
Varieties and Covarieties of Languages
(Extended Abstract)

Jan Rutten1

CWI and Radboud University
Amsterdam, The Netherlands

Adolfo Ballester-Bolinches2 Enric Cosme-Llópez3

Departament d’Àlgebra
Universitat de València

València, Spain

Abstract

Because of the isomorphism (X × A) → X ∼= X → (A → X), the transition structure of a deterministic
automaton with state set X and with inputs from an alphabet A can be viewed both as an algebra and
as a coalgebra. This algebra-coalgebra duality goes back to Arbib and Manes, who formulated it as a
duality between reachability and observability, and is ultimately based on Kalman’s duality in systems
theory between controllability and observability. Recently, it was used to give a new proof of Brzozowski’s
minimization algorithm for deterministic automata. Here we will use the algebra-coalgebra duality of
automata as a common perspective for the study of both varieties and covarieties, which are classes of
automata and languages defined by equations and coequations, respectively. We make a first connection
with Eilenberg’s definition of varieties of languages, which is based on the classical, algebraic notion of
varieties of (transition) monoids.

Keywords: Automata, variety, covariety, equation, coequation, algebra, coalgebra.

1 Introduction

Because of the isomorphism

(X ×A) → X ∼= X → (A → X)

the transition structure of a deterministic automaton with state set X and with

inputs from an alphabet A can be viewed both as an algebra [11] and as a coalgebra

1 Email: janr@cwi.nl
2 Email: Adolfo.Ballester@uv.es
3 Email: enric.cosme@uv.es

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 298 (2013) 7–28

1571-0661/$ – see front matter © 2013 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2013.09.005

mailto:janr@cwi.nl
mailto:Adolfo.Ballester@uv.es
mailto:enric.cosme@uv.es
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2013.09.005
http://dx.doi.org/10.1016/j.entcs.2013.09.005
http://www.sciencedirect.com

[19,20]. As a consequence, both the algebraic notion of variety and the coalgebraic

notion of covariety apply. In this paper, we present a preliminary version of what is

to become a systematic study of varieties and covarieties of automata and of formal

languages.

We will define a variety of automata (viewed as algebras) in the usual way, as

a class defined by equations [12]. A covariety of automata (viewed as coalgebras)

will be a class defined by coequations [20]. Varieties and covarieties of automata

will then be used to define varieties and covarieties of languages. Our notion of a

variety of languages is different from the classical definition by Eilenberg [12,18],

and we will make some initial observations on how the two notions are related.

The setting of our investigations will be the following picture:

1

��

x

��

2

A∗
rx

��X

c
��

oc
�� 2A

∗

�� (1)

(This diagram will be explained in more detail in Section 3.) In the middle, we

have the state set X of a given automaton. On the left, A∗ is the set of all words

over A, and on the right, 2A
∗
is the set of all languages over A. For every choice

of a point (initial state) x ∈ X, the function rx sends any word w to the state xw
reached from x on input w. And for every choice of a colouring (set of final states)

c : X → 2, the function oc sends any state to the language it accepts.

Both the pointed automata A∗ (with the empty word as point) and X with point

x, are algebras. And both the coloured automata 2A
∗
(with colouring as explained

later) and X with colouring c, are coalgebras. The unique existence of the function

(in fact, a homomorphism of algebras) rx is induced by the initiality of A∗. And

the unique existence of the function (a homomorphism of coalgebras) oc is induced

by the finality of 2A
∗
.

(Sets of) equations will live in the left – algebraic – part of our diagram; in short,

they correspond to quotients of A∗. And (sets of) coequations live in the right –

coalgebraic – part of our diagram; they will correspond to subautomata of 2A
∗
. As

a consequence, diagram (1) allows us to define both varieties and covarieties, and

to study their properties from a common perspective.

The algebra-coalgebra duality of diagram (1) is a modern rendering of the dual-

ity between reachability and observability of automata [2,1], which ultimately goes

back to Kalman’s duality between controllability and observability in system theory

[14,15]. (See also [7,9] for further categorical generalisations.)

Recently [6,3], this algebra-coalgebra duality of automata was used to give

a new proof and various generalisations of Brzozowski’s minimization algorithm

[8]. The present work goes in a different direction, focusing on (co)equations and

J. Rutten et al. / Electronic Notes in Theoretical Computer Science 298 (2013) 7–288

(co)varieties. Notably, we will further refine diagram (1) as follows:

1

�� ��

x

��

2

A∗ r ��

rx

		free(X,α) ��X ��

c
��

oc

cofree(X,α)

��

o �� 2A
∗

��

(For details, see Section 5.) The new diagram includes, for every automaton X

with transition function α : X → XA, the (pointed) automaton free(X,α), which

represents the largest set of equations satisfied by (X,α). And, dually, we will

construct a (coloured) automaton cofree(X,α), which represents the smallest set of

coequations satisfied by (X,α).

We already mentioned above that our definition of a variety of languages is

different from Eilenberg’s, which is derived from the (classical, algebraic) notion of

variety of monoids. A first step towards an understanding of the relation between

the classical and the present notion of variety consists of the – elementary but to

us somewhat surprising – observation that free(X,α) is isomorphic to the so-called

transition monoid of X (which is called the syntactic monoid in case X is minimal)

[18]. This observation furthermore implies that the coloured automaton cofree(X,α)

can be viewed as a dual version of the transition monoid.

Much remains to be further understood. We already mentioned the connec-

tion with Eilenberg’s variety theorem. Furthermore, we would also like to relate

the present algebra-coalgebra perspective to recent developments on varieties of

languages, notably [13] and [4,5]. Finally, it should be possible to generalise the

present setting, along the lines of [6,3], from deterministic automata to other struc-

tures such as Mealy machines, weighted automata etc.

2 Preliminaries

Let A be a finite alphabet, in all our examples fixed to {a, b}. We write A∗ for the

set of all finite sequences (words) over A. We denote the empty word by ε and the

concatenation of two words v and w by vw.

For sets X and Z we define XZ = {g | g : Z → X}. For sets X,Y, Z and

functions f : X → Y we define fZ : XZ → Y Z by fZ(g) = f ◦ g.
We define the image and the kernel of a function f : X → Y by

im(f) = {y ∈ Y | ∃x ∈ X, f(x) = y }

ker(f) = {(x1, x2) ∈ X ×X | f(x1) = f(x2) }
A language L over A is a subset L ⊆ A∗ and we denote the set of all languages

over A by

2A
∗
= {L | L ⊆ A∗ }

(ignoring here and sometimes below the difference between subsets and character-

istic functions). For a language L ⊆ A∗ and a ∈ A we define the a-derivative of L

J. Rutten et al. / Electronic Notes in Theoretical Computer Science 298 (2013) 7–28 9

by

La = {v ∈ A∗ | av ∈ L}
and we define, more generally,

Lw = {v ∈ A∗ | wv ∈ L}

We define the initial value L(0) of L by

L(0) =

⎧⎨
⎩

1 if ε ∈ L

0 if ε �∈ L

For a functor F : Set → Set, an F -algebra is a pair (S, α) consisting of a set S

and a function α : F (S) → S. An F -coalgebra is a pair (S, α) with α : S → F (S).

We will be using the following functors:

F (S) =SA

G(S) =S ×A

(2× F)(S) = 2× SA

(1 +G)(S) = 1 + (S ×A)

Automata

An automaton is a pair (X,α) consisting of a (possibly infinite) set X of states and

a transition function

α : X → XA

In pictures, we use the following notation:

x a �� y ⇔ α(x)(a) = y

We will also write xa = α(x)(a) and, more generally,

xε = x xwa = α(xw)(a)

We observe that automata are F -coalgebras. Because there is, for any A and X, an

isomorphism

(̃) : (X → XA) → ((X ×A) → X) α̃(x, a) = α(x)(a)

automata are also G-algebras [17].

An automaton can be decorated by means of a colouring function

c : X → 2

using a basic set of colours 2 = {0, 1}. We call a state x accepting (or final) if

c(x) = 1, and non-accepting if c(x) = 0. We call a triple (X, c, α) a coloured

J. Rutten et al. / Electronic Notes in Theoretical Computer Science 298 (2013) 7–2810

automaton. In pictures, we use a double circle to indicate that a state is accepting.

For instance, in the following automaton

x

a
��

b �� y

b

 a��

the state x is accepting and the state y is not.

By pairing the functions c and α, we see that coloured automata are (2 × F)-

coalgebras:

〈c, α〉 : X → 2×XA

An automaton can also have an initial state x ∈ X, here represented by a

function

x : 1 → X

where 1 = {0}. We call a triple (X,x, α) a pointed automaton. By pairing the

functions x and α̃, we see that pointed automata are (1 +G)-algebras:

[x, α̃] : (1 + (X ×A)) → X

We call a 4-tuple (X,x, c, α) a pointed and coloured automaton. We could depict

it by either of the two following diagrams

1 x

��

2

X

c
��

α
��

XA

1 x

��

2

X

c
��

X ×A

α̃

��

We will be using the diagram on the left, which is just a matter of personal prefer-

ence.

We observe further that pointed and coloured automata are simply called au-

tomata in most of the literature on automata theory. A pointed and coloured

automaton (X,x, c, α) is neither an algebra nor a coalgebra – because of c and x,

respectively – which can be a cause of fascination and confusion alike.

Homomorphisms, subautomata, bisimulations

A function h : X → Y is a homomorphism between automata (X,α) and (Y, β) if

it makes the following diagram commute:

X

α
��

h
�� Y

β
��

XA

hA
�� Y A

J. Rutten et al. / Electronic Notes in Theoretical Computer Science 298 (2013) 7–28 11

A homomorphism of pointed automata (X,x, α) and (Y, y, β) and of coloured au-

tomata (X, c, α) and (Y, d, β) moreover respects initial values and colours, respec-

tively:

1

x

��

y

��
X

h
�� Y

2

X
h

��

c
��

Y

d

��

If in the diagrams above X ⊆ Y , and (i) h is subset inclusion

h : X ⊆ Y

(and, moreover (ii) x = y or (iii) c = d), then we call X a (i) subautomaton of Y

(respectively (ii) pointed and (iii) coloured subautomaton).

For an automaton (X,α) and x ∈ X, the subautomaton generated by x, denoted

by

〈x〉 ⊆ X

consists of the smallest subset of X that contains x and is closed under transitions.

We call a relation R ⊆ X×Y a bisimulation of automata if for all (x, y) ∈ X×Y ,

(x, y) ∈ R ⇒ ∀a ∈ A, (xa, ya) ∈ R

(where xa = σ(x)(a) and ya = τ(y)(a)). For pointed automata (X,x, α) and

(Y, y, β), R is a pointed bisimulation if, moreover, (x, y) ∈ R. And for coloured

automata (X,x, α) and (Y, y, β), R is a coloured bisimulation if, moreover, for all

(x, y) ∈ X × Y ,

(x, y) ∈ R ⇒ c(x) = d(y)

A bisimulation E ⊆ X × X is called a bisimulation on X. If E is an equiv-

alence relation then we call it a bisimulation equivalence. The quotient map of a

bisimulation equivalence on X is a homomorphism of automata:

X

α

��

q ��X/E

[α]
��

XA

qA
�� (X/E)A

with the obvious definitions of X/E, q and [α]. If the equivalence E is a pointed

bisimulation on (X,x, α) or a coloured bisimulation on (X, c, α), then we moreover

have, respectively,

1

x

��

[x]

��
X

h
��X/E

2

X
h

��

c
��

X/E

[c]

��

with, again, the obvious definitions of [x] and [c].

J. Rutten et al. / Electronic Notes in Theoretical Computer Science 298 (2013) 7–2812

For a homomorphism h : X → Y , ker(h) is a bisimulation equivalence on X and

im(h) is a subautomaton of Y . Any homomorphism h factors through quotient and

inclusion homomorphisms as follows:

X

α

��

q
��

h

��X/ker(h)

[α]
��

i
�� Y

β

��
XA qA ��

hA

��(X/ker(h))A iA �� Y A

Note that X/ker(h) ∼= im(h). Because q is surjective and i is injective, the pair (q, i)

is called an epi-mono factorisation of h.

Congruence relations

A right congruence is an equivalence relation E ⊆ A∗×A∗ such that, for all (v, w) ∈
A∗ ×A∗,

(v, w) ∈ E ⇒ ∀u ∈ A∗, (vu, wu) ∈ E

A left congruence is an equivalence relation E ⊆ A∗ ×A∗ such that, for all (v, w) ∈
A∗ ×A∗,

(v, w) ∈ E ⇒ ∀u ∈ A∗, (uv, uw) ∈ E

We call E a congruence if it is both a right and a left congruence. Note that E is

a right congruence iff it is a bisimulation equivalence on (A∗, σ).

Products and coproducts of automata

Automata (are both G-algebras and F -coalgebras and hence) have both products

and coproducts, as follows.

• The product of two automata (X,α) and (Y, β) is given by (X×Y, γ) where X×Y

is the Cartesian product and where

γ : (X × Y) → (X × Y)A γ((x, y))(a) = (α(x)(a), β(y)(a))

• The coproduct (or: sum) of two automata (X,α) and (Y, β) is given by (X+Y, γ)

where X + Y is the disjoint union and where

γ : (X + Y) → (X + Y)A γ(z)(a) =

⎧⎨
⎩

α(z)(a) if z ∈ X

β(z)(a) if z ∈ Y

Pointed automata (are (1 + G)-algebras and hence) have products, as fol-

lows. The product of two pointed automata (X,x, α) and (Y, y, β) is given by

(X × Y, (x, y), γ) with (X × Y, γ) as above and with initial state

(x, y) : 1 → X × Y

J. Rutten et al. / Electronic Notes in Theoretical Computer Science 298 (2013) 7–28 13

Coloured automata (are (2× F)-coalgebras and hence) have coproducts, as fol-

lows. The coproduct of two coloured automata (X, c, α) and (Y, d, β) is given by

(X + Y, [c, d], γ) with (X + Y, γ) as above and with colouring function

[c, d] : (X + Y) → 2 [c, d](z) =

⎧⎨
⎩

c(z) if z ∈ X

d(z) if z ∈ Y

All of the above binary (co)products can be easily generalised to (co)products

of arbitrary families of automata.

3 Setting the scene

The set A∗ forms a pointed automaton (A∗, ε, σ) with initial state ε and transition

function σ defined by

σ : A∗ → (A∗)A σ(w)(a) = wa

It is initial in the following sense: for any given automaton (X,α), every choice of

initial state x : 1 → X induces a unique function rx : A∗ → X, given by rx(w) = xw,

that makes the following diagram commute:

1

ε

��

x

��
A∗

σ

��

rx
��X

α

��
(A∗)A

(rx)A
��XA

This property makes (A∗, ε, σ) an initial (1+G)-algebra. Equivalently, the automa-

ton (A∗, σ) is a G-algebra that is free on the set 1. The function rx maps a word w

to the state xw reached from the initial state x on input w and is therefore called

the reachability map for (X,x, α).

The set 2A
∗
of languages forms a coloured automaton (2A

∗
, ε?, τ) with colouring

function ε? defined by

ε? : 2A
∗ → 2 ε?(L) = L(0)

and transition function τ defined by

τ : 2A
∗ → (2A

∗
)A τ(L)(a) = La

It is final in the following sense: for any given automaton (X,α), every choice of

colouring function c : X → 2 induces a unique function oc : X → 2A
∗
, given by

J. Rutten et al. / Electronic Notes in Theoretical Computer Science 298 (2013) 7–2814

oc(x) = {w | c(xw) = 1 }, that makes the following diagram commute:

2

X

c
��

α

��

oc
�� 2A

∗

τ

��

ε?

��

XA

(oc)A
�� (2A

∗
)A

This property makes (2A
∗
, ε?, τ) a final (2×F)-coalgebra. Equivalently, the automa-

ton (2A
∗
, τ) is an F -coalgebra that is cofree on the set 2. The function oc maps a

state x to the language oc(x) accepted by x. Since the language oc(x) can be viewed

as the observable behaviour of x, the function oc is called the observability map.

The scene

Summarizing, we have set the following scene for our investigations:

1

ε

��

x

��

2

A∗

σ

��

rx
��X

c
��

α

��

oc
�� 2A

∗

τ

��

ε?

��

(A∗)A
(rx)A

��XA

(oc)A
�� (2A

∗
)A

(2)

If the reachability map rx is surjective then we call (X,x, α) reachable. If the

observability map oc is injective then we call (X, c, α) observable. And if rx is

surjective and oc is injective then we call (X,x, c, α) (reachable and observable, or:)

minimal.

For a given language L ∈ 2A
∗
, there is the following variation of the picture

above:

1

ε

��

L

��
A∗ h ��

L ��

2A
∗

ε?
��
2

where the lower L is in fact the characteristic function of L ⊆ A∗, and where the

homomorphism h satisfies h = rL = oL and h(w) = Lw. As a consequence, we have

h(v) = h(w) iff

∀u ∈ A∗, vu ∈ L ⇔ wu ∈ L

which we recognise as the celebrated Myhill-Nerode equivalence. A minimal au-

J. Rutten et al. / Electronic Notes in Theoretical Computer Science 298 (2013) 7–28 15

tomaton accepting L is now obtained by the epi-mono factorisation of h:

1

ε

��

x

��

L

��
A∗ q ��

L ��

A∗/ker(h)

c

��

i �� 2A
∗

ε?

��
2

where x = q◦ε and c = ε?◦i. This minimal automaton is unique up-to isomorphism

because epi-mono factorisations are. And because A∗/ker(h) ∼= im(h), it is equal to

〈L〉 ⊆ 2A
∗

that is, the subautomaton of (2A
∗
, ε?) generated by L.

In conclusion of this section, we observe that 〈L〉 is finite iff the language L

is rational. This fact is a version [8,10] of Kleene’s correspondence between finite

automata and rational languages [16].

4 Equations and coequations

We will be referring to the situation of (2).

Definition 4.1 [equations] A set of equations is a bisimulation equivalence relation

E ⊆ A∗ × A∗ on the automaton (A∗, σ). We define (X,x, α) |= E – and say: the

pointed automaton (X,x, α) satisfies E – by

(X,x, α) |= E ⇔ ∀(v, w) ∈ E, xv = xw

Because

∀(v, w) ∈ E, xv = xw ⇔ E ⊆ ker(rx)

we have, equivalently, that (X,x, α) |= E iff the reachability map rx factors through

A∗/E:

1

ε

��

[ε]

��

x

��
A∗ q ��

rx

		A∗/E h ��X

where the homomorphisms (of pointed automata) q and h are given by

q(w) = [w] h([w]) = rx(w)

We define (X,α) |= E – and say: the automaton (X,α) satisfies E – by

(X,α) |= E⇔∀x : 1 → X, (X,x, α) |= E

⇔∀x ∈ X, ∀(v, w) ∈ E, xv = xw

�

J. Rutten et al. / Electronic Notes in Theoretical Computer Science 298 (2013) 7–2816

Note that we consider sets of equations E and that (v, w) ∈ E implies (vu,wu) ∈
E, for all v, w, u ∈ A∗, because E is – by definition – a bisimulation relation on

(A∗, σ). Still we shall sometimes consider also single equations (v, w) ∈ A∗ × A∗

and use the following shorthand:

(X,x, α) |= v = w ⇔ (X,x, α) |= Ev=w

where Ev=w is defined as the smallest bisimulation equivalence on A∗ containing

(v, w). We shall use also variations such as

(X,x, α) |= {v = w, t = u} ⇔ (X,x, α) |= v = w ∧ (X,x, α) |= t = u

Definition 4.2 [coequations]

A set of coequations is a subautomaton D ⊆ 2A
∗
of the automaton (2A

∗
, τ). We

define (X, c, α) |= D – and say: the coloured automaton (X, c, α) satisfies D – by

(X, c, α) |= D ⇔ ∀x ∈ X, oc(x) ∈ D

Because

∀x ∈ X, oc(x) ∈ D ⇔ im(oc) ⊆ D

we have, equivalently, that (X, c, α) |= D iff the observability map oc factors through

D:

2

X

c
��

h ��

oc

��D

ε?

��

i �� 2A
∗

ε?

��

where the homomorphisms (of coloured automata) h and i are given by

h(x) = oc(x) i(L) = L

We define (X,α) |= D – and say: the automaton (X,α) satisfies D – by

(X,α) |= D⇔∀c : X → 2, (X, c, α) |= D

⇔∀c : X → 2, ∀x ∈ X, oc(x) ∈ D

�

Example 4.3 We consider the automaton (Z, γ) defined by the following diagram:

(Z, γ) = x

a
��

b �� y

b

 a��

Here are some examples of equations:

(Z, x, γ) |= {b = ε, ab = ε, aa = a}
(Z, y, γ) |= {a = ε, ba = ε, bb = b}

J. Rutten et al. / Electronic Notes in Theoretical Computer Science 298 (2013) 7–28 17

Taking the intersection of the (bisimulation equivalences generated by) these sets,

we obtain that

(Z, γ) |= {aa = a, bb = b, ab = b, ba = a}
The above set of equations or, again more precisely, the bisimulation equivalence

relation on (A∗, σ) generated by it, is the largest set of equations satisfied by (Z, γ).

For examples of coequations, we consider the following 2 (out of all 4 possible)

coloured versions of (Z, γ):

(Z, c, γ) = x

a
��

b �� y

b

 a�� (Z, d, γ) = x

a
��

b �� y

b

 a��

(Thus c(x) = 1, c(y) = 0, d(x) = 0 and d(y) = 1.) The observability mappings oc
and od map these automata to

im(oc) = (a∗b)∗
a

��

b

��
(a∗b)+

b

��

a

��
im(od) = (b∗a)+

a
��

b

��
(b∗a)∗

b

��

a

��

It follows that

(Z, c, γ) |= {(a∗b)∗, (a∗b)+} (Z, d, γ) |= {(b∗a)∗, (b∗a)+}

�

5 Free and cofree automata

Let (X,α) be an arbitrary automaton. We show how to construct an automaton

that corresponds to the largest set of equations satisfied by (X,α). And, dually, we

construct an automaton that corresponds to the smallest set of coequations satisfied

by (X,α). For notational convenience, we assume X to be finite but nothing will

depend on that assumption.

Definition 5.1 [free automaton, Eq(X,α)] Let X = {x1, . . . , xn} be the set of

states of a finite automaton (X,α). We define a pointed automaton free(X,α) in

two steps, as follows:

(i) First, we take the product of the n pointed automata (X,xi, α) that we obtain

by letting the initial element xi range over X. This yields a pointed automaton

(ΠX, x̄, ᾱ) with

ΠX =
∏

x:1→X

Xx
∼= Xn

(where Xx = X), with x̄ = (x1, . . . , xn), and with ᾱ : ΠX → (ΠX)A defined

by

ᾱ(y1, . . . , yn)(a) = ((y1)a, . . . , (yn)a)

J. Rutten et al. / Electronic Notes in Theoretical Computer Science 298 (2013) 7–2818

(ii) Next we define (free(X,α), x̄, ᾱ) by free(X,α) = im(rx̄), where rx̄ is the reach-

ability map for (ΠX, x̄, ᾱ):

1

ε

��

x̄

��

x̄

��
A∗ r ��

rx̄

free(X,α) i ��Xn

Furthermore, we define the following set of equations:

Eq(X,α) = ker(r)

where r is the reachability map for (free(X,α), x̄, ᾱ). �

Note that

free(X,α) ∼= A∗/Eq(X,α)

Definition 5.2 [cofree automaton, coEq(X,α)] Let X = {x1, . . . , xn} be the set of

states of a finite automaton (X,α). We define a coloured automaton cofree(X,α)

in two steps, as follows:

(i) First, we take the coproduct of the 2n coloured automata (X, c, α) that we

obtain by letting c range over the set X → 2 of all colouring functions. This

yields a coloured automaton (ΣX, ĉ, α̂) with

ΣX =
∑

c:X→2

Xc

(where Xc = X), and with ĉ and α̂ defined component-wise.

(ii) Next we define (cofree(X,α), [ĉ], [α̂]) by cofree(X,α) = ΣX/ker(oĉ), where oĉ
is the observability map for (ΣX, ĉ, α̂):

2

ΣX

ĉ
��

q ��

oĉ

��cofree(X,α)

[ĉ]

��

o �� 2A
∗

ε?

��

and where [ĉ] and [α̂] are the extensions of ĉ and α̂ to equivalence classes.

Furthermore, we define

coEq(X,α) = im(o)

where o is the observability map for (cofree(X,α), [ĉ], [α]). �

Note that

cofree(X,α) ∼= coEq(X,α)

J. Rutten et al. / Electronic Notes in Theoretical Computer Science 298 (2013) 7–28 19

Theorem 5.3 The set Eq(X,α) is the largest set of equations satisfied by (X,α).

The set coEq(X,α) is the smallest set of coequations satisfied by (X,α). �

Example 5.4 [Example 4.3 continued] We consider our previous example

(Z, γ) = x

a
��

b �� y

b

 a��

The product of (Z, x, γ) and (Z, y, γ) is:

(ΠZ, (x, y), γ̄) =

(y, y)

a

��

b

��
(x, y)

a ��

b ��

(y, x)

a��

b��(x, x)

b

��

a

Taking im(r(x,y)) yields the part that is reachable from (x, y):

(free(Z, γ), (x, y), γ̄) =

(y, y)

a

��

b

��
(x, y)

a ��

b �� (x, x)

b

��

a

The set Eq(Z, γ) is defined as ker(r(x,y)), and consists of (the smallest bisimulation

equivalence on (A∗, σ) generated by)

Eq(Z, γ) = {aa = a, bb = b, ab = b, ba = a}

This is the largest set of equations satisfied by (Z, γ).

Next we turn to coequations. The coproduct of all 4 coloured versions of (Z, γ)

is

(ΣZ, ĉ, γ̂) = x1

a
!!

b
��

y1

b

"" a
x2

a
!!

b
��

y2

b

"" a
##

x3

a
!!

b
��

y3

b

"" a
x4

a
!!

b
��

y4

b

"" a
##

J. Rutten et al. / Electronic Notes in Theoretical Computer Science 298 (2013) 7–2820

The observability map oĉ : ΣZ → 2A
∗
is given by

oĉ(x1) oĉ(y1) oĉ(x2) oĉ(y2) oĉ(x3) oĉ(y3) oĉ(x4) oĉ(y4)

∅ ∅ (a∗b)∗ (a∗b)+ (b∗a)+ (b∗a)∗ A∗ A∗

Computing the quotient ΣZ/ker(oĉ) yields:

(cofree(Z, γ), [ĉ], [γ̂]) = {x1, y1}

a,b

��

{x4, y4}

a,b

��

{x2}
a

��

b

��
{y2}

b

##

a

��

{x3}
a

��

b

��
{y3}

b

##

a

��

The image of this automaton under the reachability map o : cofree(Z, γ) → 2A
∗
is

coEq(Z, γ) = ∅

a,b

$$

A∗

a,b

%%

(a∗b)∗
a ��

b

��
(a∗b)+

b

��

a

��

(b∗a)+
a ��

b

��
(b∗a)∗

b

��

a

��

(3)

This is the smallest set of coequations satisfied by (Z, γ). �

Summarizing the present section, we have obtained, for every automaton (X,α),

the following refinement of (2):

1

ε

��

x̄

��

x

��

2

A∗

σ

��

r
�� free(X,α)

ᾱ
��

��X

c
��

α

��

�� cofree(X,α)

[ĉ]

��

[α̂]

��

o
�� 2A

∗

τ

��

ε?

��

(A∗)A �� free(X,α)A ��XA �� cofree(X,α)A �� (2A
∗
)A

where x ranges over the elements of X and c ranges over all possible colourings of

X. The free and cofree automata represent the largest set of equations and the

smallest set of coequations satisfied by (X,α):

Eq(X,α) = ker(r) coEq(X,α) = im(o)

Note that the free and cofree automata are constructed for the automaton (X,α),

J. Rutten et al. / Electronic Notes in Theoretical Computer Science 298 (2013) 7–28 21

without point and without colouring. In conclusion, let us mention again that all

of the above easily generalises to infinite X.

6 Varieties and covarieties

We define varieties and covarieties by means of equations and coequations, first for

automata and next for languages.

Definition 6.1 [variety of automata] For every set E of equations we define the

variety VE by

VE = { (X,α) | (X,α) |= E }
�

Definition 6.2 [covariety of automata] For every set D of coequations we define

the covariety CD by

CD = { (X,α) | (X,α) |= D }
�

Every variety of automata defines a set of languages, which we will again call a

variety. Dually, every covariety of automata defines a set of languages , which we

will again call a covariety.

Definition 6.3 [variety and covariety of languages] Let VE be a variety of au-

tomata. We define the variety of languages L(VE) by

L(VE) = {L ∈ 2A
∗ | 〈L〉 ∈ VE }

(where 〈L〉 is the subautomaton of (2A
∗
, τ) generated by L). Dually, let CD be a

covariety of automata. We define the covariety of languages L(CD) by

L(CD) = {L ∈ 2A
∗ | 〈L〉 ∈ CD }

�

Proposition 6.4 Every variety VE is closed under the formation of subautomata,

homomorphic images, and products. �

Proposition 6.5 Every covariety CD is closed under the formation of subau-

tomata, homomorphic images, and coproducts. �

Proposition 6.6 A covariety CD is generally not closed under products.

Proof. We give an example of a covariety that is not closed under products. We

recall from Example 5.4 the automaton

(Z, γ) = x

a
��

b �� y

b

 a��

J. Rutten et al. / Electronic Notes in Theoretical Computer Science 298 (2013) 7–2822

We saw that (Z, γ) |= D, with D = coEq(Z, γ) as in (3). The product of (Z, γ)

with itself is

(Z2, γ̄) =

(y, y)

a

��

b

��
(x, y)

a ��

b ��

(y, x)

a��

b��(x, x)

b

��

a

We define a colouring c : Z2 → 2 by

c((x, y)) c((y, y)) c((x, x)) c((y, x))

0 1 1 0

This colouring c induces the observability map oc : Z
2 → 2A

∗
, given by

oc((x, y)) oc((y, y)) oc((x, x)) oc((y, x))

A+ A∗ A∗ A+

Because A+ �∈ D, the automaton (Z2, γ̄) �|= D. Thus CD is not closed under

products. �

Corollary 6.7 Not every covariety CD is also a variety. �

Here are some elementary properties of (co)equations and (covarieties).

Proposition 6.8 For every set of equations E ⊆ A∗ ×A∗,

L(VE) = {L ∈ 2A
∗ | ∀(v, w) ∈ Ẽ, Lv = Lw }

where Ẽ is the smallest congruence relation containing E. �

Theorem 6.9 (on equations and varieties) Let E ⊆ A∗ ×A∗ be a set of equa-

tions. The following statements are equivalent:

0. E is a congruence

1. E = Eq(X,α) for some automaton (X,α)

2. (A∗/E, [σ]) |= E

3. Eq(A∗/E, [σ]) = E

(with σ as in (2)). Furthermore, any of the above implies:

4. L(VE) = {L ∈ 2A
∗ | ∀(v, w) ∈ E, Lv = Lw }.

�

Theorem 6.10 (on coequations and covarieties) Let D ⊆ 2A
∗
be a set of co-

equations. The following statements are equivalent:

J. Rutten et al. / Electronic Notes in Theoretical Computer Science 298 (2013) 7–28 23

1. D = coEq(X,α) for some automaton (X,α)

2. (D, τ) |= D

3. coEq(D, τ) = D

4. L(CD) = D

(with τ as in (2)). �

Corollary 6.11 Every variety of languages L(VE) is also a covariety of lan-

guages. �

Example 6.12 [Example 5.4 continued] Recall the automaton

(Z, γ) = x

a
��

b �� y

b

 a��

and recall

coEq(Z, γ) = ∅

a,b

$$

A∗

a,b

%%

(a∗b)∗
a ��

b

��
(a∗b)+

b

��

a

��

(b∗a)+
a ��

b

��
(b∗a)∗

b

��

a

��

The smallest covariety containing (Z, γ) is

CcoEq(Z,γ)

It contains the languages

L(CcoEq(Z,γ)) = { ∅, (a∗b)∗, (a∗b)+, (b∗a)∗, (b∗a)+, A∗ }

The smallest variety containing (Z, γ) is

VEq(Z,γ)

were we recall that Eq(Z, γ) is the smallest bisimulation equivalence (in fact, a

congruence) generated by the set

{aa = a, bb = b, ab = b, ba = a}

We have

L(VEq(Z,γ)) = {L ∈ 2A
∗ | (Laa = La) ∧ (Lbb = Lb) ∧ (Lab = Lb) ∧ (Lba = La) }

= { ∅, 1, (a∗b)∗, (a∗b)+, (b∗a)∗, (b∗a)+, A+, A∗ }

J. Rutten et al. / Electronic Notes in Theoretical Computer Science 298 (2013) 7–2824

The latter set of languages can be, equivalently, determined using the fact that

VEq(Z,γ) =CcoEq((A∗,σ)/Eq(Z,γ))
=CcoEq(free(Z,γ))

To this end, we recall that

(free(Z, γ), (x, y), γ̄) =

(y, y)

a

��

b

��
(x, y)

a ��

b �� (x, x)

b

��

a

and compute coEq(free(Z, γ)) by means of the following table, which contains all

possible colourings c of free(Z, γ), together with the corresponding value of oc:

c c((x, y)) c((y, y)) c((x, x)) oc((x, y)) oc((y, y)) oc((x, x))

c1 0 0 0 ∅ ∅ ∅
c2 0 0 1 (a∗b)+ (a∗b)+ (a∗b)∗

c3 0 1 0 (b∗a)+ (b∗a)∗ (b∗a)+

c4 0 1 1 A+ A∗ A∗

c5 1 0 0 1 ∅ ∅
c6 1 0 1 (a∗b)∗ (a∗b)+ (a∗b)∗

c7 1 1 0 (b∗a)∗ (b∗a)∗ (b∗a)+

c8 1 1 1 A∗ A∗ A∗

In the end, this leads to the same set of languages. We conclude this example by

observing that

L(CcoEq(Z,γ)) ⊆ L(VEq(Z,γ))

as expected. �

Example 6.13 Here we focus on a single given language, say: L = (a∗b)∗. A

minimal automaton for L is

(Z, x, c, γ) = x

a
��

b �� y

b

 a��

It follows from Example 6.12 that the smallest covariety of languages containing L

is

L(CcoEq(Z,γ)) = { ∅, (a∗b)∗, (a∗b)+, (b∗a)∗, (b∗a)+, A∗ }

J. Rutten et al. / Electronic Notes in Theoretical Computer Science 298 (2013) 7–28 25

and that the smallest variety containing L is

L(VEq(Z,γ)) = { ∅, 1, (a∗b)∗, (a∗b)+, (b∗a)∗, (b∗a)+, A+, A∗ }

�

Example 6.14 Here are some further examples of varieties and covarieties.

(i) The smallest congruence generated by { a = ε, b = ε } is E = A∗ × A∗. As a

consequence,

L(VE) = { ∅, A∗ }
The same for E = { b = ε, ab = ε, aa = a }.

(ii) If E is the smallest congruence generated by {aa = ε, b = ε }, then

L(VE) = { ∅, ((ab∗a) + b)∗, ((ab∗a) + b)∗ab∗, {a, b}∗ }

(iii) If E is the smallest congruence generated by {aa = ε, bb = ε }, then the variety

L(VE) is infinite and contains both rational and non-rational languages.

(iv) For D = 2A
∗
, the covariety CD contains all automata (X,α).

(v) For D = rat(2A
∗
),

CD = {(X,α) | (X,α) is finitely generated }

that is, all (X,α) such that 〈x〉 ⊆ X is finite, for all x ∈ X.

(vi) If D = { {a}, 1, ∅ } then CD = ∅.

7 Transition monoids

For every (rational) language, one can construct its so-called syntactic monoid (that

is, the transition monoid of its minimal automaton). Next every (classical, algebraic)

variety V of monoids determines a class of languages L by the requirement that its

syntactic monoid belongs to V . This is, in short, Eilenberg’s definition of a variety

of languages. In this section, we take a first step towards an understanding of the

relation between Eilenberg’s definition and the present one, by the observation that

free(X,α), for every automaton (X,α), is isomorphic to its transition monoid.

A monoid (M, ·, 1) consists of a set M , a binary operation of multiplication that

is associative, and a unit 1 with m · 1 = 1 · m = m. For every set, there is the

monoid

(XX , ·, 1X)

defined by

XX = {φ | φ : X → X } 1X(x) = x f · g = g ◦ f

Because of the isomorphism

X → XA ∼= A → XX

J. Rutten et al. / Electronic Notes in Theoretical Computer Science 298 (2013) 7–2826

we have for every automaton (X,α) and a ∈ A a function

ã : X → X ã(x) = α(x)(a) = xa

We use it to define for every automaton (X,α) a pointed automaton

(XX , 1X , α̃) α̃(φ)(a) = φ · ã

Next we define the transition monoid (cf. [18])

(trans(X,α), 1X , α̃)

by trans(X,α) = im(r1X), the image of the reachability map of (XX , 1X , α̃):

1

ε

��

1X

&&

1X

��
A∗ r ��

r1X

��trans(X,α) i ��XX

(where r(a1 · · · an) = ã1 · · · ãn, for a1 · · · an ∈ A∗).

Theorem 7.1 For an automaton (X,α),

(free(X,α), x̄, ᾱ) ∼= (trans(X,α), 1X , α̃)

Proof. Let X = {x1, . . . , xn}. For every ȳ ∈ free(X,α) we define

φȳ : X → X φȳ(xi) = yi

Then φ(ȳ) = φȳ defines an isomorphism of pointed automata. �

This elementary observation should form the basis for a detailed comparison of

the present definition of variety of languages and Eilenberg’s definition.

References

[1] M.A. Arbib and E.G. Manes. Adjoint machines, state-behaviour machines, and duality. Journal of
Pure and Applied Algebra, 6:313–344, 1975.

[2] M.A. Arbib and H.P. Zeiger. On the relevance of abstract algebra to control theory. Automatica,
5:589–606, 1969.

[3] F. Bonchi, M. Bonsangue, H. Hansen, P. Panangaden, J. Rutten, and A. Silva. Algebra-coalgebra
duality in Brzozowski’s minimization algorithm. 2013. Submitted.

[4] A. Ballester-Bolinches, J.-E. Pin, and X. Soler-Escriva. Formations of finite monoids and formal
languages: Eilenberg’s variety theorem revisited. Forum Mathematicum, 2012.

[5] A. Ballester-Bolinches, J.-E. Pin, and X. Soler-Escriva. Languages associated with saturated formations
of groups. Forum Mathematicum, 2013.

[6] F. Bonchi, M. Bonsangue, J. Rutten, and A. Silva. Brzozowski’s algorithm (co)algebraically. In
R. Constable and A. Silva, editors, Logic and Program Semantics., volume 7230 of LNCS, pages 12–23,
2012.

J. Rutten et al. / Electronic Notes in Theoretical Computer Science 298 (2013) 7–28 27

[7] M. Bidoit, R. Hennicker, and A. Kurz. On the duality between observability and reachability. In Furio
Honsell and Marino Miculan, editors, FoSSaCS, volume 2030 of Lect. Notes in Comp. Sci., pages 72–87.
Springer, 2001.

[8] J.A. Brzozowski. Derivatives of regular expressions. Journal of the ACM, 11(4):481–494, 1964.

[9] C. Cirstea. On specification logics for algebra-coalgebra structures: Reconciling reachability and
observability. In Proceedings FoSSaCS, pages 82–97, 2002.

[10] J.H. Conway. Regular algebra and finite machines. Chapman and Hall, 1971.

[11] S. Eilenberg. Automata, languages and machines (Vol. A). Pure and applied mathematics. Academic
Press, 1974.

[12] S. Eilenberg. Automata, languages and machines (Vol. B). Pure and applied mathematics. Academic
Press, 1976.

[13] M. Gehrke, S. Grigorieff, and J.-E. Pin. Duality and equational theory of regular languages. In
Proceedings ICALP, volume 5126 of LNCS, pages 246–257, 2008.

[14] R. Kalman. On the general theory of control systems. IRE Transactions on Automatic Control,
4(3):110–110, 1959.

[15] R. E. Kalman, P. L. Falb, and M. A. Arbib. Topics in Mathematical Systems Theory. McGraw Hill,
1969.

[16] S.C. Kleene. Representation of events in nerve nets and finite automata. In Shannon and McCarthy,
editors, Automata Studies, pages 3–41. Princeton Univ. Press, 1956.

[17] E.G. Manes and M.A. Arbib. Algebraic approaches to program semantics. Texts and monographs in
computer science. Springer-Verlag, 1986.

[18] J.-E. Pin. Syntactic semigroups. Handbook of language theory, Vol. I, pages 679–746, 1997.

[19] J.J.M.M. Rutten. Automata and coinduction (an exercise in coalgebra). In D. Sangiorgi and
R. de Simone, editors, Proceedings of CONCUR’98, volume 1466 of LNCS, pages 194–218, 1998.

[20] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science, 249(1):3–80,
2000. Fundamental Study.

J. Rutten et al. / Electronic Notes in Theoretical Computer Science 298 (2013) 7–2828

	Introduction
	Preliminaries
	Setting the scene
	Equations and coequations
	Free and cofree automata
	Varieties and covarieties
	Transition monoids
	References

