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Abstract 

We present an explicit construction of an action-angle map for the nonrelativistic N-particle 

Sutherland system and for two different generalizations thereof, one of which may be viewed as a 

relativistic version. We use the map to obtain detailed information concerning dynamical issues such as 

oscillation periods and equilibria, and to obtain simple formulas for partition functions. The 

nonrelativistic and relativistic Sutherland systems give rise to dual integrable systems with a solitonic 

long-time asymptotics that is explicitly described. We show that the second generalization is self-dual, 

and that its reduced phase space can be densely embedded in pN-l with its standard Kahler form, 

yielding commuting global B.ows. In a certain limit the reduced action-angle map converges to the 

quotient of Fourier transformation on cN under the standard projection cN \ {O} _,. pN-I. 
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1 Introduction and Summary 

1.1 Introduction 

In two previous papers [l, 2] (henceforth referred to as I , II) we have 
studied Calogero-Moser type N-particle dynamics whose long-time asymptotics can 
be encoded in a soliton-like scattering transformation. In this paper our starting 
point consists of the closely related Sutherland dynamics 

1 N 1 1 
H=-L:,p}+-g 2 lµl 2 "I:. 

2 j:\ 4 ISJ<kS.N • l \µ\ ( ) 
sm -- x.-x 2 1 k 

and two integrable generalizations thereof, viz., 

N 

H= I:. ch(/3p)V/x), /3E (0, co) 
j:\ 

N 

H=L, cos(l/3lp)Vj(x), /3Ei(O, co) 
j=l 

v~ == II (i -__ si_n 2-"--)112 
J kF} 2 Iµ I 

sin --(xj-xk) 
2 

, rE (0, TC/N) 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 
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We may and will view these dynamics as the simplest non-trivial representants of 
three classes of commuting dynamics, each of which has an associated class of 
'dual' dynamics. The former dynamics yield oscillatory motion, but the dynamics 
dual to (1.1) and (1.2) (which are exemplified by (1.106)-(1.108)) have a 
solitonic long-time asymptotics. The integrable systems associated with (1.4) will 
be shown to be self-dual. 

Unless explicitly stated otherwise, we take 

µEi(O, oo ), g < 0 (1.6) 

Setting 

z = if3µg/2, 7: = f3µg/2 (1.7) 

this convention entailsz > 0 for the case illreI (where,B > 0) and r > 0 for the case 
illb (where -if)> 0). We suppress dependence on the parameters whenever this 
causes no ambiguities. (The sign of g is fixed to ease the definition of certain 
matrices; the various maps and dynamics occurring below are even in g, cf. also 
I Proposition 5.5.) 

To a large extent this paper is self-contained. However, we do need the 
spectral asymptotics and canonicity results obtained in I. For more context and 
background material concerning the integrable systems at hand, we refer to [3-6]. 
In particular, in our survey [6] we discuss both the classical and the quantum 
versions of the above-mentioned systems, their elliptic generalizations and Toda 
type limits, and their relations to infinite-dimensional integrable systems. Also, in 
[ 4] the terminology 'nonrelativistic' (nr) vs. 'relativistic' (rel) is explained, cf. also 
[5, 7]. (To model solid-state phenomena it may be more natural to replace the speed 
of light by the speed of sound, e.g.) The suffix bin (1.4) stands for 'bounded'. 

In contrast to the dynamics handled in I and Il (whose interpretation is 
unambiguous), there exist three different interpretations of the Hamiltonians ( 1.1) 
and (1.2), whereas (1.4) admits even more than three versions. To explain this, we 
introduce the Weyl alcoves 

w n = {oER n I 0 1, ... ' 0 n > 0, Iµ I± Oj < n}' n = N-1 (1.8) 
1~1 

(1.9) 

Clearly, W N is an open convex set, so we obtain a symplectic manifold <tJ, w) by 
setting 

(1.10) 

N 

w = L: dqj /\ aej (1.11) 
1~1 
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Replacingx,p by q, eat the rhs of (1.1)-(1.3), we obtain smooth positive functions 
on Q. The Hamiltonians defined in this way will be denoted by H. 

Next, consider the Z-action on Q whose generator reads 

(l.12) 

This action is well defined, free, discrete and symplectic, and the functions jJ are 
Z-invariant. Thus we may divide out this action to obtain a manifold 

Q:Q/Z (l.13) 

equipped with a symplectic form w, and smooth functions Hon Q. We coordinatize 
Q by setting 

(1.14) 

where F N is defined by 

( 1.15) 

This is a natural choice, since F N is a fundamental set for the Z-action restricted to 
W N· To be more specific, given (q, 8) EQ, there exist uniquely determinedxEFN, 
/E {l, ... , N} and mEZ such that 

x 1=q1+2nm/ Iµ I 

XN-1+1 =q N+2nm/ Iµ I 
XN-1+2=q 1 +2n(m-l)/Iµ I 

and then p is defined by 

PN-1+1=8N 

PN-1+2=8 I 

( 1.16) 

(1.17) 
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We may and will view (1.1) and (1.2) as the coordinate expressions for the smooth 
functions H on Q we have just defined. Note that on the open dense coordinate 
patch {x 1 < n/ Iµ I} one has 

N 

w = L: dx j /\ dp j (1.18) 
j=l 

For later purposes it is expedient to insert an important observation at this 
point : two vectors q, ij E W N belong to the same orbit under the Z-action if and 
only if the diagonal matrices A (q) and A (ij) are related by a permutation, where A 
is defined by 

(l.19) 

(Note that the permutation involved is necessarily cyclic.) 
Physically speaking, the Hamiltonians il(q, B) on the phase space Q describe 

N particles on the line whose distances are bounded below and above due to energy 
conservation. Hence they can be distinguished by their ordering. The Hamiltonians 
H (x, p) on Q describe particles on a ring, whose angular positions are encoded in 
the phase factors exp (µx) ES 1 CC. Then the ordering is fixed up to a cyclic 
permutation. Factoring out the Z-action generated by G amounts to viewing the 
particles as indistinguishable. 

However, one may also treat the particles as being distinguishable. Then one 
needs a phase space 

Q'=Q/Z' (1.20) 

where Z' denotes the Z-action generated by 

(l.21) 

One way to coordinatize Q' and the quotient form w' is to take 

N 

Q'::o:: {(y, k)ER 2NiyEF~}, w'::=: L; dyj /\dkj (1.22) 
1~1 

where 

N 

F~= {yEWNIL;yjE(-nN/lµI, nN/lµIJ} (l.23) 
j=l 

That is, for a given (q, B) EQ one has 

j= 1, ... , N ( 1.24) 
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where m EZ is uniquely determined. Replacing x, p by y, k in (1.1)-(1.3) yields 

smooth functions H'(y, k) on Q'. Note that one has 

(l.25) 

where the ZN-action consists in cyclic permutations ofy, k; this amounts to writing 

Z:::::ZNXZ' (1.26) 

Summarizing, we have 

- n(Z') I ir(ZN) 

(q, 8)EQ~ (y, k)EQ ~ (x,p)EQ (1.27) 

(Here and below, n( • ) denotes regular covering projections.) As far as dynamics 

is concerned, our emphasis will be on understanding a class of commuting 
Hamiltonian flows on Q that contains in particular the flow generated by H. All of 
these flows admit quotient flows on Q' and Q, whose relevant features can be read 

off from the covering sequence ( 1.27). 
Just as in I and II, we shall arrive at a detailed understanding of the 

commuting flows via an explicit picture of the action-angle map and its 'harmonic 
oscillator' extension. These maps are most easily constructed at the left side of the 
sequence (l.27), since Q is convex and hence topologically trivial. Moreover, a 

linear coordinate change turns Q into a product of R 2 and an open convex subset 
M of R 2n, encoding the center of mass motion and reduced (center of mass frame) 

motion, resp., for the Sutherland dynamics. Correspondingly, the action-angle map 
can be factorized. Since this change of coordinates 

plays a key role in the sequel, we detail it now : 

o,=(q1+···+qN)IN 
01=(q1-q2)/2 

r,=(81+···+8N)IN 
r1 =81- (81 +··· +8N)IN 

q l =o,+2[no l + (n -1)02 +···+on] IN 
q1=0,+2[-01+Cn-l)o2+···+0"]/N 

81 =r,+r1 
82=r,+r2-r1 

(Recall n = N-1.) Clearly, this entails 

( 1.28) 

(1.29) 

(1.30) 
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(l.31) 

Also, the new coordinates are not quite canonical ; setting 

w,=Ndo,/\dr, (l.32) 

n 

w(M) = 2L:; doj /\ drj (1.33) 
j=I 

one easily checks that 

~ *(w,+w(M)) =w (1.34) 

(Of course, the scale factors 2 and N are a matter of convention. Our choice 

ensures absence of similar factors in many later formulas.) 
We now turn to the III b systems. Here, we need the open convex sets 

w~= {oERnl lµlo1, ... , lµlon >r>O, lµl±oj<ir-r} (l.35) 
j=l 

(1.36) 

Note that the restriction r < ir/N in (1.5) is equivalent to w~ being non-empty. 

Now we put 

(1.37) 

and equip Q with the symplectic form w, cf. ( 1.11). As before, replacing x, p by q, 

e at the rhs of (1.4), (1.5) yields a smooth real-valued function il on Q. (The 

restriction on q guarantees that all radicands in ( 1.5) are positive.) 
Next, we define a zN-action on Q by setting 

(1.38) 

and a Z-action via the generator G, cf. ( 1.12). Combining these, we obtain a free 

action Of a Semi-direct product Of Zand zN (the action Of Z On ZN being generated 

by (k 1, ... , kN) f.--+ (kN, k 1 , ••• , kN-1)). This action is symplectic and leaves il 
invariant, soil descends to a smooth funtion Hon the quotient symplectic manifold 

(Q, w>. where 

(1.39) 

Introducing 
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(1.40) 

an obvious coordinatization of Q reads 

Q== {(x, p) ER2NlxEF~. pE ( -nll.B I, n!l.B I JN} (1.41) 

Here, x is defined via ( 1.16), whereas the definition ( 1.17) of p should now be read 

mod 2n/ l.B I. 
Clearly, upon quotienting out part of the ZIXZN-action one can obtain various 

phase spaces and Hamiltonians interpolating between <tJ, w), H. and <Q, w), H, 
each with its own physical interpretation. We single out one of these, because its 
action-angle map is most easily constructed. 

To this purpose we introduce the subgroup 

N 

EN= {kEZNI 2: kj=O} (1.42) 
]=I 

Changing coordinates on Q via (1.29) and (1.30), the action of EN leaves (o,, r,) 
ER 2 and oEw~ fixed, whereas r I' ... 'r n change by multiples of 2n/ l.B 1. Then the 
quotient manifold 

(1.43) 

may and will be viewed as 

(1.44) 

Here and from now on T 1 denotes the torus 

(1.45) 

The obvious coordinates on Qc are o., r,, o and r. with r now varying over 
( - rc/ l.B I. 7i/ l.B I]". The corresponding quotient form and Hamiltonian will be 
denoted by we and He, resp. Thus we have 

(l.46) 

where w, is given by (1.32) and w (M 0) by (the obvious reinterpretation of) the rhs 
of (l.33). 

Having prepared the arena, the battle can begin. Lest the logistics go haywire, 
we suggest that the reader skip the following two sections at first reading. These 
sections contain a rather detailed summary of Chapters 2-4 and might be referred 
back to as needed. (This is perhaps the best policy as regards all of Chapters 2-4.) 
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Quite a few auxiliary objects and a lot of notation must be introduced to define and 
study the various maps and spaces that are relevant for the systems at hand, and 
some of this is already necessary to even sketch their constructions. Thus Sections 
1.2 and 1.3 should serve both as a database and as a flow chart, uncluttered by the 
many technicalities arising in Chapters 2-4 and Appendix A. In Section 1.4 we 
summarize Chapter 5 in a more descriptive fashion. 

We close this introductory section with three more remarks. First, we would 
like to point out that many of the illrel and mb objects reduce to their illnr 
counterparts when one fixes g and µ, renormalizes suitably, and takes f3 to 0. 
(Similarly, takingµ to 0 in the ill re1 systems and their duals, one obtains the Ire1 and 
II nr systems, resp., studied in I.) But just as in I and II, we do not have sufficient 
control over this limit to rigorously obtain all of the illnr results as corollaries of the 
IIIr.1 and/or illb results. Therefore, we handle the illnr systems separately, choosing 
however notation and arguments that admit partial generalization to the illre1 and 
III b systems. 

Secondly, a part of this paper can be reformulated in terms of notions from the 
area of Lie groups, Lie algebras and symmetric spaces ((affine) Weyl groups, root 
and weight lattices, totally geodesic submanifolds, to name a few) ; the afficionado 
will have little trouble doing so. (Cf. also [3] for this viewpoint.) 

Thirdly, we remark that the above-mentioned dual dynamics emerge as a 
corollary of the constructions in Chapters 2-4. As such, we have deferred their 
definition to the beginning of Section 1.4. At this point, the dual dynamics (1.106), 
(1.107) appears to be very far removed from the Sutherland dynamics (1.1). As 
will be seen below, however, the inverse of the harmonic oscillator map for the 
latter dynamics serves as the action-angle map for the former-a quite unexpected 
and most remarkable bonus. Similarly, the self-duality of the dynamics (1.4), (1.5) 

amounts to the corresponding harmonic oscillator map being (in essence) 
involutive. (Cf. also our previous paper I, where the notion of 'dual system' is 
more readily understood.) 

1.2 Summary of Sections 2.1, 2.2, 3.1, 3.2 and 4.1, 4.2 

We begin by discussing the illnr and m,.1 systems, which can be handled in 
much the same way. First of all, the commuting Hamiltonians can be obtained 
from an N XN matrix-valued function L on Q, which is self-adjoint in both cases. 
This Lax matrix is defined by (2.1) and (2.51), resp. Just as in I and II, its 
spectral properties are an essential ingredient for the explicit construction of the 
action-angle map. Once again, the starting point for obtaining detailed spectral 
information is the commutation relation between L (q, 8) and the matrix A (q) 
given by (1.19). (This relation was first used for the illnr systems in [8, 9], cf. also 

[10].) 
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Combining the commutation relation with algebraic information assembled in 
Appendix A, we show in Section 2.1 that L has eigenvalues A. 1 , ••• , A. N satisfying 

J,A.;-A.il ~ lµgl, i-=l=j; in Section 2.2 we obtain positive eigenvalues obeying lln A. 1 

- In A. i I ~ 2z, i-=!= j. The subset of Q where all inequalities are strict is denoted by 
Qr· (Here, r stands for 'regular'. On the boundary set Q b = Q \Qr the dimension 

of the vector space spanned by the gradients of the commuting Hamiltonians is 
smaller than N. ) 

It is convenient to view Q as R 2 X M, M = w n X R ", via the above coordinate 

change~. cf. (l.28)-(1.30). Then the spectral requirement amounts to a restric
tion on M: 

(1.47) 

Fixing PEQ,, there exists a unitary matrix U(P) such that 

l diag(01, ... , ON) 
( U *LU) (P) = tJ , 

d . ( fJ 1 f!uN) 1ag e , ... , e 
( 1.48) 

where e varies over the action set 

(1.49) 

Introducing 

(1.50) 

it follows that 8, varies over R and 8 over 

(1.51) 

In both cases we obtain 

8,=rs (1.52) 

A suitable fixing of the gauge freedom left in U now gives rise to n phase 

factors that are written exp (µj'j)' r jE ( - 71/ Iµ I. 7Z/ Iµ I J 'j = 1, ... ' n. Setting 

j,=os (1.53) 

we then obtain the (action-angle) map 
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(1.54) 

where 

(l.55) 

Furthermore, the map can be factorized as 

(1.56) 

Here and below, P2k denotes the flip map on R 2k: 

(1.57) 

The detailed construction of rf> can be found in Sections 2.1 and 2.2 for the 
cases illnr and ll,01 , resp. It is proved there that rf> is a bijection onto tJc. Moreover, 
the Z-action on Q c corresponding to the Z-action on Q is determined, cf. Lemmas 2.1, 
2.2. We shall write the inverse of rf> as 

(l.58) 

(Thus far, our notation may appear somewhat bizarre. However, we are 
anticipating an extension to all of Q, as well as the self-duality of the case mb. Once 
the whole picture has been sketched, we hope the patient reader will agree that our 
notation is appropriate.) 

The principal result of Sections 3.1 and 3.2 is that the map <[)is a real-analytic 
(henceforth cw) symplectomorphism from (Q,, w) onto (R 2 XM 0, w<), where 

we =Ndj, /\ d8,+w(M 0) 

w (M 0) = 2 :t df j /\ d8j 
j~t 

(1.59) 

(1.60) 

This is proved by exploiting the canonicity results obtained in I . In brief, a 
suitably chosen analytic continuation yields a branch 

(1.61) 

of the multi-valued holomorphic function R from Il Sections 3A and 3B. The 
continuation preserves canonicity, so that 

B *w=c5 (l.62) 
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where 

(1.63) 

Then we define a coordinate change <i by (1.50) and by 

(1.64) 

and a Z N -action by 

(1.65) 

Upon quotienting out the £N-subgroup (given by (1.42)), the following commu
tative diagram arises : 

(q, 8)E.6=RNXAN 

n(EN) o <i l 
(8., j,; 8, j)ER 2 XanXT" 

B 
(q,8)EQ, 

\~ (1.66) 

(o,, r,; o, r)ER 2 XM, 

Since the quotient form CJ/EN equals w c, the salient properties of i can now be read 
off: in addition to being bijective (as already shown in Chapter 2), i is C"' and 
symplectic. 

The situation on Q, can then be understood by dividing out the Z-action on Q, 
and the corresponding Z-action on tJc. This yields a commutative diagram 

cf) 
f,jc Q,::::R 2 XM, 

n(Z) l l n(Z) (1.67) 

a Q, 
IP 

Here, Q equipped with the quotient form w is the action-angle phase space 
corresponding to the starting point <Q, w>. H. Explicitly, we may take 
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(1.68) 

N 

w= L. dxj /\ df;j (1.69) 
j=l 

where the coordinates are related to those on Q by 

(1.70) 

In Sections 4.1 and 4.2 we show that the cw symplectomorphism r/J, : (M,, 
w (M ,) ) _... (.M 0, w (M 0)) admits an extension to a C"' symplectomorphism 

r/J: (M, w(M))--<.M. w(M)), (o, r) f--+ (u, v) (I.71) 

with inverse b extending b 0• Here, one has 

M=R2n, w(M)=±duj/\dvj (1.72) 
1~1 

and .M 0 is embedded in Mas the open dense full measure submanifold where (uj, 
vj) =f- (0, O),j= 1, ... , n. Specifically, we have on .M 0 

j=l, ... , n (1.73) 

so w(M) in (1.72) extends w(.M 0) in (1.60). From this result one easily under
stands the state of affairs on Q, and a corresponding 'harmonic oscillator' picture 
for Q can then be read off from the following commutative diagram : 

n(Z) n(Z) (1.74) 

.Q# +------- Q 
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1.3 Summary of Sections 2.3, 3.3, 4.3 and 4.4 

We proceed by sketching the corresponding results for the case ill b. Here our 
starting point is the manifold Q •, cf. ( 1.43). In contrast to the previous cases, where 
the Lax matrix is self-adjoint, L is now unitary, cf. (2.82). Once more, L has simple 
spectrum on Q•; moreover, the minimal eigenvalue distance (in arclength along 
S 1) is equal to 2r. As before, we first restrict attention to the open dense full 
measure submanifold 

(1.75) 

where all distances are larger than 2r. Fixing PEQ~, there exists a unitary U(P) 
such that 

(1.76) 

Here, B is uniquely determined by requiring that it satisfy 

(1.77) 

and belong to 

(1.78) 

where 

(1.79) 

Introducing 8, and 81, ... , 8n by (1.50), it then follows from (1.77) that (1.52) 
holds true; also, from BEA~ one gets 8Ea*. 

Again, a suitable gauge fixing of U now yields a unique jE ( - re/ Iµ I, re/ Iµ I Jn, 
and defining j, by (1.53), we obtain a bijection 

(1.80) 

Here we have 

(1.81) 

with the subscript r on (jc and M0 signifying restriction to points where the 
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eigenvalue distances of the dual Lax matrix A (defined by (2.109), (2.82)) are 
larger than 2r; for the &-images this property is manifest from the relation 

A (P) = (U *AU) (P), P = ii (P) (1.82) 

Writing the inverse of ii as 

(1.83) 

we also prove in Section 2.3 that b ~ is essentially an involution. More precisely, 
taking J3 =µ one can identify M~ and M? in an obvious way, and then b? o b? is the 

identity map. (The case J3 * µ is solely a matter of more notation.) 
In order to sketch the results of Sections 3.3 and 4.3, we begin by pointing out 

some crucial differences between the case ill band all previous cases (including those 
studied in I and II ) . First, due to the spectral restriction in the definition of Q;, 
we are no longer dealing with a manifold that is manifestly connected. However, 
this is actually the case, as will be shown in Section 4.3. But Q; is not simply-con
nected, as will also be proved in Section 4.3. 

Correspondingly, in contrast to all previous cases, where we wind up with a 
(one-valued) branch B of R, we now have to invoke the multi-valued function R to 
conclude that the bijection ii given by (1.80) is a cw symplectomorphism when Q; 
is equipped with w c (cf. (1.46)) and Q; with w c (cf. ( 1.49), ( 1.50)). To be specific, 

we introduce the open convex set 

(1.84) 

and note that tJc is then obtained from Qin the same way as before. Denoting the 
cover of Q; by Q" we arrive at a commutative diagram 

"' 
R 

Q, Q, 

n(EN)o~ n(E N) o CC ( 1.85) 

Q; Q; 
i 

instead of (1.66). However, since we still have R *w =c.5, we reach the conclusion 

mentioned earlier. 
The corresponding conclusion for Q, is now obtained by quotienting out the 

remaining ZXZ-action on Q; (recall (1.39) and (1.43)) and the corresponding Z 
X Z-action on Q;; this gives rise to a commutative diagram 
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.Q~~----

;r:(ZXZ) ;r:(ZXZ) (1.86) 

.Q,----- Q, 

from which the salient features of <P can be read off. 

As it happens, it would be quite awkward to prove connectedness of the spaces 

in the above diagrams already in the context of Section 3.3. Therefore, the main 

result of this section (Theorem 3.5) actually involves certain connected compo

nents, whose equality to the spaces in (1.85) will become clear in Section 4.3. 

Moreover, a consideration of the diagram ( 1.86) is shifted to Section 4.3 as well. 

Just as in the previous cases, we begin Section 4.3 by calculating the reduced 

map rp ~ explicitly for n = 1. This enables us to infer that if>~ admits an extension rp 0 

to M 0, provided two new points are added to M 0• This extension gives rise to a 

non-self-dual situation, but self-duality can be restored by adding two new points to 

M 0, too, and by extending 1> 0 to a map rp : M --7 M. The extended spaces M and M 
may and will be viewed as being homeomorphic to the two-sphere, and then rp is a 

homeomorphism, cf. Figures 2 and 3 below. 

This purely topological extension procedure has an analytic reformulation that 

greatly enhances its cogency. First, we identify the sphere with radius R in R 3 with 

the projective line P 1 =CU { oo} via stereographic projection. Thus we have two 

patches { (1, z i)}, { (z o, 1)}, z o, z 1 EC, related by the transition function z f-------7 

1/z, z EC *. (Here we view C as R 2 via z f-------7 (Re z, Im z), so the transition func

tions are cw in Re z, Im z.) Next, we introduce coordinate changes 

( 1.87) 

where the superscript f signifies that the hat is facultative and where 

w = e.8r [µ lo-r w = eµt __Jfil§~ ( )
1/2 ( ~ )1/2 

- ;r:-r-[µ[o ' - n-r-1.Blo (1.88) 

Then the above embedding of 1VfJ0 in S 2 may be described by identifying (81, ff) 

with (1, wl). The crux is now that the following holds true. 
(i) One has 

( 1.89) 

where the symplectic form 
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_ 2 d Re z /\ d Im z _ . 2 dz /\ dz 
WR= 4R -[1 +(Re z)2+ (Im z)z]z -2zR (1 + lzW 

amounts to the area form on S 2. (This is easily verified from (l.88).) 

(ii) The map 

is a cw symplectomorphism. 

263 

(1.90) 

(1.91) 

(iii) The compactification of M 0 just described gives rise to a cw extension of 

the (reduced n = 1 version of the) Hamiltonian (1.4). Hence one obtains a com

plete Hamiltonian flow on M, as opposed to the flow on M 0, which is not complete. 

(iv) Last but not least, M is a minimal completion, in a sense detailed below. 

All of this turns out to admit a generalization to n > 1. Specifically, ( 1.87) 

and (1.88) generalize to 

(1.92) 

·= flr;( lµlo;-r)1;2 , .= µt-( l.Bl8;-r)1;2 . 1 
w, e lµloo-r ' w,-e' l.Bl8o-r ' i= ' ... ,n (1.93) 

where we have set 

(1.94) 

The extension of M ro is now given by 

(1.95) 

Here, we view P" as a real 2n-dimensional cw manifold by using the N obvious 

patches 

whose transition functions are indeed C"'. Then the embedding of !Vf ! 0 in P" is 

given by (6f, yf) I--+ (1, wf)E&> 0 • 

Inverting (1.93) yields 

(1.97) 
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eiSr;=w;/lw;I, i=l, ... , n (1.98) 

so the first property expressed by ( 1. 89), ( 1. 90) generalizes to 

(1.99) 

(z o = 1) 

(l.100) 

Thus, w R is a multiple of the global symplectic form derived from the obvious 

(Fubini-Study) Kahler metric on P ", the multiple being such that the integral of 

w R over a projective line equals 4nR 2• Now the properties (ii)-(iv) hold true for 

n > 1, too. 
We mention in passing that the starting point for geometric quantization on 

the Kahler manifold <P ", w R) is the integrality condition 

(1.101) 

cf. e.g. [11]. For N = 2 this is exactly the quantization condition (3. 85) in our 

survey [6], which we imposed for quite different (self-adjointness) reasons, 

however. For N > 2 one again needs (l.101) with R 2 now given by (l.99). (We 

arrived at the above solution to the classical non-completeness problem after 

writing [6].) 
With the reduced situation under control, it is easy to introduce and study 

extensions of Q< and Q. Specifically, (1.86) may and will be extended to a 

commutative diagram 

<f> x =P2Xefi 
Q #c = R 2 X M Q #c = R 2 X M 

n(ZxZ) n(ZXZ) (1.102) 

In Section 4.4 we study the reduced map </J. Identifying M and M with P ", we 

may and will view if;i as an involutory antisymplectomorphism of the symplectic 

manifold <P ", wren), where 
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W ren = W R /2R 2 (1.103) 

This renormalized form equals 2n times the Fubini-Study form and is derived from 
the symplectic form 2Im (x, y) on CN::::::R2N. (We take the inner product on CN 

antilinear in the first slot.) The normalization ensures that for a self-adjoint matrix 
A the quotient of the unitary group exp( -itA) (under the projection CN \ {O}_.,..P", 

cf. (l.95)) equals the Hamiltonian flow exp(tHA) on (P", w,,.), with 

H Az) = (z, Az)/(z, z), zECN\ {O} (1.104) 

This will be convenient for studying the limit -rt n/N. 
Our main result concerning the map </; is an immediate consequence of 

Theorem 4.9: <P is not equal to the quotient of an anti-unitary on CN for any -rE (0, 

rc!N), whereas for-rt n!N it does converge to such an anti-automorphism of P". 
Specifically, we obtain 

lim cft=k of o 
rjJr/N 

(l.105) 

Here, k and f 0 are the quotients of complex conjugation and Fourier transfor
mation on CN, cf. (4.108) and (4.128), resp. In contrast, the -r .j, 0 limit does not 
yield a continuous map. 

1.4 Outline of Chapter 5 

The key objects in the construction of the action-angle transform and its 
harmonic oscillator extension are the matrix A (1.19), the Lax matrices L (given by 
(2.1), (2.51) and (2.82) ), and their duals A and i. The Hamiltonians (1.1)
(1.5) are not used anywhere in this construction. They can be viewed as the 
simplest non-trivial dynamics that arise by taking the trace of a suitable function of 
L. Letting this function vary, we obtain commuting dynamics that are simultane
ously diagonalized by the harmonic oscillator transform. 

In Chapter 5 we study a class of dynamics obtained in this way, as well as a 

class of dynamics similarly associated with the dual Lax matrix A. The latter 
dynamics are simultaneously diagonalized by the inverse of the harmonic oscillator 

transform. Since the case filb is self-dual, the dual dynamics will not be separately 

studied. 
The dual systems illnr and filrel are very different from (1.1) and (1.2), 

however. In the coordinates (x, p) on the dense submanifold Q=TNXAN (cf. 
(1.68)) of the extended phase space Q# the simplest non-trivial representants read 
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N 

D= ~ cos(lµlxi)Vi(fl) (1.106) 
J=l 

where 

V· =IT 1- µg ( 
I 12 )l/2 

J k1'j (pj-fak)2 
(1.107) 

vj == IT (i 
k1'j 

(l.108) 

From a physical viewpoint the dual dynamics describe particles on a line, 
whose distances are bounded below by lµg I; their momenta vary over the first 
Brillouin zone ( -n/ Iµ I, n/ Iµ I]. (Admittedly, denoting positions and momenta 
by p and x, resp., amounts to physical heresy. Introducing additional notation 
would have its own drawbacks, though ; cf. I for a similar dilemma as concerns the 
Il nr and l,01 systems.) The flows generated by the dual dynamics are not complete 
on _a; at the end of Sections 5.1 and 5.2 we will be in the position to explain how 
the extension to complete flows on t2 # can be viewed as a minimal completion. 

We now tum to a more detailed sketch of Chapter 5. Section 5.1 begins with 
an explicit description of the flows associated with L in terms of the center of mass 
coordinates 8,, j, and harmonic oscillator coordinates u 1 , ••• , v.. Then we study 
equilibrium properties of various dynamics. In particular, for the Sutherland 
dynamics f1 we show that the points 

(q;, 0), q:, 1==¥(N+1-2J) +a, a ER, j= 1, ... , N (1.109) 

are the only equilibria (in agreement with the physical picture). 
In Theorem 5.1 we detail a relation between the position part q (t) of the flows 

and the eigenvalues of a t-dependent matrix defined in terms of A and L. In 
Theorem 5.2 we exploit the canonicity of the action-angle map to derive a simple 
integral representation for the partition functions of a countable set of quotient 
dynamics on Q, containing the 'indistinguishable particles on a ring' version H of 
the Sutherland dynamics, cf. (1.1). 

We then study the class of dual dynamics mentioned earlier. Here, the inverse 
of the harmonic oscillator map is exploited to derive an explicit description of the 
various flows on a #c in terms of the coordinates (q' e) on Q ; the state of affairs on 
the quotient manifolds t2 # and Q can then be determined via the diagram ( 1. 7 4) . 

Theorem 5.3 details a relation of the position part of the dual flows with 
eigenvalues of at-dependent matrix defined in terms of A and L . As a consequence 
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of this relation, the t ~ ± oo asymptotics of the spectrum of this matrix yields the 
long-time asymptotics of the positions. On a distinct-velocity open dense submani
fold the spectral asymptotics can be readily determined by invoking Appendix A 
in I. 

Correspondingly, Theorem 5.4 shows that the long-time behavior of the dual 
particles is solitonic : the set of momenta is conserved and the position shifts are 
factorized in terms of the 2-particle shift. Subsequently, these scattering results are 
used to clarify the issue of 'minimal completion' mentioned above. 

The results for the m,.1 case in Section 5.2 are quite similar to those for the illnr 
case, with Theorems 5.5-5.8 corresponding to the theorems we have just described. 
Therefore, we refrain from a further discussion. Instead, we wish to draw attention 
to an important distinction with the previous case. 

This concerns the possibility to generalize the dual dynamics (1.106), (1.108) 
describing N solitons to a dynamics describing N + < N solitons and N _ = N - N + 

antisolitons. via the 'crossing' substitution 

h~Pk+in/{3, k=N++l, ... ,N (1.110) 

We expect that the resulting m,.1 systems can be handled along lines similar to those 
followed in II. In particular, the role of the pseudo-self-adjoint Lax matrix from 
II should be played by a pseudo-unitary matrix, there should be soliton-antisoliton 
bound states, scattering factorized in terms of the (analytically continued) 2-soliton 
shift, etc. Using Lemma A.2 below it is not hard to check that the substitution 
(1.110) (with p replaced by 8) in the dual Lax matrix (2.61) indeed yields a 
pseudo-unitary matrix; moreover, for N +, N - = 1 one easily verifies all of the 
above scenario. We believe however that a reasonably complete study of the 
general case would be a quite laborious enterprise, even at the purely algebraic level 
of Chapter 2 and Appendix A in II . 

We conclude with a brief sketch of Section 5.3. Again, the harmonic oscillator 
map enables us to obtain an explicit picture of the flows generated by an extensive 
class of commuting Hamiltonians. More specifically, oscillation frequencies and 
equilibrium properties can be read off from the diagonalized flows. Theorems 5.9 
and 5.10 may be viewed as generalizations of Theorems 5.1 and 5.2, resp. ; they 
specify position parts in terms of eigenvalues, and partition functions for certain 
dynamics on Q #, resp. 

The last two topics of Section 5.3 concern the r t rr:/N limit and the issue of 
'minimal completion'. We study these issues only in the reduced context already 
mentioned below (1.102) ; the non-reduced state of affairs can be readily estab
lished from this. 

As they stand, all of the above-mentioned Hamiltonians converge to constant 
functions on Mas rt rr:/N. (For instance, the Hamiltonian (1.4) has limit 0, since 
the potential (1.5) does, cf. (1.41).) This may be viewed as a consequence of the 
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spectrum of L becoming constant for r i rr:/N, cf. (l.76)-(1.79). By means of a 

suitable renormalization, however, we can ensure non-constant limiting Hamilton
ians and, correspondingly, non-trivial limiting flows. 

All of the resulting Hamiltonians are of the form (1.104), withA belonging to 
the maximal abelian algebra of self-adjoint matrices that are diagonalized by 

Fourier transformation on CN. In particular, the limit of the (renormalized) 

defining dynamics (1.4) is shown to be proportional to the discrete Laplacean on 
CN with periodic boundary conditions. Thus, the map k o <P may be regarded as a 

nonlinear generalization of Fourier transformation, in much the same way as the 
IST for the KdV equation (say). We would like to stress, however, that the -r-value 

yielding the 'free' dynamics is not r=O, but -r=rr:/N. (This is not at all evident from 
(1.4), even with hindsight.) 

Our last result is Theorem 5.11, which shows that for r near rr:/N the phase 
space M:::::P" may be viewed as a minimal completion of the phase space M 0 (on 

which the commuting local flows are not global). The proof makes essential use of 
the simple limiting behavior of the various flows and maps for T t rr:/N, which has 
already been sketched above. 

2 The Action-angle Transform : Algebraic Aspects 

2.1 The Case Illnr 

On the space Q given by (1.8)-(1.10) the Lax matrix is defined by 

iµg -
µ , 

2shT(qj-qk) 

Thus the Hamiltonian i1 can be written 

- 1 H=-TrL 2 
2 

µEi(O, co), g < 0 

cf. ( 1.1). The fundamental commutation relation reads 

~[A, L] =e0e-A, d =iµg= jµgj 

where A =A (q) is given by ( 1.19) and e is the vector with components 

Since L is self-adjoint, there exists a unitary U such that 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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Setting 

A - U*AU 

J = U*e 

g = U'e 

the transformed commutation relation can be written 

Upon restriction to the subset 

this entails 
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(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

where the Cauchy matrix C is given by (A.1). Taking determinants, it follows from 

Cauchy's identity (A.2) that a(L) is simple and that 

(2.12) 

Next, usingA- 1* =A and C=C (the bar denoting complex conjugation), we 

deduce from (2.11) 

(2.13) 

Comparing this to (A.5) and noting Cjk=FO, we get 

(2.14) 

Consequently, the inequality (A. 7) with ,8 = 0 and a =B results. Moreover, (A.8) 

is satisfied in view of (2.5) and simplicity of a(L) on Q,. Therefore, Lemma A.3 

yields @EA N· As promised below (A.6), one then gets positive quotients in (A.4), 

so taking positive square roots yields an unambiguous matrix C, cf. (A.6). 

Since e j-e j +I > d on Qr' the unitary u is uniquely determined by (2. 5) up to 

right multiplication by a diagonal phase matrix. Before fixing this gauge ambiguity, 

it is expedient to observe that (2.14) entails the gauge-invariant relations 
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(2.15) 

Now U is an isometry, so that 

We claim that the sum at the rhs equals N. To prove this, we need only show that 
the sum does not depend on e. But this follows just as in the proof of Lemma A.5 ; 
in fact, the sum is a degenerate form of S 1 , cf. (A.24). Hence we infer ~ = 1, so that 

(2.17) 

In order to fix U we now require 

(U*AU)k,k+1<0, k=l, ... ,N-1 (2.18) 

(U1e)1 > 0 (2.19) 

This makes sense, since the quantities at the lhs are nonzero in view of (2.6), (2.8), 
(2.9) and (2.10). Moreover, (2.18) fixes Uupto an overall phase, and then (2.19) 
fixes this phase. 

Next, we set 

(2.20)" 

and introduce 

(2.21) 

by writing gi as (cf. (2.17)) 

(2.22) 

It now follows from the above that we must have 

(2.23) 

(2.24) 
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where CESO(N) is the modified Cauchy matrix (A.6). Indeed, IJ1I, ... , IJNI 
follow from (2.17), whilst the phases of ]1, ... , fN-1 follow upon combining 
(2.11), (2.18) and (2.22). (Note Ck,k+t < 0, cf. (A.I).) Moreover, due to (2.20) 
one has I.Al= IA I =exp(µNj,), so the phase of/N must be equal to exp(µNj,). 

The main reason for our gauge choice can now be made clear : The dual Lax 
matrix.A given by (2.24) has a limit for IJk-IJk+1 id that does not depend on Yb 
which will be crucial in Section 4.1. Indeed, in this limit one has Ck, k + 1-->- - 1 and 
Cj,k+t, Ck1 ~0 forji'k, li'k+I (in agreement with orthogonality), as is readily 
checked. 

Next, wetrade/JEANfor (8,, 8)ERXa" via (1.50), and (q, 8)EQ,for (o,, 
rs; o, r) ER 2 XM, via (1.28)-(1.30). From Tr L =Tr i and (2.20) we then 
deduce that (1.52) and (1.53) hold true, resp. Thus, we have now supplied the 
details of the construction of the map cJj given by (1.54)-(1.56). (The factorization 
(1.56) follows from invariance of 8 and r under shifts qj~qj+qo, ej~ej+eo,j 
= 1, ... , N, which is easily established from the above.) 

We proceed by showing cJj is a bijection. To this end we fix ( 8,, j s ; 8, j) E Q c 

and define/JEAN via the inverse of (1.50), cf. the rhs of (1.29). Then we define 
i by the rhs of (2.5), g and]by (2.22) and (2.23), resp., and A by (2.24). Since 
A E. U(N), there exists a unitary V such that 

V*AV=diag(a,, ... 'aN), aETN 

Transforming the commutation relation 

1 [A A] A A 
-~i A, L =J®g-A 

with V, we then obtain 

where we have set 

L'= V* i V 

e1 = V*j 

er= v1g 

Takingj=k, this says 

so that 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2,30) 

(2.31) 
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(2.32) 

Choosing thenj:;6k, we get ai=;6ak, so a(A) is simple. 
We may now conclude that there exists a uniquely determined xEFN (cf. 

(1.15)) such that 

(2.33) 

Next, consider the vectors qE W N that are on the Z-orbit of x. These are given by 
(1.16), so one has 

N N 

L; xi= :E qi+21Z'(mN-l+ l)JIµ I, mEZ, IE {1, ... , N} (2.34) 
)=I )~I 

Thus we can uniquely determine m and I, and hence q E W N, by requiring 

N 

L; qi=Nt, (2.35) 
j=I 

Now we are in the position to fix the permutation ambiguity in V by demanding that 
in (2.25) one has 

(2.36) 

We continue by defining 

(2.37) 

These numbers are real, since L' is self-adjoint. Moreover, they are uniquely 
determined, since the diagonal phase matrix ambiguity left in V only renders the 
off-diagonal elements of L' ambiguous. Consequently, we obtain a well-defined 
point (q, e) in Q. Changing variables according to (1.29), (1.30) now yields a map 

ii·. R2X .~o~R2XM, c~ A ~ •) , ___ - (:;:, :;:, ) 0 JVl v,,r.;u,r ,------..- u.,r.;u,r (2.38) 

Lemma 2.1. The map i is an injection onto R 2 X M, with inverse <P, which may 

be factorized as P 2 X b 0• The generator 

G: (o .. r s; 0 I' .. ., 0 n' r 1' .. ., r .) ~ 

(2.39) 
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maps R 2 X M, onto itself, and one has 

(2.40) 

Proof. Switchingj ~ k in (2.27), the modulus of the lbs is invariant, since L' 
is self-adjont. In view of (2.32) this entails that leii/er;I does not depend onj. 
Since lle111 2 = llJll 2 =N and lie, 11 2 = Ilg ll 2 =N, it follows that le iii= ler;I. Com
bining this with (2.29)-(2.31) and (2.36), we infer that V can be rendered unique 
by requiring 

e ii=e r;=e"'1/ 2 (2.41) 

Next, we fix a point PEQ<, yielding a point P = CfJ -i (i(P)) EQ. We assert 
that the Lax matrix (2.1), when evaluated in P, coincides with L'. Indeed, in view 
of (2.37) these matrices have equal diagonals. Using (2.36), (2.41) and (2.27) to 
express the off-diagonal elements of L' in terms of q 1 , ... , q N, we obtain the 
off-diagonal elements in (2.1). Thus our assertion is proved. 

As a consequence, the numbers e 1 CP)' ... ' e N(P) are the eigenvalues of L (P). 
Since they satisfy 18i-8kl =l=d, we may infer that i maps (Jc into R 2 XM,. (In 
particular, we may conclude at this point that M, is not empty.) 

We proceed by observing that U(P) coincides with V*. Indeed, from (2.28) 
and L' = L (P) it is evident that V * has the diagonalizing property (2.5) of U(P). 
Moreover, from (2.25), (2.36) and (2.24) we obtain 

(VA(P)V*)k,k+1=,.L.k+1<0, k=l, ... ,N-1 (2.42) 

and from (2.30), (2.41) and (2.22) we get 

(2.43) 

Thus V * has the three properties that uniquely determine U(P). As a result, we 
may infer cf> o i=id(Qc). Arguing similarly for a fixed P oE.6,, the matrix V * (cf> 
(<€(P 0))) must equal U(P 0). This yields i o <i>=id(Q ,), so the first assertion of 

the lemma now follows. 
The map (2.39) amounts to the map (l.12), as anticipated by our (abuse of) 

notation, cf. (1.28)-(1.30). Now (2.1) entails 

L 6 (P) =L(G(P))=S'L(P)S (2.44) 

where S is the anti periodic shift (A.35). Therefore, one has a(L 6 ) = a(L), so G 
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maps Qr onto itself. Moreover, it follows that Gleaves 81' ... '8 n invariant. Since 
the first two coordinates in (2.40) obviously transform as specified, it remains to 

consider j. 
To this end we observe that the unitary 

satisfies 

u0 (P) =S' U(P) 

u0 (P)*L (G(P) )U 0 (P) = (U* LU) (P) 

U 0 (P) *A (G(P) )U 0 (P) = (U* AU) (P) 

U0 (P)'e(G(P)) =(U'e)(P) 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

This entails that U 0 (P) has the three properties that uniquely determine U(G (P)), 
cf. (2.5), (2.18), (2.19). Hence we must have 

U(G(P)) =S' U(P) (2.49) 

From (2.47) it now follows that 

A(G(f)) =i(f) (2.50) 

By virtue of (2.24) and j",f-------?f,+2n/NlµI, this implies fj'r--->-j1-27lj!NlµI, 
which completes the proof of (2.40). O 

2.2 The Case ill ,.1 

In this case the Lax matrix reads 

where V1 is defined by ( 1.3). Then fJ can be written 

11= ;Tr(L +L - 1) (2.52) 

(To see this, use (A.2).) Reparametrizing z by (1.7), the commutation relation 
reads 
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l l 
2cth(,8d/2) [A, L] =e@e·-2CAL +LA), d= lµg I (2.53) 

where 

e1 = exp(µq 1/2+j381/2)V/q) 112 (2.54) 

Moreover, L may be written 

(2.55) 

cf. (A. 1). Since q E W N, Lemma A. l entails L > 0. 

Proceeding now as in Section 2.1, we choose a unitary U such that 

(2.56) 

Defining ,4, J and g by (2.6)-(2.8), we then obtain as the generalization of (2.9) 

A;k sh~ (d +ek-ej) =sh(,8d/2)e-f3(Bj+Ok)/2 ld k (2.57) 

On Qr (defined by (2.10)) this can be rewritten 

(2.58) 

cf. (A.l). Thus, (A.2) again yields non-degeneracy of a(L) and (2.12) follows, 

too. 
Using unitarity of A and the properties of C in the same way as before, we now 

obtain (2.14) with 0 replaced by ,8. From this the inequality (A.7) is plain, and 

since (A.9) is satisfied, we deduce BEAN from Lemma A.3. Then (A.6) yields 

again an unambiguous matrix CESO(N). 

Once more, (2.15) readily follows, but in the present case it is not easy to 

determine f explicitly. In fact, we are only able to solve this problem at the end of 

this section (the result being f =exp [ (N - 1 )z/2]). 
To fix U we may and will impose (2.18) and (2.19), and then we write gas 

/3 1/2 

A (sh2(B1-B 1+d)) 
g1=f- 1exp(-µ[t1 1+(j-l)i,]+/38;/2)fI /3 · 

l'Fj ( ~ A ) 

sh2 81-8 1 

(2.59) 

where (2.20), (2.21) are in effect. Then it follows as before that] and A are given 

by 
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(2.60) 

(2.61) 

with CESO(N) given by (A.6). The limiting behavior of A for ek-ek+I id is 
now the same as for f3=0, which motivates our gauge fixing. 

Mimicking the reasoning in Section 2.1, we again obtain ( 1. 5 2) and ( 1. 5 3) , the 
first equality now following from exp(/3Nr,) = IL I= Ii I =exp(/3N8,), cf. (A.2). 
Thus we have once again constructed a map <JJ given by (1.54)-(1.56). 

To prove ef> is bijective, we fix PEQ< and define BEAN as before. Also, we 
define i by the rhs of (2.56) and A by (2.61). Finally, we define renormalized 
vectorsgp,jp via the rhs of (2.59), (2.60) with the factors f- 1, f omitted. Then 
one readily checks 

(2.62) 

Now A is unitary, so there exists a unitary V obeying (2.25). Then (2.62) yields 

where L' is defined by (2.28) and where 

(2.63) 

(2.64) 

(2.65) 

Now assume ai=ak for ji=k. Then (2.63) implies that the 2X2 principal 
minor of L' containing the indicesj and k is a dyadic, and hence of rank one. But 
we have L' > 0, a contradiction. Thus a(A) is simple. 

Next, we follow again Section 2.1, writing first a(A) in terms of a unique xE 
F N via (2.33), and then determining a unique qE W N on its Z-orbit via (2.35). 
Now we may and will fix the permutation freedom in V by insisting on (2.36). 
Then (2.63) can be rewritten 

(2.66) 

We now introduce BERN by setting 

(2.67) 
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(This makes sense, since V1 is positive and L' > 0 implies Lj1 > 0.) As before, Lj1 

is gauge-invariant, so after the transformation (1.28)-(1.30) a well-defined map i 
given by (2.38) results. 

Lemma 2.2. The assertions of Lemma 2.1 hold true in the ill re! case, too. 

Proof. Consider the relation (2.66). Taking determinants, we infer (2.32) 
holds true. Taking thenj +->- k and using IM1k I= IM ki I, M=L', C, we deduce that 
there exists f > 0 such that 

leu/e'il =f2, j=l, ... , N (2.68) 

Taking now j=k, we obtain 

(2.69) 

so we may fix V by requiring 

(2.70) 

The reasoning in the proof of Lemma 2.1 now applies, with (2.43) replaced by 

(2. 71) 

cf. (2.54), (2.70), (2.65) and the definition ofgp above (2.62). D 

To conclude this section we show that the scale factor f is given by 

f=e (N-I)z/2 (2.72) 

as announced above (2.59). In the process we obtain the remarkable functional 
equation 

F(y, z) =e (N-t)z F(y, 0) (2.73) 

where 

(2.74) 

To prove these identities we first observe that 
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f 2F({30/2, -z) = 11/11 2 = II U*e 11 2 = lle ll 2 =TrL=Tr.i =F({3B/2, 0) (2.75) 

where we used (2.60), (2.7), (2.54), (2.51) and (2.56). Similarly, consideration 
of II g 11 2 yields 

f- 2 F({30/2, z) =F({30/2, 0) (2.76) 

Combining this with (2.75), we obtain the identity 

F(y, z)F(y, -z) =F(y, 0) 2, yECN, zEC (2.77) 

(Indeed, from the above it follows that (2. 77) holds for positive z and 2y E.{3A N. ) 

Next, we fix y in the region y N < · · · < y 1 (say) and consider the function 

Gy(z) = e -CN-l)z F(y, z), zEC (2.78) 

Clearly, G Y is entire and 2ni-periodic, and one has 

(2.79) 

Now A (y) does not vanish identically, since one clearly has 

lime - 2Y1A (y) = 1 (2.80) 
J'1--+00 

Also, using (2. 77) we may infer 

. ( ) F(y, 0) 2 

Ro~~oo Gy Z = A (y) (2.81) 

From Liouville's theorem we now deduce Gy(z) =Gy(O), which entails (2.73). 
Due to (2.75) we then get (2.72). 

2.3 The Case ill b 

As announced in Section 1.3, we start from the space Q<=R 2 XM 0 in the 
present case, cf. (1.43), (l.44). Our choice of Lax matrix reads 

L (µ, f3; o., r,, o, r)ik =exp( -.B[rj-1 + (j- I)r ,J )C(µ, .B. g; q)ik 

exp(f3[rk+kr,]), iµ, if3, g < o (2.82) 
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Here, we have 7 0 , YN = 0, q is defined by (l.29), and CESO(N) is defined via 
(A.6), (A.1) and (A.4). (Since q E W~, the quotients in (A.4) are indeed 
positive.) With (1.7) in force, we then obtain 

Hc=l_Tr(L+L - 1) 
2 

and the commutation relation reads 

~ cth(i[3µg/2) [A, L] =f®g-~(AL +LA) 

where (cf. (A.4)) 

h =exp( -Mr1-1 + (j- Ors])l/µ, /3, g; q) 112 

(2.83) 

(2.84) 

(2.85) 

(2.86) 

Since L is unitary, there exists a unitary UP (p for provisional) such that 

Setting 

we obtain 

Ap = Up*AUp 

jp = Up*f 

ApJksh~ (iµg+ftk-p) =sh(i/3µg/2)e-fJCfii+flkl/ 2 Jpdpk 

Thus, putting 

we have on Q; 

We now use (A.2) to deduce p N < ·· · < p 1 and 

(2.88) 

(2.89) 

(2.90) 

(2.91) 

(2.92) 

(2.93) 

(2.94) 
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on Q:. 
Next, using unitarity of 1 P and the features of C we get 

(2.95) 

From this (A. 7) (with a ___,.. p) follows, and since (A.10) is satisfied on Q ~ , we infer 
pEP~ from Lemma A.3. Moreover, using IL I= Ii I we conclude 

(2.96) 

Now consider the map y 1, ... , y N f---i> y N+2n/ l.B I. y 1, ... , y N-1 · Clearly, 
this map acts bijectively on the set A~ defined by (l.78), so we may use it to 
generate a Z-action on A~. The set P~ may and will be viewed as a fundamental 
set for this action. Furthermore, in view of (2.96) we can find a unique 8 on the 
orbit of p satisfying (1.77). Therefore, we may now switch to a unitary U that 
satisfies 

(2.97) 

Next, we define 1, J and g by (2.88)-(2.90) with the subscripts p omitted. 
Then we get (2.91), (2.93)-(2.96) withp's omitted and withp-+ 8. We claim that 

(2.98) 

To prove this, we first note that (2.95) entails 

(2.99) 

Thus we need only show f = l. Now we have 

·(lµlc )+) N sm - q;-qi r 

L: II 2 = llJ 11 2 = II u *! 11 2 = II/ II 2 
i=l ,,,, • Mc _ ) 

sm 2 q; qJ 

. (I.BI c- -) ) N sm -2- ()i-()i -r 
=f2L: II--~----

1=1 '"' • m (()~ -e-) sm 2 ; J 

(2.100) 

and when we apply the result (A.23) of Lemma A.5 to the function S 1 , cf. (A.24), 
we infer that both sums are equal to :Ei exp(ir(N + 1-2j)). Hence we have f = 
1 and our claim (2.98) follows. 
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To fix the diagonal phase matrix ambiguity left in U, we require 

(U* AU)k.k+t < 0, k=l, ... , N-1 (2.101) 

(2.102) 

With the definition 

t, = o, (2.103) 

and the conventions (2.21) in force, we may now define t 1 , ... , j n by writing g as 

(2.104) 

Then J and A are given by 

(2.105) 

and (2.61), resp., as will be clear by now. 
We proceed by trading 8EAir for (8,, 8)ERXa* via (1.50). Then the 

upshot is, that we have defined a map 

<P: Q~-tJc, (o,, rs; o, r) ~ (8,, i's; 8, t) (2.106) 

where 

(2.107) 

As before, this map may be written P 2 X if;~, which follows for instance by using the 
readily verified relation 

U(o,, r,; o, r)1k=exp[ -/3r,(2j-1)/2] U(O, o; o, r)1k exp[ -µo,(2k-1)/2] 

(2.108) 

Moreover, comparing (2.61) and (2.82), we obtain the pivotal relation 
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A=L(,8, µ; 8s t,, 8, t)' (2.109) 

(Note that taking g~ -gin (A.I) and (A.6) amounts to a transposition.) 
From this relation it will be clear how to continue : We should go through the 

same steps as were made to define ii, in order to construct a map 

i: (J;__,,.Qc, (8,, i's; 8, t) ~ (o,, 7s; o, r) (2.110) 

Thus, a; is defined as follows: Fixing FE.QC, there exists a unitary Vp such that 

(2.111) 

where A is defined by (2.109). Then we set 

(2.112) 

cf. (2.92). Arguing as before, we obtainx EFt and using exp(Nµf ,) =exp(µ. L;ixi) 
we then get a uniqueqEWt on the Z-orbit ofx, cf. (l.16), (1.36), (1.40). Then 
we trade VP for a unitary V such that 

V*AV=A (q) (2.113) 

and render V unique by imposing 

(V* L V)k+l,k < 0, k=l, ... 'N-l (2.114) 

(2.115) 

where i and J are defined via (2.97) and (2.105), resp. 
At this stage the rest of the construction of i will be obvious. But in contrast 

to the previous cases, it is not obvious that the definition domain .Q; of ff is 
non-empty. Among other things, we shall take care of this in the following lemma. 

Lemma 2.3. The points 

A A •) (A 7r 7r: ) PoCos,rs = o,,f,; Nl,BI (1, ... , 1), NIµ.! (n, ... ,j(N-j), ... ,n) , 8,, i'sER 

(2.116) 

belong to t2; and the points 
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Po(o,, rJ = (o,, r,; NJµ I (1, ... , 1), N~ I (n, ... ,j(N-j), ... , n) ). a,, r.ER 

(2.117) 

belong to Q;. The map i is an injection onto Q; with inverse <i>, which may be 
factorized as P 2 X b ~- The generator (2.39) maps Q; onto itself. and (2.40) holds 
true. The involution 

K: Q<----...Q<, Co,, r,; o, r) 1--+ Co,, -r,; o, -r) 

maps Q; onto itself. and one has 

K = <f> 0 K 0 j: (8" j, ; 8 I, ... , 8 n , j J, ••• , T n) I--+ 

c-8,, t,; 8., ... , 81, -r., ... , -ri) 

Finally, identifying Q;(µ, /3) and Q;(/3, µ) in the obvious way, one has 

i(µ, /3) =<i>(/3, µ) 

the notation being clear from context. 

Proof. The Lax matrix (2.82) evaluated in Po(o,, y,) is similar to 

exp[f3r,+in(N+1)/N]Ejkw-k, w =e21rilN 

(2.118) 

(2.119) 

(2.120) 

(2.121) 

with E given by (A.29), so it follows from (A.2) and Lemma A.4 that a(L) 
consists of the Nth roots of a phase. Thus we obtain 

~ ) iT . 
oi(Po =NI.BI, z=l, ... , n (2.122) 

and P 0EQ;. Using (2.108) this argument can be repeated for Po, yielding 

( ~) 1C • 
oiPo =NlµI' z=l, ... ,n (2.123) 

and P0EtJ;. 
The second assertion follows as before by exploiting the commutation relation 

and the uniqueness of U and V, which yields 

V(P)=U(P)*, f>=if>(P) (2.124) 

To prove the third claim, we first observe that 



284 SIMON RUIJSENAARS 

L 0 (p) =L(G(P))=D 0 (P)S'L(P)SDa(P) (2.125) 

where 

D 0 (P) = ei9Cr.-r,ldiag(eNPr,, 1, ... , 1) (2.126) 

and S is given by (A.35). Therefore, the reasoning below (2.44) applies, and 

setting 

UG(p) =D 0 (P)S' U(P) (2.127) 

one easily checks (2.46), (2.47) and (2.48) with e-g. Since 8 is invariant, it now 
follows from uniqueness that 

U(G(P)) =D 0 (p)S' U(P) (2.128) 

Then (2.47) entails (2.50), and so (2.40) follows. 
The involution K clearly satisfies 

(2.129) 

whereFK is defined by pK(p) =F(K(P)). Now from LK=L one readily deduces 

ecxCP)) = c -e NCP), ...• -e 1 CP)) (2.130) 

Hence one has K(Q~) =Q~, and 8,, 8 transform as specified in (2.119). Thus, to 
prove (2.119) it remains to show r 1, ••• ' r n I---- -r n' ••• ' -r l. 

To this end we invoke Lemma A.7. It enables us to infer that f and g are 
related by 

(2.131) 

(To check this, use L jk = fj C ikK k.) This relation can now be employed to prove 

(2.132) 

where we have introduced the reversal matrix 

{Jljk =OJ ,N-k+l (2.133) 

Granting (2.132) for a moment, it follows fromgK=Ag and (2.131) that 
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(2.134) 

From (2.130), (2.104) and (2.105) one can now read off that t transforms as 
claimed in (2.119). 

To prove (2.132), we show that the rhs has the three properties that uniquely 
determine UK. The first property (2. 97) is clear from (2.130), and the second one 
(2.101) follows from AK= A and (&iA 1 9l)k,k+1 < 0. The third one (2.102) 
amounts to 

(2.135) 

Using the equations (2.131), U * J=J and (2.105) withj=N, it follows that x N U&i 
has this property, too, and so (2.132) results. 

It remains to prove (2.120). We take,8=µ and then suppress the dependence 
on /3, µ, the general case being clear from this. The key to proving the involution 
property <iJ - i = & is the relation (2.109). By uniqueness of U and V it entails we 
must have 

V(P)=U(P) (2.136) 

On the other hand, (2.124) holds true, so that 

U(P)'=U(P), P= <iJ(P) (2.137) 

But now we may deduce (using i :::::A, A =A') 

L(ef> 2 (P)) = (U*AU) (P)'=U(P)A(P)U(P)* =L(P) (2.138) 

A (ef>2(P)) = (U*LU) (P) = (U(P)L (P)'U(P)*)'=A (P). (2.139) 

This entails <i) 2(P) =P, since the pair L, A separates the points of {(o,, 7 .) } XM 0• 

0 

In Section 3.3 we shall show 

ef>(Po(o,, 7,)) =Po(r,, o,) (2.140) 

by invoking the implicit function theorem and analyticity arguments. In fact, for 
N odd we might also prove (2.140) already at this point, as will transpire from 
developments below Corollary 4.8. However, this would involve additional 
notation and a change of viewpoint that could be confusing at this stage. 
Moreover, for N even the fixed-point arguments we are alluding to do not quite 
yield (2.140). 
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3 The Action-angle Transform : Analytic and Geometric Aspects 

3.1 The Case IDnr 

As we have seen in the course of proving Lemma 2.1, the subset Q, of Q given 

by (2.10) is non-empty. Alternatively, non-emptiness is obvious from a perturba

tion argument: FixingqEW N and taking ej-ej+I =Ad, j= 1, ... 'N-1, it follows 
from (2.1) that tJEA N for A large enough. Furthermore, Q, is an open subset, 

since L is continuous on Q. Thus the symplectic form ( 1.11) may be restricted to 
Q,, yielding a symplectic manifold (Q,, w). We are now prepared to state and 

prove the main result of this section, already described in Section 1.2. 

Theorem 3.1. The map <f> from Section 2.1 is a Cw syrnplectomorphism from 
(Q,, CJ) onto (Q', CJ<), where we is defined by (l.59), (l.60). 

Proof In view of Lemma 2.1 we need only show that i is a cw map satisfying 

i*w=w<. Just as in Il, this will be done by constructing and exploiting a 
commutative diagram, viz., the diagram ( 1.66). The spaces and maps occurring in 
(1.66) have been defined above (1.66) and in Section 2.1, except for the map B, 
which has only been described in general terms. 

In order to define B, we introduce the matrices 

(3.1) 

(3.2) 

with 

TJk=eµ'ikTI [1+µ2g2;cek-ea2J112 (3.3) 
/#k 

taking at first 

(3.4) 

where 

(3.5) 

We are going to make use of the map 

[Ji I : DI--;>- GL (N, C) (3.6) 
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which is uniquely determined by the requirements 

(3.7) 

(3.8) 

(Here and below, the subscript I signifies that the arguments belong to D 1 .) In the 

present case (as opposed to the situation considered in II) it is crucial to take the 

parameter dependence into account. Arguing as in the proof of II Lemma 3.1 one 

infers that fJ 1 is Cw. Consequently, the definitions 

(3.9) 

(3.10) 

give rise to a cw map 

(3.11) 

This map (denoted <ff in I ) is in fact canonical (i.e., Bi* dq 1 /\de 1 =dij /\de), as 

is proved in I . Our strategy is now to continue µ to the imaginary axis, yielding 

a map B that inherits the canonicity property. Specifically, we are going to choose 

the continuation path I' such that one stays away from the branch varieties and 

such that the image points move into Q ,. The details now follow. 

The path r is defined by fixing jµ I > 0 and gE ( - oo, 0), setting 

µ(t) = (1-t)\µl+itlµI, tE[O, l] (3.12) 

and taking ij j and ej equal to 

ijJ = n:(N + l-2j)IN\µ I, j=l, .. ., N (3.13) 

8f=d(N+l-2j)A, j=l,. .. ,N, d=jµgj, A>l (3.14) 

resp. Rewriting !t1 along I' as 

!t1 (t) = diag(exp(µ (t)ij D, ... , exp(µ (t)q i)) + V(t, A) (3.15) 

it readily follows from (3.2), (3.3) that 

llV(t, A) II =O(A - 1), A ~oo (3.16) 
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uniformly along I'. (Here and below II • II denotes the operator norm derived from 

the standard inner product on CN.) Therefore, taking A» 1 ensures that !:t is 

holomorphic and has simple spectrum in an open neighborhood in C z+2N of I'. It 

follows from this that f!J 1 analytically continues to an open neighborhood in Q of 

the endpoint (which clearly belongs to Q). Moreover, since I !:t(t) I= exp[µ (t) I: A J] 
ioO, the map B 1 continues too, cf. (3.9), (3.10). More specifically, we take A so 

large that 

lq/t)-qJl<n'/2NlµI, tE[O, 1], j=l, ... ,N (3.17) 

where q (t) denotes the continuation of q 1 along I'. This guarantees not only 

simplicity, cf. (3.13), but also ensures q(l)EFN, as we shall show shortly. 

The continuation just detailed yields functions d, ff, f!.l and B that are well 
defined and cw on an op~n convex neighborhood in Q of the point (q 0 , [}A) with A 

» 1. Choosing a point P in this neighborhood, it follows that the matrices d and 

!:tin Pare related to L and A in P =- n(E N) (<i(P)) via 

st(P) =i Cf>) (3.18) 

(3.19) 

(To check this, recall the definitions (3.1)-(3.3) and (2.5), (2.11), (2.22)

(2.24).) Furthermore, d and !:t clearly extend to Cw functions on Q satisfying 
(3.18), (3.19) on all of Q. 

Next, we claim that f!.l andB can also be analytically continued from the above 

neighborhood in Q to all of Q, yielding C"' maps 

f!J: Q~GL(N, C) (3.20) 

B = a~a,, CiJ., e) f-----7 Cq, e) (3.21) 

Here, we have suppressed the dependence onµ, sinceµ is now again assumed to be 

a fixed number in i (0, oo). Moreover, the image of (q, 8) under B is provisionally 

denoted (q, IJ) ; we shall see shortly that (ij_, IJ) equals (q, e) = (et - i o i o n(E N) 
o cC) (q, B), as anticipated in the diagram (1.66). 

To prove the above claim, we begin by noting that (3.19) implies a(!:t (P)) = 

a(A (P) ). Since a(A) is simple on Q c (as we have shown in Section 2.1), it follows 

that a(!i') is simple on Q. But Q is a convex subset of R 2N, so that f!J and B 

continue to cw functions on Q (cf. the proof of II Lemma 3.1). Moreover, f!J and 
B continue to be related by 

f!J-1 !:tf!J=diag(e l1ii1, ••• , e 11iiN) (3.22) 
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(3.23) 

since PA1andB1 are related in this way, cf. (3.9), (3.10). Therefore, our claim will 
be proved once we show that (ij, iJ) belongs to Q ,. 

To this end we first recall the formula 

(3.24) 

from Section 2.1, cf. (2.25), (2.36). Now from (3.19) it follows that the numbers 
at the rhs of (3.22) evaluated in Pare equal to the phases at the rhs of (3.24), up 
to an eventual permutation. From (3.17) we may then infer q(l)EFNCWN. 
Moreover, letting ft vary over Q and recalling ij is continuous on Q, it follows that 
ij must remain real and cannot cross the hyperplanes bounding W N· (Indeed, these 
hyperplanes correspond to eigenvalue collisions.) Therefore, ij belongs to W N· 

Since A (ij) and A (q) are related by a permutation, it now follows that q and ij are 
on the same Z-orbit in W N· (Cf. the paragraph following (1.18).) But we also 
have L,ijj= L,qj (by analytic continuation) and L,qj=Nos=Nrs= L,qj, so that 
L,ijj= L,qj. 

Consequently, we must have ij =q. From this we deduce 

&B(P) =fJ(f>)- 1 V(F)D(P) (3.25) 

where Dis an invertible diagonal matrix. (In fact, one has Djj=exp(µqj/2), as is 
easily verified.) But now we may conclude that the vector iJ in (3.23) equals the 
vector 8 in (2.37), cf. (2.28). Hence, we have (ij, §) = (q, 8) EQ,, so the above 
claim is now proved. 

In the process of proving the claim we have also defined B and shown that the 
diagram (l.66) commutes. Since B is a cw map satisfying (1.62), it follows from 
commutativity that i is a cw symplectomorphism. 0 

Thus far we have restricted our considerations to the open submanifold tJ, of 
tJ. Recalling the definition (2.10), we see that the boundary set 

(3.26) 

is equal to the zero locus of the function 

F= II [(A.j-Ak)2+µ2g2] (3.27) 
15.J< k 5.N 

where A 1, •.. , AN are the roots of IL(q, e)-HNI· Since Fis invariant under 
permutations of A 1 , ••• , AN, it is a polynomial in the symmetric functions of L. But 
L is Cw on tJ, so it follows that Fis cw on Q, too. Therefore, Q b is a subvariety of 
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codimension at least one. As a consequence, Q, is a dense full measure submani
fold of Q. In particular, we may now deduce that L has simple spectrum with 
minimal eigenvalue distance 2 d on all of Q. (Recall that BEAN on Q,, i.e., the 
eigenvalue distance is > d on Q ,. ) 

With Theorem 3.1 at our disposal, we can settle two obvious questions about 
Q b· First, we may infer that Q b is non-empty. Indeed, Theorem 3.1 entails that 
Q, and tJc are symplectically diffeomorphic, so a fortiori these manifolds are 
homeomorphic. Therefore, we have 

(3.28) 

where the last equality follows from the convexity of Q. Since Q is convex, too, Q, 
is smaller than Q, as claimed. Second, we may deduce that Q b does not separate Q, 
into several connected components (as it might, a priori). Indeed, tJc is connected, 
so Q, must be connected as well. 

In Section 4.1 we shall greatly improve on these observations by detailing the 
structure of Q bin regard to Q ,. In particular, it will be shown that Q b actually has 
codimension 2. 

We close this section by studying the two quotients described by the covering 
sequence (l.27). First of all, it should be recalled that the Z-action on Q is 
isospectral w.r.t. L, cf. (2.44). Therefore it leaves Q, and Q b invariant, and so we 
obtain open dense full measure submanifolds 

(3.29) 

of Q' and Q, resp. Next, we recall (2.39) and (2.40). From these formulas we 
read off 

GN(8,, t,; m) = (8,, t,+2n/jµ I; m), mEM 0 (3.30) 

GN(o,, y,; m) = Cos+2n/jµ I. rs; m), mEM, (3.31) 

Hence, quotienting out the Z' -action amounts to letting the center of mass position 
o, vary over S 1 instead of R, in keeping with the physical picture sketched in 
Section 1.1. Since the quotient respects the direct product structure of the center 
of mass space and the reduced space, and since it acts trivially on the latter, results 
for this situation are immediate from Theorem 3.1, and correspondingly we shall 
not spell these out. 

The situation on Q, is more interesting, in as much as the quotient now mixes 
the center of mass and internal spaces. Consider the top line of the diagram (1.67). 
The map rj) is a bijection mapping orbits of the Z-action on Q, onto orbits of the 
Z-action on (Jc (cf. (2.39), (2.40) ). Thus we may and will define the map cf> in the 
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bottom line in such a way that the diagram commutes. The space tJ may and will 
be viewed as being obtained from .6 =RN XA N by factoring out the Z N-action 
(1.65) on RN, which yields (l.68)-(1.70). We are now prepared for the last result 
of this section. 

Corollary 3.2. The map <!> is a symplectomorphism from (Q,, w) onto (Q, w). 

Proof. This follows from Theorem 3.1, the above definitions and the commu-
tative diagram (l.67). 0 

3.2 The Case filreI 

Just as in the case ffin., the set Q, given by (2.10) is a non-empty open subset 
of Q, so that (Q,, w) is a symplectic manifold. However, in this case there appears 
to be no obvious analytic argument from which non-emptiness follows. (Recall we 
proved non-emptiness by purely algebraic means in Section 2.2.) 

Theorem 3.3. The assertion of Theorem 3.1 holds true for the map cf> from 
Section 2.2. 

Proof The proof runs parallel to the proof of Theorem 3.1. To define the map 
Bin the diagram (l.66) we replace (3.1)-(3.3) by the functions 

(3.32) 

2c13, µ, g; q, e)jk = cc13, µ, -g; e)jkT/k (3.33) 

(3.34) 

from II Section 3B. Thus f3 andµ are positive numbers, and we take at first (q, 0) 
ERNXG N. cf. (3.5), andgE (-;r/{3µ, 0). As before, the set of (/3,µ, g,q, e) thus 
obtained will be denoted by D 1 • Again, our starting point is the map (3.6) 
determined by (3.7), (3.8). Arguing as above, this map gives rise to a C"' map 

(3.35) 

which is now defined by 

(3.36) 
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Here, all logarithms may and will be chosen real, and B 1 thus defined is a canonical 
transformation, as proved in I . (Indeed, B r coincides with the map <ff of the II re1 

regime.) 
Next, we continue .stl I' 2 I' £!JI and BI along a path r that is here defined as 

follows. We fix /3, Iµ I > 0 and take 

gE(-En/Nl/3µ1, 0) =I,, cE(O, 2] (3.38) 

where Eis yet to be chosen. Now we take µ(t) and q equal to (3.12) and (3.13), 
resp., whereas ej is taken equal to 

§J=n:(N+l-2j)!Nl/31, j=l, ... , N (3.39) 

As the analog of (3.15) we now set 

2 (t) = diag(exp(µ (t)q V, ... , exp(µ (t)q '.(.,,)) + V(t, g) (3.40) 

Then we infer from (3.33), (3.34) that 

llV(t, g) II =O(c), E~O (3.41) 

uniformly on [O, 1] XJ ,. Hence, by taking c « l we can ensure that 2 is 
holomorphic and a(2) simple in a C H2N_neighborhood of I'. In fact, we may and 
will require that E be sufficiently small so that (3.17) holds. This entails 

0 < lµ(t) [q/f)-i]k(t) +i,Bg] I< 2n:, tE [O, 1] (3.42) 

(Use (3.12), (3.13) and (3.38) to check this.) Therefore, the argument of the 
second logarithm in (3.37) stays away from 0 along I'. But then the argument of 
the first one does so, too, cf. II (3.63)-(3.67). 

As a result, we obtain functions .stl, 2, £!J and B that are C"' in (g, q, fJ) for 
gEJ, and (q, B) varying over an open convex neighborhood in Q of the point (q 0 , 

§ 0). (A priori, this neighborhood depends on g.) Again, the matrices .stl and 2 are 
related to the matrices i and.A via (3.18) and (3.19), resp. (To see this, compare 
(3.32)-(3.34) and (2.56), (2.58), (2.59)-(2.61) .) It is also clear by inspection 
that .stl and 2 admit a further continuation to all of Q and to any g E ( - oo, 0), and 
that (3.18), (3.19) continue to hold. 

Proceeding as before, we now claim that r!J and B can be continued to all of Q 
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and to any gE ( - 00 , 0), yielding cw maps (3.20), (3.21) when the dependence on 

the parameters is again suppressed. To prove this claim we first note that in view 
of (3.19) the spectrum of ff' on Q is simple and belongs ~o the unit circle. (Indeed, 
this holds for A on (Jc, cf. Section 2.2.) Also, since ir > O in the case at hand, the 
argument of the second logarithm in the continuation of (3.37) cannot vanish on 
:.: " 

Q. Since Q is convex, we may now deduce the continuation property by repeating 
arguments detailed in II, cf. II Lemma 3.1 and Il (3.63)-(3.67). 

To finish the proof of the above claim, we show that B maps into Q,. 
Following the reasoning for the previous case, (3.36) again leads to (3.22), whilst 
(3.37) entails 

(3.43) 

Now (3.24) is still valid, so it follows as before that the two vectors q and q are 
equal and that (3.25) holds true. From (3.25) we now deduce that the vector rJ in 
(3.43) and the vector BERN in (2.67) are equal mod 2m//3, so it remains to show 
that the former vector is real. 

To this end we recall the defining properties (3.7), (3.8) of P.1 1 , the definition 
(3. 3 3) of ff', and our choice (3 .13) of q. From this we readily infer that go--.. h 
along I' as g t 0. But then the continuation of (3.37) cannot lead to a non-zero 
multiple of 271i/(3, so that iJ is real. Thus, our claim now follows, first for small g 
and then for any gE ( - oo, 0) via analytic continuation. The last paragraph of the 

proof of Theorem 3.1 now applies verbatim, completing the proof. [] 

In the present case the boundary set (3.26) equals the zero locus of 

F= IT [(;1.j-Ak) 2 -4.A.j.A.ksh 2z] (3.44) 
J -;,j< k <N 

Hence it follows as before that codim Q b ;;::: I and that Q, is a dense full measure 
submanifold of Q. Moreover, L has positive and simple eigenvalues satisfying 
lln A.i-ln Aki;;::: 2z,ji=k, on all ofQ. Finally, since (3.28) is still valid, it follows 
once again that Q b is non-empty and does not disconnect Q. Among other things, 

we will sharpen these results in Section 4.2 by proving codim Q b = 2. 
Since (2.44) still holds in the case at hand, it follows that Q, and Q b are left 

invariant by the Z-action on Q. Thus, the definitions (3.29) again make sense. 
Since (3.30), (3.31) hold as well (cf. Lemma 2.2), the observations below these 

equations apply again. In particular, Theorem 3.3 has the following corollary. 

Corollary 3.4. The assertion of Corollary 3.2 holds true in the IIIre1 case, too. 
0 
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3.3 The Case Ilh 

It is convenient to begin this section by introducing 

(3.45) 

where f signifies that the hat is facultative, and 

F= IT [(.:li-.:lk) 2 +4A.).ksin 2 r] (3.46) 
1,;j< k 5'N 

P= IT [(ai-ak) 2 +4aiaksin 2 r] (3.47) 
15'j<k5'N 

where the A. i and a i are the roots of the characteristic polynomial of L (P), PE Q <, 

and.A (P), FEQ', resp. Then the boundary sets r:Jt and .Qi are equal to the zero loci 
of F and P, resp. Now we have seen in Lemma 2.3 that the set Q{< is a non-empty 
subset of (Jfc. Consequently, ft! does not vanish identically on tJfc, and so Q{c is a 
subvariety of codimension at least one. Therefore, Q{< is an open dense full measure 
submanifold of (jfc. This entails in particular that the minimal distance between the 
Ai in arclength along the unit circle equals 2r. 

In Section 4.3 we shall obtain a quite detailed picture of the boundary sets. As 
it turns out, these subvarieties have codimension two, so they do not disconnect [Jc 
and Q<. However, for the time being we have to phrase the following theorem in 
terms of connected components. ,Specifically, we denote the component of Q~ 
containing the point Po(O, 0) (given by (2.116)) by a~. and we set 

(3.48) 

Theorem 3.5. One has 

i(f>o(O, 0)) =Po(O, 0) (3.49) 

where Po(O, 0) is given by (2.117). The space Q~ is equal to the connected compo

nent of Q~ that contains P 0 (0, 0). The map if, is a cw symplectomorphism from 

(Q~, we> onto <tJ~. we>. where we is given by (1.46) and we by (l.59), (l.60). 

Proof. We begin by continuing the functions d 1 , it' 1 , f!I 1 and B 1 defined in the 
proof of Theorem 3.3 to the ill b regime. To this end we choose a path I' by taking 
q and e equal to q0 and 8°, resp. Ccf. (3.13), (3.39)), fixing Iµ J, I.a I > o and g as 
in (3.38), and defining µ(t) by (3.12) and /3(t) by 

,B(t)=(l-t)i.Bl+itl/31, tE[O, 1] (3.50) 
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Then the endpoint of I' has image P0(0, 0) under 7r(P.N) o ri, and (3.40), (3.41) 
hold true again. Thus we may and will choose e so that (3.17) is valid, and then 
(3.42) with f3 replaced by /3(t) follows as before. 

As a consequence we obtain functions d, !£,PA and B= (ij, tJ) that are C"' in 
(g, q, 0) for gEJ e and (q, 0) varying over an open convex neighborhood N gCQ 
of (q 0, 0°). On Ng these functions satisfy 

(3.51) 

(3.52) 

due to (3.7), (3.8), (3.36) and (3.37). Moreover, the matrices d and !£ are 
related to the matrices i and.A from Section 2.3 via (3.18) and (3.19), resp. From 
this and (3.24) it follows once more that ij (f) equals q (P) for any PEN g· In 
particular, from 'L.iD=Liqi and (2.123) we may infer 

ij(l)j= N jµ I (N + l-2j), j= 1, ... 'N (3.53) 

At the expense of shrinking Ng, we may now analytically continue the above 
functions to any gE ( -27L/N [,Bµ J, 0). Fixing g in this interval and a correspon
ding Ng, it is obvious from (3.32)-(3.34) that d and!£ have a one-valued contin
uation from Ng to all of the convex set Q, and that the key relations (3.18), (3.19) 
continue to hold. 

However, this can no longer be concluded for the functions f!J and B. Indeed, 
in the present case we have r > 0, so the argument of the second logarithm in the 
continuation of (3.37) can now vanish on Q. In view of (3.19) this can only 
happen for points in the subvariety 

(3.54) 

But then the open dense submanifold 

(3.55) 

need not be connected, a priori. 
Consequently, we restrict attention to the connected component Q rll containing 

the endpoint (q 0, e0 ) of r. It follows from previous arguments that [fJ and ij have 
a one-valued continuation to Q rll (ij (P) being equal to q (P) on all of Q rll), and that 
(3.25) is valid. However, though {j can be continued to Q rll, the resulting function 
is not necessarily one-valued, since Q rll need not be simply-connected. (As a matter 
of fact, {j is multi-valued and (hence) Q rll multiply-connected, cf. Section 4.3.) 
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On the other hand, from Section 2.3 we may infer 

(3.56) 

cf. Lemma 2.3 and (2.82). Let us compare this with (3.52), recalling q =ij, (1.30) 

and (3.18), and noting ~Bj=L.e1 =N6,=Nr,. Then we readily deduce that the 

diagram (1.85) is well defined and commutative, provided Q, is replaced by Q ro and 

R is defined as the continuation of B to Q,0 • Moreover, R still inherits the can

onicity property from B 1. Hence DR ESp (2N, R) and so I DR I = 1. But then the 

space 

(3.57) 

is an open subset of Q ,. By virtue of (3.48) and commutativity, the image of this 

set under n (EN) o CC equals Q ::0, so Q ::0 is open. Therefore, the last assertion of the 

theorem now follows from the commutative diagram obtained from (l.85) upon 

replacing the four subscripts r by rO. 

Next, we prove (3.49). As we have already seen (recall (2.123)), its lhs can 

be written 

i(Po(O, 0)) =( 0, 0; Nlµ T(l, ... , 1), l~T) (3.58) 

Thus we should show u = u 0 , where 

uo=-1/:rCn, ... ,j(N-j), ... ,n) (3.59) 

To this end, consider the symmetric functions of L (0, 0; n(N Iµ I) 1 (1, ... , 

1), r). They can be written 

s C ) =" (rr ·) IT (i - sin z ltlµ lg/2 )112 
I X, g L..i X1 · 2 • 

IIH jEJ jEJ sm n(1-k)!N 
k'i'.J 

(3.60) 

where x 1 = exp(i38) and e is defined via (1.30). On the other hand, (3.58) and 

(2.116) imply 

(3.61) 

so the spectrum of Lin the point (3.58) consists of the Nth roots of ( -1)". As a 

result, this point yields S 1=0, l = 1, ... , n, and SN= 1. 
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Now we invoke Lemma A.4 to infer that the system of N equations 

s,(x,g)=O, l=l, ... ,n, SN(x,g)=l (3.62) 

for the unknown vector x = (x 1 , ••• , x N) is solved by the N vectors 

xf"l = exp[in(N + 1 +2J..1-2j)/N], j= 1, ... , N, J..1=0, ... , n (3.63) 

and their complex conjugates. For N=2, 3 these are readily seen to be the only 
solutions. However, for N > 3 one has N ! > 2N, whereas the system obviously has 
exactly N ! solutions for g = 0. By virtue of the implicit function theorem, there 
exists a unique solution in a CN-neighborhood of each of these for gE ( -e, O], 
provided e > 0 is sufficiently small. (Indeed, the relevant determinant is non-zero, 
since it amounts to a non-zero multiple of a Vandermonde determinant for the Nth 
roots of ( -1)•.) Of course, the above solutions x C•), ~ do not depend on g ; most 
likely, the remaining solutions do. 

Next, consider L evaluated in the point (3.58). In view of (2.116) the 
corresponding L reads 

(3.64) 

Now gJJ(q 0, e0)-h as g t 0, so by (3.25) we have 

(3.65) 

But IJil and I/kl donotdependong,cf. (3.58). Hence, the off-diagonal elements 
of VCfto(O, 0)) go to 0. Combining this with (3.56) and (3.64), we conclude 
u _. u 0 as g t 0. Thus we must have u = u o for sufficiently small g, and real-analyti
city ing entails u =u 0 for any gE ( -2n!Nlf3µ I. 0). Therefore, the proof of (3.49) 
is now complete. 

Combining (3.48) and (3.49), we deduce that Q~ containsP 0 (0, 0). Further
more, we have already shown that Q~ is symplectically di:ffeomorphic to Q~. 
Recalling the self-duality property (2.120), a moment's thought suffices to conclude 
that the second assertion of the theorem holds true. D 

As announced in Section 1.3, we relegate a consideration of the diagram 
(1.86) and its consequences to Section 4.3. Note in this connection that the set 
{P 0(o,, r,) lo,, y,ER} CQ~ is not left invariant by the generator (2.39). Thus, at 
this stage we do not even know whether Q~ is left invariant by G. 
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4 The Harmonic Oscillator Transform 

4.1 The Case illnr 

In keeping with our summary in Section 1.2, we begin this section by showing 
that the map <Pr admits an extension to a cw symplectomorphism, cf. (l.71)

( 1. 73). In the process, we shall arrive at a complete picture of the limiting behavior 

of the invariant tori as one or more action differences 8j converge to their minimum 

d/2. 
It is instructive to detail the case n = I first. Then <P, can be explicitly 

determined by exploiting equality of Tr A (P), Tr L (P) and Tr A (P), Tr L (P), 

resp., where P = <i>(P) = (P 2 X <jJ,)(P), cf. (1.66). Indeed, it is straightforward to 

verify that <Pr is given by 

(4.1) 

v=2Iµ1- 112 C8 +a;2) - 112 r sin Iµ la (4.2) 

(4.3) 

in terms of the coordinates u, v on M0 and o= (qi -q 2)/2, r= (()I-() 2) /2 on M 
(cf. (l.73) and (1.29), (l.30), resp.). Its inverse b 0 can now be calculated and 

reads 

1 (ur-i) . o=--Ln ---:- , Ln( -1) = 17r 
2µ ur+1 

(4.4) 

(4.5) 

(4.6) 

Clearly, the boundary set 

(4.7) 

is given by 

(4.8) 

Moreover, from the above one reads off that <P, and b 0 extend to cw maps <P : M 

....... M and b : M-+ M, as advertised. The state of affairs is depicted in Figure 1. 
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Figure I. Then= I maps r/;, b and spaces Mi. The indicated points are related by p = r/; (p ). 

It appears out of the question to calculate b 0 and <P, explicitly for n > 1. Of 
course, the cases n = 2, 3 should still be accessible via Cardano's formulas, but it 
seems unlikely that this would yield substantially more information than the 

following theorem, which handles the general n case. 

Theorem 4.1. The maps</>, and b 0 extend to mutually inverse cw symplecto

morphisms cjJ and b between (M, w (M)) and (M, w (M)), where the symplectic 

forms are given by ( 1. 3 3) and ( 1. 72), resp. The boundary set ( 4. 7) has codimension 

2 and one has 

b(O, O)=(NlµI (1, ... , 1), o) (4.9) 

Proof Since we restrict attention to the internal spaces M and M, we may and 
will take 8{, t{=O in the above and replace the set { (0, 0)} XMI by Ml. First, we 
note L is Cw on Mand we recall a(L) is real and simple on M. Thus the eigenvalues 
of L are cw on M. As a consequence, the vector BEAN has a C"' extension from 

M, to all of M, and the extension satisfies BEA f.J, where cl denotes closure. 
Next, we note that the lhs of (2.18) and (2.19) can be rewritten 

(4.10) 

(4.11) 

From these formulas one reads off that the rhs has a non-zero C"' extension to all 
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of M. (Note, in particular, that the rhs of (4.10) converges to -1 as Bk-Bk+1 ~ 
d.) Therefore, we may and will define a unitary U satisfying 

U*LU=diag(B1, ... , BN), BEA'jJ. (4.12) 

and (2.18), (2.19) on all of M. (Thus, this unitary U coincides on Mr with the 
unitary U from Section 2.1.) 

Now we fix m = (o, r) EM and a ball B'C C2n with center m such that L is 
holomorphic and a(L) simple in B'. Eventually shrinking the radius, there exists 
a holomorphic map q; : B '_.,.. GL (N, C) such that 

q; -i £q;=diag(il 1, ... , il N), il N(m) < ··· < il iCm) (4.13) 

on B ', and we may ensure B = B' n R 211 is a ball in M. (In particular, the radius 
should be smaller than JZ'/ jµ I.) Then the restriction of!?) to B is cw in B. Since the 
eigenvalue ordering on Bis fixed by the order in m, and since the order imposed in 
m coincides with the order corresponding to U, it follows that on B one has 

(4.14) 

We now claim that the quantities 

<fJk = XklXk+1, k= 1, ... , n (4.15) 

are C"' in B. Indeed, from (4.14) we have 

(4.16) 

Since the rhs and cf; k are non-zero on B, the matrix element at the lbs is non-zero. 
Moreover, this element and the rhs are C"' in B, so the claim follows. As a 
consequence, the renormalized matrix 

q; r = q; diag(l, <f; 1, </; 1</J 2, ... , <f; 1 ··· </; .) (4.17) 

is C"' in B and satisfies 

q;,=x1U (4.18) 

Now consider the equality 

(4.19) 
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Since (U1e) 1 is non-zero and cw in Mand the lhs is cw in B, we may infer that x 1 

is Cw in B. In view of ( 4.18), we may then conclude that the map M - U (N), (o, 
r) 1---+ U is cw. 

We have now shown that 8 and U have C"' extensions to M. Next, we exploit 
this to prove that </J, has a C"' extension to M, provided M0 is viewed as being 
densely embedded inMvia (1.73). To this end we introduce (u, v)ER2n by setting 

(4.20) 

where 

_ 1 ( Iµ I )112 ( d )112 
Nj=---A- II l+A A 

2 o1 HJ.1+1 e1+1-ek (4.21) 

Since N1 is negative on all of M, and U, e and N1 are cw on M, it follows that u and 
v are well-defined Cw functions on M. Furthermore, comparing ( 4.20), ( 4.21) and 
(2.8), (2.22), we deduce that on M, the relation between u, v and 8, t is given by 
( 1. 73). Therefore, rp, extends to a C"' map 

rp: M=w.XR"~M=R2n, (o, r) 1---+ (u, v) (4.22) 

as announced. 
To prove that b 0 admits a cw extension to M after the coordinate change 

(l.73) on M0, we begin by studying the vectors (2.22), (2.23) as functions of the 
variablesu, v. Recalling (2.8), (4.11), (4.20) and (4.21), weinferthatghas a C"' 

extension to M. Also, J may be written (recall "t, = 0) 

(4.23) 

(4.24) 

from which we read o:ffthat]has a cw extension to M, too. Clearly, the same is true 
for C ( 0, µ, - g ; B) kl, provided l =I= k + 1. Therefore, A kl has a Cw extension for l =f. 

k+ 1, cf. (2.11). But.A k,k+i is given by the rhs of (4.10), and from this equation 
one sees that these elements have cw extensions as well. 

The upshot is, that J, g and A have Cw extensions to M. Since the matrix A is 
unitary on M 0 and continuous on M, it is unitary on M. Likewise, the commutation 
relation (2.26) holds true on M. Thus we may extend the diagonalizing unitary V 
to M by repeating the steps that defined Von tJc, cf. (2.25)-(2.36), (2.41). (Note 
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in this connection that for q E W N the constraint L:q 1=0 does not entail q EF N 

when N > 2.) Along the way, we infer in the same way as before that aCA) is 
actually simple on all of M. Since 1 is also C"' on M, we may deduce that the 
eigenvalues of.A are C"' on M. But then it follows that the cw map M 0 -wn, (u, 
v) 1---+o has a C"' extension to M, mapping Minto Wn· (Note that A(q) has 
degenerate spectrum on the walls of the alcove w n. ) 

To provethatrhas acw extension, too, we choose mEM, a ballBCM around 
m, and a C"' map~: B-+GL(N, C) such that 

C A J - -) c - J A -) ( * A ) c ) ( ) !') - A!') jk =O, j*k, !') - A!') (m)11= v AV m 11' j, k = 1, ... 'N 4.25 

Now the matrix V* AV equals A (q) and so is C"' on .M. Hence, it equals~ -IA~ 
on B due to (4.25). Therefore, we must have 

(4.26) 

which entails 

(4.27) 

As a consequence, the lhs of (4.27) is a real-valued function on B, which we 
denote by ei> in agreement with (2.37) for points in 11 nM" 0• Defining r via (l.30) 
(with r.=o, of course), it follows that r is cw in B. 

The upshot is, that b 0 has a C"' extension b, as announced. The relations 

b 0 o ~ ,=id(M ,), </>, o b 0 =id(M0) (4.28) 

then extend by continuity to 

b o <t>=id(M), <t> o b=id(M) (4.29) 

so that b and <P are mutually inverse bijections. Moreover, since b and <P are 
symplectic on dense submanifolds by virtue of Theorem 3.1, the first assertion of 
the theorem now follows. 

SinceM\M0 is the subvariety of M=R2n for which at least one (u1, v) equals 
(0, 0), it has codimension 2. Hence its image M b under b also has codimension 2. 

Finally, to prove (4.9) we observe that b(O, 0) is the point in M that is 
uniquely determined by all eigenvalue distances 81-01+i,j= 1, ... , n, being equal 
to d. Now the point at the rhs of (4.9) corresponds to the point (q•, e•) EQ given 
by 
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TC 
qj= NIµ 

1 
CN+ 1-2j), e1=0, j=l, ... , N (4.30) 

The Lax matrix (2.1) evaluated in this point equals idE 1/2, where E 1 is given by 
(A.31). Hence its eigenvalues read 

(4.31) 

by virtue of (A.33). Thus, (4.9) follows. [] 

Now that we have the relevant maps and their key properties under control, a 

comment on the strategy we have followed is in order. From (3.19) and (3.25) one 

sees that the matrix-valued functions !e and &I do not admit a regular extension 

from .M 0 to M. (To check this, recall] is given by (2.23) .) However, by using !e 

and &I we could solve the canonicity problem via the results of I and analytic 

continuation. Just as in II and in the cases ill,e1 and mb, the gauge fixing &Bt=t 
involving the constant vector t= (1, ... , 1) (as opposed to functions with 

singularities) enabled us to control the continuation between the different 

parameter regimes. But we employed A and V to handle the extension of the 

action-angle transform to the harmonic oscillator transform, since these functions 

admit a cw extension from .M0 to M. 
To complete this section we detail the results for Q and Q following from 

Theorem 4.1. 

Corollary 4.2. The maps <!> and i extend to mutually inverse cw symplecto

morphisms <f>#=P 2 Xc/> and iff#=P 2 Xb between (Q, GJ) and (.Q#c, w#<), where 

.Q#c = R 2 XM, w#c = Ndj, /\ d8,+ :t duj A dvj (4.32) 
j~l 

The boundary set (3.26) has codimension 2 and one has 

/#co, o; o, o) = (q', e·) (4.33) 

where the rhs is given by ( 4.30). 

Proof This is clear from Theorems 3.1 and 4.1. D 

Now we transform the free symplectic Z-action on Q generated by G (recall 

( 1.12)) into a free symplectic Z-action on Q #c via <f> #. Thus the latter action 

extends the Z-action generated by G on Q< (recall (2.40)). Next, we set 

(4.34) 
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and define a map cp# by requiring that the diagram (1.74) commute. 

Corollary 4.3. The map (/) # is a symplectomorphism from <Q, w > onto <tJ #, 

w#>. 

Proof Obvious from the above. D 

We finish this section by supplying an illuminating coordinatization for Q #. 

Namely, we set 

.Q #::::: { (x, p ; a, b) ER 2N lxE [O, 2n/N jµ I)} 

where the relation to the coordinates (8,, f s ; u, v) on Q #c is defined by 

exp(NµX) == exp(Nµj',), p =-N8, 

exp[u(r,-x)] =exp(27ril/N) ==? 

(aj, b)' == R (27rjl/N) (uj, v)', j= 1, ... , n 

R ( <P) =- ( c~s </J sin rjJ ) 
-sm rjJ cos rjJ 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

(Note that I takes values 0, 1, ... , n, depending on f,.) Using (2.40) it is easy to 
verify that this makes sense. (That is, the coordinates are in 1-1 correspondence to 
Z-orbits in .Q#c.) Also, on the open dense patch {xioO} one has 

N-1 

w; =dx /\ dp + ~ da j /\ db j 
j-1 

(4.39) 

Finally, we point out that the action-angle phase space Q equals the 
submanifold of Q# given by (aj, b j) =F (0, 0), j= 1, ... , n, and that the relation to 
the coordinates (x 1 , ••• , p N) on Q is given by 

(4.40) 

(4.41) 

with 

(4.42) 

Observe that (4.41) amounts to a picture of the obvious maximal U(N)-torus as a 
fiber bundle over U(l) (given by the determinant) with fiber the obvious maximal 
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SU(N)-torus and transition function exp(2m/N)1N. 

4.2 The Case IlireI 

Just as in previous chapters, this case can be treated along the same lines as the 

Ilinr case. Thus, we start again by detailing the n = 1 situation. Proceeding as 

before, we find that if;, reads 

_ -112 - o-d12 ( - )1/2 
u--21µ1 sh,Bo sh 2,BB-sh 2z coslµlo (4.43) 

(4.44) 

where 

(4.45) 

Also, the o-part of b 0 is again given by ( 4.4) and r reads 

r= ~Arth(vrth~ (Iii [u 2 +v 2]+d)) (4.46) 

where we now have 

(4.47) 

Note these formulas reduce to (4.1)-(4.6) for /3 t 0. The boundary set (4.7) is 

again given by (4.8), and the real-analytic extension properties are manifest from 

(4.43)-(4.47). Moreover, Figure 1 applies once more. 

Theorem 4.4. The assertions of Theorem 4.1 hold true, with </>,and b 0 denoting 

maps defined in Section 3.2. 

Proof The proof of Theorem 4.1 can be mimicked to a large extent. First, 

since Lis C"' on M (cf. (2.51)) and a(L) is positive and simple on M, it follows 

that ()has a cw extension to M, taking values in A%. Next, we rewrite the lhs of 

(2.18) and (2.19) as 
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(U *AU)k.k+t 
shz 

(4.48) 

(4.49) 

cf. (2.6)-(2.8), (2.59)-(2.61) and (2.72). From this we see that these quantities 
have non-zero C"' extensions to M. (The rhs of (4.48) again goes to -1 as [h
{}k+1 id.) Thus we may uniquely determine a unitary U on M by requiring (2.18), 
(2.19) and 

(4.50) 

Then it follows in the same way as before that U is cw on M. Moreover, replacing 
(4.21) by 

and (2.22) by (2.59), the paragraph containing (4.20) applies verbatim. (Recall 
the positive factor fin (2.59) is given by (2.72).) 

Using (4.49) and (4.51) we see thatg has a C"' extension to M. Since/can be 
written 

(4.53) 
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it manifestly has a cw extension to 1ll as well. From (4.48) we conclude that.A k,k+i 

has a cw extension, so it follows again that A has a cw extension to 11l. 
We are now in the position to extend V to ill via (the extension of) (2.62)

(2.66), (2.68)-(2.70). (Note that (=E- 1.) From (2.63) we deduce as before that 
a(A) is simple on 11l, so it follows that o has a Cw extension to 1ll with values in w n. 

The paragraph containing ( 4.27) now applies verbatim. Since the rhs of 
(4.27) is positive on ill, the lhs is positive on B. Thus we may and will introduce 
BERN by setting 

(4.54) 

(This agrees with (2.67) for points in B nill0.) Defining r by (1.30), we thus 
obtain a cw extension of r to B. As a consequence b 0 has a cw extension b to ill, 
so the first assertion of the theorem follows as before via (4.28), (4.29). 

Now it is again obvious that codim M b = 2, so it remains to prove that the 
vector 8 in the point (4.30) is given by (4.31). But since we have 

L(q•, e•)=E (4.55) 

with E given by (A.29), this follows from (A.32). 0 

The comment after Theorem 4.1 applies to the present case, too. Note that the 
explicit formula (2.72) for E has not been used in the proof of Theorem 3.3, 
whereas it is needed in the proof of Theorem 4.4. (A priori, ~need not be C"' on 
M) 

The paragraph containing (4.34) may and will be taken over verbatim. 

Corollary 4.5. The assertions of Corollaries 4.2 and 4.3 hold true in the illreI 

case, too. 

Proof This follows from Theorems 3.3 and 4.4. 0 

Clearly, the paragraphs containing ( 4.35)-( 4.42) can also be applied to the 

case illreI· 

4.3 The Case ill b 

We begin again by studying the case n = 1 in considerable detail. This will 
enable us to obtain a complete picture of the extensions already described in general 
terms in Section 1.3. In particular, the real-analyticity of the map (1.91) will be 
explicitly verified. 
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Proceeding as before, we find that </> ~ reads 

a=-1-Ln(Q cos l.B lr+i ). Ln( -1) = i7l: 
2f3 c.c. 

(4.56) 

r=uh-Arg(coslµ lo+iQ sinl.8 lr sin Iµ lo), ArgzE ( -7!:, n] (4.57) 

where 

( sin 2 lµlo-sin 2 r )112 

Q = sin 2 r cos 2 l.B lr+sin 2 Iµ lo sin 2 l.B lr 
(4.58) 

Then b ~ is given by the interchanges f3 - µ, r - j, 0 - 8, in agreement with 
self-duality. Moreover, introducing 

(4.59) 

we obtain 

Evidently, .M~0 has codimension 2 and .M{0 is connected, but not simply-connected. 
Figure 2 provides a sketch of the spaces and maps. 

As indicated in this picture, when the boundary points (n/2 Iµ\, 0), (rc/2 \µI. 
i'L/ \.BI ) in M 0 are approached, 8 converges to the endpoints r/ I .B I • (re - r) I I ,8 \ , 
resp., of its definition interval, whereas jhas direction-dependent limits, cf. (4.56)-

+O 
r .. 

d 
"' a 

d 
b 

Mo "'O .. Mr r bo 
r 

Figure 2. Then= I maps </J~, b~ and spaces ,q-{0• The crossed points and bounding circles do 
not belong to .il?r. 
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'T--b-+--p+---+~d 

c r---i---+:---+--4 
a d 

b 

Figure 3. The two-step extension procedure for n = 1. 

(4.58). Thus, we may extend M~ with two 'endpoints' by letting the ?-torus 

collapse to these points as 8h/l.SI and 8t (n-r)/l.SI, resp. Then if>~ has a 

continuous extension 1> 0 : M 0 -+ Mr' where Mr is the extension of M~. 

Next, we note that when we fix rand take o t r/ Iµ I and o t (n-r)/ Iµ I, we 

get (8, j) __,.. (n/2 I ,BI, 0), (n/2 l,B I, n/ Iµ I), irrespective of the fixed r-value, cf. 

(4.56)-(4.58). Thus, it is clear how the loss of self-duality incurred in the 

extension can be restored: We should extend M 0 with two 'endpoints', too, and M, 
with the two boundary points of M 0 , yielding (topological) manifolds M, M::::::.S 2 

and mutually inverse homeomorphisms 1> : M __,.. M, b : M __,.. M. The situation is 

depicted in Figure 3. 
We have now supplied the details of the extension already sketched above 

( l. 87). We proceed by verifying property (ii), cf. ( 1.87)-(1.91). Since we already 

know that if>~: (M~, wR)__,.. (M~, -wR) is a cw symplectomorphism-a fact that 

can be verified from (4.56)-(4.58), in principle-we need only check that if> is cw 
at the 4 points in M\M~. This can be seen by inspection, provided one employs a 

suitable representation for if>. Specifically, using (4.56)-(4.58) and (l.88) we find 

that for points in the patch f1Jo= {(l, z1) lz1EC} the image m=if;(l, w) can be 

written 

m=(l,a(w))Ef1J 0 , wi'-1 (4.61) 
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where 

l/2 

a= [cosd(w)+ip(w)(Imw)sind(w)] ( d(w)-r ) 
[p(w ) 2 (Re w )2+ 1] 112 (sin 2 d(w )-sin 2 r) (n-r-d(w)) 

(4.62) 

(4.63) 

( sin 2 d(w)-sin 2 r )112 

p = (Re w) 2 sin 2 r+ (Im w) 2 sin 2 d(w) 
(4.64) 

d = ~Ln(p(w)Re w+i), Ln(-1) =in 
21 c.c. 

(4.65) 

(with c.c. =complex conjugate). Alternatively, we have 

(4.66) 

where 

[cos d (w) -ip (w) (Im w )sin d(w)] ( n-r-d (w) )112 

K, = [p(w )2(Re w ) 2+ 1] 112 (sin 2d(w) -sin 2(n-r)) (d(w) -r) 

(4.67) 

(Note that a(w)K,(w)=l, w:;i: ± 1, as should be the case.) Now from (4.62) one 
easily sees that Re a, Im a are Cw functions of Re w, Im w at w = 0, 1 ; similarly, 
from ( 4.67) it follows that Re IC, Im IC are Cw at w = 0, -1. (Note these 3 points 

are the points c, a, b, resp., in Figure 3.) Substituting w ~ l!w in the above one read
ily verifies that</> is cw at m = (0, 1) E& 1, too. (This is the point d in Figure 3.) 

Of course, we may just as well view </> as a Cw antisymplectomorphism of the 

symplectic manifold (P 1, w R>· Note that the self-duality property (2.120) then 
entails</> o </> =id(P 1), and that</> depends solely on rE (0, n/2). Finally, we point 
out that</> has two fixed points at m= (1, ±i) (the pointsp and q in Figure 3); 
these points lie on a Jordan curve I'CM? of fixed points given by 

I'={(o, r)EM 0 IQ cos l,8lr=cot lµlo} (4.68) 

(This readily follows from (4.56)-(4.58).) 

We proceed by studying the general case. First, consider the function M 0 -? 

R, w ~lwvl 2/(l+ lw1l 2+···+ lwnl 2), where vE {O, 1, ... , n}. This function 
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may be viewed as the restriction of the function P • - R, (z 0 , • • • , z n) i--1 z" I 2 I (z, 
z) to M°CfffJ 0 • The latter function is manifestly cw on P•. (To avoid any mis
understandings, let us recall what this means: Setting z 0 = 1, it is real-analytic as a 

function of the real and imaginary parts of z 0' .•• ' z a-1 ' z a+ 1 ' ••• ' z n E c, for any 
aE {O, 1, ... , n}.) From (1.97) we now see that the functions o., v=O, ... , n, 
extend to Cw functions on M, again denoted o". Thus, the matrix A (q) (with 
L;qi=O) extends to a cw function on M, cf. (1.29). Similarly, the matrix elements 
C(µ, /3, g; q)ik,j=Fk+l, and 

Lk+1,k 
sin -c 

(4.69) 

wherek= 1, ... , N(cf. (2.82)), have C"' extensions to M. (Here and below, we use 
mod N notation. Thus, e.g., q N+ 1=q1 .) 

Consider now the vector-valued functions f and g given by (2.85) and (2.86), 
resp. These can be rewritten 

(4.70) 

( 
. ( lµI ))12 

(cl I"' - ) . Cl I"'· - ))1/2 sm -2-(qi-q,)+-c 
E...q - µ u o 7: sm µ u r 1 7: TI 

f-=e2 Jw·-1 . I I 
1 1 Clµloj-1--c)smlµloj-1 1,;1-1.1 • --1!:._( _ ) sm 2 qi q1 

j=2, ... , N (4.71) 

(
. (lµI ))n 

( ( I I "' ) . ( I I "' ) )112 sm - 2- (q k - q 1) - 7: 
E...q µ u 0--c sm µ uk-7: II 

g k =e 2 k w k I I I I Clµlok--c)sin µ ok m,k+, . --1!:._C _ ) 
sm 2 qk q, 

k=l, ... , n (4.72) 

(4.73) 
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Clearly, the exponentials and the factors in the products extend to cw functions on 
M. Moreover, substituting 

v=O, 1, ... , n (4.74) 

in the remaining terms, one readily checks that the functionsf1g k,j, k = 1, ... , N, 
have cw extensions. Therefore, the Lax matrix L admits a cw extension to M 
(recall L Jk equalsf1 C1k g k on M 0.) 

On the other hand, although the functions! and g have cw extensions to 81' 0 C 

M, they do not even admit a continuous extension to all of M. This is due to the 
factors lzol/zo in (4.71) and lzol/zo in (4.72); similarly, the factors sin(JµJoo 
-r) 112 in (4.70) and (4.73) are C0 but not C 1 for Jz 0 J--o. To cope with this 
difficulty, we introduce the phases 

_ 1 ( JµJo.,-r)112 _zolz.,I _ 
p .. =- I IS> --1 -1, v-o, ... 'n w., µ uo-r z., Zo 

(4.75) 

and define 

(4.76) 

Then JM and g M have cw extensions to the patch f7' .,CM. This is crucial in the 
proof of the following theorem, for which we are now prepared. 

Theorem 4.6. The maps </> ~ and b ~ extend to mutually inverse Cw symplecto
morphisms </>and b between <M, WR) and <M, -wR>· Employing homogeneous 
coordinates on Mf:::::pn one has 

(4.77) 

where 

W =: e27d/N (4.78) 

and where e 0 , ••• , en is the standard basis of C N. The varieties 

(4.79) 

and M{0 have codimension 2 The manifolds M{0 and Q{c are connected, but not 
simply-connected. Finally, identifying Mand M with P", the map </>is an involutory 
Cw antisymplectomorphism of (P n, w R>· 

Proof. We follow the proof of Theorem 4.1 as far as possible. We have already 
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shown that L has a cw extension to M, which we denote again by L. Since L is 
unitary and has simple eigenvalues whose distance is bounded away from 0 on M 0, 

the same holds true on M. Therefore, the vector &EA t has a cw extension to M 
satisfying BE (A t)d. 

Next, we rewrite the lhs of (2.101) as 

(4.80) 

where k = 1, ... , n. Inspecting the rhs of this formula, one sees that it has a 
non-zero cw extension to M. (Once more, it converges to -1 as ek-Bk+I id. 
Note that (4.80) holds for k=N, too, and that the rhs then converges to 1 for 81 

-B N t 2n/ l.B I -d.) Thus, when we introduce a function a : M ~ U(N) obeying 

N 

0*LU=diag(e 1381, ... , e138N), BE (A t)cl, I; 81=0 (4.81) 
j"" I 

(0 *AU)k,k+1 < 0 (4.82) 

then a is determined up to an overall phase ambiguity. 
We proceed by fixing this phase in each patch tJJ>", yielding N unitaries U o, ... , 

Un. Specifically, we require that the first non-zero quantity in the sequence 
(U~gC")) 1 , ••• , (U~gC"l)Nbepositive. (This makes sense: (4.76) yields a cw vector 
g (µJ on f!J>"; the paragraph containing (2.100) entails 

(4.83) 

on the dense subset M~ of tJJ>"; hence (4.83) holds on r!I", so U~gc">,t:o on f!J>".) 
Then the unitaries thus defined on f!J>" are related to the unitary U defined in Section 
2.3 by 

U"=P-:U, v=O, ... , n (on M~) (4.84) 

(To see this, recall (U' g) 1 > 0 on M~.) 
Next, we fix m E f!J>", a ball BC f!J>" around m ( w .r. t. the Fubini-Study metric) 

and a Cw map ~ : B-'> GL (N, C) satisfying 

( 4.85) 
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Then it follows as before that (4.14) holds true on B, provided U is replaced by U ". 
With this replacement the paragraph containing ( 4.18) applies, too, the result being 
that we obtain a renormalized cw function !?I, on B of the form 

!?l,=xU", x:B-C* (4.86) 

We continue by introducing 

(4.87) 

Clearly' gr is c OJ in B and gr* 0 on B. Consider now the function z : B ........ c N 

defined by 

(4.88) 

where k = 1, ... , N. (Recall our standing mod N convention, entailing (} o = tJ N·) 
The quotients in brackets are all cw and positive on M, so z is cw and i'O in B. 

Furthermore, on the set B? = B nM? we have 

g,=xU~g <"l=xP:U'g <"l =xU'g=xg (4.89) 

cf. (4.86), (4.84), (4.76). From g 1i'O on B? we now deduce zoi'O on B?. 

Therefore, the quantities 

wi=i.di.o, i=l, ... 'n (4.90) 

are well defined on B? ; moreover, they coincide with the w i in ( 1. 93), as follows 
from the formula (2.104) for g. 

The point is now, that i. may be regarded as supplying homogeneous 
coordinates for a function <P : B......,,. M::: P • (since z * 0 on B ). This function is Cw 
in B (since z is), and it coincides with the (reparametrized) map <P ~ on the dense 
set B? (as we have seen in the previous paragraph). But then it is routine to deduce 
that <P? extends to a cw map <P from Minto M. By virtue of self-duality, the 
analogous conclusion for b? is plain. Therefore, we may conclude that <P maps onto 
Mand has a cw inverse b extending b?. Using Theorem 3.5, connectedness of Ml, 
and real-analyticity of <P and b, the first assertion of the theorem now easily follows. 
Then the last assertion is clear from self-duality. 
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Next, we prove (4.77). The points Eu belong to M 0 and have coordinates 

o/eJ=n/N[µ[, r/eu)=-2nvj/N[/3[ (mod 2n/[/3[), j=l, ... ,n (4.91) 

in view of (1.93). By (2.82) and (A.29) this entails 

L(eu) =diag(l, w", ... , w"")E diag(w-", w- 2", ... , 1),.._,w-"E, v=O, ... , n (4.92) 

where,...... denotes similarity. Using (A.32) and 2:Bj=O, it is then straightforward 
to verify 

(4.93) 

(recall (1.94)). Now we choose a sequencepkEM~ converging to Eu as k-+oo. 

Using (1.93) to write 

(4.94) 

it follows from ( 4. 93) and the continuity of </>(already established above) that </> 

(e J =e ", which entails ( 4. 77). 
We continue by proving 

codim .Mg=2 (4.95) 

To this end we first observe that the variety M' defined by (4.79) amounts to pn \ 
C *", and so has codimension 2. Second, we note that 

(4.96) 

so that codim .Mg;;:::: 2. Third, we assert that there exists an open neighborhood N" 

CM of e" such that 

(4.97) 

Indeed, (4.77) and self-duality entail</> (e J =e "'so existence follows from E uEM 0 

and !/> being a homeomorphism. Fourth, we define 

(4.98) 

From euEN~ we then deduce codim N~=2. But due to (4.97) we have </>(N~) C 

.Mg, implying codim .Mg:::;; 2. Hence, (4.95) results. 
Since .M 0 is connected, it now follows that .M 0 \.Mg=.M~ is connected. 
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Therefore, it remains to show that M"? is not simply-connected. To this end we 
observe that the commutative diagram (l.85) may be invoked. (Indeed, the com
ponents occurring in Theorem 3.5 are equal to the spaces in the diagram due to the 
connectedness of M"? just established.) Since n(E N) is a regular covering projection, 
we need only prove that .6, is not simply-connected. Because R is C"' in .6,, it 
suffices to show that the 8-part of R is multi-valued. 

To prove this, consider the set Ne defined by (4.98). Due to (4.97) this set is 
a subset of M~. Therefore, M? contains the tori {(o, r) lrE(-n/l.BI. nil.BI]"} 
for oEa~ sufficiently close to the alcove corner o(e"). But as exp(,Bri) winds 
counterclockwise once around S 1, the corresponding Bi and -(}i+ 1 clearly increase 
by 2n/l.BI. cf. (l.85), (1.30). 0 

Corollary 4.7. The maps <f> and i extend to mutually inverse cw symplecto
morphisms <f> x = P 2 X </> and ix = P 2 X b between (Q #c, w #c) and (Q #c, w #c), where 

(4.99) 

(4.100) 

Proof Obvious from Theorem 4.6. 0 

Next, we supply the details of the diagram (1.86) and its extension (1.102). 
We begin by recalling that the first Z-factor in the Z X Z-action on R 2 XM 0 has 
generator G given by (2.39). The second factor corresponds to the quotient group 
ZNIEN, cf. (1.42). One easily checks that its generator reads 

G q: (o,, rs; o, r) ~ (o,, r,+2n!Nl.B I ; o, ri-2n!Nl.B I •... 'r.-2.nn/Nl.B I) 

(4.101) 

Recalling self-duality, it should cause no surprise that G q equals the map (2.40) 
when hats are omitted andµ is replaced by .B. By the same token, the dual generator 
G q = <f> o G q o i is given by (2.39) with hats added and µ -- /3. Since these gen
erators map Q{< onto itself, the projections in (l.86) are well defined. The map <P 
is now defined so as to ensure commutativity. 

We proceed by introducing 

(4.102) 

Qq:P"---'>-P", (zo,z1, ... ,z.)l----(zo,w-1z1, ... ,w-•z.), w=e 2"'1N (4.103) 

One readily checks that these maps are symplectomorphisms w.r.t. WR whose Nth 
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powers equal the identity. Moreover, viewing M 0 as C *"CP" via (1.93), we have 

G(o,, 7s; m) = (o,+27!'/NIµ I, r,; g(m)) (4.104) 

G 9 (o,, r,; m) = (o,, r,+2n/Nl.BI; g 9 (m)) (4.105) 

Therefore, G and G 9 extend to symplectomorphisms of (Q#c, w#c), with duals that 

are obvious by now. The corresponding group actions are clearly free, so we obtain 
symplectic manifolds 

(4.106) 

Note that Q# may be viewed as a fiber bundle over 

T 2 '.::'. {(o,, r,)E [O, 2n/NlµI) x [O, 27!'/Nl,BI)} (4.107) 

with fiber P" and transition functions g and 9q w.r.t. the o, and r, tori, resp. The 

map <1> x in the diagram ( 1.102) is now defined such that the diagram commutes. 

Corollary 4.8. The maps <1> and <P x in (1.86) and (1.102) are symplectomor

phisms from (Q" w) onto (Q,, w) and from (Q #, w #) onto (Q #, w #), resp. 

Proof Clear from the above. 0 

4.4 The III b Map ifJ 

In this section we shall obtain more information on the reduced harmonic 

oscillator map c/>, viewed as an involutory antisymplectomorphism of (P", wren), cf. 

(1.103). To this end we introduce the involutory antisymplectomorphisms 

k: (z 0' ... 'z n) ~ (z 0' ... 'z n) (4.108) 

(4.109) 

and the involutory symplectomorphism 

p = k 0 k = k O k : (z o , Z 1 , ••. , Z n) ~ (z o, Z n , ... , Z 1) (4.110) 

Then we have 

(4.111) 
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by virtue of (2.119). Next, we set 

(4.112) 

where we used (4.102), (4.103). One readily verifies 

(4.113) 

so p and t generate a dihedral group action on P ". Using ( 4.111) and the relations 

(4.114) 

(which follow from (2.40)), we deduce that t:P commutes with this action. 
Clearly, the generators g, gq, t and p are isometries of the Riemannian 

manifold (P ", g FS>, where g FS denotes the Fubini-Study metric. Indeed, they may 
be viewed as pushdowns of unitaries on CN whose action on C N can be read off from 
(4.102), (4.103), (4.112) and (4.110), resp. For the first three cases the eigen
values of these unitaries are the Nth roots of 1, and the corresponding eigenspaces 
give rise to N fixed points. Obviously, for g and g q these are given by E" and e "' 
v=O, ... , n, resp. Introducing 

Pvk = exp(ink(N+2v-k)/N), k=O, ... , n, vEZ (4.115) 

(so that p >+N =p J, one readily checks that t has fixed points p 0 , ••• , p n. 

Next, we introduce the fixed-point space 

I'= {zEP" I c;'>(z) =z} (4.116) 

Since we have 

p(pJ=pN-v, v=O, ... , n (4.117) 

the only point p" that is fixed under p for any N is p 0 , whereas for N even we obtain 
an extra fixed point p N!Z. Now </> commutes with the dihedral group action 
generated by t and p, and for Nodd we have just established that p 0 is the only fixed 
point under this action. Thus we must have p 0EI' for N odd, whereas for N even 
we can only conclude that </> leaves the set {p 0 , p Nd invariant. 

We now observe that the points p" have already appeared above, cf. the 
paragraphs containing (3.60) and (3.63). In particular, using (2.117) and (1.93) 
one sees that p 0 amounts to the point P 0 ( 0, 0). Thus, the above yields a new and 
completely algebraic proof of (2.140) for N odd, as announced below (2.140). 
(Indeed, the developments after Corollary 4.8 can be rephrased in the context of 
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Lemma 2.3.) In view of (3.49) we actually have 

poEI' (4.118) 

for any N, which entails 

(N even) (4.119) 

Next, we observe that 

(4.120) 

and so 

</J (p J =(</Jog") (po)= (g ~ o </J) (po)= g ~(po) =p N-• (4.121) 

Moreover, introducing the points 

(4.122) 

we have 

</J(p") = (</J 0 k) (p ") = (k O</J)(p .) =k(pN-u) = (k 0 p) (pN-J =k(p") =pu 
(4.123) 

where (4.110), (4.111) and (4.117) have been used. Thus, 

v=O, ... , n (4.124) 

Since the map <P is an antisymplectomorphism, its Lefschetz number equals 0/ 
1 for n odd/even. Thus, I' could have been empty for n odd, a priori. Note that 
the fixed points are not Lefschetz, since <P is involutive. 

We continue by introducing the symplectomorphism 

(4.125) 

which satisfies 

(4.126) 

onaccountof(4.110) and (4.111). Using (4.56)-(4.58) oneeasilychecksthatfor 
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n = 1 this map has 2 and only 2 fixed points at 

z ± = (1, ± ( [d(i)-r]/[7r-r-d(r)]) "112), d(r) = Arcsin( (sin r) 112) (4.127) 

More generally, for any n ;?: 1 it must have at least N fixed points by virtue of 
Lefschetz theory. In view of the convergence result we are about to prove, it is 
plausible that the fixed-point space of f has the same characteristics as the 
fixed-point space of the P"-automorphism f 0 that is the quotient of 

( 

1 1 1 

F = N -112 1 w w z 
0 - : : : . . . 

lw"win 

1 l w• 
·. : ' 
... w"2 

W:: e27ti/N (4.128) 

In particular, we expect 3 and only 3 fixed points for N = 3, and 2 and only 2 
isolated fixed points for N=4. (Note Fo has eigenvalues 1, -1, i for N=3, 4, the 
first one being degenerate for N=4.) After the following theorem we shall show 
that one of the N=3 fixed points is in fact r-independent. 

Theorem 4.9. The symplectomorphism f obeys 

lim f(z) =f 0(z), VzEP" (4.129) 
rj TC/N 

where the limit refers to the Fubini-Study metric and is uniform on P ". There exists 

no rE (0, rc/N) such that f is the quotient of an invertible linear map on CN. 

Proof In view of (4.77) and (4.125) we have 

f(eJ=e,, v=O, ... , n, VrE(O, rc/N) (4.130) 

(Recall b equals</> in the picture adopted after Corollary 4.8.) Now assume that r 0 

E(O, rc/N) and MEGL(N, C) exist such that f is the pushdown of M. Then M 

must satisfy 

Me,=m,e,, v=O, ... , n (4.131) 

for certain m ,EC*. Moreover, as f is symplectic, Mis unitary up to a scalar, so 
Im ol =···=Im. I = p. Recalling now f2=p, it follows that M 2 e 0 =Np 2 e;~e 0 , cf. 
(4.110). This is readily seen to entail m,=pei1'12, so we may as well take M=F 0 , 

cf. (4.128). 
Summarizing, the above assumption implies that f equals f 0 for r = r 0 • Now 

for N=2 the fixed points of f 0 are given by 
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(4.132) 

Comparing with (4.127) we conclude 

a(r 0)=(3-2 312)7Z", a(r) = (2 312-2)(2 112d(r)-r) (4.133) 

Since a (r) increases from 0 to (3-2 312)7! as r goes from 0 to 11:/2, this contradicts 
roE (0, n/2). 

Next, let N > 2 and consider Tr L evaluated in the point 

Zx = (1, x, 0, ... '0), xER (4.134) 

Using (1.97) and (4.70)-(4.73) one obtains 

T L ( . ( )) 112 (sin(x 2r(x)) sin(2r+r(x))sin(2r+x 2 r(x)) )112 

r =x sm r x · 
x 2 sin(r+r(x) ) 2sin(r+x 2r(x) ) 2 

sin 2 r )112 

sin 2(x 2r(x) + (l- l)r) 
(4.135) 

where 

r(x) = (11:-Nr)/(l+x 2) (4.136) 

Clearly, Tr L can be analytically continued off the real axis. The function thus 
obtained is two-valued: it has a square-root branch point atx=i(Nr/7!) 112, e.g. 

On the other hand, taking x =I= -1 one obtains from ( 4.128) 

( 1 + XW 1 + XW n ) 
fo(zx)= 1, l+x ' ... ' l+x (4.137) 

Using (the duals of) (l.97) and (1.29) we can evaluate Tr L in this point, yielding 

N 

Tr L = L: exp(ri(x, r)) (4.138) 
j~l 

where the functions ri are rational in x. Thus it follows that for r=ro the one
valued function (4.138) equals the two-valued function (4.135), a contradiction. 

It remains to prove the first assertion. We begin by noting 

lim lµlo"=ll/N, v=O, ... , n 
<! 7t/N 

(4.139) 



322 SIMON RUIJSENAARS 

uniformly on P", cf. (1.97). Hence, 

lim A =diag(ei"(N-lllN, e;"(N-3llN, .•. , ei"(-N+t)IN) =Ao 
rj 7!/N 

lim L=-S'=Lo 
r) n/N 

uniformly on P", cf. (4.30), (4.69)-(4.73), (A.35). 
Next, we introduce the matrix 

cf. (A.37). From L 0=SN-i and (A.36) one deduces 

and using (A.37) one readily verifies 

CD t Ao U o) k. k+ 1 = -1, k = 1, ... , n 

(4.140) 

(4.141) 

(4.142) 

(4.143) 

(4.144) 

Consider now the unitary U defined by (4.81), (4.82) up to an overall phase. 
We are going to prove that this phase can be chosen such that we have 

lim 0= u o (4.145) 
rt 7!/N 

uniformly on P". First, we observe that (4.141)-(4.143) entail that L has eigen
projections Pj converging to the projections on u (j>, j= 1, ... , N, as rt n/N. 
Furthermore, the convergence is uniform, since the limit (4.141) is uniform. 
Therefore, the vectors a Ul = Pju Cjl converge uniformly to the (constant) vectors 
u Ul,j= 1, ... , N. In particular, there exists e > 0 such that a Ul is non-zero for all 
jE {I, ... , N}, zEP", and rE (n!N-e, 11:/N]. Restricting attention to this 
r-interval, we deduce that the vectors b (j) =a (j) I II a Ul II yield an orthonormal base 
of eigenvectors of L converging uniformly to u Cil, j= 1, ... , N. Therefore, the 
unitary matrix U' =Col (b Ct), ... , b (N)) converges uniformly to tJ 0 as rt n!N. 

Denoting now the columns of U by c co, ... , c CN), we may and will fix the phase 
ambiguity in U by requiring c co =b Ctl ; then one has c Ul =xjb Ul ,j > 1, for certain 
phase functions Xj: P"_,..S 1• We claim that this phase choice ensures (4.145), 
uniformly on P ". 

To prove this claim, we need only show xj_,..1 uniformly, since we already 
know b(jl_,..uUl uniformly. To this end, we use (4.140) and (4.144) to infer 
(U'* AU')k,k+i =ck_,.. -1, uniformlyonP" (withk=l, ... , n). Next, we observe 
that c k=XkX k+1n k. where nk = ((J * AU)k,k+1 and X 1 = 1. Since le k I_,.. l, we get 
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Ink I- 1, and since n k < 0 (recall (4.82) ), this entails n k- -1, k = 1, ... , n. 
Hence we obtain successively x 2 - 1, ... , x" - 1, uniformly on p ", so the proof of 
(4.145) is now complete. 

We continue by fixing zE&'" and introducing the renormalized vectors 

v=O, ... , n (4.146) 

cf. (4.75), (4.76), (4.83). Then we obtain 

_ lz" I c ) = -z-g,.. z , zE&'v 
" 

(4.147) 

(Indeed, this follows from ( 4.139) ; note, in particular, that the product in ( 4. 72) 
and (4.73) has limit 1.) Moreover, a straightforward calculation yields 

(Obg ren ~) )k =e i1!(N+l-2k)/2N :± W (k-l)vz vl [N(z, z)] 112 
1'""0 

e i1'(N + 1- 2k)/2N 

( ) 112 (Fo(zo,z1, .. .,z.)')k,k=l, .. .,N, YzEP" (4.148) 
z,z 

We are now ready to exploit the paragraph containing (4.88). It entails that 

f= k o if>: B-P" may be written 

(4.149) 

where the function p k denotes the product of all square-root factors at the rhs of 

(4.88). Thus we have 

lim p k (z) = (sin (7C/N)) 112 = p 
r! 7'/N 

(4.150) 

and using also (4.145), (4.147) and (4.148) we now obtain 

1. f( )- p _kdF ( ) 1 v EBCr1Jj tm z - ( ) 112 z o z o , ... , Z n , v z ;;r v 
<11'/N Z,Z v 

(4.151) 

w.r.t. the Fubini-Study metric. From this one easily deduces (4.129). 
Finally, we prove the uniformity assertion. Since P" is compact, it suffices to 

show that (4.151) holds uniformly for z in an arbitrary compact KCB. Now the 
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limit (4.147) is clearly uniform for zEK, and so is the limit (4.150). Since the 
limits 0 1(z)-+Oh andf3iJk(z)-+i11:(N+l-2k)/N are uniform on Pn, it follows 
from (4.149) that (4.151) holds true uniformly on K. D 

For n = 1 one obtains from (4.61)-(4.65) 

lim o(w) =exp( ±i11:lwl 2/(l + lw I 2)) ( 11~ w I I )112
, ± Arg wE (0, 11:) (4.152) 

dO 11:- rg W 

lim o(w) =j O 
do 00 

±w >O (4.153) 

Thus, though </> (and hence f) has a pointwise limit for r i 0, the limiting map is 
discontinuous. Probably, f has a pointwise limit for n > 1, too, but again the 
limiting map cannot be a diffeomorphism. One way to see this is to observe that 

lim f(l, wi, ... , w.)=e 0 , VwE(O, oo)• 
dO 

(4.154) 

(Indeed, from (1.93) and (2.82) one deduces that for these points one has L-+ h 
as d 0.) 

For the last topic of this section it is convenient to write V = p• and use 
suffixes 0, r, b, e for V just as we did for Mand M. In particular, we have 

(4.155) 

so v• is the union of the N complex hyperplanes P •- 1 c V obtained by requiring 
z oz 1···z.=0. Next, we introduce 

(4.156) 

and note that</> may be replaced by f in these formulas. (Indeed, k and k leave v• 
invariant.) As we have already seen, VZ is empty for n =I. Now let n > 1 and 
consider the projective variety 

vt(n/N) = v•nfo(V•) (4.157) 

Clearly, it consists of N 2 copies of p•- 2, and it is the limit of the space vz as rt 
n/N, cf. (4.129). 

It is a remarkable fact that V~ is actually r-independent for N=3: 

VZ=Vt(n!N), N=3 (4.158) 
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Possibly, this is true for N > 3 as well. The proof of ( 4.158) that we shall now 

sketch does not generalize to N > 3, however. Let us put 

Using (4.128) it is routine to verify 

Poo=(O, 1, -1), Po1=(0, l,e··i"13), P 02 =(0, l,ei"13) 

Pio= (1, 0, -1), P11 = (1, 0, e;"13 ), P 12 = (1, O, e -irr/3) 

Then one easily checks 

Poo-Poo 

Po1-P20____,. Po2-P10----..Po1 

P11-P21----'>P22---->-P12--..P11 

where the arrows symbolize the map f 0 • 

To prove (4.158) it suffices to show 

(Indeed, sufficiency follows from 

(4.159) 

(4.160) 

(4.161) 

(4.162) 

(4.163) 

(4.164) 

(4.165) 

(4.166) 

(4.167) 

(4.168) 

(4.169) 

cf. (4.102), (4.114).) To verify (4.167) we first calculate the symmetric functions 

of the Lax matrix Lin the points (1, w, 0), wEC *. (We need not consider (1, 0, 0) 

and (0, 1, 0): these points are equal to c/J(c 1) and c/J(c2), resp., and EvEV 0.) From 

(l.97) and (4.70)-(4.73) we obtain 

)
l/2 

S =~(sin(a-3r/2)sin(a+3r/2) 
1 Jwl sin(a-r/2)sin(a+r/2) ' 

(4.170) 

where 
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a= 3r/2+ (7r-3r)/(1 + lw J 2)E (3r/2, JZ"-3r/2) (4.171) 

Next, we observe that (1, w, 0) belongs to Vb iff L(l, w, 0) has a minimal 
spectral gap. In turn, this holds iff a(L) can be written 

(4.172) 

But if a(L) is of this form, one gets 

(4.173) 

with equality iff </J = 0. (Note cosr > 1/2 for N = 3.) On the other hand, from 
(4.170) one readily deduces 

IS I < cos(3r/2) 2 cos r-1 
1 - cos(r/2) 

(4.174) 

with equality iff a= JZ"/2. 
The upshot is, that if L (1, w, 0) has a minimal spectral gap, then one must have 

<P=Oin (4.172) and lwl = 1 in (4.171). UsingS 3 =l, we then obtain three possible 
cases, viz., 

(4.175) 

It follows from the above that these cases actually occur iff w= -1, e -;"13, e;"13 , 

yieldingthepointsP 20 ,P 2i.P 22 ,resp.,cf. (4.163). Thus, (4.167) and (4.158) are 
now proved. 

An interesting corollary of (4.158) is that (4.164)-(4.166) hold true under the 
action of f, too. In particular, one obtains a r-independent fixed point 

f(O, 1, -1) = (0, 1, -1) (4.176) 

(To see this, one need only recall (4.129) and observe that f leaves vt invariant.) 
Furthermore, it follows that one has 

r/>(Pvp) =P"P• vp=OO, 12, 21 (4.177) 

(4.178) 

This state of affairs is depicted in Figure 4. 
Finally, let us point out that one can directly verify that P 12 (say) is fixed under 

</>. Indeed, using (1.93), (1.94) and (4.69)-(4.73) one obtains 
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s l( P12 P10 P02 

IT .~. 

P,'... ip" 
1t. - .:o P22· • P20 

6 I I p21 
I 

1t. S:n: zx 61 

6 IT T 

Figure 4. The action of the map <P on the points P,P for µ=i and r:=K/6. For clarity the 
non-fixed points are slightly displaced from the edge midpoints. 

( 
0 e -;"13 sh 2p 

L(P12)= -1 0 
0 - 2ch p sin r/2 

2ch p ~n r:/2 l 
e;";3sh2p 

g (P 12) = (0, e -;(,..;6+•/2) sh p eh p, e - 1"13 sh p) 

where we have set 

sh p = (2cosr-1) 112 

A long, but straightforward calculation now yields 

i(TC/6+r) ( -ie ir/2 

U(P 12) = e e l(TC/6-r/2) 

2cos r/2 . 13 h em c p 

together with 

e i(1!/6-r/2) 

e i(5TC!6+r/2) 

chp 

e;,..;3chp l 
chp 

2e -;"13 sin r/2 

(4.179) 

(4.180) 

(4.181) 

(4.182) 

(4.183) 

(4.184) 

Thus one gets </J (P 12) =P 12, as advertised. Note that U(P 12) is symmetric, as 
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should be the case on the fixed-point space of c/>, cf. (2.137) ; note also that one can 

now reobtain (4.177), (4.178) and (4.164)-(4.166) by using the maps p, g, gq 

and k. 

5 Dynamics and Scattering 

5.1 The Cases m., and IDnr 

The above construction of the action-angle maps <i> and <1> and their harmonic 

oscillator extensions <i> # and <P # has not involved any Hamiltonian. On the other 

hand, the construction does make essential use of the Lax matrix (2.1) and the dual 

Lax matrix (2.24), and these matrices can be used as generating functions for a 

large collection of commuting Hamiltonians. We begin this section by studying 

Hamiltonians on Q:::::: R 2 X M defined by 

H h = Tr h(L), hE<t (5.1) 

Here, <(J denotes the class of non-constant entire functions of the form 2:: k°=o r kX k, 

r kER. (Since L is self-adjoint, we could just as well allow all CR' (R)-functions, 

but <c is large enough for our purposes.) Note that the choice h (x) =x 2/2 yields the 
Sutherland Hamiltonian (2.2). 

To study these dynamics (and the dual dynamics to be defined later on) we 
shall exploit the relations 

L(P)-i (P), A(P)'"-A(P), PEQ, P= <f>#(P)EQ#c (5.2) 

where - denotes similarity. First, we claim that the flows exp(tHn), hE<tf', are 

complete and commute. To prove this, we set 

fth =H ho jtt (5.3) 

and use (5.2) to obtain 

(5.4) 

where (cf. (l.50), (1.73)) 

Thus, ft h generates the flow 
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(5.6) 

where the oscillation frequencies are given by 

(5.7) 

This flow is manifestly complete, and letting h vary over CC clearly yields commuting 

flows. Thus, the above claim now follows from Corollary 4.2. 

We continue by noting that the above can be used to obtain complete and 

commuting flows on the reduced phase space M. Specifically, we may take i5,, 7 s = 
0 in (5.1) and view the resulting functions as Hamiltonians on M (again denoted 

H h). In view of the product structure of <:b # (cf. ( 1. 7 4)) we can then use the 

relations 

L(m)-i (m), A(m)-A(m), mEM, m =</>(m)EM (5.8) 

to obtain 

N 

(H hob) (u, v) = L; h ({}i) (5.9) 
j=l 

where {Ji is given by (5.5) with 8s = 0. The corresponding flow on Mis then given 

by (5.6) with the first two coordinates omitted. 

In the Sutherland case h (x) = x 2 /2 the flow just defined actually arises quite 

naturally : it describes the center of mass frame motion. More precisely, the flow 

(5.6) leaves the submanifold { (0, 0)} XM::::::.Af invariant and coincides with the 

flow on M just detailed. Thus, this holds true for the Sutherland flow exp(til) on 

{ (0, 0)} XM, too. Note that the center of mass frequencies 

I 

w1= Iµ I L; tJj, tJEA%, (5.10) 
1~1 

are rationally independent except on a set of measure zero. Thus the orbit closure 

is generically n-dimensional. As a consequence, the commutant of the reduced 

Sutherland Hamiltonian is abelian. 
Obviously, the point (0, 0) EM is left invariant by all of the reduced flows 

exp (t11 h). More generally, the equilibria for a fixed h E CC are the points in the set 

eh = { (u, v) ER 2n I u J +v J * 0 ===::::;:. w h,j(u, v) =O, j = 1, ... , n} (5.11) 
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In the Sutherland case all of the frequencies are positive on all of M (cf. (5.10)), 

so that 

(5.12) 

For other dynamics, however, eh in general contains tori T 1,jE {1, ... , n}. 

Returning to the 11 h flow on R 2 XM, the equilibrium set is given by 

N 

Eh= {(8,, j,; u, v)ER 2 XMI I; h'(ej) =O, uJ+vJi=o===; 
j~l 

wh,/e)=o, j=l, ... ,n} (5.13) 

In particular, this yields 

Eh= {(O, a; 0, 0) I aER}, h(x)=x 2/2 (5.14) 

in the Sutherland case. Thus the points (1.109) are the only equilibria of the H 
flow, as announced. (Recall (4.33).) It readily follows that H has a global mini

mum at the points (q~, 0) and no further critical points. (The vanishing of VH at 

(q~, 0) can of course be seen directly, cf. (1.1).) 
It is not hard to verify that these properties hold true more generally for the 

dynamics 

(5.15) 

Specifically, H k has a global minimum 

(5.16) 

and no further critical points. (Observe that w hk ,1 > 0 whenever 2: f"= 1 e]k- 1 =0.) 

Next, we derive a representation for the position part q(t) of the flows 

exp(tH h). This involves the matrix-valued function on R XQ given by 

A h(t, P) =A (P)exp(tµh'(L (P))) (5.17) 

Theorem 5.1. Leth E~, tER and PEQ. Then the matrix Ah (t, P) has simple 

spectrum on the unit circle. Its eigenvalues a 1 (t), ... , a N(t) can be ordered such that 

the position part of the integral curve exp (tH h) (P) is given by 

q1(t) =µ - 11n(a/t)), j= 1, ... , N (5.18) 

Proof This follows from the chain of similarities 
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A h(t, P)-A(P)exp(tµh'(i (P)))-A(exp(tR h) (P))-A (exp(tH h) (P)) (5.19) 

cf. (5.2). (The second step is most easily verified first on tJc, using the coordinates 
(1.50), (1.64); its validity on tJ#c then follows by continuity.) D 

Combining the equilibrium property 

exp(tHk)(q•, O)=(q•, 0), V(t, k)ERX {l, 2, ... } (5.20) 

and (5.19), we obtain an isospectrality relation that is quite non-obvious, viz., 

(d. ( n n-2 -n) c· Em)) a 1ag w , w , ... , w exp zr 1 

= {w", w•- 2, ••• , w-•}, V(r, m)ERX {1, 3, 5, ... } (5.21) 

with E 1 given by (A.31). 
We proceed by examining partition functions for the Hamiltonians (5.15). In 

keeping with the physical picture sketched in Section 1.1, these make no sense on Q 
(due to 'infinite volume divergence'). However, the Hamiltonians are invariant 
under the Z-action (1.12) in view of (2.44). Thus they descend to smooth 
Hamiltonians (again denoted H k) on Q, cf. the diagram (1.74). Moreover, it is 
clear that the corresponding flows on Q are complete and commute. Since one is 
now dealing with particles on a ring, one expects that the partition functions (cf. 
(1.14)) 

Zk(T) = l exp(-Hk(x,p)/T)dxdp, TE(O, oo), k=l, 2, ... (5.22) 

are finite. This expectation is borne out by the following result, which expresses Z k 

in a far simpler form. 

Theorem 5.2. One has 

(5.23) 

where A N is defined by ( 1. 49) . 

Proof We may restrict the integration in (5.22) to Q,, since Q\Q, has 
measure zero. Now we use the action-angle map </J: Q,-Q, (x,p) ~ (x,p) 
(cf. (1.67), (1.68)) to change variables. Since et> is canonical, the Jacobian equals 
1, so that (5.23) follows from (l.48) and (5.15). D 
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We continue by studying a collection of dual dynamics defined on the extended 
dual phase space (J#c = R 2 XM, cf. the diagram (l.74). These are given by 

(5.24) 

Here, <6 e is the class of all non-constant entire functions and h.c. stands for 
hermitean conjugate. (The dual Hamiltonian (1.106), (1.107) is obtained by 
choosing h (x) =x/2.) Note that D h is a cw function on R 2 XM, since A is. 

We claim that all of the flows exp(tD h) are complete and commute. Indeed, 
setting 

(5.25) 

we have 

N 

J5h(q, e)=.L; (h(expµq)+c.c.) (5.26) 
j=l 

Thus, on Q we get the complete commuting flows 

(5.27) 

where 

(5.28) 

Now Corollary 4.2 entails that the flows exp(tD h) on R 2 x.M are complete and 
commute. Using (5.8) as before, we can also obtain complete and commuting flows 
on the reduced phase space M. 

To obtain the analog of Theorem 5.1 we introduce 

ih(t, P) = i CP)-tµ(ACP)h'(A(P))-h.c.) (5.29) 

Theorem 5.3. Let hE.<6., tER, and PEQ#c_ Then the matrix ih(t, P) has 
simple and real spectrum. With the eigenvalue ordering A 1 (t) > ··· > ). N(t), one has 

(5.30) 

where e/t) is given by the integral curve exp(tD h) (P) and (5.5). 

Proof We have 

LCt, P)-L (P)-tµ(A (P)h'(A (P)) - h.c.)-L (exp(t.6 h) (P)) 
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(5.31) 

where the second step follows from (5.27), (5.28) and (2.1). Recalling (2.5), the 

assertions readily follow. D 

Next, we use this result to study the long-time asymptotics of the quantities 

e/t). Fixing PER 2 XM, we set (q, e) = j# (P) and introduce the distinct-velocity 
subset 

(5.32) 

This is an open dense full measure submanifold, since h is a non-constant entire 
function. 

Theorem 5.4. Let hECC, and PE(R 2 XM)h, ,,, and let aESN be such that 

Vh,a(I) > ... > Vh,a(N) 

Then one has 

{j j Ct) - e a(j) - tv h, a(j) __,,. 0, t---;.. ± CXl' j = 1, ... ' N 
N--j+I 

(5.33) 

(5.34) 

Proof In view of Theorem 5.3 we need only determine the spectral 

asymptotics of 

L(P)+t diag(vu(P), ... 'Vh,N(P)) (5.35) 

This can be read off from Theorem Al in I, yielding ( 5. 34). D 

To conclude, we consider the exceptional set 

(5.36) 

cf. (4.79). As we have seen above, this set is characterized by at least one of the 

differences {jj-{jj+I being equal to \µg \. Fixing hE<(f, and PER 2 XM, the orbit 

exp (tD h) (P) either belongs to R 2 X .M• or meets R 2 X M' for a discrete set C h. i> of 

times. In view of Theorem 5 .4 the latter possibility applies (with I C h. fa I EN) 

whenever P belongs to (R 2 XM)h, ~. Now the phase factors exp(µq/P)) are 

distinct, so one can find h E CC e such that the velocities v h, 1 (P), ... , v h, N (!') are 

distinct. As a consequence, there exists no PER 2 XM' for which the orbits 

exp(tDh) (P), tER, belong to R 2 XM• for all hE<(f,; equivalently, for any PER 2 

x.M• one can find P 0 ER 2 XM 0 , hE<(f e and tER such that P=exp(tD h) (f>O). 
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Consequently, the extension R 2 XA1° of R 2 x.111' 0 is minimal in regard to 
completing all of the orbits exp(tDh)(P 0), P 0 ER 2 XA1° 0, as defined piecewise
namely, for tER \ C h, _po-via the map i. More precisely, adapting the minimal 
extension procedure introduced in II (cf. the paragraph containing (6.140) ), the 
map Q f----P=exp(tD h) (P 0) between equivalence classes Q of triples (P 0, h, t), P0 

ER 2 XM 0, hEfl., tER, and points PER 2 XM is a well-defined bijection. 
Of course, these considerations apply with obvious changes to the various 

reduced flows and phase spaces. 

5.2 The Cases illre1 and ill re1 

We proceed along the same lines as in the previous section. First, we consider 
a class of dynamics on Q defined by 

(5.37) 

(Recall L is positive in this case ; thus, its logarithm can be defined in the obvious 
way.) Clearly, the Hamiltonian (2.52) is obtained by choosing h(x) =eh.Bx. 

Defining 11 h by (5.3) (with tf# the m,.1 map, of course), we infer from (5.2) 
and (2.56) that (5.4)-(5.7) still hold true. Using Corollary 4.5 we then deduce 
that all flows exp(tHh), hEfl, are complete and commute. 

As before, we obtain commuting complete flows on M by taking o,, r s = 0 in 
(5.1). The point b(O, 0) is an equilibrium for all of the flows, and more generally 
the set of equilibria is given by b (eh) with eh defined by (5.11). Similarly, the H h 
flow on Q has its equilibria at the points of/# (Eh), with Eh given by (5.13). 

Next, consider the dynamics 

(5.38) 

which correspond to the functions hk(x) =ch,Bkx. Since (4.33) and (4.30) still 
hold, we obtain in the same way as before 

exp(tHk)(q~, O)=(q:, 0) (5.39) 

N 

Hk(q~, 0)=2:; ch(kz(N+l-2j)) (5.40) 
J=I 

Moreover, it follows again that no other equilibria occur; correspondingly, H k has 
a global minimum at (q~, 0) and no other critical points. 

The analog of Theorem 5.1 involves the matrix 

Ah(t, P) =A(P)exp(tµh'(,8- 1 lnL(P))) (5.41) 
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Theorem 5.5. The assertions of Theorem 5.1 hold true in the fil ,.1 case, too. 

Proof Substituting i (ft) ~/3- 1 ln i (ft) in (5.19), the proofofTheorem 5.1 
applies verbatim. o 

As the analog of (5.21) we obtain the remarkable isospectrality relation 

a(diag(w", ... , w-")exp(ir(Ek-E-k)) = {w", ... , w-"}, V(r, k)ERXN 

(5.42) 

(Recall (4.55), (A.29).) 

Next, we consider the partition functions (5.22). 

Theorem 5.6. One has 

(5.43) 

Proof This follows in the same way as (5.23). D 

By means of (5.24) we obtain once more a class of real-analytic dual 

Hamiltonians on R 2 XM. Defining D h by (5.25), we deduce again (5.26)-(5.28), 

so Corollary 4.5 yields completeness and commutativity of the flows exp(tD h). 

Instead of (5.29) we now need the matrix 

ih(t, P) = i CP)exp(-tµ(A(ft)h'CA(P))-h.c.)) (5.44) 

Theorem 5.7. Let hErt ,, tER. and ftEQ#c_ Then the matrix ih(t, P) has 

simple and positive spectrum. With the eigenvalue ordering A 1 (t) > ··· > AN(t), one 

has 

Proof We have 

i h (t, P)~L (P)exp( -tµ(A (P)h'(A (P) )-h.c.))~L(exp(t.D h) (P)) 

~ L (exp(tD h) (ft)) 

(5.45) 

(5.46) 

where the second step follows from (5.27), (5.28) and (2.51). Thus, the assertions 

follow from (2.56). D 
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With the definition (5.32) in effect, we are prepared for the next result. 

Theorem 5.8. Fixing hE.<(J., PE (R 2 XM)h,,,. and oES N such that (5.33) 
holds, one has 

where 

B i (t)-8 0 uJ± 2
1 (1: -L;)o(qaul-qackJ)-tvh.aCiJ-+O, 

N-j+I k<j k>J 

t~± oo, j=l, ... , N 

( sh 2z ) 
i5 (q) =- /3 - i In 1 + . z I µ I 

sm -- q 
2 

(5.47) 

(5.48) 

Proof By virtue of Theorem 5.7 we need only calculate the spectral 
asymptotics of 

L(P)exp(t diag(vh, 1(P), ... , vh,N(P)) (5.49) 

Combining Theorem A2 in I (or an obvious specialization of Theorem Cl in II) 
and Cauchy's identity (A.2) one readily obtains the above result. D 

To conclude this section, we observe that the discussion below Theorem 5.4 
also applies to the case in hand, with Theorem 5.8 playing the part of Theorem 5.4. 

5.3 The Case Ilh 

In this section we study the set of Cw Hamiltonians on Q #c = R 2 X M defined by 

Hh=Tr(h(L)+h.c.), hE.<(J, (5.50) 

More precisely, via (2. 82) the rhs yields a function on Q c = R 2 X M 0, and this 
function has a cw extension to Q#c(since L has, cf. Section 4.3). Using (2.125), 
(4.101) and (2.82), we deduce that all of these Hamiltonians are invariant under 
the ZXZ-action on Q#c, so they descend to smooth Hamiltonians (again denoted 
H h) on Q n, cf. the diagram (l.102). The Hamiltonian (1.4) and its cover He arise 
by taking h (x) =x/2 in (5.50). 

We proceed by studying the above dynamics along the same lines as in the two 
preceding sections. The role of (5.2) is now played by 
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(5.51) 

First, setting 

(5.52) 

we obtain 

(5.53) 

where (cf. (l.50), (l.93)-(1.99)) 

e.= 8 + lirl CN + 1 - 2 ·) + 21 µ 1 R 2 
( ~ 1 - 12 _ _!_ ~ k 1 - 1 2) 

1 s 2 J (' ') .L..J z k N L.J z k , 
Z,Z k~) k~I 

(5.54) 

The corresponding Hamiltonian flows read 

exp(tHh)(8,, i's;io, ... ,in) 

-(0~ . + r ~ _ _ c· ) _ c· )) - ,, r s N ft;t v h,j; z 0' z 1 exp ztw h, 1 ' •• ., z n exp ltW h, n (5.55) 

where 

(5.56) 

(5.57) 

(Use (1.64), (l.93) to check this.) 
Using Corollary 4.7 we now deduce that all of the flows exp(tH h), h E<tJ., are 

complete and commute. As before, we can obtain complete commuting flows on M 
:::: P" by omitting the first two coordinates. (Of course, in this case completeness 

already follows from compactness of M) 
We proceed by examining special orbits, considering first the reduced flows on 

M. Using (the reduced version of) (5.55) and ( 4. 77), we begin by noting 

exp(tHh)(c,J=cv, V(t, h, v)ERX<t',X {0, ... , n} (5.58) 

That is, all of the flows have equilibria at the points E 0' ... ' En. These N equilibria 
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need not be the only ones, however. The generalization of the equilibrium set 
(5.11) reads 

(5.59) 

cf. (5.55). Since the frequencies depend only on f i o I, ... , lz n I. additional equi
libria belong to tori Ti,jE {I, ... , n}. 

It is instructive to look at an explicit example for n = 2. Consider the circle 
(Kreis) 

K=-{(O, l,e;1)ftE[0,2n)}CP 2 (5.60) 

From (5.54) we see that all points of K yield 

- 1 ( ) -e~= ±1BT n--r ' 82=0 (5.61) 

Using now (5.56), (5.57) we conclude that on K 

v h, I= -v h, 3' v h, 2 = 0, (.I) h, 1 =(.I) h, 2 ' 'V h E ~ (5.62) 

As a consequence, K consists of equilibria for the H h flow whenever h E~C~ •. 
Next, we observe that K contains the points (4.161). From (4.177), (4.178) 

it then follows that for all h E~ the reduced H h flows have a circle K = b (K) of 
equilibria, connecting the points P 00 , P 10 and P 20 (cf. Figure 4). However, for h E 
C&. \ ~ this need not be true. For instance, taking h (x) = ix/2, one gets on K 

(5.63) 

which implies 

{exp(tHh) (Poo) fh(x) =ix/1, tER} =K (5.64) 

Returning to the general N case, we may use (5.53), (5.54) to infer 

N 

H h(Ev) = ~ (h(exp[i'r(N + l-2j)-27dv/N]) +c.c.) (5.65) 
}=I 

For h (x) = .x/2 this specializes to 

H<(E .) =cos(2nv/N)sin(N-r)/sinr, v=O, ... , n (5.66) 

It is not hard to see that v=O yields the (global) maximum of He. Similarly, when 
N is even, the choice v=N/2 yields the minimum. 
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We proceed by noting that the equilibrium set for the H h flow on Q #c = R 2 x 
Mis given by 

- - N 
E h=C x ( {(o,, Ys; i) ER 2 XM\ ~ vh,j=O, if Zv1 iv, *0, then wh, "i (8,,, z) 

=wh,v,(8,, z)}) (5.67) 

cf. (5.55). Next, we introduce the special Hamiltonians 

(5.68) 

Using (2.130) one infers that all of these functions on Q #c are K-invariant. 

Moreover, for all of them Eh is easily seen to contain the points 

(a, \~I(;-+;); Ev), vE {O, .. ., n}, /EZ, aER (5.69) 

and from (5.52)-(5.54) one obtains 

(5.70) 

On the compact quotient manifold Q # the above points give rise to two circles 

of critical points for the quotient Hamiltonians (again denoted H k), cf. ( 4.102)

( 4.106). Specifically, one obtains 

K +={(a, 0; Eo) laE [O, 2n/N\µI)} (/even) (5.71) 

K - ={(a, 0; EN;2) laE [O, 2n/NIµ I)} (l odd, N even) (5.72) 

K _ = {(a, Ir/N l/31 ; E (N+1J;2) la E [O, 2Ir/N Iµ I)} (l odd, Nodd) (5.73) 

when the coordinates in (4.107) are used. Clearly, these circles belong to Q; w.r.t. 

the coordinates (x, p) in ( 1.41) they can be written 

K +={(q•+a(l,. .. , 1); 0) laE(-NlµI' NIµ I]} CZ even) (5.74) 

K-={(q•+a(l,. . .,1); l;I (1,. . .,l))laE(-NlµI' NlµI]} (/odd) (5.75) 
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Of course, the quotient Hamiltonian Hi equals the Hamiltonian (1.4) on Q. Note 
that Hi attains its maximum/minimum on the circles K +IK - . 

In order to present the analog of Theorem 5.1, we introduce the matrix-valued 
function on RX Q #c 

Ah(t, P) =A(P)exp(tµ(L(P)h'(L(P))-h.c.)) (5.76) 

and the vector-valued function on Q #c 

q/P)=o,+-rJh-(cN+l-2j)r+ 2 C~~~r) (~lzkl 2-~ ~klzk1 2)). 
j= 1, ... , N (5.77) 

In contrast to previous cases, P varies over a phase space that is not equal to the 
cotangent bundle of a configuration space. Even so, it is natural to refer to q (P) as 
the position part of P. 

Theorem 5.9. With et and Q replaced by CC. and Q #c, the assertions of Theorem 
5.1 hold true in the ID b case. 

Proof As before, this follows from 

A h(t, P)-1 (P)exp(tµ(L (P)h'(L (P))- h.c.) )-A(exp(tB h) (P)) 

-A (exp (tH h) (P)) (5.78) 

(The second similarity is readily verified on a~ by using (2.61) and (5.55)-(5.57) .) 
D 

Applying this theorem to the equilibria (5.69) for the H k flow, we obtain once 
again the isospectrality relation (5.42). 

The partition function for H k diverges on Q #c due to the infinite range of 
variation of o, (on which H k does not depend). On the compact quotient manifold 
Q # we do get finite partition functions, of course. Since Q # \ Q has measure zero, 
the latter are given by (5.22), with (1.41) in force. 

Theorem 5.10. One has 

Zk(T)=( 
1
274

1 
\NJ exp(-± cos(l,BlkPi)/T)dp, k=l, 2, ... (5.79) 

µ ) A~ nFN (/3) j=l 

with A~ given by (1.78) and FN(µ) by (l.15). 
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Proof We may restrict the integration in (5.22) to Q,, since Q \ Q, has 
measure zero. Then we can use the canonicity of the map rp: Q,---..t:J, w.r.t. the 
coordinates (x, p) on Q, and (x, p) on t:J,. (The latter are defined by dualizing 
(1.41) ; this yields the integration region in (5.79), cf. also (1.35), (1.36) and 
(1.40).) 

In the remainder of this section we restrict attention to the reduced phase space 
M equipped with the renormalized symplectic form w ,... By now, it will be plain 
how corresponding results for Q #c = R 2 X Mand its quotient Q # can be obtained. In 
contrast to the situation in Section 4.4, it is notationally and conceptually more 
convenient to view</> as a symplectomorphism from (M, Wren) onto (M, -w,,.) 
with inverse b. 

First, we study the limit r t n/N at the level of dynamics. To this end we recall 
that we have 

lim exp(,Bej) =exp [ilr(N + 1-2j)/N] =xfO), j= 1, ... , N 
rt 1C/N 

(5.80) 

on all of M, cf. (5.54). Thus, for the entire function h (x) = :E k°=o a kX k we obtain 
from (5.53) 

lim flh(z)=2N ~ (-)kCN-l)Reak=rh, VzEM (5.81) 
rt 1C/N kENN 

We can get finite and non-constant limits, however, via an appropriate renormali
zation. Specifically, setting 

(5.82) 

we obtain from (5.53) and (5.54) 

flh,o(z) = lim flh,renCz) 
rt 1C/N 

N 

=i ~ (x§Olh'(x§°))-c.c.) · 
j=l 

( CN+t- 2j) +-h--(:t lzkl 2 -__!__ ± klzkl 2)) 
N (z, z) k=j N k=1 

(5.83) 

Introducing 

= 2"( (O)h'( (0))- ) Vh,j,O - l Xj Xj C.C. , j=l, ... , N (5.84) 

I I N 

w = ~ v -- ~ vh · o h,/,O - .L..J h,j,O N .L..J ,), ' 
j=l j=I 

l=l, ... , n (5.85) 
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this can be rewritten 

ft h, o(i) = (z, D hi)/ (z, z) (5.86) 

where 

(5.87) 

1 N • 
eh:= - 2N ~ (N+l-2j)Vh,j,O 

1-1 
(5.88) 

The flow generated by the Hamiltonian (5.86) on (M, -wren) is given by 

exp(tH h, o) (z) = (i o, z 1 exp(itw h, 1, o), ... , in exp (itw h, n, o)) (5.89) 

cf. the paragraph containing ( 1.104). This agrees with the limit of the flow exp 
(tH h,,..) (i) for rt n/N, as should be the case, of course. (To calculate this limit, 
recall w ,.. differs by a factor l.8µ I /2(n-Nr) from w R, cf. (1.103), and use (5.55) 
-(5.57) .) Introducing 

(5.90) 

and recalling k and f o are the quotients of complex conjugation and Fourier 
transformation Fo on CN (cf. (4.128)), resp., we also conclude 

(5.91) 

For the special Hamiltonians (5.68) we have (using obvious notation) 

vk,j,o=-2k sin(nk(N+l-2J)/N), k=l, 2, ... (5.92) 

so we may as well restrict attention to k < N. Then we obtain for N = 2 

W1,1,o=-2, c1=l, D1=diag(l, -1) (5.93) 

and for N > 2 

W -(-)k+I k ( ( ) ) 
k, I, o - sin (kn/ N) cos 2kln/ N -1 , k = 1, ... , n (5.94) 

-( )k+l k 
ck- - sin(kn/N)' k=l, ... , n (5.95) 
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k 
(Dk)"p=(-)k+ 1 sin(k71:/N)oll(Jcos(2kvn/N), k=l, ... ,n, v,p=O, ... ,n (5.96) 

Specializing to k = 1, we obtain from (5.91) 

H () (z, LlperZ) {2 
1' 0 z - 2(z, z) sin(n/N)- 1 

where L1 per is the periodic lattice Laplacean 

1 
0 

0 
0 

0 
0 

0 
1 i l 

(N=2) 
(N>2) 

(5.97) 

(5.98) 

It is straightforward to verify directly that the Hamiltonian (1.4), divided by n
Nr:, yields the limit (5.97) upon taking r: t 71:/N. (Recall (l.30), (l.98) to write exp 
(,Bp)-+zilzi-1l!lzilzi-1 (with zN=zo), and use (5.77) to obtain the limits of 
Vj/ (n-Nr:).) 

Finally, we study the question whether M::::P" is a minimal completion of M 0 

::::C *" w.r.t. the non-complete flows onM0• Just as for the cases 1il:nr and 1il:,.i, this 
boils down to the question whether or not there exist points P in the exceptional set 
M•=M\M 0 for which the orbit union 

fP(P) = {exp(tHh)(P) JtER, hE<&.} (5.99) 

belongs to M•. We begin with some (related) observations that are valid for any 
r:E (0, n!N). 

(i) The answer to the above question does not depend on whether or not one 
renormalizes the Hamiltonians via (5.82) and the symplectic form via (1.103). 
(Indeed, such renormalizations only give rise to a rescaling of the evolution 
parameter t. ) 

(ii) For any PEM we have 

c/>(fP(P)) = {zE.MJ8(z) =8(c/>(P))} (5.100) 

Thus @(P) either equals a point (viz., iff P=e 0 , ••• , e.) or a torus Ti<P\j(P) E {l, 
... , n}. (Fixing PEM and letting h vary over<&., the vector (v h, 1, ••• , v h, N) (P) 

varies over all of RN, cf. (5 .57); but then the vector (w h, 1 , ••• , w h, .) (P) varies 
over all of R", since the connecting matrix has rank n, cf. (5.56); hence the 
assertion follows from the reduced version of (5.55).) 
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(iii) The 'superfluous' set 

M sf= {PEM' I (g (P) CM'} (5.101) 

is closed. (If P 0 EM', tER* andhE~. are such that exp(tHh)(P 0)fjE.M', then 
one has exp(tH h) (P) gM• for P near Po.) 

(iv) One has 

(5.102) 

Thus one can find open neighborhoods of e o, ... , en not belonging to M sf· (The 
point p 0EM 0 is a fixed point of if;, cf. (4.115)-(4.118); from (5.100) one then 
infers that (9 (p 0) is n-dimensional and contains e o, ... , en.) 

(v) One has 

Msf=0~8(rp(MO)) = (a~)cl 

(This equivalence readily follows by combining (5.100) and (5.101).) 
Next, we show that Mis a minimal completion of M 0 for N = 2, 3 : 

M,f=0, VrE (0, JC/N), N=2, 3 

(5.103) 

(5.104) 

For N=2 this is obvious: the set M'= {c, d} in Figure 3 lies on the H 1-orbit (great 
circle) throughp and q. (Equivalently, one need only specialize (5.102) to N=2.) 
For N = 3 this can be seen as follows (cf. Figure 4). Assume M sf is non-empty and 
fix PEM,f. Now @(P) is connected and eo, e 1, eigM,f, so m(P) lies above one 
of the 3 simplex edges. Since T 2 does not embed in C *, the orbit union (!) (P) is 
either a circle or a point. In the latter case it would follow that (9 (P) equals one of 
the equilibria e 0 , e 1, e 2 lying above the barycenter, a contradiction. Thus (9 (P) is 
acircle. Butthenwehaveef;(&(P))c.M•,cf. (5.100). Using the notation (4.156) 
and the corresponding identification, we deduce (9 (P) c n. But VZ consists of 9 
points, cf. (4.158), so we arrive again at a contradiction. Hence, (5.104) is now 
proved. 

We now proceed to our last result, which says in particular M,f=r/J for 7: near 
JC/N. To this end we first introduce the orbit union and superfluous set for the 
limiting r-value JC/N by putting 

©o(P) = {exp(tHh,o)(P) itER, hE~.} (5.105) 

M,f,o= {PEM'i@a(P)CM'} (5.106) 

It is easy to rephrase the observations (ii)-(v) for r=n/N by using renormalized 
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quantities 

(5.107) 

so we shall not spell this out. (Note that (8 1, 0 , ••• , 8 n, o) varies over the closure of 

the Weyl alcove (1.8) with [µI =n, cf. also (1.97).) 

Theorem 5.11. One has 

M,f,o=0, VN;;::: 2 (5.108) 

There exists c (N) > 0 such that 

(5.109) 

and c (N) may be taken equal to re/ N for N = 2, 3. 

Proof Assume M sf, o is not empty and fix PEM sf, 0 . Choosing a vector </; E 

CN\ {O} that descends on P under the projection CN\ {O} ___,. P", the assumption 

entails that when we fix tER and h E<t&',, at least one of the coordinates of the vec

tor exp( -itA h)</; vanishes. (Recall the latter vector descends on exp(tH h, 0) (P).) 

Letting t vary, it easily follows that at least one of the coordinates vanishes for all 

tER. That is, for any hE<t', we can findpE {O, ... , n} such that 

(5.110) 

Equivalently, using (5. 91) we have 

N 

I; w -p(j-l) exp(-itDh,jj)(F0 </;)i=O, VtER (5.111) 
1~ I 

But if we now choose h such that the numbers D h, 11 , ••• , D h, NN are distinct, then 

we infer from (5.111) that</;= 0, a contradiction. Thus the first assertion is proved. 

Next, assume there exists a sequence rk t n/N, k--HXJ, such that M,/rk) is 

non-empty. Choosing Pk EM,/ r k) CM', we can find a subsequence P ;k with limit 

PoEM•, asM' is compact. But then we may deduce {!J 0 (Po)CM' from @(P;)C 

M', since</> converges uniformly to k o fo, cf. Theorem 4.9. This contradicts 

(5.108), so (5.109) results. The last assertion has already been proved, cf. (5.104). 
D 

We conjecture that in (5.109) one may take c(N) =n/N for N=4, 5, ... , too. 
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Appendix A. Some Algebraic Lemmas 

In this paper we will make use of the Cauchy matrix from II , taking q, p ~a 

and M ~ N. Thus we have 

j,k=l, ... ,N (A.1) 

and Cauchy's identity reads 

sh 2 ~ (aj-ak) 
I c I =e -n.ial II --------------

J<k sh ~ (aj-ak+iµg)sh ~ (aj-ak-iµg) 

(A.2) 

cf. II, Appendix B. The Lax matrix arising for the illreI system (and for the Lei 

system studied in I ) can be seen to be positive by using the following lemma. 

Lemma A.1. Let /3, gER *and µEiR For any qEW N (where W N is defined 

by ( l. 9)) the matrix 

(A.3) 

is positive. 

Proof. The restrictions ensure that C' is well defined and self-adjoint. 
Moreover, C' has positive principal minors in view of (A.2). D 

For the systems dual to the illnr and m,.1 systems, and for the illb system 
(which is self-dual) it is expedient to employ a different Cauchy matrix. This 
matrix (denoted C) involves the quantities 

rj(/3, µ, g; a) = li/3, µ, -g; a) (A.4) 

and its pivotal orthogonality property hinges on the following lemma. 
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Lemma A.2. Let (/3, µ, g, a) ECHN be such that Cik. li, r k.), k = 1, ... , N, are 
well defined and IC I =t- 0. Then one has 

(A.5) 

Proof This identity can be verified by a straightforward calculation using 
(A.2) ; cf. Lemma B2 in Il for a slightly more general result. D 

Defining now 

C ik = l )12 C ik r J/2 (A.6) 

it follows from the lemma that CEO(N, C). Since diagonal sign matrices are 
orthogonal, this property holds true irrespective of the sign conventions for the 
square roots. 

In Chapter 2, however, we will wind up with positive quotients in the product 
occurring in (A.4), and correspondingly we may and will take positive square roots 
throughout. To be specific, the construction of the action-angle map in Chapter 2 
leads to the inequality 

Here, one has in addition 

(A.8) 

(A.9) 

(A.10) 

for the cases ill"" ill rei. ill b, resp. A cornerstone in the construction is then that 
this inequality entails a further restriction on the actions a i , ... , a N (implying in 
particular positivity of the quotients in (A.4)). 

We shall detail and prove this restriction in the next lemma. To this end we 
introduce 

P~= {aERNldi>d, j=l, ... ,N, -n/l,81 <aN,a1Snil/3l},dN 

=aN-a 1 +2n:/l,8I 

(A.11) 

(A.12) 
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Note the definition (A.11) agrees with (1.49), whereas P"N is a fundamental set for 
a Z-action on the set At defined by (1.78) (cf. the paragraph containing (2.97)). 

Lemma A.3. Suppose (A. 7) holds true. If, in addition, (A. 8), (A. 9) or (A.10) 
are valid, then one has a EA N, AN or Pt, resp. 

Proof Fixing kE {l, ... , N-1}, let us assumed k =d. Then the factor with m 
=k+l at the lhs of (A.7) vanishes, contradicting (A.7). Thus one must have 
either dkE(O, d) or dk >d. Let us now first start from (A.8) or (A.9). We 
assume that at least one d k is smaller than d and derive a contradiction to (A. 7). 
We distinguish three cases. 

(i) One has 

dk<d,k=l, ... ,N-1 (A.13) 

Taking j = 1 and k = N -1 in (A. 7), it easily follows that all factors but the one for 
which m =N are positive, contradicting (A.7). This takes care of the special case 
N = 2, so we may now assume N > 2. 

(ii) There exists k 0E {I, ... , N-2} such that 

(A.14) 

Taking j =k 0 + 2, k = k 0 , we then obtain positive factors at the lhs of (A. 7), but for 
the factor with m = k 0 + l, a contradiction. 

(iii) There exists k 0 E {l, ... , N -2} such that 

d k > d, k = 1, ... , k O , d ko + I < d (A.15) 

Taking once more j = k o + 2, k = k 0 in (A. 7) we now obtain positive factors but for 
the factor with l =k o+ 1. This contradiction completes the proof of the lemma 
when (A.8) or (A.9) is assumed to hold. 

Finally, we start from the hypothesis (A.10). First, we assume that there 
exists at least one kE {1, ... , N-1} such that d k <d. Then the above case 
distinction and the corresponding conclusions apply verbatim. As this is not 
immediate, we add two exemplary verifications. In the first case one infers posi-

tivity of sin l~l (a 1-aN+d)/sin [~[ Ca1-aN) by noting 

dk<d, k=l, ... ,N-I=?a1-aN< (N-l)d< 2n/[,8[-d 

and in the second case (taking k o < N - 2) one gets positivity of sin J& (a k + 2 -2 0 

aN+d)/sin [~[ (ak 0+2-aN) by noting 
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As a consequence, (A.10) implies d k > d, k = 1, ... , N - l. It remains to prove 
d N >d. But this becomes clear when one takes j, k =I in (A. 7) : assuming d N s 
d, the factor with l=N is not positive, whereas all other factors are (note a 1 -a N-t 

=(a i -a N) +(a N-a N-1) < 271:/ l.B 1-d). D 

The next lemma will be used in Section 2.3 to show that in certain phase space 
points the spectrum of the Lax matrix consists of the Nth roots of a phase factor. 

Lemma A.4. For any function G: (0, 2] ~cand any /E. {1, ... , N-1} one has 

2::: il wjG(iwj-wki)=O, w =e 2mJN (A.16) 
H.{l, ... ,N) jEI 

II) ~1 kfj!I 

Proof We rearrange the sum such that subsets I related by cyclic permutations 
of { 1, ... , N} are grouped together. For any such group the factor II G ( · · ·) takes 
the same value. Therefore, fixing I a with II o I=/, we need only show 

2::: TI wj=O 
Ill ~I jEI 

1-1 

where ~ denotes cyclic equivalence. 

(A.17) 

First, consider the case where all cyclic translates of I o are distinct. Then the 

lhs of (A.17) reads 

N-1 

I: wimn wj (A.18) 
m =O JC.I 

Since !E. {1, ... , N-1}, this vanishes, as asserted. Next, assume that after M < N 

cyclic translations of I 0 one reobtains I o. This entails 

(A.19) 

so that one must have IM=nN, nE. {l, ... , M-1}. But then the lbs of (A.17) can 

be rewritten 

M-1 ( )M-1 ~o (J) Im A! Wj = Q (J)j ~o e 2mnm/M (A.20) 

which vanishes, too. 0 

We proceed with Lemma A.5, whose corollary Lemma A.6 will be used in 
Chapter 4 to find the points in phase space where the Lax matrix has minimal 
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spectral gaps. (These points are the equilibrium points, cf. Chapter 5.) Lemma A.5 
can also be exploited to find the ground state and ground state energies of the 
quantized systems. Finally, a corollary of the proof will be quite useful in Sections 
2.1 and 2.3. 

Lemma A.5. Let yECN, zEC be such that the matrix 

(A.21) 

with 

(A.22) 

is well defined. Then the roots of the polynomial A ~ I E - A 1 NI are given by 

Aj=e (N+1-2j)z, j= 1, ... 'N (A.23) 

Proof Due to Cauchy's identity (A.2) the symmetric functions of E are given 
by 

(A.24) 

We claim that S k does not depend on y. Taking this for granted, we set y k = - kA, 
A > 0, in E to obtain 

lim E =diag(e (N- l)z, e (N-3Jz, •.. ' e (--N+ l)z) 
A-oo 

(A.25) 

and the lemma follows. Thus it remains to prove the claim. 
First, we note that S k is symmetric in y 1 , ••• , y N, so we need only show 

constancy in y 1 • To this end we fix y 2 , ••• , y N, z in general position, so that each 
of the terms at the rhs has at most simple poles for y 1=y 1 (mod 2rd), l > l. 
Clearly, S k is 2rd-periodic in y 1 and converges to a constant for Re y 1 -+ ± oo. 
Therefore, by Liouville's theorem it suffices to prove that the residues vanish. 
Moreover, by symmetry and periodicity we need only consider the pole at y 1 =y 2. 

To show that the residue at this pole vanishes, we first observe that when the 
index set I does not contain the indices 1 and 2 or contains both of them, then the 
corresponding term in S k has no pole at y 1 = y 2 • Next, we pair off the remaining I 
by setting I 1 = {1} UJ, I 2= {2} UJ, where 1, 2r;i:.J. Then the residue sum for any 
such pair vanishes. Indeed, omitting the singular factors 1/sh ( y 1 -y 2) and 
l/sh ( y 2 -y 1) in I 1 and I 2, resp., and setting y 1 = y 2 in the remaining products, the 
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latter are manifestly equal. D 

The application of this lemma to spectral properties of the Lax matrix arises 
upon setting 

Y1=~(N+l-2j), j=l, ... ,N 

Then one readily verifies 

sin(; (j-/) +iz) 
c1= TI r(iz) 

,,.1 . n: ( . I) 

where 

sin(r+ Z) 
r(r) =---

. n: 
smN 

smN 1-

sin(•+-W-) 

. 2n: 
smN 

. ( + (N-l)n:) sm !' N 

. (N-l)n: 
sm N 

Hence, setting z = ir, we may rewrite E as 

Then 

reads 

E _ sinNr 
jk ( n: ) N sin r-N (j-k) 

E 1 = lim _!_(E-h) 
.~o !' 

(E i)1k= (o1k-1) __ n:_l __ 

sin N (j-k) 

sin Nr 
N sin!' 

(A.26) 

(A.27) 

(A.28) 

(A.29) 

(A.30) 

(A.31) 

Lemma A.6. Let rE ± (0, n:!N) or irER *, and let E and E 1 be given by 

(A.29) and (A.30), resp. Then E and E 1 have simple spectrum given by 

a(E)= {e<N-l)i•, e<N-3)i•, ... 'e<-N+l)i<} (A.32) 

a(E1)=i{N-l, N-3, ... , -N+l} (A.33) 
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Proof. The assertion about E follows from Lemma A.5. To prove (A.33) we 
rewrite E as 

· N ( 1 s 8 2 8 N-
1 

) E= sm r _N_+ + + ... +----:--~-
N sin r . ( n ) . ( 2n) . ( (N - 1) n) 

sm r+ N sm r+N sm r+ N 

(A.34) 

where Sis the antiperiodic shift, 

S= ( L !] 
-I 0 0 

(A.35) 

Now S has eigenvalues 

(A.36) 

and corresponding eigenvectors 

(A.37) 

as is easily verified (and well known). Thus u co, ... , u (N) is an eigenvector basis 
for E, and so (A.33) follows from (A.30) and (A.32). D 

As a corollary we obtain the remarkable identities 

N-1 

sin Nr :E 
j=O 

i1rj(2k-1)/N 

e • -Neir(N+l-21<), 

sin(r+ ~) 
k=I, ... ,N (A.38) 

Indeed, these follow upon combining (A.32), (A.29) and (A.34)-(A.36). (To 
verify that the 1-1 correspondence works out right, one need only check (A. 3 8) for 
d -n/N.) 

Our last lemma amounts to yet another functional identity, viz., 

e ci-N)', j= 1, ... , N (A.39) 

It will be used in the proof of Lemma 2.3. 
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Lemma A.7. One has 

Cr=e(l-N)z t, t= (1, 1, ... , 1) (A.40) 

where C and r are given by (A.1) and (A.4), resp. 

Proof Puttingy1= -/3a1/2, z=i/Jµg/2 in (A.l), (A.4) one sees that (A.40) 
is equivalent to (A.39). To prove (A.39), we note that the lbs is 2.m'-periodic iny1 

and bounded for I Rey 1 I ~oo. The residue sums at the (generically) simple poles 
y 1=y1 (mod 2.m') are easily checked to vanish, so that the lbs does not depend on 
Y1 by virtue of Liouville's theorem. Thus it is equal to its limit for Rey1~-oo, 
which yields (A.39). D 
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