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Abstract. Discrete tomography deals with tomographic reconstruction of greyscale images for
which the set of possible grey levels is discrete and small. Here, we develop a discrete approximate
reconstruction algorithm. Our algorithm computes an image that has only grey values belonging
to a given finite set. It also guarantees that the difference between the given projections and the
projections of the reconstructed discrete image is bounded. The bound, which is computable, is in-
dependent of the image size. We present reconstruction experiments for a range of phantom images
and a varying number of grey values.
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1. Introduction

Discrete tomography deals with tomographic reconstruction of greyscale images for which the set of
possible grey levels is discrete and small [11, 12]. An image of an unknown object is reconstructed
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from a series of projections of the object, taken along a range of angles. Contrary to general computed
tomography (CT) [10, 15], which requires a large number of projections to obtain an accurate recon-
struction, the constraint on the set of grey levels in discrete tomography enables accurate reconstruction
from a relatively small number of projections, depending on the properties of the object [2, 11, 12]. A
projection for a single angle can be modeled as a collection of line sums along parallel lines through the
object, where the exact definition of ’line sum* depends on the particular model used for the object and
the projection process. The grid model, where the object is modeled as an image defined on a discrete
set of points and line sums are taken along lattice lines through these grid points, can be used to model
the position of atoms in crystalline nanostructures [19, 13]. Other projection models, such as the line
and strip models [15, section 7.4.1],[21], are formed by discrete approximation of integral operators that
compute integrals of a function defined on the plane. Such an integral model can be used to model the
projection process in tomography at lower magnifications than the atomic level, such as X-ray tomogra-
phy. A range of reconstruction algorithms for discrete tomography have been proposed in the literature
[1, 2, 12, 18]. Most of these algorithms are specifically designed for the case of binary tomography,
where only two grey levels are allowed in the reconstruction.

None of these algorithms comes with a guarantee that an exact solution of the discrete tomography
problem is always found, which is not surprising considering the fact that the reconstruction problem
is NP-hard for the grid model case [7]. At the same time, the results of computational experiments
suggest that in many cases, a solution is found that is near-optimal, or even completely identical to the
original object from which the projections were taken, even if the number of projections is very small
(less than 10, say). A principal problem with these algorithms is the fact that the error made in the
reconstruction depends on the particular problem instance and cannot be bounded sharply. One notable
exception is the algorithm proposed in [7], where the ratio between the number of 1’s (i.e. grid points
having a value of 1) in the unknown ground truth object and the reconstructed object is bounded in the
optimal solution of certain relaxed variants of the binary reconstruction problem. We are not aware of
any algorithm for which nontrivial bounds have been described for the difference between the projections
of the reconstructed (discrete) image and the given projections.

In this article, we propose a discrete approximate reconstruction algorithm that comes with such
guarantees, based on bounds derived in [9], which are in turn based on the Beck-Fiala Theorem [4]. Our
algorithm computes an image that has only grey values belonging to the given finite set. It also guarantees
that the difference between the given projections and the projections of the reconstructed discrete image
is bounded. The bound, which is explicitly computable, is independent of the image size and scales
linearly with the number of projection angles. The algorithm combines techniques from combinatorics
with algebraic methods for the solution of linear equation systems.

This paper is structured as follows. Section 2 introduces notation and describes the main concepts
and mathematical objects used throughout the paper. In Section 3, the basic algorithm is introduced.
A proof for the upper bound on the projection error of the reconstructed image is given in Section 4.
Section 5 presents several variations of the algorithm, which can improve its computational performance
in practice. Computational and numerical aspects are discussed in Section 6. In Section 7, results are
presented for a series of simulation experiments based on three phantom images, including both binary
images and an image with three grey levels. Finally, Section 8 provides an outlook and conclusions.
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2. Notation and concepts

Tomography concerns the reconstruction of an object from its projections. The exact definition of the
term “’projection” can vary, but in general it is related to the set of line integrals (or surface integrals along
a tight strip) through the object in a particular direction. We refer to the specific model used to determine
such integrals as the imaging model. Throughout the discrete tomography literature, several imaging
models have been considered, such as the line, strip and Joseph’s model [14]. Since the algorithm
developed here can be used for any imaging model, we do not specify any model for the development of
the theory, only for the experiments.

The unknown object that one wants to reconstruct is typically approximated by an image defined on
a discrete pixel grid. The image that we want to reconstruct is unknown but we do know its grey values,
which belong to a discrete set. Let D = {dj,...,ds} C R® be a given set of grey values such that
di < dp < ... < dswith s small. Also, let d = max;—1, s—1(dj+1 — d;). An image is represented by
a vector x = (z;) € R™. We refer to the entries of x as pixels, corresponding to elements in the discrete
pixel grid. A discrete image, in this paper, corresponds with a vector £ € D".

For given set of k projection directions, each consisting of w measured values, the projection map
maps an image x to a vector p € R of projection data, where m = kw denotes the total number of
measurements. As the projection map is a linear transformation, it can be represented by a matrix W =
(wij) € R™*", called the projection matrix. The entry w;; represents the weight of the contribution of
pixel x; to the projection value p;, which typically satisfies 0 < w;; < 1. For two images x,y € R",
we refer to W (x — y) as the projection difference of x and y, and to its largest component in absolute
value ||W (x — y)||o as the projection distance.

The general reconstruction problem consists of finding a solution of the system

Wx=p (1)

for given projection data p = (p;), i.e., to find an image that has the given projections. In discrete
tomography, one seeks a solution of the general reconstruction problem which belongs to D.

Throughout the article, we use the symbol O to denote a column vector (0, ..., 0)7 consisting of 0’s,
where its dimension is clear from the context. Also, we often use x = |W |1 = maxj—1,..n » .oy |wijl-

For the following sections, consider the problem of finding a solution, belonging to the set D", of a
fixed linear system Wax = p called the discrete reconstruction problem. We call x € D" an approxi-
mate discrete solution if its projection difference with respect to a solution of the general reconstruction
problem is small.

3. Algorithm description

The algorithm presented here aims to reconstruct an image that only contains grey values belonging to the
given set D and ensures that its projections have a projection distance from the given projections smaller
than xd. The parameter x = ||W|; depends on the projection model and the number of projection
angles, while d = max;— s—1(dix+1 — d;) is the largest difference between two consecutive values in
D. The bounds on the projection distance do not depend on the image size.

The algorithm requires an initial grey scale image (¥ € [d1,ds]™ and uses the projections p =
W (9 of the initial image as the given projections for the reconstruction. If a pixel xg-o) already belongs
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to the set D, it is left unchanged by the algorithm. For every pixel j such that xEO) ¢ D, there is a unique

7 such that d; < asg-o) < dj+1. In the reconstructed image & € D", this pixel j satisfies Z; € {d;, d;+1},
so a pixel can either be assigned the first grey level larger than its initial value, or the first grey level
smaller than its initial value.

In each iteration, a new image ) is computed that has a projection distance smaller than xd with
respect to the initial image (®). Whenever the current image «(*) contains pixels in D, the next image
(1) will contain these pixels with the same values as the current image. Furthermore, the current
image x® contains more pixels belonging to D than the previous image a(*~1).

The iteration step adds a specific ghost image to the current image =(!). A ghost image for a given
projection matrix is an image in the null space of that matrix. The ghost image may change the value
of pixels not in D but not the ones in D, and is constructed in such a way that the number of pixels for
which the value is in D increases. Therefore, the number of such iteration steps is at most n, the total
number of pixels.

In each iteration, some line sums remain unchanged. Such line sums are associated with equations in
the system (1) for which the sum of the coefficients, of the pixels currently not in D, is not smaller than
k. The remaining line sums may have an error of at most xd with respect to the projections of the initial
image.

In order to specify the ghost image, define the following sets

Definition 3.1. Fori = 1,...,m, define L; = {1 < j < n : w;; # 0}, the set of indices of pixels
that occur in the ith equation of the linear system (1). Based on the current image (!~ in iteration
t — 1, we can define jg) ={1<j<n: :B;t_l) ¢ D}, the set of indices of pixels with values not

in D in *~1) and its complement Ig) ={1,...,n}\ fg). Another important set for the algorithm is

GW ={L; : ZjeL_ AT Wi > K, fori =1,...,m}, the family of sets L; of pixel indices, such that
il lp

the sum of the corresponding coefficients is at least x for pixels not in D in 21,

Definition 3.2. Let 2(*~1) be the reconstructed image that resulted from iteration ¢ — 1. Consider the
following homogeneous linear system of equations

Z wijyj('t) = 0 forall LiGG(t) )
jeLiNIY

y§t) = 0 forallj & (Up,cqmli)N fg). (3)

Let A® be the matrix associated with the linear system corresponding to the equations (2) and (3). An
image y) € N(A®) = {x: AB®x = 0} is called a ghost image associated with Ay®) = 0.

In iteration ¢ of the algorithm, a ghost image associated with ADy® = 0 s computed, which is
subsequently used to form the new reconstruction ). Pseudocode for the procedure that uses this ghost
image is shown in Procedure 1. As a result of applying Procedure 1, a new reconstruction is formed for
which at least one new pixel belongs to D.

If N(A®) = {0}, hence y*) = 0, Procedure 1 has no effect. Another technique must be employed
to change the current value of pixels not yet in D. In that case, all pixel values not in D are rounded to
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Procedure 1 Calculate (")
Amin — o0
for j fg) do
Compute the smallest A > 0 s.t. xg-t_l) + )\y](-t) €D
if A < Anin then
)\min — A
end if
end for
x® — =D 4\ oy

Procedure 2 Calculate @
forj € {1,...,n} do
if x§t) € D then

)
J

Tj
else
Assign 7; the element of D which is nearest to xg-t)
end if
end for

their nearest value in D, after which the algorithm terminates. The algorithm ends with a final vector
& € D" satisfying the given bounds. This part of the algorithm is shown in Procedure 2.

The iterative algorithm which obtains a vector in D™ with projection error at most «d is given in the
flowchart represented in Fig. 1.

output:

yes

t—t+1 procedure 2

procedure 1

Figure 1: This flowchart describes the discrete reconstruction algorithm which obtains a discrete image

Z in D with projection distance of at most xd with respect to a given image (©).
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4. Walkthrough example

We have built a simple example to illustrate each step of Algorithm 1 (Fig. 1). In this example, the size
of the image to be reconstructed is 3 x 3 and D = {0, 1}. We use 3 projection angles: horizontal, vertical
and diagonal from top left to bottom right. The projection model is defined below setting x = 3.

The initial approximate image z(®) is shown in Fig. 2(a) and the 11 line sums which form the
projection data are: horizontal: h; = x1 + x2 + x3, he = x4 + x5 + x¢ and hg = x7 + xg + x9; vertical:
vl = X1 + x4 + X7, V2 = T + T5 + xg and v3 = x3 + x¢ + 9 and diagonal: dy = x7, doy = x4 + T8,
ds = 1 + x5 + x9, dy = 2 + z¢ and d5 = x3. We leave the computation of each line sum for each
iteration for the reader.

0 = 0.5[x = 0.8[x” = 05 1 4 0 08 05 05
0 =05[x2 = 06]x" = 0.7 -1 0 1 0.2 0.6 1
0 =05]|x” =04 [x? =05 0 1 -1 05 07 02

(a) initial approx. solution  (b) ghostimage ¥’  (c) approximate solution
(0)
T T

Figure 2: Ghost image y!) together with 2(?) produces A(!) = 0.3, generating () = () 4 X(Dg1),

In order to simplify the notation, we use the same symbols of the line sums to represent the sets L;
which form G, where G = {hy, h, h3, v1,va,v3,d3}. A ghost image y(!) is shown in Fig. 2(b),
which has zero line sums for each L; € GW| Therefore, for each L, eG @) the respective line sums of
2(® and ™) are equal.

For iteration 2, we have G®) = {hy, h3, vy, v2,d3} from Def. 3.1 and y((f) = 0 from Def. 3.2. As a
consequence, the line sums hy and v3 of the ghost image y@ are no longer restricted to zero. A possible
ghost image y(® and the resulting () are shown in Fig. 3.

1 1 0 1 0.3 0.5
1 0 0 0 0.6 1
0 1 1 0.5 0.9 0

(a) ghost image y(Z) (b) approximate solution
2
T

Figure 3: Ghost image 3 together with z(!) produces A(?) = 0.2, generating z(?) = z(!) 4 \2)y(2),
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Notice that Ig’) = {1,4,6,9}, based on 2(?). For iteration 3, we have G*) = {v,} and from Def.

3.2, the pixels yég), yég) and y§3) are the only ones allowed to be non-zero. A ghost image y® and the

resulting image x® are shown in Fig. 4.

0 1 0 1 0 0.5 1 0 1
0 1 0 0 0.9 1 0 1 1
0 0 0 0.5 0.9 0 1 1 0

(a) ghost image y®  (b) approximate solution (c) approx. discrete solu-
A tion &

Figure 4: Ghost image y(®) together with 2(?) produces A\(3) = 0.2, generating (®) = 2(2) 4 \(3)gy(3),

As G = (), we have N'(A¥) = {0} and Procedure 2 is used, obtaining & by rounding the entries
of (3) to the nearest element of D, after which the algorithm terminates. In this case, pixels having a
value of 0.5 are rounded to 1. The final approximate solution & is shown in Fig. 4(c).

5. The algorithm’s proof

In this section we prove that the algorithm represented in the flowchart of Fig. 1 finds an image & € D"
such that the projection distance between the initial image 2(© and & is smaller than xd. First, we prove
the requirements and implications of one iteration of Procedure 1.

Lemma 5.1. Suppose that

(H1) 2t ¢ [dy,ds]™ is the reconstructed image that resulted from iteration ¢ — 1;
(H2) y® £ {0} is a solution of A®y = 0, for A® given by Definition 3.2.

Then after applying Procedure 1, the following statements are true:

122" =2 foral 2"V e D;
(T3) there is no 1 < j < n such that there exists a d; € D for which ;c;t‘l) <d; < xg,t);
(TS) > jer, wij 2 - :E(«t_l)’ < kd forall L;¢GW.

J J
Proof:

Let y® £ 0 such that AWy® = 0. Define ¥ = (=1 + AXOy®) with \®) the smallest positive
scalar A for which :L';t_l) + )\ngt) € D for some j € fg). This definition of &® follows exactly the

computation of Procedure 1. As mgt) € D and none of the entries that were already in D are modified,

(T1) \z]gﬂ) > \fg—ﬂ :

statements (T1) and (T2) are true. By definition of A statement (T3) is also true.
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Statement (T4) follows from the definition of A® and statement (T2):

S wie? =2y =2 Y w10 Y wy=0 forall L e GO

JeLi jeLiNIy jeLiNIy
Also, (T3) implies ‘xét) — ‘ < d,foralll < j < n, and since ). jeL.n I wi; < kK for
L; ¢ G we have
3wyl ‘ <d Y w40 Y wy<wd for Li¢GY
JeLi jeL; NI jeL;NIY
foralli =1,...,m. a

Whenever y®) = 0 is the unique ghost image of iteration ¢, Procedure 1 has no effect. The next
Lemma is an intermediate result for the case that Procedure 2 is required.

Lemma 5.2. Suppose that N'(A®")) = {0} for A®) given by Definition 3.2. Then

Z wi; < K for 1=1,....,m.
jELiﬂfg)

Proof:

As equations (3) already define yj(-t) = 0 for a set of j’s, let A®) = (a (t)) be the matrix associated with

equations (2). Since J\/A(A(t)) = {0}, the number of linear independent rows of A® is equal to the
number of columns of A®). We can eliminate rows which are linear combinations of others obtaining a
square matrix, say of size X r. Supposing r > 0, the definition of x = |W||; yields

T T T
Z&Z(-;) <k forj=1,...,r, implying ZZ&S) <rk 4)

i=1 7j=11i=1

and the definition of G(*) gives

T T T
Sal! >k fori=1,...,r, implying Y > al)>rw. (5)
j=1 i=1 j=1
From statements (4) and (5) we conclude that 37, 37", U) =rrand )i, a w = k. Then
Z Wij = Z AS) for Li S G(t)
Yl 7

forte=1,...,m.
If 7 = 0, we have G(®) = () and it follows from the definition of G*) that Zje LI Wis < K for
il l4p

L; §é G®), O
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Theorem 5.3. Let (°) € [d;, d,]" be a given image such that W (%) = p. Then, after termination of
Algorithm 1 (Fig. 1), we obtain a vector & € D" such that

Wz — plloo < Kd.

Proof:
Procedure 2 is used as the last iteration of the algorithm generating € € D™. Hence we have to prove
that the projection error accumulated during the iterations satisfies |[WZ — p||oc < xd.

Lemma 5.1 ensures that between any two iterations ¢ — 1 and ¢ of Procedure 1 thereisno 1 < j < n

(t-1) (®)

such that there exists a d; € D for which x; < d; < z;’, implying that there isno 1 < j < n such

that there exists a d; € D for which x§-0) <d; < x(t)

;-
Suppose that iteration ¢ + 1 uses Procedure 2: set 7; as the element from D which is nearest to xg-t)

TUHY and set z; = 2\ for all j € Igﬂ)

J . Then we can conclude that |z; — x§0)| < d for

for all j €
j=1,...,n.

From Lemma 5.1, it is easy to check that after ¢ iterations of Procedure 1 we have

Zwij(w§t) - $§'0)) =0 for LieGWY,
L;

After applying Procedure 2, Lemma 5.2 provides Zje L 10D Wig < kfori=1,...,m, which yields
il I4p
|Zw¢j(i‘j - :Eg-o))| <rd for L; e GY. (6)
L;

Also from Lemma 5.1, for each ¢ = 1,..., m such that, L; ¢ G(t), there exist disjoint sets A, B ¢
G® such that L; = AU B with djea wij(xgt) - x§0)) = 0and ). s w;; < k. These properties are
still valid after applying Procedure 2 yielding

1N wij@ - ) = 1> wy(z - \V) < wd for Li ¢ GO. 7
L;

jEB

Therefore, from Egs. (6) and (7), it follows that & € D™ and |[W & — p||oc < kd.

6. A threshold variation

In some cases, after an iteration step, there are pixels with current values very close to a value in the set
D. The use of a threshold parameter 7 < d for rounding some pixels can speed up the algorithm, as
it would need fewer iterations to make x(°) converge to & € D™. As a drawback, the use of threshold
may increase the difference in the projections. Moreover, the bound on the projection distance becomes
dependent on the image size. Our variant of the reconstruction algorithm that uses such a threshold only
requires a modification in Procedure 1. We denote the modified procedure as Procedure 3.
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Procedure 3 Calculate z(*)
)\min — 0
for j € fg) do
Compute the smallest A > 0 s.t. xgt_l) + )\yj(-t) €D
if A\ < A\pin then
)\min — A
end if
end for
x® — =D 4 N\ oy
forj € {1,...,n} do
if there exist d; € D such that ]xg-t) —d;j| <Tfori=1,...,sthen

acgt) < dz‘
end if
end for

Theorem 6.1. Let (°) ¢ [dy,d,]" be a given image such that Wz(®) = p and 7 < d. Then, after
termination of the Algorithm 1 (Fig. 1) using Procedure 3 instead of Procedure 1, we obtain a vector
T € D" such that

W — plloc < rd+ (|W o — 5)7.

Proof:

If \xg-t) —dj| < 7 forsomel = 1,...,s, then |:z:§ - xg-t)\ < 7. This implies that the projection
difference of the i-th component increases by, at most, 7 for each thresholded pixel in equation ¢, in one
iteration step. Since 7 < d, the worst case happens when for an equation i, there exist sets of indices
Aand B such that ), ywij = £ and ), pwij = W — £, and all the pixels defined by B are

thresholded, but not the ones defined by A. After applying Procedure 2, we have Z;‘:l wij|T; — x§0)‘ <
kd+ (||[W oo — K)T. 0

t+1)

7. Computations

In this section, we will cover two important computational aspects of our approach: how to compute
a suitable initial solution and how to compute a ghost image for the iteration steps. In both cases, we
outline a particular method for computing an image. Many alternative methods exist for solving the
corresponding mathematical problems, some of which may yield a more efficient algorithm.

7.1. [Initial solution z(©

The discrete reconstruction algorithm presented in this paper needs an initial image z(©) € [dy,ds]™
which can be achieved, e.g., by an algorithm presented as a Norm minimization over an interval algorithm
in [6]. Algorithm 4 is the version of the algorithm that we have used in the experiments. It minimizes
11|||% subject to Wz = pand d; < 2; < d, forall j = 1,...,n, which guarantees =¥ € [dy, d,]".
This algorithm is a variation of ART [8] (ART is also known as Kaczmarz method [10, 16]).



K.J. Batenburg et al./Approximate Discrete Reconstruction Algorithm 249

Algorithm 4 Compute (¥

t<0,2+0, 2«0,
while |[Wz(®) — p| ., > ¢ do
i < (tmodm)+1

" R
Pi—D j Wijj

zj & 25+ S wi; forj=1,....n
forj e {1,...,n}do
dy if z; < dy
2j — Zj if d1 < Zj < ds
ds if zj > ds
end for
t+—t+1
end while
) « 2z

Since we want to guarantee a small projection distance between & and the unknown original object
from which p was formed, it is necessary to have a small distance between Wz and p. In order to
do so, the stopping criteria of Algorithm 4 is given by ||[Wz — p||~ < €, where ¢ is a positive constant
close to zero.

7.2. Non-null ghost images

If N (A®) = {0}, Procedure 1 is executed. To this end, we must find a non-null solution of a homoge-
neous linear system
Az =0. (8)

To solve this problem we have used an iterative method called CGLS (Conjugate Gradient Least
Squares) [17]. The CGLS algorithm requires an initial guess z(?). Apart from numerical errors, applying
the CGLS algorithm to the system (8) results, after convergence, in the computation of zp¢ = (I —
ATA)z(O), where At is the Moore-Penrose pseudo inverse of A, see [3, 5, 20]. The CGLS algorithm
computes z7,g without explicitly computing Af.

The matrix (I — AT A) orthogonally projects z(%) onto A'(A). As a result, z;,g = 0 if and only if
20 1 N (A). Hence, randomly selecting 2(9) will almost certainly yield a zr,g # 0.

In practice, several algorithms use the relative residual as a parameter for the stopping criteria. The
relative residual is given by the current iteration residual norm divided by the norm of the right-rand
side. When the right-hand side is the null-vector, the relative residual is computed as infinity and this
algorithm can never identify convergence. To overcome this problem, instead of applying the CGLS
algorithm to (8), we apply it to the linear system

Az =0, &)

with b = — Az, When applying CGLS to Egs. (9), we select the null-vector as initial guess obtaining,
therefore, z* = A'b, the minimum norm solution of system (9) [3, 5, 20]. Defining y = 20 4 z*, it
satisfies Eqs. (8): Ay = Az(0) + Az* = Az(O 4+ p=0.
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8. Numerical experiments

A series of experiments was performed to investigate the quality of images reconstructed by the algorithm
presented and the resulting bounds on the projection distance, for a range of projection angles and images.
The experiments are all based on simulated projection data obtained by computing the projections of the
test images (so-called phantoms) in Fig. 5:

(a) Phantom 1, 128 x 128 (b) Phantom 2, 128 x 128 (¢) Phantom 3, 128 x 128

i

(d) Phantom 1, 32x32 (e) Phantom 2, 32x32 (f) Phantom 3, 32x32

Figure 5: Original phantom images used for the experiments.

Phantom 1 represents a very simple, nearly convex shaped object;

Phantom 2 was constructed from a micro-CT image of a rat bone acquired with a SkyScan 1072 cone-
beam micro-CT scanner.

Phantom 3 represents an object with three grey levels and fairly complex boundaries.

As a projection model, we focus on a model for a continuous representation of the object, the strip
model [15, section 7.4.1]. In the strip model, a projection is computed by considering a set of parallel
strips in a given direction. For each strip we compute the weighted sum of all the pixels which intersect
that strip. Each weight w;; equals the intersection area of the strip and the pixel, see Fig. 6.

8.1. Reconstruction comparison

In this section we compare two variations of the reconstruction algorithm: (i) Algorithm 1 (Fig. 1), (ii)
the thresholded version of Alg. 1 presented in Section 6. For the two algorithms mentioned above, we
compare quality of the images reconstructed as well as reconstruction time required for each one of them.
Also, the quality of the initial solution «(?) directly affects the final reconstruction. We tested different
approximate solutions x(?).
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Figure 6: The contribution weight of each pixel to each projection component is given by the intersection
area between the pixel and the respective strip.

8.1.1. The quality of the initial approximate solution x(*)

The quality of the image reconstructed by the presented algorithms depends on the quality of the initial
solution (%) which was computed by the algorithm presented in section 7.1. Fig. 7 presents reconstruc-
tions of phantom image 5(d), using the standard algorithm (Fig. 1), for different number of projection
angles. For p being the vector of projections of phantom 5(d), Fig. 7 shows reconstructions in which the
initial approximate solution satisfies |[Wz(?) — p||o, < efore € {10715 x 10~'}. Since Wa(?) # p,
the reconstruction algorithm 1 can only guarantee ||W & — p||o < xd + €. If a threshold parameter 7 is
included, then |WZ — p|loc < kd + (||W|loo — K)T +&.

olole

(b) € = 10~ and number of projection angles: left: 2; middle-left: 6; middle-right: 8; right: 12.

Figure 7: Reconstructions of phantom 5(d) of dimensions 32 x 32 using Algorithm 1.
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In Fig. 7, itis possible to see white pixels (pixels assigned with a value larger than zero) in regions for
which a projected strip that intersects these pixels has a projection value of 0. These line sums accumulate
detectable errors and since the error per projection is limited to xd, the error in a region where it is not
detectable will diminish. After the reconstruction algorithm, post-processing of the reconstructed image
may correct these easily identifiable wrong pixels.

8.1.2. The quality of the reconstruction x

Reconstructed images from the thresholded version of Algorithm 1 for phantoms 5(e) and 5(f) are dis-
played in Figs. 8 and 9 fore = 10~ and 7 € {0, 3%, \/%} For phantoms 5(b) and 5(c), the reconstructed
images from the thresholded version of Algorithm 1 with 7 € {ﬁ, ﬁ}, are displayed in Fig. 10.

(c) Algorithm 1 with 7 = \/% Number of projection angles: left: 2; middle-left: 6; middle-right: 10; right: 14.

Figure 8: Reconstructions of phantom 5(e) of dimensions 32 x 32 and € = 1071,
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(b) Algorithm 1 with 7 = 3% Number of projection angles: left: 2; middle-left: 6; middle-right: 8; right: 12.

- AFAEA

(c) Algorithm 1 with 7 = \/% Number of projection angles: left: 2; middle-left: 6; middle-right: 8; right: 12.

Figure 9: Reconstructions of phantom 5(f) of dimensions 32 x 32 and e = 107,
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(b) Phantom 5(b). Alg. 1 with 7 = \/1178. N. of projection angles: left: 4; middle-left: 16; middle-right: 20; right: 24.

(d) Phantom 5(c). Alg. 1 with 7 = \/%Ts' N. of projection angles: left: 4; middle-left: 16; middle-right: 20; right: 24.

Figure 10: Reconstructions of phantoms 5(b) and 5(c) of dimensions 128 x 128 and € = 1071,
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We have measured the projection distance (Pd) of the previously presented reconstructions and com-
pared these with their respective bound (B) as can be seen in Figs. 11 and 12. Also, Figs. 11 and 12
present the Image distance (1d) defined as the Euclidean distance between the reconstructed image and
the respective phantom image. Notice that despite the bound xkd + (||W||sc — )T + € might increase
with the number of projection angles, the quality of the reconstructed images improves, in general. It
also means that the projection distance of the reconstructed images decreases with increasing number of
projections angles.
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Figure 11: Comparison between the projection distance bound (B) and actual projection distance (Pd)
measured in the left vertical axis for increasing number of projection angles. The Image distance (Id)
uses the right vertical axis. From left to right: Phantom images 5(d), 5(e) and 5(f).
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Figure 12: Comparison between the projection distance bound (B) and actual projection distance (Pd)
measured in the left vertical axis for increasing number of projection angles. The Image distance (Id)
uses the right vertical axis. From left to right: Phantom images 5(a), 5(b) and 5(c).

We remark that the key advantage of the proposed algorithm is the guaranteed error bound of the re-
sulting reconstruction. Alternative algorithms, which do not yield such a bound, can yield more accurate
reconstructions in practice, using less computation time. As an example, we refer to the DART algorithm
in [2], where similar phantoms are used in the experiments. It can be seen in Fig. 7 of [2] that Phantom
2 and 3 (corresponding to Phantom 5 and 7 in [2]) are reconstructed by DART far more accurately from
few projections compared to our proposed method, yet without any guarantee on the reconstruction error.

8.1.3. Running time

The algorithm variants with different threshold parameters compared in this section have different run-
ning times, which can vary from 0.1 seconds for the fastest run up to 10’s of minutes for the slowest
runs. All experiments were run on a workstation PC using a single core of an Intel Core-i5 CPU at
2.8GHz. As the computation time is machine dependent, we display a relative time, which is computed
by dividing the time needed for a reconstruction by the time of the fastest reconstruction among all of the
runs presented in the experiments. The relative time comparison between the reconstruction algorithms
can be seen in Table 1. For the phantoms in Fig. 5(a), 5(b), and 5(c), the running time was prohibitively
large for the basic algorithm, which does not use a threshold. The timing results for these cases are not
included in the table.
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N. proj. 4 16 24 N. proj. 4 16 24
T=qc 5387 348 347 1= 2  5x10° 2x10° 7x10*
T = %28 817 356 356 T = %28 3765 1881 423
(a) Phantom 5(a). (b) Phantom 5(b)
. N. projections 2 10 16
N. proj. 4 16 24
T B B E 7=0 37.7 3.25 1
T= 1% 3x10 1x10 1x10 1
1 1361 428 79.1 (7 22 1 1
T = .
V128 — 1
(c) Phantom 5(c). =13 3.7 1 1
(d) Phantom 5(d).
N. projections 2 10 16 N. projections 2 10 16
7=0 83.7 598 95 T7=0 82.7 91 61.1
T=3 36.8 157 1 T=3 187 10 16
T = %33 52 1.8 1 T = \/% 1.8 1 1
(e) Phantom 5(e). (f) Phantom 5(f).

Table 1: Relative reconstruction time for Alg. 1 with different threslholds. ¢ = 10~*

We have measured the number of iterations of the algorithm in each experiment and, in general, it
decreases with increasing number of projection angles. In the experiments, the maximum number of
iterations required was less than 60% of the number of image pixels.

The key bottleneck in the computation complexity of the algorithm is the fact that a large system of
equations (up to the same order as the tomography problem itself) must be solved to obtain a ghost image,
and that this computation will have to be performed many times (at most once for each pixel). As there is
a stochastic component in the computation of the ghost images, and as the particular computational route
followed by the algorithm depends strongly on the input projections, a meaningful (somewhat sharp)
complexity analysis of the algorithm is highly challenging. We consider the algorithm proposed here as
a proof-of-concept method that requires further optimization and analysis to be useful for reconstructing
large images.

9. Outlook and conclusions

In this article, we have presented a reconstruction algorithm which computes an image that has only
pixel values from a given finite set, and for which the projection distance to the unknown ground truth
object is bounded. Contrary to alternative methods, which often perform well in practice but do not come
with guarantees, our approach is specifically designed to yield a reconstruction for which the projections
are provably close to the given projection data. Our experimental results for simulated phantom images
demonstrate that the algorithm not only computes images that approximately match the given projections,
but also yields reconstructions that resemble the unknown original image, even if only a small number of
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projections are used. The techniques of using ghost images and thresholding employed in our algorithm
are quite generic and leave a large degree of freedom in parameter selection. For example, the particular
switching element considered in a step of Procedure 1 is currently determined randomly, while it could
also be chosen depending on features of the current reconstruction.

In its current form, the proposed algorithm is neither optimized for speed of computation, nor for

quality of the reconstructed image. To make the step In future work, we intend to optimize the algorithm,
and make it more robust, to the extend where it can be applied to larger images, and to experimental data.
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