the graph. Linear descriptions of stable set polytopes require in the worst
case exponentially many inequalities and arbitrarily large coefficients (in minimum integer
form), even for cap-free graphs with no even hole. However, for those graphs we can tame
the descriptions by allowing some extra variables. An extended formulation for a polytope P
in Rn is a system of inequalities Ax+By ≤ d such that

P = {x ∈ Rn : ∃y [Ax+By ≤ d] }.

An extended formulation for P is compact if its encoding has polynomial size in n.
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Theorem 1.2. Stable set polytopes of cap-free graphs without even hole admit compact ex-
tended formulations.

We develop decomposition/composition tools for solving maximum weight stable sets prob-
lems. The working of such tool is that when a graph is decomposable into smaller parts
according to the tool’s specifications, then that can be used to efficiently construct a solution
for the whole from solutions for the parts. Some of these tools are well-known but need
some extra work to make them suitable as a component in polynomial-time algorithms. We
develop similar mechanisms for combining polynomially sized linear programs for stable set
problems on parts of a decomposition into such linear program for the whole.

We apply these results to cap-free graphs with no even holes. Conforti, Cornuéjols, Kapoor,
and Vušković [6, 7, 8] give a decomposition theorem for graphs with no even hole and use
that to find even holes in polynomial time [9]. The following theorem is a simplified variant
of the main result in [6].

Theorem 1.3 ([6, Theorem 4.1]). Every cap-free graph with a triangle either admits an amal-
gam decomposition or a clique cutset decomposition (both defined in Section 2) or contains
a node adjacent to all other nodes.

So cap-free graphs with no even holes can be built from triangle-free graphs with no even
holes. Conforti, Cornuéjols, Kapoor, and Vušković [7] prove that triangle-free graphs with no
even holes can be further decomposed into as simple graphs as “fans” and the 1-skeleton of
the three dimensional cube. This is Theorem 2.18; as that result is a bit technical, we explain
its details later, in Section 2.2. As we will see, all decompositions coming up in Theorems 1.3
and 2.18 fall in our framework and thus, taking all together, we get Theorems 1.1 and 1.2.

Notation. A transversal of a collection A of disjoint nonempty sets is a set W ⊆ ∪A with
|W ∩X| = 1 for each X ∈ A.

Let G = (V,E) be a graph. If X,Y ⊆ V are disjoint and some node in X has a neighbor
in Y , then X and Y are adjacent. If each node in X is adjacent to all nodes in Y , then
X is fully adjacent to Y . The set of nodes outside X that are adjacent to X is denoted
by NG(X). The subgraph of G induced by X ⊆ V is GX . Moreover, G − X = GV \X and
BG(X) = NG(V \X). If x ∈ V , we write G − x for G − {x}, NG(x) for NG({x}), “x is fully
adjacent to Y ” for “{x} is fully adjacent to Y ”, etc.

Let A be a collection of disjoint nonempty sets in G. Let GA denote the graph with as
nodes the members of A and as edges the adjacent pairs in A. We call any graph isomorphic
to GA a pattern of A. We call A a region of G, if each adjacent pair in A is fully adjacent;
in that case, GW is a pattern of A in G, for every transversal W of A.

If X is fully adjacent to NG(X) and X 6= ∅, we call X a group of G. A partition of a set
A into groups of G is a grouping of A in G.

The collection of stable sets in a graph G = (V,E) is denoted by S[G]. The stability
number α(G) of G is the size of the largest stable set in G. If X ⊆ V , then α(X) = α(GX).
If w = (wv : v ∈ V ) ∈ RV , then wX = (wv : v ∈ X) and w(X) = Σv∈Xwv.

2 Solving the stable set problem by decomposition

Given a graph G = (V,E) and a weighting (wv : v ∈ V ), we consider the following problem:
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Find in G, a stable set S, that maximizes w(S). (Stable set problem)

Suppose we are given a triple (V1, U, V2) of disjoint sets with union V and a grouping U of
U in GV2∪U such that V1 and V2 nonadjacent, |V1 ∪ U | > |U| and |V2| > 0. We call such
(V1, U, V2) with U a node cutset separation of G. (Recall from Section 1, that U is a grouping
means that each X ∈ U is fully adjacent to NG(X) ∩ V2 and that each pair in U is either
nonadjacent or fully adjacent.)

Define for each stable set S′ in V1 ∪ U the value:

correct(S′) = max{w(S′′) : S′′ ⊆ V2, S
′ ∪ S′′ ∈ S[G]}.

Then the maximum w(S) of a stable set S in G is equal to the maximum in the following
problem.

Find in GV1∪U , a stable set S′, that maximizes w(S′) + correct(S′). (Master)

Fix a transversal Û of U . It is immaterial which particular transversal is chosen; our actual
object of interest is the graph G

V2∪ Û and (up to graph isomorphism) that does not depend

on the choice of Û—that is what “U is a grouping of U in GV2∪U” means. We define for each
B ⊆ U , the set B̂ = {X̂ : X ∈ B} and we define the map homU: S[GV1∪U ]→ S[GÛ ] by:

homU (S′) = {X̂ : X ∈ U , S′ ∩X 6= ∅}

for each stable set S′ in V1 ∪ U .
Now take any stable set S′ in V1 ∪ U . Then, for any set S′′ in V2, it is straightforward

to see that S′ ∪ S′′ is a stable set in G if and only if homU (S′) ∪ S′′ is a stable set in G
V2∪ Û .

This means that
correct(S′) = service Û (homU (S′)),

where the function T 7→ serviceÛ (T ) on S[Û ] is given by the values w(V2 ∩ ST ) of the stable
sets ST determined by:

Find in G
V2∪ Û , for each stable set T in Û ,

a stable set ST with Û ∩ ST = T , that maximizes w(V2 ∩ ST ). (Servant)

The discussion above implies the following results.

max
S∈S[G]

w(S) = max
S′∈S[GV1∪U ]

w(S′) + correct(S′), (1)

where correct = service Û ◦ homU and

service Û (T ) = max
ST∈S[G

V2∪ Û ], Û∩ST =T
w(V2 ∩ ST ). (2)

Fact 2.1. Suppose we are given:

(1) a solution (ST : T ∈ S[Û ]) of the servant,

(2) the function service Û : T 7→ w(V2 ∩ ST ) on S[Û ],
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(3) a solution S′ of the master with correct = service Û ◦ homU ,

(4) S = S′ ∪ (V2 ∩ ShomU (S′)).

Then S is a solution of the stable set problem on G with w.

Fact 2.1 and the underlying formula (1) are seminal to the approach in this paper. It says
that we can solve the stable set problem on G as follows: first, solve all the problems listed
in the servant and substitute the results in the objective function of the master; after that,
solve the master. We call this master/servant decomposition, and use that term freely at all
levels: for instance, we will call GV1∪U , G

V2∪ Û a master/servant decomposition of G.

Singletons are groups. The advantage of using larger groups is that that takes out replications
in the list of problems making up the servant. For us that saving is crucial: The decompo-
sitions in Theorem 1.3 come from node cutset separations with unbounded α(U) but with
α(Û) = 1; and that is a big difference: the servant comprises as many problems as there are

stable sets in Û , and that number lies between 2α(Û) and
( |Û |
α(Û)

)
2α(Û). Our algorithms will all

come with an a priori bound αbound on α(Û), but allow α(U) to be arbitrary high.
Observe that for any node v ∈ U , the union of all groups in U that contain v is a group.

So the inclusion-wise maximal groups in U form a grouping of U , we denote this grouping by
Ucoarse. It is clearly “better than the rest”: the pattern G

Ûcoarse
is a proper induced subgraphs

of the pattern GÛ for any other U . Incidentally, note that it is not hard to find the maximal
group in U containing a particular node v: starting with X = U , keep removing nodes from
X that have not the same neighbors outside the current X as v until this is no longer possible.
Then, X has become a group. As all groups in U containing v will have stayed in X during
the procedure, X is the maximal group in U that contains v.

Further decomposing the servant—rooted graphs. Our approach will be to not only
apply master/servant decomposition to the stable set problem on G but also to the problems
that appear in the master and the servant. This is not without issues, both for the master
as the servant. We first consider the servant.

The servant is a stable set problem on a rooted graph; which in general is formulated as:
Given a graph G = (V,E), a root Z ⊆ V , and a weighting (wv : v ∈ V ):

Find in G, for each stable set R in Z,
a stable set SR with Z ∩ SR = R, that maximizes w(SR).

(Stable set problem with root)

The servant is special in that it has weighting 0 on the root (because w(SR) = w(SR\Z) if w
is identical to 0 on Z). We call a pair (G,Z) with Z ⊆ V a rooted graph. We call V \Z the
area of (G,Z) and of the stable set problem on (G,Z); if the area is empty we call (G,Z),
and the stable set problem, trivial. The servant is never trivial.

The stable set problem on a rooted graph is a list of stable set problems. That the
servant has this “multiple-problem” feature becomes an issue when we further decompose
these subgraphs of the servant as if they were totally unrelated. We easily run into exponential
explosion then; even if the root has as few as two stable sets, which is always the case when
U is nonempty. That means that we can hardly iterate decomposing “on the servant side”.
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We ran into this issue of the “multiple-problem” aspect of the servant when we wanted
to use amalgam decompositions in Theorem 1.3 to design a polynomial time algorithm for
the stable set problem of cap-free graphs with no even holes. A standard way to address
the issue is to avoid servant-graphs that can be further decomposed, for instance by taking
V2 inclusion-wise minimal. Clique cutsets with V2 inclusion-wise minimal have that property
and can be found efficiently (Whitesides [15]). But for the amalgam decompositions used in
Theorem 1.3, this will not work. Cornuéjols and Cunningham [10] gave a polynomial-time
algorithm to find an amalgam separation with minimal servant, but as illustrated by Figure 1,
that does not guarantee that the amalgam blocks will have no amalgams. So, what then?
Just forbidding to decompose “on the servant side” and ignore occasions that arise limits the
applicability of the approach too much—at least for our purposes.

There is a way out: master/servant decomposition extends easily to rooted graphs (G,Z)
with Z ⊆ V1∪U : in the master, just replace the graph GV1∪U by the rooted graph (GV1∪U , Z),
but keep the same objective function S 7→ w(S) + correct(S) with correct = service Û ◦ homU ,

where Û is the same transversal of U and service Û comes from the same servant, with the
same graph, the same root and the same weighting as before.

Find in GV1∪U , for each stable set R in Z,
a stable set S′R with Z ∩ S′R = R, that maximizes w(S′R) + correct(S′R).

(Master with root)

In terms of rooted graphs, (1) reads as:

max
SR∈S[G], Z∩SR=R

w(SR) = max
S′
R∈S[GV1∪U ], Z∩S′

R=R
w(S′R) + correct(S′R). (3)

with the function correct = service Û ◦ homU is as in (2). Moreover:

Fact 2.2. The area of (G,Z) is the disjoint union of the area of the master and the servant.

This is crucial to our approach. The stable set problem on G is the same as the stable set
problem on the rooted graph (G, ∅). Starting from the rooted graph perspective, we reduce a
stable set problem on a rooted graph into one stable set problem on the rooted master-graph
and one stable set problem on the rooted servant-graph. Regardless how often we repeat this
master/servant decomposition for rooted graphs, by (2.2), the collective area of the list of
problems constructed does not grow. We formalize this by “decomposition lists”.

Suppose (G,Z) occurs in an left/right ordered list L of rooted graphs. Then a master/servant
decomposition of L along node cutset separation (V1, U, V2) with U of (G,Z) is a list obtained
from L by replacing (G,Z) by the rooted master graph (GV1∪U , Z) (in the same position)
and then inserting the rooted servant graph (G

V2∪ Û , Û) anywhere further down the list (so
to the right of where (GV1∪U , Z) is).

A master/servant decomposition-list of (G,Z) is either ((G,Z)), or (recursively) defined
as a master/servant decomposition of a master/servant decomposition list of (G,Z).

Lemma 2.3. A master/servant decomposition list of a rooted graph with n nodes contains
at most n non-trivial rooted graphs and at most 2n2 trivial rooted graphs.
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Proof. Imagine a sequence of master/servant decompositions that leads from the rooted graph
to the list. Trivial rooted graphs can not be decomposed, so for this analysis we ignore them.
We visualize each non-trivial rooted graph encountered in the sequence as an area-root pair
with nonempty area and root of size at most n− 1. These area-root pairs behave as follows.
Either we split an area into two disjoint nonempty areas and assign each of them with a root,
each with at most n− 1 nodes, or we reduce the root of an area-root pair to a proper subset
without changing the area of that pair.

As the initial area has size at most n, we can apply at most n−1 “area-splits”. So overall,
we will encounter at most 2n − 1 different areas. Since roots have size at most n − 1, the
“root-reduction” operation cannot be iterated more than n − 1 times without changing the
area.

The rooted graph approach fully overcomes the issues of the multiple-problem aspect of the
servant that we ran into when we wanted to use Theorem 1.3 for designing algorithms.

Further decomposing the master—templates. Suppose the master-graph GV1∪U has a
node cutset separation (V ′1 , U

′, V ′2) with grouping U ′ and Z ⊆ V ′1 ∪ U ′ and we want to use
that for a master/servant decomposition of the master. Since the factor service Û of the extra
term can be virtually anything (see Fact 2.9), we only do that if the separation fits U , which
means that:

(i) U ⊆ V ′1 ∪ U ′ or U ⊆ V ′2 ∪ U ′.
(ii) if U meets V ′2 and X ∈ U meets U ′, then X ∩ U ′ is the union of members of U ′.

When the separation does fit U , we decompose the master as follows: The master-of-the-
master has graph GV ′

1∪U ′ , root Z, and objective function:

(service Û ′ ◦homU ′)(S′R) + w(S′R) +

{
(service Û ◦homU )(S′R) if U does not meet V ′2 ,

0 if U does meet V ′2 ,

and the servant-of-the-master has graph G
V ′
2∪ Û ′ , root Û ′, and objective function:

w(V ′2 ∩ ST ) +

{
0 if U does not meet V ′2 ,

(service Û ◦homU )(S′R) if U does meet V ′2 .

If we next also decompose the master-of-the-master and servant-of-the-master and keep re-
peating that, we will accumulate more and more extra terms of the form service Â ◦homA.
This leads to templates: triples (G,Z,Ω) where (G,Z) is a rooted graph and Ω a collection
of regions in G. Also note that the presence of these extra terms has no effect on how rooted
graphs are decomposed; the extra terms only prevent some separations to lead to decompo-
sitions. This means that (2.2) and Lemma 2.3 will still apply.

Suppose we are given a collection Ω of regions in G and for each of regions A ∈ Ω: a pat-
tern with node set Â, a graph isomorphism X → X̂A between GA and that pattern, and a
real-valued function σÂ on S[Â]. Define, for B ⊆ A, the set B̂A = {X̂A : X ∈ B}, and for
S ∈ S[G], the set homA(S) = {X̂A : X ∈ A, S′∩X 6= ∅}. We consider the following problem.

Find in G, for each stable set R in Z,
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a stable set SR with Z ∩ SR = R, that maximizes w(SR) +
∑
A∈Ω

(σÂ ◦ homA)(SR).

(Stable set problem on a template)

Suppose also that our node cutset separation (V1, U, V2) with U and Z ⊆ V1 ∪ U fits each
region in Ω. Then the maxima in the stable set problem on a template are the same as the
maxima in the following problem.

Find in GV1∪U , for each stable set R in Z,
a stable set S′R with Z ∩ S′R = R, that maximizes

w(S′R) +
∑

A∈Ω,V2∩(∪A)=∅

(σÂ ◦ homA)(S′R) + correct(S′R),

(Master for a template)

where correct = serviceÛ ◦homU and T 7→ serviceÛ (T ) on S[Û ] is given by the maxima in:

Find in G
V2∪Û , for each stable set T in Û ,

a stable set ST with ST ∩ Z = T , that maximizes

w(V2 ∩ ST ) +
∑

A∈Ω,V2∩(∪A)6=∅

(σÂ ◦ homA)(ST ).

(Servant for a template)

Using templates, formula (1) extends to:

max
SR∈S[G],Z∩SR=R

w(SR) +
∑
A∈Ω

(σÂ ◦ homA)(SR) =

= max
S′
R∈S[GV1∪U ],Z∩S′

R=R
w(S′R) +

∑
A∈Ω,V2∩(∪A)=∅

(σÂ ◦ homA)(S′R) + correct (S′R), (4)

where correct = serviceÛ ◦homU and

max
SR∈S[G], Z∩SR=R

service Û (ST ) = w(V2 ∩ ST ) +
∑

A∈Ω,V2∩(∪A) 6=∅

(σÂ ◦ homA)(ST ). (5)

Also Fact 2.1 generalizes to templates.

Fact 2.4. Suppose we are given:

(1) a solution (ST : T ∈ S[Û ]) of the servant for a template,

(2) the function serviceÛ : T 7→ w(V2 ∩ ST ) +
∑
A∈Ω, V2∩(∪A)6=∅(σÂ ◦ homA)(ST ) on S[Û ],

(3) a solution (S′R : R ∈ S[Z]) of the master for a template with correct = serviceÛ ◦homU ,

(4) SR = S′R ∪ (V2 ∩ ShomU (S′
R

) for each R ∈ S[Z].

Then (SR : R ∈ S[Z]) is a solution of the stable set problem on a template.

And we have the following.

Fact 2.5. The master for a template and the servant for a template are both stable set
problems on a template.
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Proof. For the master this is obvious: each region that does not meet V2—and that includes
also U—is a region in the master-graph. For the servant the situation is slightly subtle. The
regions in Ω that meet V2 are regions of GV2∪U , but not of G

V2∪ Û . However, if we replace the

members of any such region by their intersection with V2 ∪ Û , we do get a region of G
V2∪ Û ;

for the formula in (5) that replacement has no effect.

This extension of the master/servant decomposition to stable set problems on templates
“closes” our model.

Theorem 2.6. Let R be a family of templates closed under master/servant decomposition
and P be a subfamily of R. If there is a polynomial time that finds a fitting node cutset
separation for any template from R\P and there is a polynomial time algorithm for the
stable set problem on templates from P, then there exists a polynomial time algorithm for the
stable set problem on templates from R.

Proof. Suppose we are given a stable set problem on a template (G◦, Z◦,Ω◦) ∈ R. To solve
it, we keep a right/left ordered list of stable set problems on templates (G,Z,Ω) such that
the underlying list of rooted graphs (G,Z) is a master/servant decomposition list of rooted
graphs. Initially this list consists of just the single stable set problem on (G◦, Z◦,Ω◦).

For any template (G,Z,Ω) on the list, the regions A ∈ Ω all come with a real valued
function σÂ on S[Â], which is either given by an explicit listing of all function values σÂ(T )

with T ∈ S[Â] or by σÂ = serviceÂ, where the function values of serviceÂ are the maxima of

a stable set problem with template (G′, Â,Ω′) further down the list (so to the right of where
(G,Z,Ω) is). As soon as the solution of that stable set problem on (G′, Â,Ω′) comes available,
we store the solution by an explicit listing of the values serviceÂ(T ) and remove the stable

set problem on (G′, Â,Ω′) from the list. As of that moment σÂ is represented by the stored

explicit listing. To solve that stable set problem on (G′, Â,Ω′), we need an explicit listing for
each σÂ′ with A′ ∈ Ω′. The right most problem on the list has that property. Therefore, we
always try find a solution to that right most problem.

So the algorithm is to iterate the following procedure: Remove the right most stable set
problem from the list and either decompose that problem and place the master and servant
in that order at the end of the list, or solve the removed problem and store its solution. By
the given decomposition algorithm for R\P and the given optimization algorithm for P we
can carry out each iteration in polynomial time. By Lemma 2.3 we can iterate the procedure
at most 2n2 +n times if G◦ has n nodes. So after at most 2n2 +n iterations the list is empty.
That means that we stored an explicit listing of the solution of the first problem in the list.
Since throughout the entire algorithm the first problem keeps the initial root Z◦, that explicit
listing solves the original stable set problem on (G◦, Z◦,Ω◦).

Linearized decomposition. Instead of carrying around the nonlinear terms σÂ ◦homA, we
can “linearize” them by adding suitably weighted nodes that are adjacent to nodes in ∪A.
We are free in choosing which terms σÂ◦homA we eliminate in this way and when we do that.
Our algorithms in this paper either not use the option at all or do it at each decomposition
at once, as part of the decomposition procedure.

We say that a triple [H, γ, σ] linearizes a real-valued function d on S[A], if H = (W,F ) is a
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graph with A ⊆ W , γ ∈ RW , σ ∈ R such that for each T ∈ S[A], the maximum value γ(ST )
of stable set in H with A ∩ ST = T is equal to d(T )− σ.

To see the relevance of this definition, suppose that W ∩ V = U and that [H, γ, σ] linearizes
σÛ ◦ homU . Consider the graph GV1∪U ∪H = (V1 ∪W,E ∪ F ). Define γv = 0 if v ∈ V \W .

Fact 2.7. S+ ∈ S[GV1∪U ∪H] with Z ∩ S+ = R maximizes w(V ∩ S+) + γ(W ∩ S+), then
SR = V ∩S+ is a stable set in G with Z ∩SR = R that maximizes w(SR) + (σÛ ◦ homU )(SR).

So we can use a triple [H, γ, σ] linearizing σÛ ◦ homU to reformulate the master problem so
that the objective function is linear. This linearization comes with the expense of adding
nodes (unless W = U).

A canonical way to linearize functions on S[A] with A ⊆ V is to “add a record of S[A] to GA”.
Adding a record of S[A] to a graph G, means to add a clique Arecord (the record ) consisting
of new nodes rT , one for each T ∈ S[A], such that each rT is fully adjacent to A\T and
nonadjacent to T and to V \A. We call the new graph the record graph of G and A, and we
denote it by G(A). Records play a major role in this paper. The following fact only uses the
record graph GA(A) of GA and A.

Fact 2.8. Let d be a real-valued function on S[GA] and let γv = 0 if v ∈ U and γrT = d(T ) if
T ∈ S[U ]. Then [GA(A), γ, 0] linearizes d if and only of d is nonnegative and inclusion-wise
non-increasing on S[GA].

Proof. For each T ∈ S[U ], the stable sets in G(A) that meet A in T are: the set T with
γ(T ) = 0, and for each T ′ ∈ S[A] with T ′ ⊇ T , the set T ∪ {rT ′} with γ(T ∪ {rT ′}) = d(T ′).
The maximum of these weights is d(T ) if and only if d(T ) ≥ 0 and d(T ) ≥ d(T ′) for T ′ ⊆ T ,
as claimed.

Incidentally, Fact 2.8 characterizes the functions that can turn up as solution serviceÛ of the

servant: each nonnegative and inclusion-wise non-increasing function on S[Û ].

Fact 2.9. The solution serviceÛ of the servant is nonnegative and inclusion-wise non-increasing

on S[Û ]. Moreover, every nonnegative, inclusion-wise non-increasing function on the stable
sets of a graph arises in this way.

Proof. That serviceÛ is nonnegative and non-increasing is obvious. For the second statement
just take G such that GV2 is a record of GÛ and apply Fact 2.8.

Actually, any function on S[GA] is the sum of a constant function, a linear function and a
nonnegative non-increasing function. So by by toggling in [GA(A), δ, 0] the values δv with
v ∈ A (which are 0 in Fact 2.8) and the third entry (which is also 0 in Fact 2.8), we can find
linearizations for any function on S[A].

We say that H = (W,F ) linearizes GU with U , if W ∩ V = U and HU = GU , and for every
nonnegative and inclusion-wise non-increasing function σÛ on S[Û ], there exist γ ∈ RW ,
σ ∈ R, such that [H, γ, σ] linearizes σÛ ◦ homU .

So, instead of taking the term (serviceÛ ◦ homU )(SR) into the objective function of the master,
we can replace the master-graph by the linearized master-graph GV1∪U ∪ H and the term
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(serviceÛ ◦ homU )(SR) by γ(W ∩ S+). This gives the following alternative for the master.

Find in GV1∪U ∪H, for each stable set R in Z,
a stable set S+

R with Z ∩ S+
R = R, that maximizes w((V1 ∪ U) ∩ S+

R ) + γ(W ∩ S+
R ).

(Linearized master with root)

The linearized master/servant decomposition consists of this “linearized master with root”
together with the original servant with servant-graph G

V2∪ Û , root Û and objective function
ST 7→ w(V2 ∩ ST ).

Note that as defined the linearized master may well be larger then G. If |W\U | ≤ τ < |V2|,
we speak of a τ -linearized cutset decomposition and we call (V1, U, V2) with U a τ -linearizable
cutset separation and U a τ -linearizable cutset. We will use τ -linearized decomposition with
τ ≤ 1 and only when the corresponding linearized master-graph is a proper induced subgraph
of G. Mind that the τ -linearized master need not be an induced subgraph of G, not even for
τ = 1. The servant-graph, as always, is a proper induced subgraph of G.

We use τ -linearized decompositions for algorithms in the same way as decribed for templates
above. When running an algorithm using τ -linearized decomposition, we will generate a
left/right ordered list of rooted graphs as before, except that now we use linearized masters.
Consequently also the analysis of the running time is almost the same. Almost! Lemma 2.3
does not refer to τ -linearized decompositions with τ ≥ 1 and we have to account for that.
We only use 0/1-linearized decompositions. By Lemma 2.13, their lists have only quadratic
length.

Templates with singleton-regions. Each algorithm in this paper either only use linearized
decompositions or only template decomposition, so without adding extra nodes. Our template
decompositions only come from separations where the grouping consists of singletons. In
such a setting, we denote a region A just by its union A = A; in line of that, we then denote
templates as triples (G,Z,Ω) where Ω consists of subsets of V .

If Ω is a collection of sets in V , then G(Ω) denotes the graph obtained by adding a record
W record for each W ∈ Ω. If C is a class of triples (G,Z,Ω) where (G,Z) s a rooted graph and Ω
a collection of subsets in V , then Crecord denotes all rooted graphs (G(Ω), Z) with (G,Z,Ω) ∈ C.

Outline. In Section 2.2, we consider node cutsets that induce a 3-node path. A 3-node path
has 5 stable sets, so we get records on 5 nodes then. Five-node records are already quite big,
but for the graphs considered in Section 2.2 they work out fine, see Section 2.2. Besides these
“3-node path inducing” cutsets, all node cutsets we use are 1-linearizable. We analyze those
in Section 2.1 and our usage of node cutsets inducing a 3-node path in Section 2.2.

2.1 0/1-linearized decompositions

Lemma 2.3 implies that a decomposition along 0-linearizable cutsets U , will generate a
quadratic of number of graphs. To understand the structure of these cutsets, observe that,
for [GU , γ, σ] to linearize a non-increasing function d on Û forces the values σ = d̄(∅̂) and

γu = d̄({̂u}) − d̄(∅̂) for all u ∈ U . So [GU , γ, σ] linearizes d when U is a clique, but not
otherwise: if a and b are nonadjacent nodes in U , then the function S 7→ d̄(S) that takes

value 1 if S = ∅̂ and 0 otherwise, has −1 = d̄({̂a, b})− σ = γa + γb = −2; which is absurd. If
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U is a clique and V1 and V2 are both nonempty, then U is a clique cutset. If U is a clique and
V1 = ∅ and |U| < |U |, then U contains pair of adjacent twins u, v (u, v are twins if they have
the same neighbors in V \{u, v}). Actually if u, v are adjacent twins, then (∅, {u, v}, V \{u, v})
is a 0-linearizable separation. All-in-all, clique cutsets and adjacent twins are 0-linearizable
cutsets and, conversely, each 0-linearizable cutset is a clique cutset or has an adjacent twin.
Since clique cutsets can be found in polynomial time (Whitesides [15]) we can get the follow-
ing result of Whitesides [15] from Lemma 2.3. We skip the proof as it is a simpler version of
what is written in the proofs of Theorems 2.14 and 2.17.

Corollary 2.10 (Whitesides [15]). Let G be a class of graphs closed under clique cutset
decomposition. If P ⊆ G contains all members of G without clique cutsets, then the stable set
problem on graphs in G is solvable in polynomial time if and only if the stable set problem on
graphs in P is solvable in polynomial time.

So 0-linearized decompositions of rooted graphs are well-understood: the node cutsets are
cliques, they can be found in polynomial time, and the 0-linearized decomposition-lists have
only quadratically many members and use only proper induced subgraphs. The same is true
for 1-linearized decompositions, except that it is not the node cutset but only the servant-root
that is guaranteed to be a clique.

Lemma 2.11. Let H be a graph on U ∪ {r} with r 6∈ U and let U be a a partition of U in
H. Let P be the union of the two element stable sets in U . Then H linearizes HU with U if
and only if P is fully adjacent to r and lies in a set A ∈ U ∪ {∅}.

Proof. First assume that H linearizes HU with U . Recall, that [H, γ, σ] linearizing a nonneg-
ative non-increasing function d on S[Û ] means that

γ(S) = d̄(Ŝ)− σ if S ∈ S[U ] is adjacent to r, (6)

max{0, γr}+ γ(S) = d̄(Ŝ)− σ if S ∈ S[U ] is not adjacent to r. (7)

Applying this to stable sets with at most one element, this forces the values:

σ = d̄(∅̂)−max{0, γr} and γu =

{
d̄({̂u})− σ if u ∈ U is adjacent to r,

d̄({̂u})− d̄(∅̂) if u ∈ U is not adjacent to r.
(8)

Substituting these back in (6) and (7) gives for any nonadjacent pair u, v in U the identity:

d̄({̂u, v}) + d̄(∅̂)− d̄({̂u})− d̄({̂v}) =

{
max{0, γr} if u and v are adjacent to r,

0 if u or v is not adjacent to r.
(9)

Consider the nonnegative and non-increasing function d̄ on S[Û] given by d̄(∅̂) = 3, d̄({̂s}) = 2
for all s ∈ P , and d̄(Ŝ) = 0 for all other stable sets in U . Consider any nonadjacent pair u, v
in U . The definition of d̄ implies that

d̄({̂u, v}) ∈ {0, 2} and d̄({̂u, v}) + d̄(∅̂)− d̄({̂u})− d̄({̂v}) = d̄({̂u, v})− 1.

So, we see from (9) that u and v are both adjacent to r, that d̄({̂u, v}) = 2, and that {̂u, v} = {̂s}
for some s ∈ P . However, {̂u, v} = {̂s} is only possible when {̂u} = {̂s} = {̂v}. That means that
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the expression d̄({̂u, v}) + d∅̂ − d̄({̂u})− d̄({̂v})) is identical to d̄(∅̂)− d̄({̂u})—for all d, not just

for d̄. Hence, for every nonadjacent u, v ∈ U , condition (9) reads:

max{0, γr} = d̄(∅̂)− d̄({̂u}). (10)

As this does not depend on v, this condition on γr applies to each u ∈ P . So the function
u 7→ d̄({̂u}) is constant on P . This must hold for each nonnegative non-increasing function d
on S[Û ]. This can only be the case if {̂u} is the same set for all u ∈ P . Denote that set by A;
it is as claimed in the lemma.

Now assume P is fully adjacent to r and that there is a set A ∈ U ∪ {∅} containing P . Let d
be a nonnegative and non-increasing function on Û. Define σ and γu with u ∈ U such that:

σ = d̄(Â), γu =


d̄(∅̂)− d̄(Â) if u = r,

d̄({̂u})− d̄(Â) if u ∈ U is adjacent to r,

d̄({̂u})− d̄(∅̂) if u ∈ U is not adjacent to r.

Note that {̂u} = Â if u ∈ A. So γu = 0 if u ∈ P . Since d̄(∅̂) ≥ d̄(Â), it is straightforward to
see that [H, γ, σ] linearizes d.

Lemma 2.12. Let (V1, U, V2) be a node cutset separation with grouping U of rooted graph
(G,Z).

If (V1, U, V2) is a 1-linearizable cutset separation with grouping U , then there exist three
disjoint (possibly empty) sets A1,K,A2 in V with the following properties:

(a) K is a clique, A1 = U\K and A2 ⊆ V2.

(b) A1 is fully adjacent to K ∪A2 and not adjacent to V2\A2.

Conversely, if A1,K,A2 are disjoint sets in V satisfying (a) and (b), then the following hold.

• For each r ∈ A2, the pair (GV1∪U∪{r}, Z), (G
V2∪ Û , Û) is a 1-linearized node cutset de-

composition such that GV1∪U∪{r} and G
V2∪ Û are proper induced subgraphs of G and the

servant-root Û is a clique.

• If A2 = ∅, then (GV1∪U , Z), (GV2∪K ,K) is a 0-linearized node cutset decomposition such
that GV1∪U and GV2∪K are proper induced subgraphs of G and the servant-root K is a
clique.

Proof. If (V1, U, V2) is a 1-linearizable cutset separation with U , it follows from Lemma 2.11,
that there exists A1 ∈ U ∪ {∅}, so that K = U\A1 is a clique that is fully adjacent to A1.
Let A2 = NG(A1) ∩ V2. Since A1 is a group in GV2∪U , the sets A1,K,A2 satisfy (a) and (b).

Now, suppose A1,K,A2 satisfy (a) and (b). If r ∈ A2, then by Lemma 2.11 H = GU∪{r}
linearizes GU with U . If A2 = ∅, then K is a clique cutset. The rest is straightforward.

A graph on n nodes with a clique of size n − 2 is a near-clique. We call a decomposition
of a rooted graph (G,Z) proper if G is not a near-clique. A decomposition list is proper
if it is obtained by proper decompositions only. For G = (V,E) and Z ⊆ V , we define
load(G,Z) = |V \Z| − 1.
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Lemma 2.13. A proper 1-linearized decomposition-list of a rooted graph with n nodes and a
clique as root has most n2 members.

Proof. Consider a proper 1-linearized decomposition-list G. Let G>0 consist of the members
of G with positive load. We analyze the impact of a single proper 1-linearized decomposition
in G on the following parameters:

• The total load(G>0) =
∑

(G′,Z′)∈G>0
load(G′, Z ′) of the positive loads in G.

• The number |G>0| of members of G with positive load.

• The total root-size(G>0) =
∑

(G′,Z′)∈G>0
|Z ′| of the members of G with positive load.

Clearly, these numbers satisfy:

|G>0| ≤ load(G>0). (11)

Consider a proper 1-linearized decomposition (G1, Z), (G2, Û) of a member (G,Z) ∈ G coming
from a separation (V1, U, V2) of (G,Z) with a grouping U . Then Z is a clique and G is not a
near-clique. Recall from the definition of τ -linearized decompositions that G1 = GV1∪U∪{r}
for some node r ∈ V2, if U is not a clique, and that G1 = GV1∪U , otherwise. This gives the
following identity:

load(G1, Z) + load(G2, Û) =

{
load(G,Z)− 1 if U is a clique,

load(G,Z) if U is not a clique.
(12)

We distinguish between special decompositions, when load(G1, Z) = −1, and normal decom-
positions, when load(G1, Z) ≥ 0. First we analyze special decompositions. For those G1 has
all nodes in Z, so U is a clique. Hence (12) gives: load(G2, Û) = load(G,Z), which is positive.
Since |V1 ∪ U | > |Û | and Z = V1 ∪ U , the root of (G2, Û) is smaller than the root of (G,Z).
Hence a special decomposition in G gives a list H with:

load(H>0) = load(G>0), |H>0| = |G>0|, root-size(H>0) < root-size(G>0). (13)

Next we analyze normal decompositions in G, so when load(G1, Z) ≥ 0. Since Z is a clique
and G is not a near-clique, we have that load(G,Z) ≥ 2. So, by (12), at least one of (G1, Z)
and (G2, Û) has positive load. So a normal decomposition in G gives a list H with:

load(H>0) ≤ load(G>0), |H>0| ≥ |G>0|, root-size(H>0) ≤ root-size(G>0) + n− 1. (14)

Moreover:
load(H>0) < load(G>0) or |H>0| > |G>0|. (15)

Indeed, if load(H>0) = load(G>0), then load(G1, Z) + load(G2, Û) = load(G,Z), so by (12),
U is not a clique. That means that load(G2, Û) = |V2| − 1 ≥ 1 and that U contains a node
that is not in Z. Since the extra node in G1 is not in Z and not in U , we see that also
load(G1, Z) ≥ 1. Hence, |H>0| > |G>0|. This proves (15).

Now (11)-(15) tell that when decomposing a rooted graph on n nodes by proper 1-linearized
decompositions we will make at most n normal decompositions, and that we will, over time,
create no more than n(n− 1) root nodes. So we do at most n(n− 1) special decompositions.
So |G| ≤ n+ n(n− 1) = n2, as claimed.
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Theorem 2.14. Let R and P be classes of rooted graphs such that there exists a polynomial-
time algorithm that for each input from R\P finds a proper 1-linearized decomposition into
R and such that the stable set problem on rooted graphs in P is solvable in polynomial time.
Then the stable set problem on rooted graphs in R is solvable in polynomial time.

Proof. It follows from Lemma 2.13, that there is a polynomial time algorithm that finds for
any input (G,Z) ∈ R on n nodes a proper 1-linearized decomposition list {(G1, Z1), . . . ,
(Gm, Zm)} in P with m ≤ n2. With such list at hand, a stable set problem on (G,Z) reduces
to solving a stable set problem on each of the rooted graphs {(G1, Z1), . . . , (Gm, Zm)}. For
each i = 1, . . . ,m the node weights for the stable set problem on for (Gi, Zi) can be determined
from the solutions of the problems on {(Gi+1, Zi+1), . . . , (Gm, Zm)}. As each (Gi, Zi) is in
P, we can solve the full list of problems in polynomial-time, provided that we do that going
from right-to-left along the list, starting by (Gm, Zm) and ending with (G1, Z1). Having a
found a solution to all problems on the list, we can construct a solution of the original stable
set problem on (G,Z) by scanning the list of solutions from left-to-right.

Amalgam decomposition

An array (V1, A1,K,A2, V2) of disjoint sets with union V is an amalgam separation for G =
(V,E), with amalgam (A1,K,A2), if it has the following properties:

• A1 and A2 are nonempty fully adjacent sets.

• K is a (possibly empty) clique that is fully adjacent to A1 ∪A2.

• V1 is not adjacent to V2 ∪A2 and V2 is not adjacent to V1 ∪A1.

• |V1 ∪A1| ≥ 2 and |V2 ∪A2| ≥ 2.

Note that it is allowed that K has neighbors in V1 ∪ V2.

Amalgams were introduced by Burlet and Fonlupt [2] to design a polynomial-time algorithm
to recognize Meyniel graphs, a special class of perfect graphs. Cunningham and Cornuéjols
[10] designed a polynomial-time algorithm that finds an amalgam separation or decides that
none exists. In [2, 10], a graph with an amalgam separation (V1, A1,K,A2, V2) is decomposed
into two amalgam blocks G1 and G2, where, for both i = 1 and i = 2, the graph Gi is obtained
from GVi∪Ai∪K by adding a single new node that is fully adjacent to Ai∪K. We call the pair
G1, G2 an amalgam decomposition of G corresponding to (A1,K,A2).

Amalgams give rise to 1-linearizable cutsets and amalgam decompositions are 1-linearized
decompositions; this is the next lemma.

Lemma 2.15. Let (A1,K,A2) be an amalgam of a graph G. Then A1∪K is a 1-linearizable
cutset of (G, ∅) with grouping U = {A1} ∪ {{u} : u ∈ K}. Moreover, (G, ∅) has a 1-
linearized decomposition such that the master-graph and the server-graph form an amalgam
decomposition of G corresponding to amalgam (A1,K,A2), the master-root is empty, and the
servant-root is the clique Û .
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Proof. Let (V1, A1,K,A2, V2) be an amalgam separation. Then (V1, A1∪K,V2∪A2) is a node
cutset separation of (G, ∅) with grouping U = {A1} ∪ {{u} : u ∈ K}. Observe that A1,K,A2

satisfy (a) and (b) of Lemma 2.12 with respect to that node cutset separation. So A1 ∪K
is 1-linearizable. By the definition of amalgam, A2 6= ∅. Take r ∈ A2. Now the second
part of Lemma 2.12 tells that the pair (GV1∪A1∪K∪{r}, ∅), (G

V2∪A2∪ Û , Û) is a 1-linearized
cutset decomposition. It is obvious that GV1∪A1∪K∪{r} and G

V2∪A2∪ Û = G
V2∪A2∪K∪{Â1}

is an amalgam decomposition corresponding to amalgam decomposition (V1, A1,K,A2, V2).
Clearly, Û is a clique.

Corollary 2.16. If G is an amalgam decomposition-list of a graph G = (V,E), then |G| ≤
|V |2.

Proof. By Lemma 2.15, there is a map H 7→ ZH from G to cliques, so that {(H,ZH) : H ∈ G}
is a 1-linearized decomposition-list of (G, ∅). Now Lemma 2.13 yields |G| ≤ |V |2.

Theorem 1.3 uses amalgams to describe the structure of cap-free graphs with no even holes.
When we wanted to use that to design an algorithm for the stable set problem on these
graphs, we ran into the multiple-problem aspect of the servant. Cornuéjols and Cunningham
[10] can find an amalgam separation with minimal servant, but as illustrated by Figure 1,
that does not guarantee that the amalgam blocks will have no amalgams. This lead us to the
rooted graph approach of this paper. It is essential here and to our knowledge new; till today
we know of no other way to use amalgam decompositions in polynomial-time algorithms for
finding maximum weight stable sets.

Theorem 2.17. Let G be a class of graphs closed under amalgam decomposition. If P ⊆ G
contains all near-cliques and all members of G without amalgams, then the stable set problem
on graphs in G is solvable in polynomial time if and only if the stable set problem on graphs
in P is solvable in polynomial time.

Proof. Let R be the class of rooted graphs (G,Z) such that G ∈ G and Z is a clique. The
stable set problem on a graph G ∈ G is a rooted stable set problem on (G, ∅), which is in
R. So it suffices to prove that the stable set problem on rooted graphs in R is solvable in
polynomial time. Let Q the class of rooted graphs (G,Z) with G ∈ P and such that Z is a
clique. As a clique Z has only |Z|+ 1 stable sets, the stable set problem on rooted graphs in
Q is solvable in polynomial time. So by Theorem 2.14 it suffices to design a polynomial-time
algorithm that finds a proper 1-linearized decomposition for any rooted graph (G,Z) in R\Q.

Here is this algorithm: If G is a near-clique, (G,Z) is in Q. Otherwise, use the algorithm
of Cornuéjols and Cunningham [10] to search for amalgams in G. If none is found: G ∈ P,
so in (G,Z) ∈ Q. If an amalgam separation (V1, A1,K,A2, V2) is found, proceed as follows to
find a 1-linearized decomposition for (G,Z), which will be proper as G is not a near-clique.
If the clique Z meets V1∪V2, the root Z is contained in V1∪A1∪K or in V2∪A2∪K, so then
one of the node cutsets A1 ∪K and A2 ∪K yields a 1-linearized decomposition of (G,Z). If
Z does not meet V1 ∪ V2, it lies in A1 ∪K ∪A2 and thus K ∪ Z is a clique. Since G is not a
near-clique, it has at least 3 nodes outside K ∪Z. Assume two of those lie in A2 ∪ V2. Then
the node cutset A1 ∪K ∪ Z yields a 1-linearized decomposition of (G,Z).

15



a2

b

a1

u

Figure 1: The amalgam of the graph on the left is unique (in this case the clique K is empty).
Its blocks have amalgams, for instance ({a1, a2}, {u}, {b}).

2.2 Decomposing into fan-templates—Proof of Theorem 1

To prove Theorem 1.1 we use Theorem 1.3, which decomposes cap-free graphs into triangle-
free graphs, and Theorem 2.18, which further decomposes triangle-free “odd-signable” graphs
into “the cube” and “fan-templates”.

A graph is odd-signable if it contains a set F of edges such that |F ∩ C| is odd for each
chordless cycle C. Triangle-free graphs with no even holes are clearly odd-signable.

The cube is the unique 3-regular bipartite graph on 8 vertices, so that is the 1-skeleton of
the three dimensional cube. The cube is odd-signable.

A fan with base (u, c, v) consists of an uv-path P together with a node c adjacent to a
subset of nodes of P including u and v. If Z is a subset of the base of a fan G = (V,E)
and Ω is a collection of triples in V , then we call (G,Z,Ω) a fan-template. If the triples in Ω
each induce a subpath of one of the holes of G, we call the fan-template good. The following
results say that good fans do come up in decomposing cap-free odd-signable graphs and that
they are well tractable.

Theorem 2.18 ([7, Theorems 2.4 and 6.4]). If G = (V,E) is a triangle-free odd-signable
graph that is not isomorphic to the cube and has no clique cutset, then the template (G,∅,∅)
can in polynomial time be decomposed into list of at most |V | good fan-templates.

Proof. By [7, Theorem 2.4], G has no induced subgraph isomorphic to the cube. Now [7,
Theorem 6.4] says that G can be obtained from the hole by a sequence of “good ear additions”
(defined in [7, Definition 6.1]). An ear addition is the reverse of a node cutset decomposition
where the servant graph is a fan and the node cutset is the base of the fan. So reversing the
sequence of good ear additions amounts to a decomposition of G into fan-templates. The
regions of these templates are the locations where the ears are added and the goodness of these
ear additions means that the fan-templates are good. Since adding an ear increases the size
of the graph, we obtain at most at most |V | good fan-templates. As the node cutsets needed
for this decomposition are triples, we can find them in polynomial time, by enumeration.
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Lemma 2.19. If (G,Z,Ω) is a good fan-template with base (u, c, v) and n nodes, then G(Ω)−c
can be decomposed along 2-node clique cutsets into a list of at most |Ω|+n graphs, each with
at most 8 nodes.

Proof. The graph G(Ω)− c consists of the path G− c together with all the records. As each
region of a fan-template is a 3-node subpath of one of the holes of G, each record has 5 nodes
and is attached in G(Ω) − c to a 2- or 3-node subpath of G(Ω) − c. Note that each edge of
the path G(Ω) − c forms a 2-node clique cutset of G(Ω) − c (except maybe the first or the
last edge of G(Ω) − c). If we decompose G(Ω) − c along all these 2-node clique cutsets, we
obtain collection of graphs, each consisting of a 2- or 3-node subpath of G(Ω) − c together
with at most one of the records. Such graphs have at most 8 nodes.

Lemma 2.20. The stable set problem on rooted record graphs of good fan-templates is solvable
in polynomial time.

Proof. Let (u, c, v) be the base of a good fan-template (G,Z,Ω). By Corollary 2.10 and
Lemma 2.19, for each of the (at most 5) stable sets T in Z, we can find in polynomial time, a
stable set ST in G(Ω) that has maximum weight among those that intersect Z in T . Among
these stable sets ST , we choose the best one.

Theorem 2.21. The stable set problem on cap-free odd-signable graphs is solvable in poly-
nomial time.

Proof. If node u in graph G is adjacent to all other nodes, then we can set it aside to compare
it with a maximum weight stable set in G − u, once we found that. The stable set problem
on the cube can be found by enumeration. So the result follows from Theorems 1.3, 2.17,
2.6, 2.18, Corollary 2.10, and Lemma 2.20.

3 Stable set polytopes

We examine extended formulations for the stable set polytope of a graph that admits certain
decompositions into smaller graphs and combine formulations for these smaller parts to one
for the whole graph. We apply this to cap-free odd-signable graphs and thus prove Theorem 2.

Notation. We denote the convex hull of characteristic vectors of stable sets in a graph G
by P[G]. If L is a collection of cliques in G, we denote the collection of stable sets in G
that intersect each member of L by S[G,L] and the convex hull of the characteristic vectors
of these stable sets by P[G,L]. So P[G] = P[G, ∅] and P[G,L] is the face of P[G] obtained
by setting at equality all clique constraints associated to the cliques in L. If x ∈ RV and
H = GU , we denote the restriction of x to U by xH , of by xU .

3.1 Extended formulations and records

Extra variables used in extended formulations here mostly come from records.
Consider a set of nodes U in a graph G. Recall from Section 2, that G(U) denotes the

graph obtained by adding to G a clique U record (the record) consisting of new nodes rS , one
for each S ∈ S[GU ], and connect each such rS to all nodes in U\S. We denote by L(U) the
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collection consisting of the clique U record together with all the cliques {v}∪{rT : v 6∈ T ∈ S[GU ]}
with v ∈ U .

The following result says that any (extended) formulation for P[G(U),L(U)] is an ex-
tended formulation for P[G].

Lemma 3.1. Let U be a set of nodes in a graph G. Then each stable set S in G has a unique
extension to a member of S[G(U),L(U)], namely S ∪ {rS∩U}, and

P[G] = {xG : x ∈ P[G(U),L(U)]}.

If, moreover, L is a collection of cliques in G, then

P[G,L] = {xG : x ∈ P[G(U),L ∪ L(U)]}.

Proof. Proving that S ∪ {rS∩U} is the only extension of S in S[G(U),L(U)] is straightfor-
ward. Moreover, if S meets L, then so does S ∪ {rS∩T }. The rest now follows as each of
P[G],P[G(U),L(U)], P[G,L], and P[G(U),L ∪ L(U)] are convex hulls of stable sets.

3.2 Composing across node cutsets

Lemma 3.1 expresses the stable set polytope of a graph G as a particular face of the stable
set polytope of the record graph of U and G. Our next result is that those particular faces
admit a simple composition rule when U is a node cutset.

Theorem 3.2. Let (V1, U, V2) be a node cutset separation of graph G = (V,E). Moreover,
let L1 be a collection of cliques in G1 = GV1∪U and let L2 be a collection of cliques in

G2 = GV2∪U . Then, each x ∈ RV ∪U record
satisfies:

x ∈ P[G(U),L1 ∪ L2 ∪ L(U)] if and only if

xG1(U) ∈ P[G1(U),L1 ∪ L(U)] and xG2(U) ∈ P[G2(U),L2 ∪ L(U)].

Hence

P[G] = {x ∈ RV : ∃
y∈RUrecord [ (xG1 , y) ∈ P[G1(U),L(U)] and (xG2 , y) ∈ P[G2(U),L(U)] ]}.

Proof. By Lemma 3.1, the second assertion follows from the first one. The “only if” direction
of the first assertion is obvious. For the “if” direction, it suffices to consider x ∈ QV ∪U record

.
Assume xG1(U) ∈ P[G1(U),L1 ∪ L(U)] and xG2(U) ∈ P[G2(U),L2 ∪ L(U)]. Then, for

i = 1, 2, there exists a positive integer ni, so that nixGi(U) is the sum of the characteristic
vectors of a collection of (not necessarily distinct) stable sets Si1, . . . , S

i
ni

in Gi(U). By
replicating members in these two collections of stable sets (if necessary), we may assume
that n1 = n2; let n = n1 = n2.

Since xGi(U) ∈ P[Gi(U),L(U)], each Si1, . . . , S
i
n meets each clique in L(U) exactly once.

So, for each stable set S in U , the number of sets among Si1, . . . , S
i
n that intersect U in S is

equal to n(xGi(U))rS = nxrS . As this applies to both i = 1, 2, we can renumber S2
1 , . . . , S

2
n

so that S1
j ∩ U = S2

j ∩ U for j = 1, . . . , n. Doing so, x is a convex combination of the

characteristic vectors of the stable sets S1
1 ∪S2

1 , . . . , S
1
n ∪S2

n. Since S1
j ∈ P[G1(U),L1 ∪L(U)]

and S2
j ∈ P[G2(U),L2 ∪ L(U)] for all j, each S1

j ∪ S2
j is in S[G(U),L1 ∪ L2 ∪ L(U)]. Hence,

x ∈ P[G(U),L1 ∪ L2 ∪ L(U)], as claimed.
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Consider Theorem 3.2 in case U is a clique cutset. Then U record = {r∅} ∪ {r{v} : v ∈ U}.
Moreover, for (x, y) ∈ RV × RU record

, we have that (x, y) ∈ P[G(U),L ∪ L(U)] if and only if:

xG ∈ P[G,L], yr∅ = 1−
∑
v∈U

xv, and yr{v} = xv (v ∈ U). (16)

Applying this to each of the three graphs G,G1, G2 in Theorem 3.2, we obtain the following
result of Chvátal.

Corollary 3.3 (Chvátal [5]). Let (V1, U, V2) be a clique cutset separation of a graph G =
(V,E) and let G1 = GV1∪U and G2 = GV2∪U . Then:

P[G] = {x ∈ RV : xG1 ∈ P[G1] and xG2 ∈ P[G2]}.

If, moreover, L1 is a collection of cliques in G1 and L2 is a collection of cliques in G2, then
each x ∈ RV satisfies:

x ∈ P[G,L1 ∪ L2] if and only if xG1 ∈ P[G1,L1] and xG2 ∈ P[G2,L2].

In Corollary 3.3, we can not drop the condition that U is a clique. Indeed, let u and v be
two nonadjacent nodes in U and suppose G1 has a chordless even uv-path Q1 and G2 has a
chordless odd uv-path Q2. Consider the vector x ∈ RV with xv = 1/2 if v lies on Q1 ∪ Q2

and xv = 0 otherwise. Then x 6∈ P[G], but xG1 ∈ P[G1] and xG2 ∈ P[G2].

Balas [1] has shown how to obtain an extended formulation for the convex hull of polytopes
P1, . . . , Pk, whose size is approximately the sum of the sizes of the descriptions for these
polytopes. If Aix + Biy ≤ di is an extended formulation for Pi(i = 1, . . . , k), then Balas’s
formulation for the convex hull reads:

x = x1 + · · ·+ xk, λ1 + · · ·+ λk = 1; Aixi +Biyi − λidi ≤ 0, λi ≥ 0 (i = 1, . . . , k). (17)

This formula can be used to construct a formulation for P[G] from such formulations for
parts of a node cutset decomposition of G. Let H be one of these parts and let U denote
the node cutset. For every stable set S in U , a description of the face of P[H(U)] given by
xrS = 1 can be inferred from any linear description of the face {x ∈ P[H] : xv = 1 (v ∈ S)}
of P[H]. Since P[H(U),L(U)] is the convex hull of these faces, Balas’s formula (17) gives
an extended formulation for P[H(U),L(U)] whose size is in the order of |U record| = |S[HU ]|
times the size of the linear description of P[H]. If we apply this to each part H of the
decomposition and combine the resulting formulations into one list of linear inequalities, we
obtain, by Theorem 3.2, an extended formulation for P[G]. This leads to the following result.

Theorem 3.4. Let G be a graph and {(G1, Z1,Ω1), . . . , (Gk, Zk,Ωk)} be a decomposition-list
of (G,∅,∅). Assume we are given for each i = 1, . . . , k an extended formulation with size mi

for P[Gi({Zi} ∪ Ωi)]. Then there exists an extended formulation for P[G] with size at most
O(k) +m1 + · · ·+mk.

Proof. Recursively apply the following immediate corollary of Theorem 3.2: if (V1, U, V2) is a
cutset separation of template (G,Z,Ω) with master template (G1, Z,Ω1) and servant template
(G2, U,Ω2), then a vector x lies in P[G({Z,U} ∪ Ω),L(U))] if and only if xG1({Z,U}∪Ω1) ∈
P[G1({Z,U} ∪ Ω1),L(U)] and xG2({U}∪Ω2) ∈ P[G2({U} ∪ Ω2),L(U)].

19



An alternative for adding a record to a graph G is lifting a node set U to a clique. This
amounts to deleting U from G and replacing it by a clique with node set U record\{r∅}, and
connecting each rS ∈ U record\{r∅} with each node in NG(S)\U . We call the new graph the
clique lift of U from G. An advantage of clique lifts over records is that clique lifts yield
extended formulations for stable sets that do not involve “tight clique constraints”: x(K) =
1 (K ∈ L(U)).

Lemma 3.5. Let G+ be the clique lift of U ⊆ V from a graph G = (V,E). Then the stable

set polytope P[G] is the image of P[G+] under the projection p : R(V \U)∪(U record\{r∅}) → RV
defined by

pv(x) =

{∑
S∈S[GU ],S3v xrS if v ∈ U

xv otherwise .

Lifting a node cutset to a clique turns it into a clique cutset. So we get the following
consequence of Corollary 3.3.

Corollary 3.6. Let (V1, U, V2) be a node cutset separation of graph G = (V,E). Moreover,
let G+, G+

1 , and G+
2 be the clique lifts of U from G,GV1∪U , respectively GV2∪U . Then each

x ∈ R(V \U)∪(U record\{r∅}) satisfies:

x ∈ P[G+] if and only if xG+
1
∈ P[G+

1 ] and xG+
2
∈ P[G+

2 ].

3.3 Generalized amalgams

We give a decomposition rule for stable set polytopes of graphs that admit a generalized
amalgam separation; for a graph with node set V , this is a pair (U,W) with U ⊆ V such that
W is a partition of V \U into nonempty sets W that each have the property that each node
in W with a neighbor outside W ∪ U is fully adjacent to U .

Generalized amalgam separation unifies a great variety of known separations. Clique
cutset separation and amalgam separation are obvious special cases. A notable other ex-
ample is the “strip-structure for trigraphs” introduced by Chudnovsky and Seymour [4].
Faenza, Oriolo, and Stauffer [11] used strip-structures to obtain extended formulations and
polynomial-time algorithms for stable sets problems in “claw-free” graphs. The “2-clique-
bonds” that Galluccio, Gentile, and Ventura [12] use to compose linear formulations of stable
set problems are generalized amalgam separations as well.

Before actually decomposing a graph along a generalized amalgam separation (U,W) we first
lift U to a clique, K (say). Then (K,W) is a generalized amalgam separation of the clique lift
and all structure of (U,W) and the original graph fully carries over to (K,W) and the clique
lift, except for the internal structure of U resp. K. Since Lemma 3.5 explains the effect of
clique lifts to the stable set polytope, it is enough to investigate (K,W) in the clique lift; we
call the clique lift G.

So (K,W) is a generalized amalgam separation of a graph G and K is a clique.
For W ∈ W, we denote by AW the collection of equivalence classes in BG−K(W ) of the

relation “having the same neighbors outside W”. Related to AW we will consider a clique
Apower

W consisting of new nodes rX , one for each subcollection X of AW .
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The generalized amalgam decomposition of G along (K,W) consists of a collection of
graphs G(K,W ), one for each W ∈ W, together with a “connecting” graph Gconnect(K,W).
Each graph G(K,W ) is obtained from the disjoint union of GK∪W and Apower

W by connect-
ing each rX ∈ Apower

W to all nodes in BG−K(W )\
⋃
X and to all nodes in K. The graph

Gconnect(K,W) is obtained from the disjoint union of the clique K and all cliques Apower

W with
W ∈ W, by adding edges from each node in K to all nodes in all cliques Apower

W and by
adding all edges rX rX ′ such that ∪X and ∪X ′ are adjacent in G and X ⊆ AW ,X ′ ⊆ AW ′ ,
W,W ′ ∈ W,W 6= W ′. We also define L(K,W) = {K ∪ Apower

W : W ∈ W}.

Theorem 3.7. Let (K,W) be a generalized amalgam separation of a graph G = (V,E) such
that K is a clique. Moreover, let L = L(K,W). Then P[G] consists of the restrictions xG of
those x ∈ RV ∪(

⋃
{Apower

W :W∈W}) with

xGconnect(K,W) ∈ P[Gconnect(K,W),L] and xG(K,W ) ∈ P[G(K,W )] for all W ∈ W. (18)

Proof. Let H be the graph defined as follows: the node set of H is V ∪ (
⋃
{Apower

W : W ∈ W})
and the edge set of H is the union of the edge set of Gconnect(K,W) with the edge sets of all
graphs G(K,W ) with W ∈ W.

Since each member of L is a clique cutset of H, it follows from Corollary 3.3 that x ∈
P[H,L] if and only if x satisfies (18). Hence, it suffices to prove that P[G] = {xG : x ∈
P[H,L]}. For that it suffices to prove that the function S 7→ SG maps S[H,L] onto S[G].

First consider S ∈ S[H,L]. We prove that SG ∈ S[G]. If S ∩ K 6= ∅, then S ⊆
V \
⋃
{BG(W ) : W ∈ W}, so S ∈ S[G]. Hence we may assume that S ∩ K = ∅. Then

there exists, for each W ∈ W, a collection XW ⊆ AW with S ∩ Apower

W = {rXW
}. Since S is a

stable set in H, we have that S ∩ BG−K(W ) ⊆ BG−K(W )\NH(rXW
) =

⋃
XW . Now consider

W,W ′ ∈ W with W ′ 6= W . Then in H, node rXW
is not adjacent to node rXW ′ . Hence⋃

XW and
⋃
XW ′ are not adjacent in G. From this it follows that SG is a stable set in G, as

claimed.
Next consider S′ ∈ S[G]. We prove that there exists an S ∈ S[H,L] with S′ = SG. If

S′ ∩ K 6= ∅, we just take S = S′. Indeed, in that case, S′ ⊆ V \
⋃
{BG(W ) : W ∈ W}, so

S′ ∈ S[H,L]. Hence, we may assume S′ ∩K = ∅. For each W ∈ W, let XW be the members
of AW that contain an element of S′. Define S = S′ ∪ {rXW

: W ∈ W}. Then S ∈ S[H,L]
and SG = S′, as required.

Amalgams

If graphG = (V,E) has an amalgam separation (V1, A1,K,A2, V2), then (K, {V1∪A1, V2∪A2})
is a generalized amalgam separation and K is a (possibly empty) clique. By Theorem 3.7,

P[G] consists of the restrictions xG of all vectors x ∈ RV ∪{r{A1},r∅1 ,r{A2},r∅2}}
+ with

xV1∪A1∪K∪{r{A1},r∅1} ∈ P[G(K,V1 ∪A1)], (19)

xV2∪A2∪K∪{r{A2},r∅2} ∈ P[G(K,V2 ∪A2)], (20)

xK∪{r{A1},r∅1 ,r{A2},r∅2} ∈ P[Gconnect(K, {V1 ∪A1, V2 ∪A2}),L], (21)

where L consists of the two cliques K ∪ {r{A1}, r∅1} and K ∪ {r{A2}, r∅2}.
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For x ∈ RK∪{r{A1},r∅1 ,r{A2},r∅2}
+ , condition (21) is equivalent to

x(K) + xr{A1}
+ xr∅1

= 1, x(K) + xr∅2
+ xr{A2}

= 1, x(K) + xr{A1}
+ xr{A2}

≤ 1,

so, with

xr{A1}
= 1− x(K)− xr∅1

, xr{A2}
= 1− x(K)− xr∅2

, x(K) + xr∅1
+ xr∅2

≥ 1. (22)

We now eliminate xr{A1}
and xr{A2}

. In (19), this amounts to deleting r{A1} from G(K,V1 ∪
A1), In (20), this amounts to deleting r{A2} from G(K,V2 ∪A2). Since G(K,V1 ∪A1)− r{A1}
and G(K,V2 ∪ A2) − r{A2} are the blocks of the amalgam decomposition of G, we get the
following result.

Theorem 3.8. If G1 and G2 are the blocks of an amalgam decomposition of G = (V,E) using
the amalgam separation (V1, A1,K,A2, V2), then the stable set polytope P[G] of G satisfies:

P[G] = {xG x ∈ RV ∪{r∅1 ,r∅2}, xG1 ∈ P[G1], xG2 ∈ P[G2], x(K) + xr∅1
+ xr∅2

≥ 1}.

If we have original space descriptions for P[G1] and P[G2], Theorem 3.8 yields an extended
formulation for P[G] with xr∅1

and xr∅2
as the only extra variables. With Fourier-Motzkin

elimination it easy to remove xr∅1
and xr∅2

from that extended formulation. This leads to a
new proof of the following result of Burlet and Fonlupt (see [14] for an extension).

Corollary 3.9 (Burlet and Fonlupt[3]). Let the stable set polytopes of the blocks of an amal-
gam decomposition of G be described by the following systems:

x ≥ 0, D1x ≤ δ1, xr∅1
≥ 0, and xr∅1

+ c1,ix ≤ γ1,i (i = 1, . . . , n1), (23)

and
x ≥ 0, D2x ≤ δ2, xr∅1

≥ 0, and xr∅2
+ c2,ix ≤ γ2,i (i = 1, . . . , n2) (24)

where r∅1 and r∅2 are the nodes that are not in G. Then P[G] is given by the following
system:

x ≥ 0, D1x ≤ δ1, D2 ≤ δ2, (25)[
c1,i + c2,j

]
x− x(K) ≤ γ1,i + γ2,j − 1 (i = 1, . . . , n1, j = 1, . . . , n2). (26)

where K is the clique in the amalgam separation.

Proof. Let G1 and G2 be the blocks of the amalgam decomposition, where (23) describes
P[G1] and (24) describes P[G2]. By Theorem 3.8, P[G] consists of all x for which there exists
xr∅1

and xr∅2
such that (x, xr∅1

, xr∅2
) satisfies (23), (24), and

x(K) + xr∅1
+ xr∅2

≥ 1. (27)

Since (23) describes P[G1], we get that (23) implies “x(K) + xr∅1
≤ 1”. Subtracting that

inequality from (27), yields “xr∅2
≥ 0”. In other words: the constraint “xr∅2

≥ 0” is
redundant in the system of linear inequalities given by (23), (24) and (27). By symmetry,
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the same applies to “xr∅1
≥ 0”. So the system of linear inequalities given by (23), (24) and

(27), is equivalent to the system consisting of (25) together with:

xr∅1
≤ γ1,i − c1,ix (i = 1, . . . , n1) (28)

xr∅2
≤ γ2,j − c2,jx (j = 1, . . . , n2) (29)

1− x(K)− xr∅1
≤ xr∅2

(30)

Eliminating xr∅2
, replaces (28)-(30) by

xr∅1
≤ γ1,i − c1,ix (i = 1, . . . , n1) (31)

1− x(K) + c2,jx− γ2,j ≤ xr∅1
(j = 1, . . . , n2) (32)

Eliminating xr∅1
, replaces (31) and (32) by (26).

3.4 Proof of Theorem 2

Lemma 3.10. Stable set polytopes of record graphs of fan-templates have compact extended
formulations that can be constructed in polynomial time.

Proof. Let H be the record graph of a fan-template with base (u, c, v). Then P[H] is the
convex hull of P[H − c] and of a face of the convex hull of the characteristic vector of {c}
and P[H − NH(c) − c]. Since, by Lemma 2.19, the graphs H − c and H − NH(c) − c are
decomposable by 2-node clique sets into a list of at most |V | graphs, each with at most 8
nodes, the lemma follows from Corollary 3.3 and Balas’s formula (17).

Theorem 3.11. The stable set polytopes of cap-free odd-signable graphs have a compact
extended formulation that can be constructed in polynomial time.

Proof. When graph G has as a node u adjacent to all other nodes, P[G] is the convex hull of
the characteristic vector of {u} and P[G − u]. Hence in that case it follows from (17), that
P[G] has an extended formulation with only three more variables than any such formulation
for P[G−u]. Recall from Section 2.1, that clique cutset separations and amalgam separations
are 1-linearizable and that a 1-linearized decomposition-list of a graph G = (V,E) can have
at most |V |2 members. Hence, by Lemma 3.10, the result follows from the decomposition
results Theorem 1.3, 2.18 and the polyhedral composition results Corollary 3.3 and Theorems
3.4 and 3.8.
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