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A Calculus of Transition Systems 

(towards Universal Coalgebra) 
J.J.M.M. RUTTEN 

ABSTRACT. By representing transition systems as coalgebras, the 

three main ingredients of their theory: coalgebra, homomorphism, 

and bisimulation, can be seen to be in a precise correspondence to 

the basic notions of universal algebra: L:-algebra, homomorphism, 

and substitutive relation (or congruence). In this paper, some stan­

dard results from universal algebra (such as the three isomorphism 

theorems and facts on the lattices of subalgebras and congruences) 

are reformulated (using the afore mentioned correspondence) and 

proved for transition systems. 

1 Introduction 

A transition system is usually defined as a set together with a relation on 

that set. It is a simple observation, possibly first made in Kent 1987 and 

Aczel 1988, that-equivalently-a transition system can be represented as a 

coalgebra by viewing its relation as a (nondeterministic) function. This rep­

resentation gives rise to a natural (and standard) notion of homomorphism 

of transition systems. Moreover, a bisimulation relation simply turns out 

to be a coalgebra with some special properties (Aczel and Mendler 1989). 

The general definition of coalgebra is dual to that of algebra, which 

has many well-known instances such as groups, rings, etc. The features 

common to all of these examples are subject of a renowned field of math­

ematics called universal algebra. The central notions there are 2'.-algebra, 

homomorphism of 2:-algebras, and congruence. It has been observed in 

Rutten and Turi 1994 that, on the coalgebra side, the corresponding no­

tions are: transition system, homomorphism of transition systems, and 

bisimulation equivalence. (More generally, the notion of substitutive rela­

tion corresponds to that of bisimulation relation; hence congruences, which 
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are substitutive equivalence relations, correspond to bisimulation equiva­
lences.) More about the precise nature of this correspondence is to be found 
in Section 11. 

The aim of this paper can be summarized as an attempt to understand 
how much of universal algebra can be done for transition systems. Our 
approach has been, rather naively, to take a textbook on universal alge­
bra (actually two: Cohn 1981 and Meinke and Tucker 1992); reformulate 
definitions and theorems there by replacing everywhere: :B-algebra, ho­
momorphism of :B-algebras, and congruence, by: transition system, homo­
morphism of transition systems, and bisimulation equivalence, respectively; 
and see whether the resulting statements could actually be proved. 

As a result, many of the familiar facts on :B-algebras turn out to be valid 
(in their translated version) for transition systems as well. For certain 
notions sometimes more and sometimes less can be stated and proved. 
(Examples are simple transition systems and the lattice of bisimulations, 
respectively.) Many of the facts thus found are well-known as theorems 
in the literature (cf. Sifakis 1984, Badouel 1993, Rutten and Turi 1994), 
others are typically folklore, and some seem to be new. As in universal 
algebra, most proofs are easy and consequently often omitted. 

This programme is, to some extent, first carried out for one particular 
family of transition systems: unlabelled and nondeterministic (also called 
frames). (The absence of labels is just for convenience; all what follows can 
straightforwardly be adapted for labelled systems.) After mentioning some 
other examples of transition systems (in Section 9), a modest attempt is 
made (in Section 10) to generalize the results on transition systems in such 
a way that they apply to these other examples as well. It is argued that a 
general theory of transition systems (as coalgebras) has to be categorical, 
because different examples involve different functors. 

Deep insights about groups are not obtained by studying universal alge­
bra. Nor will universal coalgebra lead to difficult theorems about (specific 
types of) transition systems. Like universal algebra, its possible merit con­
sists of the fact that it ' ... tidies up a mass of rather trivial detail, allowing 
us to concentrate our powers on the hard core of the problem.' (Cohn 
1981 ). 

2 Basic definitions and basic facts 

Let S be any set. A coalgebra structure or transition structure on S is a 
mapping o:s : S --+ P(S), where P(S) is the collection of all subsets of S: 
P(S) = {V I V ~ S}. The pair (S,o: 5 ) consisting of the set Sand the 
transition structure o:s is called a coalgebra or transition system. The set 
S is called the carrier, also referred to as the set of states. For a state 
s ES, the set o:s(s) consists of all states that are reachable from .s. That 



A CALCULUS OF TRANSITION SYSTEMS I 233 

transition systems in this sense are the usual (unlabelled) nondeterministic 
transition systems (also called frames) can be easily seen, by defining a 
corresponding transition relation: for any s and s' in S, 

s--+s' iff s' E as(s). 

This shorthand will be used throughout the paper. 
Let (S, as) and (T, ar) be two transition systems. A mapping f : S-+ 

T is called a homomorphism if ar of== P(f) o as: 

f S----... T 

* 

P(S) PITT P(T), 

where P(f) : P(S) -+ P(T) is defined, for any V ~ S, by 

P(f)(V) == {t ET I 3v E V, f(v) == t} (== f(V)). 
Lemma 2.1 Let (S,as) and (T,ar) be transition systems and f: S-+ T 
any mapping. The following are equivalent. 

l. f is a homomorphism. 
2. For alls ES, 

a. Ifs--+ s', for some s' ES, then j(s)--+ f(s'). 
b. If J(s) --+ t, for some t E T, then there exists s' E S with 

s --+ s' and ](8 1 ) == t. 
(Note that in our notation we do not distinguish between the transi­
tion relations defined by as and ar.) 

Proof. Immediate from the observation that the inclusion P(f)oas ~ arof 
and its reverse are equivalent to clauses (a) and (b), respectively. 0 

The above definition of homomorphism is an instance of a general ( cate­
gorical) definition, see Section 9. It has been invented many times, with 
different names such as saturating morphism, p-morphism, bounded mor­
phism and functional bisimulation. 

The composition of two homomorphisms is again a homomorphism. 
The identity mapping on a transition system is a homomorphism. As a 
consequence, the class of all transition systems together with the homo­
morphisms between them is a category. 

A homomorphism f : S -+ T with an inverse 1- 1 : T -+ S which 
is also a homomorphism is called an isomorphism between S and T. As 
usual, S ~ T means that there exists an isomorphism between S and T. 
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Injective and surjective homomorphisms are called monomorphisms and 
epimorphisms, respectively. 

Given transition systems S and T, we say that S can be embedded into 
T if there is a monomorphism from S to T. If there exists an epimorphism 
from S to T, T is called a homomorphic image of S. 

Given transition systems Sand T, we say that Tisa subsystem of S if 
T ~ S and ar equals the function as restricted to T. So subsystems are 
subsets of S that are closed under (outgoing) transitions. A subset T of Sis 
a subsystem if the inclusion mapping from T to Sis a homomorphism. Any 
transition system has the empty set and itself as subsystems. A transition 
system S is called minimal if it does not have any proper subsystem (i.e., 
different from 0 and S). (In the world of modal logic, subsystems are called 
generated subframes.) 

The direct sum (or coproduct) of any collection of transition systems 
consists of the disjoint union of their carriers together with (the transition 
structure determined by) the disjoint union of their transition relations. In 
general, the product (in the category of transition systems) of two transition 
systems need not exist. For instance, let S = {O, 1, 2} with as(O) = {O, 1}, 
and as(l) = as(2) = 0. There does not exist a product of (S,as) with 
itself. (Cf. the remark at the end of Section 4.) 

A given set S can in general be supplied with different transition struc­
tures which usually are not isomorphic. The empty set together with the 
empty mapping is called the trivial transition system. 

A bisimulation relation between two transition systems (S, as) and 
(T, ar) is a set R ~ S x T for which there is a transition structure a R, 

such that the projections 7r 1 : R --+ S and 7r2 : R --+ T are homomorphisms. 
Graphically: 

s 7f1 
R 

7f2 
T 

as * !OR * !OT 

P(S) --n P(R) () P(T) 
p 7f1 p 7f2 

This definition of bisimulation is equivalent to the usual one: 

Lemma 2.2 Let S and T be transition systems and let R ~ S x T. Then 
the following are equivalent: 

1. R is a bisimulation 

2. For alls ES and t ET with (s,t) ER: 

a. If s--+s', for some s' E S, then t--+t' for some t' E T with 
(s',t') ER. 
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b. If t--+t', for some t' E T, then s--+s' for some s' E S with 
(s', t') ER. 

1 => 2: Let R be a bisimulation and (s, t) E R, and suppose s--+s'. 
Because s = 7r1((s,t)) this implies 7r1((s,t))----.s', and because 7r1 is a ho­
momorphism, it follows from Lemma 2.1 that there is (s'', t') E R with 
(s, t)--+( s", t') and 7r1 ( (s", t')) = s'. Thus (s', t') E R. Because 7r2 is a ho­
momorphism it follows, again by Lemma 2.1, that t--+t', which concludes 
the proof of clause (a). Clause (b) is proved similarly. 
2 => 1: Suppose R satisfies clauses (a) and (b). Define O:R: R-+ P(R), for 
(s, t) ER, by 

aR((s, t)) = {(s', t') E R I s---->s' and t--+t'}. 

It is immediate from clauses (a) and (b) that the projections from (R, aR) 
to (S, as) and (T, ar) are homomorphisms. (In general more than one 
choice can be made for aR.) 0 

A bisimulation between a transition system S and itself is called a bisim­
ulation on S. If R is moreover an equivalence relation, then it is called a 
bisimulation equivalence. On any transition system S, the diagonal D..s of 
S defined by D..s = { (s, s') E S x S I s = s'} is trivially a bisimulation 
equivalence. 

Lemma 2.3 Let S, T and U be transition systems, R a relation between 
Sand T, and Q a relation between T and U. Let R- 1 and RoQ be defined 
by 

R- 1 = {(t,s) ET x SI (s,t) ER}, 

Ro Q = { (s, u) E S x U I 3t ET, (s, t) ER and (t, u) E Q}. 
If R and Q are bisimulations then so are R-1 and R o Q. D 

Let f: S-+ T be any mapping. The image J(f), the kernel K(f), and 
the graph G(f) off are defined as follows: 

I(f) = {t ET I 3s ES, f(s) = t}, 

K(f) = {(s, s') ES x SI f(s) = f(s')}, 

G(J) = {(s,t) ES x TI f(s) = t}. 

For subsets V ~ Sand W ~ T, let 

J(V) = {t ET I 3s E V, f(s) = t}, 

r 1(W) = {s Es I f(s) E W}. 

(Note that J(J) = f (S).) 

Proposition 2.4 Let S and T be two transition systems and f : S -+ T 
any mapping. 
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1. If f is a homomorphism and V ~ S is a subsystem of S, then f(V) 
is a subsystem of T. (In particular, I(f) is a subsystem of T.) 

2. If f is a homomorphism and W ~ T is a subsystem of T, then 
1-1 (W) is a subsystem of S. 

3. f is a homomorphism if and only if G(f) is a bisimulation between 
Sand T. 

4. If f is a homomorphism then K(f) is a bisimulation equivalence on 
s. 

Proof. Statements 1 and 2 are immediate from the definition of subsystem 
and Lemma 2.1. Statement 3 is immediate by Lemma 2.1 and Lemma 
2.2. The last statement follows from Lemma 2.3 and the observation that 
K(f) = G(J) o G(f)- 1 • D 

Because of 3, homomorphisms are sometimes called functional bisimula­
tions. 

Let S be any set and Ran equivalence relation on S. Let the quotient set 
S/R be defined by S/R = {[s]R Is ES}, with [s]R = {s' ES I (s, s') ER}. 
Let eR : S--+ S/ R be the surjective mapping sending each element s to its 
equivalence class [s]R· It is called the quotient map of R. 

Proposition 2.5 Let (S, as) be a transition system and R a bisimulation 
equivalence on S. Define a.s;R: S/R--+ P(S/R), for alls and s' in S, by 

[s']R E a.s;R([s]R) iff 3t,t' ES, (s,t) ER and (s',t') ER and t' E a.s(t). 

Equivalently, 

[s]R-;[s']R iff 3t, t' ES, (s, t) ER and (s', t') E R and t--+t'. 

Then as;R is the unique transition structure on S/R such that eR : S--+ 
S / R is a homomorphism. 

Proof. If s-;s' then eR(s)-;eR(s'). Suppose ER(s)--+[s']R, for some 
s' E S. Then there are t, t' E S such that t--+t', (s, t) E R, and (s', t') E R. 
Because t--+t' and (s, t) E R it follows that there is s" E S with s--+s 11 

and (s", t') ER. Then s--+s" and fR(s") = ER(t') = eR(s') = [s']R· Thus 
fR is a homomorphism (by Lemma 2.1). The fact that a.s/R is the unique 
transition structure with this property can be easily shown 'by hand', and 
also follows from more general considerations in Section 10. D 

Let f: S-+ T be any mapping, Pa relation on S, and Q a relation on T. 
Let pi and QI be defined by 

pi {(t,t') ET x T J 3s,s' ES, f(s) = t and 

f(s') = t' and (s, s') E P}, 

Q1 = {(s, s') ES x SI (J(s), f(s')) E Q}. 



A CALCULUS OF TRANSITION SYSTEMS I 237 

Proposition 2.6 Let f : S -+ T be a homomorphism of transition sys­
tems. If P and Q are bisimulations on S and T, then pf and Q1 are 
bisimulations on T and S, respectively. 

Proof Immediate from Lemma 2.3 and the fact that pf = G(f)-1 oPoG(f) 
and Qf = G(f) o Q o G(f)- 1 . O 

Theorem 2. 7 For transition systems S, T and U, and homomorphisms 
f : U -+ S and g : U -+ T, there are a transition system V and homomor­
phisms h : S -+ V and i : T -+ V such that 

1. hof=iog 

2. For all transition systems V' and homomorphisms h' : S -+ V' and 
i' : T -+ V' such that h' of = i' o g, there is a unique homomorphism 
k: V-+ V' such that h1 = k oh and i' = k o i. 

For transition systems S, T and U, and homomorphisms f : S -+ U and 
g : T -+ U, there is a transition system V and homomorphisms h : V -+ S 
and i : V -+ T such that f o h = g o i. 

These statements can be most easily proved (and their asymmetry best 
explained) categorically, see Section 10. For a direct proof of the first, let 
V be the quotient of the disjoint union of S and T with respect to the 
smallest equivalence relation generated by {(s, t) ES x TI 3u EU, f(u) = 
sand g(u) = t}. In the latter statement, take V = {(s,t) ES x TI f(s) = 
g( t)}. 

3 The lattice of subsystems 

The collection of all subsystems of a transition system S is closed under 
arbitrary unions and intersections, and hence is a complete lattice. For 
a subset X of a transition system S let (X) denote the subsystem of S 
generated by X. It is defined as 

(X) = n{T <;;;; s I Tisa subsystem of sand x ~ T }. 

Equivalently, it is the least fixed point of an operator W x : P(S) -+ P(S) 
which takes any subset V <;;;; S to 

Wx(V) =XU VU {s ES I 3s' E (XU V), s'--+s}. 

A third description of (X) is 

( X ! = { s E S I 3x E X, x ~ s}, 

where ~ is the reflexive and transitive closure of the transition relation 
--+ on S. The transition relation on (X/ is given by --+ n ( (X) x (X/ ). If 
S = (X) for some subset X of S then S is said to be generated by X. 

Proposition 3.1 A transition system Sis minimal if and only if for every 

non-empty subset X ~ S: S = (X/. D 
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Proposition 3.2 Let S be a transition system, X c:;:: S, and R a bisim­
ulation eqiLivalence on S. If S = (X) then S/R = (X/(R n (X x X))). 

0 

Let S be a transition system generated by X and let f : S -+ T and 
g : S -+ T be two homomorphisms such that f = g on X. In general f and 
g need not be equal on the whole of S. But we do have that f(S) = g(S). 
It is an immediate consequence of the following simple fact. 

Proposition 3.3 Let f : S -+ T be a homomorphism of transition systems 
and X c:;:: S. If S = (X) then f(S) = (f(X)). D 

The operator 0 : P(S) -+ P(S) satisfies, for all X <;;;; S: 

l. X <;;;; (X), 
2. ((X)) = (X), 
3. (X) = LJ{({s}) Is ES}, 

and is therefore called a completely additive closure operator. A subset 
X c:;:: S with X = (X) is called closed. (Thus the closed subsets are precisely 
the subsystems.) The following theorem shows that all operators satisfying 
1, 2 and 3 above, are obtained in this way. (It is a simple variation on the 
theorem by Birkhoff and Frink that any algebraic lattice is isomorphic to 
the lattice of su balgebras of some algebra.) 

Theorem 3.4 Let S be any set and c : P(S) -+ P(S) a completely addi­
tive closure operator. Then there is a transition structure a : S -+ P(S) 
such that the lattice of closed subsets of S coincides with the lattice of all 
subsystems of (S, a). 

Proof. Define a: S-+ P(S), for s E S, by a(s) = c( {s} ). For any X c:;:: S 
the set c(X) is a subsystem of (S, a), because ifs E c(X) and s---+s1, for 
some s' E S, then 

s' E c( { s}) <:;:: c( c( X)) = c( X). 

Moreover, X c:;:: c(X), hence (X) c:;:: c(X). On the other hand, c({s}) c:;:: (X), 
for any s EX, and c(X) = LJ{c({s}) Is EX} imply c(X) <;;;; (X). Thus 
c(X) = (X). 0 

4 The lattice of bisirnulations 
Let S and T be a transition systems. The collection of all bisimulations 
between S and T, 

B(S, T) = {V <;;;; S x T I V is a bisimulation }, 

can be seen to be a complete lattice (B(S, T), V, /\) as follows. Since the 
union of bisimulations is again a bisimulation, we can take V to be set 
union. Next consider, for an arbitrary relation R <;;;; S x T, the function 
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q> R : P(S x T) --+ P(S x T), defined for any V ~ S x T, by 

<I>n(V) = {(s, t) ER I Vs' ES s.t. s-+s' 

3t' E T s.t. t-+t' and (s', t') E V 

and 

'<It' E T s.t. t-+t' 

3s' E S s.t. s-+s' and (s', t') E V}. 

It follows from the definition of !L> R that V ~ R is a bisimulation if and 
only if V ~ <I? n(V). The greatest bisimulation relation between S and T 
which is contained in R, is given by the greatest fixed point of <I> R (which 
exists because P(S x T) is a complete lattice and <I>n is monotone). Now 
/\ can be defined, for an arbitrary collection of bisimulations {Ri};EJ (for 
some index set I), by 

/\{R;};eJ = gfp <Pn{R;}iEJ. 

The greatest bisimulation on a single transition system S, usually de­
noted by ""• is equal to gfp !l>sxS· Elements s and s' in S with s"' s' are 
called bisimilar. If ( S, as) is finitely branching-i.e., as( s) is finite, for all 
s in S-then "' is obtained as the intersection of a sequence of approxima­
tions: Let ""'o= S x Sand, given ""'n let ""n+l= <l?sxs("'n). (Elements s 
and s' in S with s "'n s' are called bisimilar up to depth n.) One readily 
checks that ,......= n{ ""'nl n ~ O}. 

We have seen that the product of two transition systems generally does 
not exist. However, for deterministic transitions systems: (S, a) such that 
for all sin S, a(s) contains at most one element, products do exist. The 
product of two deterministic transition systems S and T is given by the 
greatest bisimulation between them. 

5 Three isomorphism theorems 

Lemma 5.1 Every bijective homomorphism is necessarily an isomorphism. 

Proof. By Proposition 2.4, the relation of a homomorphism is a bisimulation 
and by Lemma 2.3, so is its inverse. 0 

Lemma 5.2 Let S, T, and U be transition systems, and f : S --+ T, 
g : S --+ U, and h : U --+ T any mappings. If f = hog, g is surjective, and 
f and g are homomorphisms, then h is a homomorphism. D 

Theorem 5.3 (First isomorphism theorem) 
Let f : S --+ T be a homomorphism of transition systems. Then there is a 
factorization f = µ o E K(J) off: 
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f S----T 

S/ K(f) 
where EK(!) is the quotient map of the kernel K(f) off, and µ is a 
monomorphism. Moreover, S/ K(J) is isomorphic to I(f), the image of 
f. 
Proof. Putting µ([s]K(!J) = J(s), for s ES, defines an injective mappingµ 
with µoEK(J) =f. Because <K(f) (by Proposition 2.5) and fare homomor­
phisms, so isµ (by Lemma 5.2). By Proposition 2.4, J(f) is a subsystem 
of T. Defining f': S/K(f) __, I(f), for s ES, by f'([s]K(JJ) = f(s) yields 
a bijective homomorphism. By Lemma 5.1 it is an isomorphism. 0 

Theorem 5.4 Let f : S __, T be a homomorphism of transition systems 
and R a bisimulation equivalence on S which is contained in the kernel off. 
Then there is a unique homomorphism J : S / R __, T such that f = Jo € R: 

S <R S/R 

~J 
T 

Proof. Putting f([s]R) = f(s), for s E S, uniquely defines a mapping 
J: S/R _, T for which Jo <R =f. It follows from Lemma 5.2 that it is a 
homomorphism. 0 

Theorem 5.5 (Second isomorphism theorem) 
Let S be a transition system, T a subsystem of S, and R a bisimulation 
eq1tivalence on S. Let yR be defined by yR = {s ES I 3t ET, (s, t) E R}. 
The following facts hold: 

1. yR is a subsystem of S. 

2. Q = Rn (T x T) is a bisimulation equivalence on T. 
3. T/Q=.TR/R. 

Proof. Since yR = 7r1 ( 7rz - 1 (T)), it is a subsystem of S by Proposition 2.4. 
One readily verifies that Q is a bisimulation equivalence on T. Consider 
the quotient homomorphism ER : S __, S / R, and let E : T _, S / R be its 
restriction to T. Because J(c) = t(T) = ER(TR) = yR / R, and K(f) = Q, 
it follows from Theorem 5.3 that T /Q ::::< TR / R. O 
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Let S be a transition system, T a subsystem of S, and R a bisimulation 
equivalence on S. If Rn (T x T) = C:.r then R is said to separate T 
(because, equivalently: for all t, t' E T, if t f: t' then (t, t') (/. R). In this 
case, the above theorem yields that T ~ TR / R. 

Theorem 5.6 (Third isomorphism theorem) 
Let S be a. transition system, and let R and Q be bisim'Ulation equivalences 
on S such that R ~ Q. There is a unique homomorphism () : S / R -+ S j Q 
such that() o ER= EQ: 

ER 
S--- S/R 

~le 
S/Q 

Let Rf Q denote the kernel of(): it is a bisimulation equivalence on S / R and 
induces an isomorphism()': (S/R)j(R/Q)-+ S/Q such that()=()' o ER/Q: 

S/R ~ (S/R)j(R/Q) 

e\/. 
S/Q 

Proof. The existence of () follows from Theorem 5.4. Because EQ is surjec­
tive also () is surjective. The existence of the isomorphism ()' is now given 
by Theorem 5.3. 0 

6 Simple transition systems 

Since the diagonal of a transition system is always a bisimulation equiv­
alence, it follows from Proposition 2.5 that every transition system S has 
itself as a homomorphic image. If it has no others then it is said to be 
simple. In other words, Sis simple if every epimorphism f : S -+ T is an 
isomorphism. 

Theorem 6.1 Let S be a transition 8ystem. The following are equivalent: 

l. S is simple. 

2. t:::. 5 is the only bisimulation equivalence on S. 

3. For every bisimulation R on S, R ~ C:.s. 
4. For any transition system T, and mappings f : T -+ S and g : T -+ S: 

if f and g are homomorphisms then f = g. 
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5. The quotient homomorphism t : S --+ S /"', where "' denotes the 
greatest bisimulation on S, is an isomorphism. 

Proof. 1 => 2: Let R be a bisimulation equivalence on S and consider 
the quotient homomorphism ER : S --+ S / R. If S is simple then ER is an 
isomorphism. Thus R = /::,.5. 
2 => 1: Let f : S --+ T be an epimorphism. Since the kernel of f is 
a bisimulation equivalence, it follows from 2 that it is equal to /::,.5. By 
Theorem 5.3, S/1::,. 5 ~ T, hence S ~ T. Thus Sis simple. 
3 => 4: Let T be a transition system, and let f : T --+ S and g : T --+ S be 
homomorphisms. Define 

Q = {(s,s') ES x SI 3t ET, s = f(t) and s' = g(t)}. 

Since Q = G(f)- 1 oG(g), it is a bisimulation by Proposition 2.4 and Lemma 
2.3. It follows from 3 that Q <;;;; /::,.5. Thus f =g. 
4 => 3: Let R be a bisimulation on S. By definition, its projections Jr1 : 

R --+ S and ;r2 : R --+ S are homomorphisms. It follows from 4 that 
7r1 = Jr2, hence R <:;; !:ls. 
2 ? 3: Immediate from the observation that the greatest bisirnulation on 
S is an equivalence. 
1 => 5.: Immediate. 
5. => 2: Suppose that E : S --+ S/"' is an isomorphism. Let R be a 
bisimulation equivalence on S. Because R <:;;"' and "' is the kernel of c, 
there exists by Theorem 5.4 a (unique) homomorphism J: S/R--+ S/"' 
such that Jo <"R = c. Since c is an isomorphism this implies that <"R is 
injective. Thus R = /::,.5. 0 

Clauses 3 and 4 indicate that 'simplicity' can actually be interpreted as a 
proof principle. For instance, in order to show that two elements s and s' 
of a simple transition system S are equal, it is sufficient to establish the 
existence of a bisimulation R on S such that ( s, s') E R. This property is 
sometimes referred to as strong extensionality or co-induction. We shall 
see examples of its use in Section 8. 

Proposition 6.2 For every transit·ion system S and bisimulation equiva­
lence R on S, the quotient S / R is simple if and only if R = "'. 

Prnof. 
<=: Let Q be a bisimulation on S/"'. We show that Q i;::; D. 51 ,...,. Then it 
follows from Theorem 6.1 that S/"' is simple. Consider E: S--+ S/"'. By 
Proposition 2.6, the relation 

Q, = {(s,s') ES x SI ([s],.._,, [s'],...,) E Q} 

is a bisimulation on S and hence is included in "'· Thus for all s and s' in 
S, if ([s],...,, [s'],..._,) E Q then [s],...., = [s'],....,. 
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=?: Let Q be a bisimulation on S. We show that Q ~ R. By definition the 
projections 7r1 : Q -+ S and 7r2 : Q -+ S are homomorphisms. Consider the 
compositions e o 7r1 : Q -+ S / R and e o 71"2 : Q -+ S / R. By assumption, S / R 
is simple. It follows from Theorem 6.1 that e o ?r1 = e o 7r2 , whence Q ~ R. 
Therefore R =......... 0 

By the above proposition, the quotient of any transition system with re­
spect to its greatest bisimulation, is simple. For instance, {s, s'} with 
s-+s' and s'-+s is not simple, but {t} with t--+t is. 

7 Initial and final transition systems 

In the world of ~>algebras, initial algebras are of particular interest; e.g., 
they are used in what is called initial algebra semantics. Similarly, final 
transition systems are of importance in the world of coalgebras. In this 
section, some properties of final transition systems are discussed, and a 
number of examples is given. For one of the examples, Section 8 will show 
how it gives rise to final (coalgebra) semantics, the coalgebraic counterpart 
of initial algebra semantics. 

Let TS be the class of all transition systems, K a subclass of TS. A 
transition system S in K is initial in K if for any other transition system T 
in K there exists a unique homomorphism from S to T; Sis called final in 
Kif there exists a unique homomorphism from any other transition system 
in K to S. It is easy to prove that initial and final transition systems are 
unique up to isomorphism. 

Initial transition systems are not very exiting: the trivial (empty) tran­
sition system is initial in every class of which it is a member. Somewhat 
disappointingly, there is also the following. 

Theorem 7 .1 There is no final transition system in TS. D 

This follows from the fact that if S is final in TS then S is isomorphic 
with P(S), and the fact that such sets do not exist. (Cf. Rutten and Turi 
1994.) 

Nevertheless, it is worthwhile to look for subclasses of K that do include 
a final transition system, because final transition systems have various nice 
properties. For one thing, they are simple. More precisely: let us generalize 
the definition of Section 6 and call a transition system S simple in K if S 
is in Kand any epimorphism f : S-+ T with T in K is an isomorphism. 
Now suppose that K is closed under taking bisimulations: that is, if S and 
Tare in K and R ~ S x Tisa bisimulation between Sand T, then there 
exists a transition structure O.R on R such that (R, O.R) is in K. For such 
K, it follows from (the proof of) Theorem 6.1 that Sis simple in Kif and 
only if for all T in K and homomorphisms f : T -+ S and g : T -+ S, 



244 I J.J.M.M. RUTTEN 

f = g. In other words, being simple amounts to one 'half' of the definition 
of being final (the uniqueness part). Which implies the following. 

Theorem 7 .2 If K is closed 1mder taking bisimulations and S is final in 
K, then S is simple in K. D 

As a consequence, final transition systems satisfy the proof principle of 
strong extensionality (co-induction), mentioned after the proof of Theorem 
6.1, which will be used in Section 8. 

This section is concluded with three examples of classes of transition 
systems that have a final element. Firstly, let S be a transition system and 
let [S] be the equivalence class of S under the following equivalence rela­
tion: S ~ T whenever there exists a (so-called total) bisimulation relation 
between S and T such that its projections are epimorphisms. 

Theorem 7 .3 Let ~ be the greatest bisimulation on S. Then S /"' is final 
in [S]. 

Proof. It follows from the fact that homomorphisms are (functional) bisim­
ulations (Proposition 2.4.3) that S /~is in [S]. Consider a transition system 
Tin [ S]. Let R be a bisimulation between Sand T whose projections 7r1 and 
7rz are epimorphisms. Consider the quotient homomorphism E : S --> S / "'· 
The composition G(7r2 )- 1 o G(7r1 ) o G(c) is a bisimulation between T and 
S / ,.._, which actually is a function. Hence it is a homomorphism from T to 
S/ '""· This proves the existence part. It follows from Proposition 6.2 and 
Theorem 6.1 that there is at most one such homomorphism. 0 

A second example is the following. A transition system ( S, 0'.8) is de­
terministic if for all s, s', and s" in S: 

if s--+s' and s--+s11 then s' = s", 

or, equivalently, if a( s) contains at most one element. Let w + 1 be a 
transition system with states { 0, 1, 2, ... } U { w}, and transitions n + 1--+n, 
for all n ;?:: 0, and w--+w. For a deterministic transition system (S, as), 
there is precisely one homomorphism from S to w + 1: it maps a state s 
in S to the number (possibly w) of steps that can be taken starting in s. 
Thus w + 1 is final in the class of all deterministic transition systems. 

For our last example, let FB be the class of all finitely branching tran­
sition systems (S,o:S'): for all sin S, a(s) is finite. For such transition 
systems, the transition structure is actually a mapping as : S --> P 1 ( S), 
where P f ( S) is the collection of all finite subsets of S. 

Theorem 7.4 The class of all finitely branching transition systems has a 
final element. D 

The reader is referred to Barr 1993 and Rutten and Turi 1994 for a for­
mal proof; here we only mention the main idea. A final transition system 
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can be constructed as follows: consider the class of all finitely branching, 
ordered trees; define a notion of bisimulation on such trees by viewing them 
as transition systems; and take the collection of all equivalence classes of 
trees with respect to the greatest bisimulation relation. This collection, 
which turns out to be a set, can be easily supplied with a transition struc­
ture. The result, which for future reference is denoted by (P, 7r), is a finitely 
branching transition system that is final in FB. 

For the reader with some background in modal logic, the following alter­
native way of obtaining a final transition system might help. Here we adopt 
for a moment the jargon of modal logic. Consider the canonical frame pK 
for the basic normal logic K; next take the union of the images in pK of 
all bounded morphisms from finitely branching frames to pK. This defines 
a generated subframe of pK that can be shown to be finitely branching. It 
follows immediately from the so-called Truth lemma ( cf. Goldblatt 1987) 
that it is final in FB. Note that it must be isomorphic to (P, 7r), since final 
transition systems are unique up to isomorphism. 

8 Final semantics 

Transition systems are often used as a so-called operational semantics for 
programming languages, notably since the appearance of Plotkin 1981. Fi­
nal transition systems are then of particular interest because their elements 
can be considered as canonical representatives of bisimulation equivalence 
classes as follows. Suppose F is final in a class K of transition systems, 
and Sis in K. By finality, there is a unique homomorphism f : S-> F. It 
satisfies, for all s and s' in S, 

s"' s' if and only if f(s) = f(s'). 

(The implication from left to right follows from Proposition 2.6, Theorem 
7.2, and Theorem 6.1. The converse follows from Proposition 2.4.4.) Thus 
F has, for any Sin K, a subsystem that is isomorphic to the quotient Sf"'· 

Final transition systems are furthermore useful because they can be 
supplied, in addition to their transition structure, with an algebraic struc­
ture by exploiting the finality. This will be briefly illustrated here; for a 
more extensive treatment, the reader is referred to Rutten and Turi 1994. 

Consider the class FB of finitely branching transition systems. There 
exists (Theorem 7.4) a finitely branching transition system (P, 7r) that is 
final in FB. We show how to define a binary operator II: P x P-> P, which 
models the merge or interleaving of pairs of states in P. To this end, a 
transition structure a 11 : (P x P)-> P1(P x P) is defined as follows: for p 
and q in P, 

a((p,q)) = {(p',q) E P x PI p' E 7r(p)} U {(p,q') E P x PI q' E 7r(q)}. 

By finality of (P, rr), there exists a unique homomorphism II: (P x P, a11) -> 
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(P, 7r). It follows from the definition of homomorphism, writing p II q for 
11 ( (p, q) ), that 

7r(p II q) = {p' II q E p I P1 E 7r(p)} u {p II Q1 E p I q' E 7r(q)}. 

In terms of transition relations, this is equivalent to 

P II q--+ p' II q' if and only if (p--+p' and q = q') or (q--+q 1 and p = p'). 

Thus finality can be used for definitions (of operators like II). At the same 
time, finality enables one to prove certain properties. For instance, that 
the operator II is associative: Consider the following relation on P: 

{((p II q) II r, P II (q II r)) E P x PI p,q,r E P}. 

It is easy to show that this is a bisimulation relation. Final transition 
systems are simple, by Theorem 7.2, and any simple transition system is 
strongly extensional, according to Theorem 6.1: that is, any bisimulation 
on P is contained in the diagonal 6.p. Thus for all p, q, and r in P, 
(p II q) II r = p II (q II r). 

9 Other transition structures 

A transition system (S, as), consisting of a set S and a function as : 
S ---+ P(S) is an instance of the following categorical definition: let C be 
a category and F : C ---+ C a functor. An F-coalgebra is a pair ( c, ac) 
consisting of an object c in C and an arrow ac : c---+ F(c) (cf. Mac Lane 
1971). Thus transition systems are P-coalgebras, where P : Set ---+ Set is 
the powerset functor from the category of sets and functions to itself. 

Let (c, ac) and (d, ad) be two F-coalgebras. An arrow f : c ---+ d is a 
homomorphism of F-coalgebras if F(f) o ac = ad o f. The collection of 
all F-coalgebras together with F-coalgebra homomorphisms is a category, 
which we denote by Gp. The class TS of transition systems together with 
all homomorphisms between them thus constitutes the category Setp. 

Similarly, the notion of bisimulation can be defined for arbitrary func­
tors (Aczel and Mendler 1989): A subobject R of the product of c and 
d (if it exists) is called an F-bisimulation if there exists an F-coalgebra 
structure aR : R ---+ F(R) such that the projections from R to c and d 
are homomorphisms of F-coalgebras. (Thus bisimulations on transition 
systems are P-bisimulations.) 

Below a number of further examples of interesting F-coalgebras is given, 
each of which is obtained by making a particular choice for the category C 
and the functor F. For each of them, facts like the ones of the preceding 
sections hold. Rather than proving them again, we shall in the next section 
investigate how proofs can be given for arbitrary C and F. 

l. Labelled transition systems are coalgebras of the following functor. 
Let A be a set of (action) labels. The functor P(A x ·) : Set ---+ Set 
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takes a set S to the collection of subsets of A x S (on functions it 
is defined as one would expect). Homomorphisms and bisimulations 
turn out to be the standard notions. 

2. Let <P be a given set of atomic formulas. Consider the functor M on 
the category Set, defined for a set S by 

M(S) = P(S) x 'P(<P). 

A function f: S--+ T is mapped to M(j): M(S) --+ M(T), taking a 
pair (V, W) in 'P(S) x 'P(!I>) to (j(V), W) in 'P(T) x 'P(<P). Now M­
coalgebras are the so-called !Ii-models of modal logic, homomorphisms 
are p-morphisms, and bisimulations are zig-zag relations. 

3. Let 1 denote a one element set. Consider the functor on Set which 
takes a set S to l+(A x S). Its coalgebras are deterministic transition 
systems (with labels in A). The set 1 is used to model termination. 
A variant would be the functor A x ( ·) defined on the category of 
sets with partial maps. In this case, termination is modelled by the 
partiality of the functions. 

4. Coalgebras of the functor which maps a set S to A --+ (S + 1)-the 
collection of all functions from A to S + 1-could be called functionally 
deterministic transition systems. For an element s E S of such a 
coalgebra ( S, a:s ), the possible transitions depend on the argument 
a E A, with which the function a:s(s) : A --+ (S + 1) has to be 
supplied. 

5. A metric space is a pair (M,d) consisting of a set Mand a metric 
or distance junction d. Let Met be the category of metric spaces and 
non-expansive functions. Consider the metric powerdomain functor 
'Pc : Met --+ Met, which maps a metric space (M, d) to the metric 
space of all its compact subsets (supplied with the so-called Haus­
dorff metric). For a (non-expansive) function f: M--+ M', 'Pc maps 
a compact subset V of M to the compact subset f(V) of M'. Coalge­
bras of this functor are called metric transition systems. In a metric 
transition system ((M,d),a:M : (M,d)--+ 'Pc((M,d))), the metric d 
on M expresses 'the amount of' bisimilarity: the smaller the distance 
between two elements, the 'more bisimilar' they are. This can be 
made more precise as follows. Let ( S, as) be an (ordinary) transition 
system which is finitely branching. A natural candidate for a metric 
on S is defined, for s and s' in S, by 

ds(s, s') = inf{rn \ s "'n s'}, 

where "'n is the bisimilarity-up-to-depth-n relation of Section 4. This 
does not define a metric yet, since ifs ,...., s' then ds(s, s') = 0, whereas 
s and s' may be different. If S, however, is simple then ds is a 
metric indeed: ds ( s, s') = 0 if and only if s ,...., s' if and only if 



248 I J.J.M.M. RUTTEN 

s = s'. This definition is an immediate generalization of the metric on 
synchronization trees introduced in Golson and Rounds 1983. With 
this metric on S, as can be shown to be a non-expansive function 
as : (S,ds) -+ Pc((S,ds)). Thus we have turned (S,as) into a 
metric transition system ( ( S, ds), as). (See Breugel 1994 for more 
observations on metric transition systems.) 

10 Towards universal coalgebra 

Some of the results of the preceding sections will be generalized to the 
category of coalgebras of arbitrary functors F : C -+ C on a category C. 
A categorical approach to universal algebra has been developed in Manes 
1976, part of which has served as a guideline for this section. 

Many proofs in the preceding sections consist of two parts: first re­
sults on sets and mappings are established, and next they are 'lifted' to 
transition systems and homomorphisms. This turns out to be a very gen­
eral phenomenon: Let C be any category and F : C -+ C a functor. A 
typical way of proving facts about the category Gp of F-coalgebras is to 
see whether facts about the the underlying category C carry over to F­
coalgebras. 

In this section, we shall in particular investigate how the existence of 
colimits (such as sums and coequalizers) and limits (such as kernel pairs) in 
CF is related to the existence of colimits and limits in C. The insight thus 
gained will next be helpful in a discussion of image factorization systems. 
As a result, we shall be able to find (generalized versions of) proofs of some 
of the theorems on transition systems (like the isomorphism theorems). 

Starting with colimits, recall that the class of transition systems actually 
equals the category Setp of P-coalgebras. In this category, the sum of two 
transition systems (S, as) and (T, iJ'T) exists, because in Set the sum S + T 
of their carriers exists (it is the disjoint union). This is a typical instance 
of the following general fact. 

Theorem 10.1 The functor U : CF -+ C which maps an F-coalgebra 
( c, O:c) to its carrier c (thus 'forgetting' the coalgebra structure O:c) creates 
colimits. This means that if a certain type of colimit {like sum) exists in 
C, then it exists in CF as well, and it is obtained by supplying the colimit 
in C (in a unique way) with an F-coalgebra structure. 0 

Rather than giving an exact formulation and proof of this theorem 
(which would not be difficult, cf. Barr 1993), it will for the purpose of the 
present paper be more instructive to look at an example. Consider two 
arrows f : c -+ d and g : c -+ d in a category C. An arrow h : d -+ e is 
called a coequalizer off and g if the following two conditions hold: 

1. hof=hog 
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2. For all arrows h' : d --> e' such that h' o j = h' o g, there exists a 
unique arrow l : e --> e' with the property that l o h = h'. 

In the category Set, equalizers always exist (we say: Set has coequalizers): 
given f : S --> T and g : S --> T, the quotient of T with respect to the 
smallest equivalence relation on T that contains the set 

{(t, t') ET x TI :ls ES, t = f(s) and t' = g(s)}, 

is a coequalizer off and g. 

Now assume that C has coequalizers. We show that also CF has co­
equalizers. Consider two homomorphisms of F-coalgebras f : ( c, ac) --> 

(d, ad) and g : (c, ac) --> (d, D'd)· Since (per definition) f and g are arrows 
f : c --+ d and g : c --> d in C, there exists a coequalizer h : d --> e in C. 

Consider F(h) o ad : d--+ F(e). Because 

F(h) o D'd of F(h) o F(j) o o:c 

= F(h of) o D'c 

F(h o g) o ac 

F(h) o F(g) o o:c 

F(h) o ado g, 

and h : d--> e is a coequalizer, there exists a unique arrow ae : e --> F(e) 
such that ae oh = F(h) o ad- Thus (e, ae) is an F-coalgebra and his a 
homomorphism h : (d, ad) --> (e, D'e) of F-coalgebras. One easily checks 
that it is a coequalizer in Cp. 

Because the category Set has coequalizers, as a consequence also the 
category Setp of transition systems has coequalizers. This yields an easy 
proof of Proposition 2.5: Consider a bisimulation equivalence (R, aR) on a 
transition system ( S, as). One can easily verify that the homomorphism 
ER : (S,as) --+ (S/R,as;R) of Proposition 2.5 can be obtained as a co­
equalizer of the projections 7T1 and 7T2 of R on S. 

Also Theorem 2. 7, which asserts the existence of another type of col­
imit: push-out, in the category of transition systems, is an immediate con­
sequence of Theorem 10.1, since in the category Set, all push-outs exist. 
More generally, because in Set all colimits exist, all colimits exist in Seip 

as well. 
Summarizing the above, one can conclude that in Cp, colimits are as 

easy as they are in C. What about limits? It turns out that here the 
situation depends very much on properties of the functor F. Notably there 
is the following. 

Theorem 10.2 If F : C --> C pr·eserves a (certain type of) limit, then the 

functor U : CF --> C creates that (type of) limit. 0 

Again, rather than being precise and general, we prove one particular 
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instance of this theorem. For the theory of transition systems, the notion 
of kernel of a mapping is important (cf. the isomorphism theorems). It is 
an instance of the following categorical definition, which describes a special 
kind of limit. A kernel pair of an arrow f : c --+ d consists of (an object 
a together with) two arrows k : a -+ c and l : a --+ d with the following 
properties: 

1. fok=fol 
2. For every object a' and arrows k' : a' --+ c and l' : a' --+ c such that 

f o k' = fol', there exists a unique arrow i : a' --+ a such that k' = k o i 
andl'=loi. 

For a mapping j : S --+ T between sets, it is easily verified that the kernel 
J{ (j) together with its projections on S is a kernel pair in the above sense. 

Now suppose that in C there exists a kernel pair for every arrow. Fur­
thermore suppose that F preserves kernel pairs: that is, if a with ( k, l) 
is a kernel pair of an arrow f, then F(a) with (F(k), F(l)) is a ker­
nel pair of F(f). We show that kernel pairs exist in Gp as well. Let 
f: (c,o:c)-+ (d,o:d) be a homomorphism of F-coalgebras. Let a together 
with arrows k : a --+ c and l : a -+ c be a kernel pair of f : c --+ d 
in the category C. Since F preserves kernel pairs, F(a) together with 
the arrows F(k): F(a)--+ F(c) and F(l): F(a)--> F(c) is a kernel pair of 
F(f): F(c)--+ F(d), again in C. Now consider the arrows O:c ok: a-+ F(c) 
and O:c o l: a--> F(c). Because 

F(f) o o:c o k = o:d a f o k 

= 0:d 0 f 0 l 

= F(f)oo:col, 

there is a unique arrow O:a : a -+ F(a) such that F(k) a O:a = Cl'c o k and 
F(l) o o:a = o:c o l. Thus k : (a, o:a) --> (c, o:c) and l : (a, aa) --+ (c, o:c) 
are homomorphisms of F-coalgebras, and one easily checks that (a, o:a) 
together with k and l is a kernel pair of f in CF. 

Unfortunately, the functor we have so far been interested in most: P : 
Set --> Set, does not preserve kernel pairs. (Let 1 and 2 be a one and a 
two element set, and f : 2 --+ 1 the only possible mapping between them. 
Then P does not preserve the kernel of f.) However, it 'almost' does: 
Consider a mapping f : S --> T between sets. We saw that K(f) together 
with the projections (7r1, 7r2) on Sis a kernel pair for f. Clearly, P(K(f)) 
together with (P(7r1), 'P(7r2)) satisfies clause 1 of the definition of kernel 
pair. It is not difficult to prove that it satisfies clause 2 as well but for the 
unicity requirement. (The functor P is therefore said to preserve kernel 
pairs weakly.) A re-investigation of the little proof above (of an instance of 
Theorem 10.2) shows that there exists a coalgebra structure o: : K(f) --+ 

P(K(f)) (though not necessarily unique} such that the projections ?T1 and 
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7r2 are homomorphisms from (K(j), a) to (S, as). Even though this does 
not mean that (K(f), a) together with (7r1 , 71"2 ) is a kernel pair in Setp, it 
does show that (K(f),a) is a bisimulation on S (cf. Proposition 2.4). In 
fact, this will be all we need in what follows. 

Our interest in colimits and limits, and more specifically, in coequalizers 
and kernel pairs of F-coalgebras, is mainly motivated by the role they play 
in the following. 

The first isomorphism theorem states that every homomorphism of tran­
sition systems f : S -+ T factors through the image of f by means of an 
epimorphism and a monomorphism. This is called an image factorization 
off (cf. Manes 1976). The existence of such a factorization is based on 
the fact that in the underlying category of sets, such factorizations exist. 
Following the same line of thought as above, we shall investigate next how 
the existence of image factorizations in an arbitrary category C is related 
to their existence in CF. 

To this end, it turns out to be convenient to look at one particular 
kind of image factorizations, which exists in many categories: a category 
C has coequalizer-mono factorizations if for every arrow f : c -+ d there is 
a unique (up to isomorphism) factorization f = i op: 

f c----d 

~1i 
I(f) 

such that p is a coequalizer (of two arrows in C) and i is mono. If the 
category C moreover has all kernel pairs and all coequalizers, then it is 
easy to prove that such a coequalizer-mono factorization off: c -+dis in 
particular of the following form: 

7!"1 f 
K(f) ___ c --- d 

~li 
c/ K(f) 

where K (!) together with ( 11"1, 7r2) is a kernel pair for f, p is (not just any 
coequalizer but) a coequalizer of 7r1 and 11"2, and i is (the unique arrow) 
given by the coequalizer property of p. In that case, we say that C has 
image factorizations by means of kernels and coequalizers. 
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For instance, the category Set is easily seen to have image factorizations 
by means of kernels and coequalizers. 

Theorem 10.3 If the category G has image factorizations by means of 
kernels and coequalizers, and if moreover F weakly preserves kernel pairs, 
then Gp has coequalizer-mono factorizations. 

Proof Let f : ( c, ac) - ( d, ad) be a homomorphism of F-coalgebras. 
Let 7r1 , 7r2 : K(J) - c be a kernel pair for f in G. Because F weakly 
preserves kernel pairs, there exists a : K(J) - F(K(f)) such that 11"1 

and 7r2 are homomorphisms from (K(f),a) to (c,ac). Since G has all 
coequalizers and U : Gp - G creates colimits, there exists a coequalizer 
e : (c, ac) - (e, ae) of 1r1 and 7r2 in Gp. Because f o 7r1 = f 011"2 in Gp there 
exists a homomorphism i : (e, ae) - (d, ad) such that i o € = f. Because G 
has coequalizer-mono factorizations, this i is mono in G and hence mono 
in Gp. D 

Since P : Set - Set weakly preserves kernel pairs, the first isomorphism 
theorem is an immediate corollary of the above. Also (the categorical 
generalizations of) the other two isomorphism theorems can be proved with 
the use of the theorem above. 

We have treated the categorical versions of only a few of the theorems 
on transition systems and, clearly, much remains to be done ( cf. Section 
12). 

11 Comparison with algebras 

Let C be a category and F : G - Ca functor. The relation between the 
category of algebras and the category of coalgebras of F is slightly more 
complicated than one might expect at first sight. 

An F-algebra is a pair (c,o:c) consisting of an object c in G and an 
arrow ac : F(c) - c. Let (c, o:c) and (d, ad) be two F-algebras. An arrow 
f : c-+ dis a homomorphism of F-algebras if f o Cl'.c = ado F(f). The 
collection of all F-algebras together with F-algebra homomorphisms is a 
category, which we denote by GP. A subobject R of the product of c and d 
(if it exists) is called an F-substitutive relation if there exists an F-algebra 
structure O'.R : F(R) -+ R such that the projections from R to c and d 
are homomorphisms of F-algebras. (Somewhat confusingly, F-substitutive 
relations are called F-congruences in Manes 1976, Rutten and Turi 1994.) 

It can be easily shown that E-algebras are the F-algebras for a partic­
ular functor Fon the category of sets (see, e.g., Asperti and Longo 1990, 
Rutten and Turi 1994). 

Although the notion of F-algebra is dual to that of F-coalgebra, the 
category CF of F-algebras is not dual to the category Gp of F-coalgebras. 
Informally speaking, this can be explained by the following two diagrams 
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(of a homomorphism of F-algebras and a homomorphism of F-coalgebras): 

F(c) F(f) f c----d 

a,[ * * [a, 
c----d 

f 
F(c) Ffj) F(d), 

and the observation that the second diagram is obtained from the first 
one by reversing the vertical arrows only (rather than all arrows). This 
process of reversing vertical arrows is essentially what underlies the trans­
lation mentioned in the introduction: F-algebra becomes F-coalgebra; ho­
momorphism of F-algebras becomes homomorphism of F-coalgebras; and 
F-substitutive relation becomes F-bisimulation. (Note, however, that for 
E-algebras and transition systems different functors are used.) 

The precise relationship between the categories CF and cF can be 
expressed as follows: c F e:: ( cF 0

" ) 0 P. The opposite functor F 0 P : C0 P -t 

C 0 P acts on objects as F does, and maps an arrow f°P to (F(f)) 0 P. Cf. 
Mac Lane 1971. 

As we have seen in Section 10, many theorems hold in Gp because 
similar theorems are true in C. The same applies to F-algebras. 

Theorem 11.1 Let V: CF-+ C be the functor which maps an F-algebra 
( c, ac) to its carrier c. Similarly, the functor U : CF -+ C maps an F­
coalgebra ( c, ac) to its carrier c. 

1. The functor V creates all limits and those colimits that are preserved 
by F. 

2. {Theorems 10.1 and 10.2:} The functor U creates all colimits and all 
limits that are preserved by F. D 

On the basis of the above theorem, it should be possible to characterize 
a family of statements that are valid for F-algebras, and for which the 
translation described above yields a valid statement on F-coalgebras. 

12 Much remains to be done 
Both for our basic example of unlabelled, nondeterministic transition sys­
tems and for the general case of coalgebras of an arbitrary functor, there 
is still much left to do. 

The lattices of subsystems and bisimulations deserve further study, and 
so do the notions of initiality and finality. The simple observation that the 
composition of bisimulations is again a bisimulation has not been dealt with 
on the categorical level. The category C should be suitable for reasoning 
about subobjects and relations. (The family of regular categories seems to 
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be a good candidate.) Then there is the notion of coalgebras of a comonad 
(a comonad is a functor together with some natural transformations, see 
Mac Lane 1971). Such coalgebras have more structure in the sense that the 
coalgebra arrow is required to satisfy some conditions, and their relevance 
in terms of transition systems is still to be investigated. 

We have not touched upon closure properties. For instance, a class 
of E-algebras is called a variety if it is closed under the construction of 
subalgebras, homomorphic images and products. Equivalently, it is an 
equationally defined class (by Birkhoff's variety theorem). What would be 
an appropriate definition of a variety of transition systems? A possible 
candidate might be a class that is closed under subsystems, homomorphic 
images and sums (instead of products of transition systems, which gener­
ally do not exists). With this definition, the class of, e.g., finitely branching 
transition systems would, and the class of finite transition systems would 
not be a variety. In the definability theory of modal logic, these construc­
tions have received much attention. A well-known result is for instance, 
that a first-order definable class of transition systems is modally definable 
if and only if it is closed under the constructions mentioned above and 
its complement is closed under so-called ultrafilter extensions (Goldblatt 
and Thomason 1975). The latter result can be obtained rather easily by 
exploiting the duality of the category of Boolean algebras with operators 
(Jonsson and Tarski 1951) and transition systems: it is a translation of 
Birkhoff's variety theorem mentioned above. (See Goldblatt 1989; a pleas­
ant introduction to this 'algebraizing' of modal logic is given in Blackburn 
et al. 1994. Also in Malacaria 1995, algebraic tools are used in the analysis 
of transition systems.) It will be interesting to see to what extent these 
results on frames can be generalized to (classes of) arbitrary coalgebras. 
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