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ABSTRACT 

The purpose of computed tomography (CT) is to compute an accurate approximation of a scanned object 
from a series of its projections. As the ground truth is typically unknown, it is not straightforward to 
determine the quality of such an approximation. Even if the reconstructed image corresponds almost 
perfectly with the observed projection data, it may still be quite different from the original object if the 
number of projections is small.  
We have recently developed a series of mathematical error bounds that provide quantitative guarantees 
on the quality of the reconstruction of a homogeneous object (i.e. a binary image). As these bounds are 
based on idealized assumptions of the imaging model (assuming perfect, noiseless data), they have to be 
adjusted to be useful in practice.  
In this article we show how one of these error bounds can be adapted to be useful for bounding the quality 
of experimental images. Our experimental results suggest that even though approximations have to be 
made due to noise and other errors in the data, the resulting bounds can still provide guidance on 
estimating the reconstruction quality. 

1. INTRODUCTION 

In Computed Tomography (CT), an image of a scanned object is formed by reconstructing an image of the 
object from a series of its projections. The image represents some physical property of the original object, 
usually the attenuation coefficient, which in turn is related to the compositions of the object (Herman 
2010). The reconstructed image is never an exact representation of the original object, for various 
reasons. Firstly, the measured data itself is noisy and may contain various imaging artefacts, propagating 
into the reconstructed image. Secondly, the reconstruction algorithm itself may not be exact, such that 
even for noiseless projections it does not result in a reconstructed image that matches these projections. 
Finally, when using a relatively small number of projections, the reconstruction problem is inherently 
underdetermined. This means that many solutions may exist, each satisfying the projection data (Louis 
1984). To draw quantitative conclusions about the scanned object based on the reconstructed image, it is 
essential to determine how well the reconstruction corresponds with the original object, which we refer to 
as the accuracy of the reconstruction. At present, there is a gap in the ability to determine reconstruction 
accuracy. Based on the point-spread-function of forward projection and consecutive reconstruction, 
resolution estimates can be derived for the reconstructed image (Crowther et al. 1970). However, such a 
local resolution measure does not impose any bound on the global difference between the reconstructed 
image and the ground truth. If a large number of projections are available, linear algebra arguments can 
be used to test if the pixelized reconstruction is uniquely determined by the measured data (Mueller 1998, 
p.27). If only a small number of projections are available, experimental validation of reconstruction 
accuracy, using known phantoms, is the only option. 
We have recently developed a mathematical approach that enables the computation of upper bounds on 
the reconstruction accuracy when the original object is homogeneous, i.e. corresponding to a binary 
image (Batenburg et al. 2012). These error bounds cannot be used directly on experimental images, as 
they are based on the assumption of perfect, noiseless projection data. In this article we show how one of 
these error bounds can be adapted to be useful for bounding the quality of experimental images.  
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2. APPROACH 

The reconstruction problem in tomography can be approximated by a system of linear equations Wv = p, 
where v ∈ Rn denotes a vector of unknown pixel values, p ∈ Rm denotes a vector containing the measured 
projection data and W ∈ Rmxn denotes the discretized projection operator (Chapter 7 of Kak and Slaney 
2001).  
 
In (Batenburg et al. 2012), it was demonstrated that for parallel beam tomography, the norm ||x||2 of all 
binary solutions of the system Wv = p must be the same, and it can be computed directly from the 
projection data. This can be seen from the fact that the sum of the projected intensities in any direction 
equals the sum of the image pixels. So, we can determine the sum of the pixel values based on the 
projection data. As 02 = 0 and 12 = 1, this sum is equal to the sum of squared pixel values for any binary 
image x, and therefore the norm of all binary solutions is identical. In fact, it was shown in (Batenburg et 
al. 2012) that all binary solutions x ∈ {0,1}n lie on a hypersphere centered in the minimum norm solution x* 
and having radius R = sqrt(||x||2 - ||x* ||2); see Fig. 1. Based on these observations, a methodology was 
derived to compute an upper bound on the difference between any two binary solutions, as well as an 
upper bound on the difference between a given binary image and any binary solution, all based on the 
computation of x* and R. The computation of the bounds depends on the hypersphere’s center x*, 
corresponding to the shortest real-valued solution of the tomography equations. If the projection data 
contains no noise or other errors, this solution can be computed efficiently using iterative methods, such 
as the Conjugate Gradient Least Squares (CGLS) algorithm (Saad 2003).  

 
 

Fig. 1: All binary solutions x lie on a hypersphere centered in x*. 
 
Now suppose that b ∈ {0,1}n represents the ground truth and p = Wb represents the ideal projections of 
this object. In practice, the measured projection data q is contaminated with noise and other distortions 
(e.g. beam hardening, detector inefficiencies) and therefore x* cannot be computed, as it requires 
knowledge of p. Instead, we consider a different hypersphere containing all binary solutions of the 
noiseless problem. This hypersphere is centered in z*, the minimum norm least squares solution of the 
available reconstruction problem Wx=q, and with radius S based on the theorem below, which we do not 
prove here: 
 

Theorem:  S 2
 = ||z*||2 - 2||x*||||z*||cosθ+||x||2. 

 

The theorem expresses the value of S as a function of several terms that can be approximated based on 
the noisy projection data q. The angle θ refers to the angle between the vectors x* and z*. As we cannot 
compute ||x*||, cosθ and ||x||,  we approximate these three terms. We assume that the noise has a mean 
value of 0, such that the total summed intensity of any binary solution can still be computed approximately 
from the projections as ||q||/k, where k denotes the number of projections. Moreover, we approximate the 
norm ||x*|| by ||z*||. Finally, cosθ was experimentally computed for several different settings yielding a 
value close to 1, which depends on the noise level, image size, and the general shape of the object. The 
radius S is then approximately given by  
 

      S2
  ≈ (α-1)||z*||2 

+ sqrt(||q||/k), 
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where α is a value close to 0 which depends on the specific problem setting and has to be calibrated 
based on simulation experiments using phantom images that have similar noise characteristics and similar 
general shape as the true object.  
The computation of the bounds are the same as given in (Batenburg et al. 2012), but using the 
hypersphere centered in z* and radius S as given above.  

3. EXPERIMENTS 

Simulation experiments have been performed to determine if the error bounds for noiseless data can be 
computed based on noisy projection data. Here we present the result of one such experiment.  
 
One of the bounds in (Batenburg et al. 2012) concerns an upper bound on the number of pixel differences 
between any binary solution of the tomography problem Wv = p and the rounded shortest real-valued 
solution r. The image r can be computed from the projection data by applying the CGLS algorithm and 
rounding each entry of the result to the nearest binary number. The advantage of this particular bound, is 
that it can be verified without knowledge of all binary solutions. Other bounds given in the same paper 
deal with the differences between any two binary solutions, but these bounds cannot be verified based on 
a single phantom image. Therefore, we focus here on the bound with respect to r.  
 
Simulated projections were computed based on downsampled versions of the phantom in Fig. 2(a), using 
a strip model for the projection operator (Kak and Slaney 2001, Section 7.4.1) and equiangular 
projections. The phantom was downsampled to binary images of size 32x32 and 128x128, respectively, 
and all experiments were carried out at both these sizes. A moderate amount of additive Gaussian noise 
was then applied to the projections, yielding the vector q, to be used for computing the bounds.  
 
The vector z* was computed using the CGLS algorithm. The parameter α was found to be dependent on 
image size, type of phantom, noise level and number of projections; it was set to two different values, 0 
and 0.02, in our experiments. In Fig. 2(b) and 2(c), we show the relative number of pixels (as a fraction of 
the total number) that differ between the phantom image in Fig. 2a and the result of rounding z* to the 
nearest binary image, which is marked by the label “true error” (red curve), as a function of the number of 
projection angles. The estimated error bound for the two values of α are labelled by B0 (α= 0, blue 
curve) and B0.02 (α= 0.02, black curve). The blue curve could not be plotted for most of the angles, as 
the resulting squared radius S2 became negative. The black curve, however, can be computed for all 
angles and tracks the true error rather well: although the shape of the curve is somewhat irregular, the 
estimated error stays within an order of magnitude from the true error for all experiments.  

    

Fig 2: (a) Binary phantom of size 512x512; (b) Computed error bounds for a downscaled phantom of size 
32x32; (c) Computed error bounds for a downscaled phantom of size 128x128. 

In Fig. 3, some results are shown for an experimental micro-CT dataset of a diamond, acquired using a 
Scanco micro-CT 40 X-ray scanner based on 500 projections. Fig. 3(a) shows a FBP-reconstructed slice 
based on all 500 projections, while Fig. 3(b) and 3(c) show binary reconstructions computed by applying 
CGLS and rounding the result based on 10 and 20 projections, respectively. The corresponding 
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approximated error as a function of the number of projection angles is shown in Fig. 3(d), based on a 
value of α= 0.02. 

      

Fig 3: (a) Slice of a diamond from an experimental micro-CT dataset; (b) Binary reconstruction from 10 
projections; (c) Binary reconstruction from 20 projections; (d) Computed error bound on the difference 

between the binary reconstruction and the true image, as a function of number of angles. 

4. DISCUSSION & CONCLUSIONS   

The approach provided here is the first technique for estimating a global image error in binary image 
reconstruction that can be applied to a set of noisy projections.  
 
The experimental results demonstrate that error estimates for binary tomography can be computed based 
on noisy, non-ideal projection data. The computed estimates have similar properties to the theoretical 
estimates that can only be computed if perfect, noiseless projection data is available. Further research is 
needed to establish how the factor α should be chosen in various scenarios, to further validate the 
approach, and to scale it up to larger images.  
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