Weak and strong regularity, compactness, and approximation of polynomials

Alexander Schrijver ${ }^{11}$

Abstract

Let X be an inner product space, let G be a group of orthogonal transformations of X, and let R be a bounded G-stable subset of X. We define very weak and very strong regularity for such pairs (R, G) (in the sense of Szemerédi's regularity lemma), and prove that these two properties are equivalent.

Moreover, these properties are equivalent to the compactness of the space $\left(B(H), d_{R}\right) / G$. Here H is the completion of X (a Hilbert space), $B(H)$ is the unit ball in H, d_{R} is the metric on H given by $d_{R}(x, y):=\sup _{r \in R}|\langle r, x-y\rangle|$, and $\left(B(H), d_{R}\right) / G$ is the orbit space of $\left(B(H), d_{R}\right)$ (the quotient topological space with the G-orbits as quotient classes).

As applications we give Szemerédi's regularity lemma, a related regularity lemma for partitions into intervals, and a low rank approximation theorem for homogeneous polynomials.

1. Equivalence of very weak regularity, very strong regularity, and compactness

This paper is inspired by Szemerédi's regularity lemma ([7]) and subsequent work on graph limits by Lovász and Szegedy ([3,4]) (cf. also [5]).

Let X be an inner product space and let R be a bounded subset of X spanning X. (So each element of X is a linear combination of finitely many elements of R.) Let G be a group of orthogonal transformations π of X with $\pi(R)=R$. Let $B(X)$ denote the unit ball in X. For any k, let $R_{k}:=\left\{ \pm r_{1} \pm \cdots \pm r_{k} \mid r_{1}, \ldots, r_{k} \in R\right\}$. Let H be the completion of X, which is a Hilbert space. Then G naturally acts on H. For $x, y \in H$, define

$$
\begin{equation*}
d_{R}(x, y):=\sup _{r \in R}|\langle r, x-y\rangle| . \tag{1}
\end{equation*}
$$

The space $\left(B(H), d_{R}\right) / G$ is the orbit space of $\left(B(H), d_{R}\right)$, i.e., the quotient topological space of $\left(B(H), d_{R}\right)$ taking the G-orbits as classes.

Theorem 1. The following are equivalent:
(i) (R, G) is very weakly regular: for each k there exists a finite set $Z \subseteq X$ such that for each $x \in R_{k}$ there exist $z \in Z$ and $\pi \in G$ satisfying $\left\langle r, x-z^{\pi}\right\rangle^{2} \leq 1$ for each $r \in R$;
(ii) (R, G) is weakly regular: for each $\varepsilon>0$ there exists a finite set $Z \subseteq B(X)$ such that for each $x \in B(X)$ there exist $z \in Z$ and $\pi \in G$ satisfying $\left|\left\langle r, x-z^{\pi}\right\rangle\right|<\varepsilon$ for each $r \in R$;
(iii) (R, G) is very strongly regular: for each $\varepsilon>0$ and $f: X \rightarrow\{1,2, \ldots\}$ there exists a finite set $Z \subseteq B(X)$ such that for each $x \in B(X)$ there exist $z \in Z$ and $\pi \in G$ satisfying ${ }^{2}$

[^0]\[

$$
\begin{equation*}
\sum_{i=1}^{f(z)}\left|\left\langle r_{i}, x-z^{\pi}\right\rangle\right|^{t} \leq \varepsilon\left(1+\left\|\left(\left\|r_{1}\right\|^{t}, \ldots,\left\|r_{f(z)}\right\|^{t}\right)\right\|_{p}\right) \tag{2}
\end{equation*}
$$

\]

for all $t \in[\varepsilon, 2]$, where $p:=2 /(2-t)$, and for all orthogonal $r_{1}, \ldots, r_{f(z)} \in R$;
(iv) the space $\left(B(H), d_{R}\right) / G$ is compact.

Proof. (iii) \Rightarrow (ii) follows by taking $f(x)=1$ for each $x \in X$ and $t=1$. (ii) \Rightarrow (i) follows by observing that $\frac{1}{t} R_{k} \subseteq B(X)$ for some t, and taking $\varepsilon:=1 / t$. So it suffices to prove (i) \Rightarrow (ii), (ii) \Rightarrow (iv), and (iv) \Rightarrow (iii).

For all $x, y \in B(H)$ define

$$
\begin{equation*}
\delta_{R}(x, y):=\inf _{\pi \in G} d_{R}\left(x, y^{\pi}\right) \tag{3}
\end{equation*}
$$

Then δ_{R} is a pseudometric, and the space $\left(B(H), \delta_{R}\right)$ is topologically homeomorphic to the orbit space $\left(B(H), d_{R}\right) / G$.

Observe that (i) implies that the space $\left(R_{k}, \delta_{R}\right)$ is totally bounded ${ }^{3}$. Indeed, choose $\varepsilon>0$. Let $t:=\left\lceil\varepsilon^{-1}\right\rceil$. Then $R_{k t}$ can be covered by finitely many δ_{R}-balls of radius 1 . As $R_{k} \subseteq \frac{1}{t} R_{k t}, R_{k}$ can be covered by finitely many δ_{R}-balls of radius $1 / t \leq \varepsilon$.

So we can assume, by scaling, that $\|r\| \leq 1$ for each $r \in R$.
$(\mathrm{i}) \Rightarrow$ (ii): We saw above that (i) implies that $\left(R_{k}, \delta_{R}\right)$ is totally bounded for each k. Now define, for each k,

$$
\begin{equation*}
S_{k}:=\left\{\lambda_{1} r_{1}+\cdots+\lambda_{k} r_{k} \mid r_{1}, \ldots, r_{k} \in R, \lambda_{1}, \ldots, \lambda_{k} \in[-1,+1]\right\} . \tag{4}
\end{equation*}
$$

Then also $\left(S_{k}, \delta_{R}\right)$ is totally bounded. Indeed, choose $\varepsilon>0$, and define $t:=k\left\lceil\varepsilon^{-1}\right\rceil$. Then each $x \in S_{k}$ has Hilbert distance less than ε to $\frac{1}{t} R_{k t}$. By the above, $\left(R_{k t}, \delta_{R}\right)$ is totally bounded, hence so is $\left(\frac{1}{t} R_{k t}, \delta_{R}\right)$. So (S_{k}, δ_{R}) is totally bounded.

Next we show that for each k :

$$
\begin{equation*}
B(X) \subseteq B_{d_{R}}\left(S_{k}, 1 / \sqrt{k}\right) . \tag{5}
\end{equation*}
$$

To see this, choose $a \in B(X)$. Let $a_{0}:=a$. If a_{i} has been found, and $d_{R}\left(a_{i}, 0\right)>1 / \sqrt{k}$, choose r with $\left\langle r, a_{i}\right\rangle>1 / \sqrt{k}$. Let $a_{i+1}:=a_{i}-\left\langle r, a_{i}\right\rangle r$. Then by induction on i, as $\|r\| \leq 1$,

$$
\begin{align*}
& \left\|a_{i+1}\right\|^{2}=\left\|a_{i}\right\|^{2}-2\left\langle r, a_{i}\right\rangle^{2}+\left\langle r, a_{i}\right\rangle^{2}\|r\|^{2} \leq\left\|a_{i}\right\|^{2}-\left\langle r, a_{i}\right\rangle^{2} \leq\left\|a_{i}\right\|^{2}-1 / k \leq \tag{6}\\
& 1-i / k-1 / k=1-(i+1) / k .
\end{align*}
$$

So the process terminates for some $i \leq k$, and we have (5), since $a-a_{i} \in S_{k}$ and hence $d_{R}\left(a, S_{k}\right) \leq d_{R}\left(a, a-a_{i}\right)=d_{R}\left(a_{i}, 0\right) \leq 1 / \sqrt{k}$.

As each $\left(S_{k}, \delta_{R}\right)$ is totally bounded, (5) implies that $\left(B(X), \delta_{R}\right)$ is totally bounded.

[^1](ii) $\Rightarrow(\mathrm{iv})$: By (ii), the space $\left(B(H), \delta_{R}\right)$ is totally bounded. So it suffices to show that $\left(B(H), \delta_{R}\right)$ is complete. Let x_{1}, x_{2}, \ldots be a Cauchy sequence in $\left(B(H), \delta_{R}\right)$. We show that it is convergent. We can assume that $\delta_{R}\left(x_{n}, x_{n+1}\right)<2^{-n}$ for each n. Let π_{1} be the identity in G. For each $n \geq 1$, we can choose $\pi_{n+1} \in G$ such that $d_{R}\left(x_{n}^{\pi_{n}}, x_{n+1}^{\pi_{n+1}}\right)<2^{-n}$. Replacing x_{n} by $x_{n}^{\pi_{n}}$, we can assume that x_{1}, x_{2}, \ldots is a Cauchy sequence in $\left(B(H), d_{R}\right)$. As $B(H)$ is weakly compact, x_{1}, x_{2}, \ldots has a subsequence that converges to some $a \in B(H)$ in the weak topology on $B(H)$. Then $\lim _{n \rightarrow \infty} d_{R}\left(x_{n}, a\right)=0$. Indeed, $d_{R}\left(x_{n}, a\right) \leq 2^{-n+2}$ for each n. Otherwise, $\left|\left\langle r, x_{n}-a\right\rangle\right|>2^{-n+2}$ for some $r \in R$. As a is weak limit of some subsequence of x_{1}, x_{2}, \ldots, there is an $m \geq n$ with $\left|\left\langle r, x_{m}-a\right\rangle\right|<2^{-n+1}$. As $\left|\left\langle r, x_{n}-x_{m}\right\rangle\right| \leq d_{R}\left(x_{n}, x_{m}\right)<$ 2^{-n+1}, this gives a contradiction.
(iv) \Rightarrow (iii): Choose $\varepsilon>0$ and $f: X \rightarrow\{1,2, \ldots\}$. For any k, consider the function ϕ_{k} : $X \rightarrow \mathbb{R}$ defined by
\[

$$
\begin{equation*}
\phi_{k}(x):=\sup _{t \in[\varepsilon, 2]} \sup _{t \rightarrow r}^{\substack{\text { orthogonal } \\ r_{1}, \ldots, r_{k} \in R}} \frac{\sum_{i=1}^{k}\left|\left\langle r_{i}, x\right\rangle\right|^{t}}{\left(1+\left\|\left(\left\|r_{1}\right\|^{t}, \ldots,\left\|r_{k}\right\|^{t}\right)\right\|_{p}\right)} \tag{7}
\end{equation*}
$$

\]

for $x \in X$, where $p=(1-t / 2)^{-1}$. Then ϕ_{k} is continuous with respect to the d_{R}-topology on $B(H)$. To see this, let $x, y \in B(H)$ with $d_{R}(x, y) \leq 1$. Then $|\langle r, x\rangle|^{t}-|\langle r, y\rangle|^{t} \leq$ $2|\langle r, x-y\rangle|^{\varepsilon} \leq 2 d_{R}(x, y)^{\varepsilon}$ for each $r \in R$ and $t \in[\varepsilon, 2]$ This gives, by considering any t and r_{1}, \ldots, r_{k} in the suprema for x, that $\phi_{k}(y) \geq \phi_{k}(x)-2 k d_{R}(x, y)^{\varepsilon}$ (using that the denominator in (7) is at least 1). So ϕ_{k} is continuous in the $d_{R^{\prime}}$-topology on $B(H)$.

Define for each $z \in B(X)$:

$$
\begin{equation*}
U_{z}:=\left\{x \in B(H) \mid \phi_{f(z)}(x-z)<\varepsilon\right\} . \tag{8}
\end{equation*}
$$

So U_{z} is open in de d_{R}-topology. Moreover, the U_{z} for $z \in B(X)$ cover $B(H)$. Indeed, for any $x \in B(H)$ there exists $z \in B(X)$ with $\|x-z\|<\varepsilon^{1 / \varepsilon}$. Then $x \in U_{z}$, since $\phi_{k}(x-z)<\varepsilon$ for any k, which follows from the following inequality. Let $t \in[\varepsilon, 2]$ and $r_{1}, \ldots, r_{k} \in R$ be orthogonal and nonzero, for some $k \geq 1$. Define $s_{i}:=r_{i} /\left\|r_{i}\right\|$ for each i. So s_{1}, \ldots, s_{k} are orthonormal. Denote $\rho:=\left\|\left(\left\|r_{1}\right\|^{t}, \ldots,\left\|r_{k}\right\|^{t}\right)\right\|_{p}$, with $p:=2 /(2-t)$. Then one has for any $y \in B(H)$, using the Hölder inequality, and setting $q:=2 / t$ (so that $p^{-1}+q^{-1}=1$):

$$
\begin{align*}
& \sum_{i=1}^{k}\left|\left\langle r_{i}, y\right\rangle\right|^{t}=\sum_{i=1}^{k}\left\|r_{i}\right\|^{t} \cdot\left|\left\langle s_{i}, y\right\rangle\right|^{t} \leq\left(\sum_{i=1}^{k}\left\|r_{i}\right\|^{t p}\right)^{1 / p} \cdot\left(\sum_{i=1}^{k}\left|\left\langle s_{i}, y\right\rangle\right|^{t q}\right)^{1 / q}= \tag{9}\\
& \rho\left(\sum_{i=1}^{k}\left\langle s_{i}, y\right\rangle^{2}\right)^{1 / q} \leq \rho\|y\|^{2 / q}=\rho\|y\|^{t} \leq(1+\rho)\|y\|^{\varepsilon} .
\end{align*}
$$

So $\phi_{f(z)}(x-z) \leq\|x-z\|^{\varepsilon}<\varepsilon$, and hence $x \in U_{z}$.
As $\left(B(H), \delta_{R}\right)$ is compact by (iv), there is a finite set $Z \subseteq X$ such that voor each $x \in X$ there exist $z \in Z$ and $\pi \in G$ such that $x \in U_{z^{\pi}}$. This gives (iii).

[^2]
2. Applications

Since R spans X, X is fully determined by the positive semidefinite $R \times R$ matrix giving the inner products of pairs from R. Then G is given by a group of permutations of R that leave the matrix invariant. It is convenient to realize that R is weakly regular if (but not only if) the orbit space R^{k} / G is compact for each k.

1. Szemerédi's regularity lemma [7]. Let R be the collection of sets $I \times J$, with I and J each being a union of finitely many subintervals of $[0,1]$, with inner product equal to the measure of the intersection. Let G be the group of permutations of the intervals of any partition of $[0,1]$ into intervals. Then G acts on R.

Let Π be the collection of partitions of $[0,1]$ into finitely many sets, each being a union of finitely many intervals. For $P, Q \in \Pi, P \leq Q$ if and only if P is a refinement of Q. This gives a lattice; let \wedge be the meet.

For any $P \in \Pi$, let L_{P} be subspace of X spanned by the elements $I \times J$ with $I, J \in P$. For any $x \in X$, let x_{P} be the orthogonal projection of x onto L_{P}.

Lemma 1. For each $x \in X$ and $\varepsilon>0$ there exists $t_{\varepsilon, x}$ such that for each $N \in \Pi$ there is a $P \geq N$ such that $\left\|x_{N}-x_{P}\right\|<\varepsilon$ and $|P| \leq t_{\varepsilon, x}$.

Proof. Let Y be the set of those x for which the statement holds for all $\varepsilon>0$. Then Y is a linear space. Indeed, if $x \in Y$ and $\lambda \neq 0$ then $\lambda x \in Y$, as we can take $t_{\varepsilon, \lambda x}:=t_{|\lambda-1| \varepsilon, x}$. If $x, y \in Y$ then $x+y \in Y$, as we can take $t_{\varepsilon, x+y}:=t_{\varepsilon / 2, x} t_{\varepsilon / 2, y}$, since if $\left\|x_{N}-x_{P}\right\|<$ $\varepsilon / 2$ and $\| y_{N}-y_{Q} \mid<\varepsilon / 2$ for some $P, Q \geq N$, then $\left\|(x+y)_{N}-x_{P}-y_{Q}\right\|<\varepsilon$, hence $\left\|(x+y)_{N}-(x+y)_{P \wedge Q}\right\| \leq \varepsilon$, since $x_{P}+y_{Q} \in L_{P \wedge Q}$ and $\left((x+y)_{N}\right)_{P \wedge Q}=(x+y)_{P \wedge Q}$ (since $\left.L_{P \wedge Q} \subseteq L_{N}\right)$. Note that $|P \wedge Q| \leq|P||Q|$.

So Y is a linear space, and hence it suffices to show that $R \subseteq Y$. Let $x \in R$ and $\varepsilon>0$. We claim that $t_{\varepsilon, x}:=(1+2 / \varepsilon)^{2}$ will do. Indeed, let $N \in \Pi$. Then

$$
\begin{equation*}
x_{N}=\sum_{I, J \in N} \alpha_{I} \beta_{J}(I \times J) \tag{10}
\end{equation*}
$$

for some $\alpha, \beta: N \rightarrow[0,1]$. Let α^{\prime} and β^{\prime} be obtained from α and β by rounding down the values to an integer multiple of $\varepsilon / 2$. Let $P \geq N$ be such that two classes I and J of N are contained in the same class of P if and only if $\alpha_{I}^{\prime}=\alpha_{J}^{\prime}$ and $\beta_{I}^{\prime}=\beta_{J}^{\prime}$. As the pairs ($\alpha_{I}^{\prime}, \beta_{I}^{\prime}$) take at most $(1+2 / \varepsilon)^{2}$ different values, we have $|P| \leq\left(1+2 \varepsilon^{-1}\right)^{2}$. Define

$$
\begin{equation*}
y:=\sum_{I, J \in N} \alpha_{I}^{\prime} \beta_{J}^{\prime}(I \times J) . \tag{11}
\end{equation*}
$$

Then $y \in L_{P}$. Hence, since $x_{P}=\left(x_{N}\right)_{P}\left(\right.$ as $\left.L_{P} \subseteq L_{N}\right)$, implying that x_{P} is the point on L_{P} closest to x_{N} :

$$
\begin{equation*}
\left\|x_{N}-x_{P}\right\|^{2} \leq\left\|x_{N}-y\right\|^{2} \leq \sum_{I, J \in N}\left(\alpha_{I} \beta_{J}-\alpha_{I}^{\prime} \beta_{J}^{\prime}\right)^{2} \mu(I \times J) \leq \varepsilon^{2} \sum_{I, J \in N} \mu(I \times J)=\varepsilon^{2} . \tag{12}
\end{equation*}
$$

Here $\mu(I \times J)$ is the measure of $I \times J$.
Call a collection P of sets balanced if all sets in P have the same cardinality. Call a partition P of a finite set $V \varepsilon$-balanced if $P \backslash P^{\prime}$ is balanced for some $P^{\prime} \subseteq P$ with $\left|\bigcup P^{\prime}\right| \leq \varepsilon|V|$.

Lemma 2. Let $\varepsilon>0$. Then each partition P of a finite set V has an ε-balanced refinement Q with $|Q| \leq(1+1 / \varepsilon)|P|$.

Proof. Define $t:=\varepsilon|V| /|P|$. Split each class of P into classes, each of size $\lceil t\rceil$, except for at most one of size less than t. This gives Q. Then $|Q| \leq|P|+|V| / t=(1+1 / \varepsilon)|P|$. Moreover, the union of the classes of Q of size less than t has size at most $|P| t=\varepsilon|V|$. So Q is ε-balanced.

Given a graph $H=(V, E)$ and $C, D \subseteq V$, then $e(C, D)$ is the number of adjacent pairs of vertices in $C \times D$. If $C, D \neq \emptyset$, let $d(C, D):=e(C, D) /|C||D|$.

Theorem 2 (Szemerédi's regularity lemma). For each $\varepsilon>0$ and $p \in \mathbb{N}$ there exists $k_{p, \varepsilon} \in \mathbb{N}$ such that for each graph $H=(V, E)$ and each partition P of V with $|P|=p$ there is an ε-balanced refinement Q of P with $|Q| \leq k_{p, \varepsilon}$ and

Proof. Let R and G be as above. It is easy to check that R^{k} / G is compact for each k, hence (R, G) is very weakly regular. So, by Theorem ((R, G) is very strongly regular.

Fix $\varepsilon>0$ and $p \in \mathbb{N}$. For each $x \in X$, define $f(x):=\left((1+1 / \varepsilon) p t_{\varepsilon / 4, x}\right)^{2}$, where $t_{\varepsilon / 4, x}$ is as given in Lemma 1 .

By the very strong regularity of (R, G), there exists a finite set $Z \subseteq X$ such that for each $x \in B(X)$ there exist $z \in Z$ and $\pi \in G$ satisfying

$$
\begin{equation*}
\sum_{j=1}^{f(z)}\left\langle r_{j}, x-z^{\pi}\right\rangle^{2}<\varepsilon^{2} / 16 \text { for all orthogonal } r_{1}, \ldots, r_{f(z)} \in R \tag{14}
\end{equation*}
$$

Let $k_{p, \varepsilon}:=\max \{f(z) \mid z \in Z\}$. We show that $k_{p, \varepsilon}$ is as required.
Let $H=([n], E)$ be a graph. Let N be the partition of $[0,1]$ into n equal consecutive intervals I_{1}, \ldots, I_{n}, and let $x:=\sum_{i, j \in[n] \text { adjacent }} I_{i} \times I_{j}$ (the corresponding graphon).

By the above there exists a $z \in Z$ and a $\pi \in G$ satisfying (14). By Lemma $\mathbb{1}$ there is a partition $U \in \Pi$ with $U \geq N$ such that $|U| \leq t_{\varepsilon / 4, z}$ and $\left\|z_{N}-z_{U}\right\| \leq \varepsilon / 4$. Let $S:=P \wedge U$. So $|S| \leq|P||U| \leq p t_{\varepsilon / 4, z}$. By Lemma 2, there is an ε-balanced refinement Q of S with $N \leq Q \leq S$ and $|Q| \leq(1+1 / \varepsilon)|S| \leq \sqrt{f(z)} \leq k_{p, \varepsilon}$. We show that this Q gives the partition of the theorem.

For each $A, B \in Q$, choose $r \in R$ with $r \subseteq A \times B$, such that $r \in L_{N}$ and such that $\left|\left\langle r, x-z_{Q}\right\rangle\right|$ is maximized. This implies for each $r^{\prime} \in R$ with $r^{\prime} \subseteq A \times B$ and $r^{\prime} \in L_{N}$:

$$
\begin{equation*}
\left|\left\langle r^{\prime}, x-x_{Q}\right\rangle\right| \leq\left|\left\langle r^{\prime}, x-z_{Q}\right\rangle\right|+\left|\left\langle r^{\prime}, x_{Q}-z_{Q}\right\rangle\right| \leq\left|\left\langle r^{\prime}, x-z_{Q}\right\rangle\right|+\left|\left\langle A \times B, x_{Q}-z_{Q}\right\rangle\right|= \tag{15}
\end{equation*}
$$

$$
\left|\left\langle r^{\prime}, x-z_{Q}\right\rangle\right|+\left|\left\langle A \times B, x-z_{Q}\right\rangle\right| \leq 2\left|\left\langle r, x-z_{Q}\right\rangle\right| .
$$

Let r_{1}, \ldots, r_{t} be the chosen elements. So $t=|Q|^{2} \leq f(z)$. Hence, noting that $\left\langle r_{i}, z\right\rangle=$ $\left\langle r_{i}, z_{N}\right\rangle$, since $r_{i} \in L_{N}$,

$$
\begin{align*}
& \left(\sum_{i=1}^{t}\left\langle r_{i}, x-z_{Q}\right\rangle^{2}\right)^{1 / 2} \leq\left(\sum_{i=1}^{t}\left\langle r_{i}, x-z_{N}\right\rangle^{2}\right)^{1 / 2}+\left\|z_{N}-z_{Q}\right\| \leq \tag{16}\\
& \left(\sum_{i=1}^{t}\left\langle r_{i}, x-z\right\rangle^{2}\right)^{1 / 2}+\varepsilon / 4 \leq \varepsilon / 2
\end{align*}
$$

For the graph $H,(15)$ and (16) give (13).
To interpret (13), for $A, B \in Q$, let $m_{A, B}$ denote the maximum described in (13). Let Q^{\prime} be such that $Q \backslash Q^{\prime}$ is balanced and $\left|\bigcup Q^{\prime}\right| \leq \varepsilon|V|$. Set $Q^{\prime \prime}:=Q \backslash Q^{\prime}$, and let Z be the collection of pairs $(A, B) \in Q^{\prime \prime} \times Q^{\prime \prime}$ with $m_{A, B} \geq \sqrt{\varepsilon}|A||B|$. Then (13) implies

$$
\begin{equation*}
\sum_{(A, B) \in Z}|A||B| \leq \sum_{(A, B) \in Z} \varepsilon^{-1 / 2} m_{A, B} \leq \sqrt{\varepsilon}|V|^{2} \tag{17}
\end{equation*}
$$

Moreover, as $\left|\bigcup Q^{\prime}\right|<\varepsilon|V|$,

$$
\begin{equation*}
\sum_{A, B \in Q^{\prime \prime}}|A||B| \geq \sum_{A, B \in Q}|A||B|-2 \varepsilon|V|^{2}=(1-2 \varepsilon)|V|^{2} \tag{18}
\end{equation*}
$$

Hence, assuming $\varepsilon<1 / 4,|Z| \leq \sqrt{\varepsilon}(1-2 \varepsilon)^{-1}\left|Q^{\prime \prime}\right|^{2}<2 \sqrt{\varepsilon}\left|Q^{\prime \prime}\right|^{2}$. For each $(A, B) \in$ $\left(Q^{\prime \prime} \times Q^{\prime \prime}\right) \backslash Z$ one has $m_{A, B}<\sqrt{\varepsilon}|A||B|$, implying that for each rectangle $R \subseteq A \times B$ with $|R| /|A \times B| \geq \sqrt[4]{\varepsilon}$ one has $|d(R)-d(A \times B)|<\sqrt[4]{\varepsilon}$. In other words, $A \times B$ is $\sqrt[4]{\varepsilon}$-regular.
2. "Interval regularity". Let R be the collection of sets $I \times J$, with I and J subintervals of $[0,1]$, with inner product given by the measure of the intersection. Then Theorem 1 gives an "interval regularity theorem" for graphs (it can also be proved with Szemerédi's classical combinatorial method):

Theorem 3. For each $\varepsilon>0$ and $p \in \mathbb{N}$ there exists $k_{p, \varepsilon} \in \mathbb{N}$ such that for each n, each graph $H=([n], E)$ and each partition P of $[n]$ into intervals with $|P| \leq p, P$ has a refinement to a partition Q into at most $k_{p, \varepsilon}$ intervals such that all intervals in Q have the same size except for some of them covering $\leq \varepsilon n$ vertices and such that

$$
\begin{equation*}
\sum_{A, B \in Q} \max _{\substack{I \subseteq A, J \subseteq B \\ I, J \text { intervals }}}|I\|J\| d(I, J)-d(A, B)|<\varepsilon n^{2} \tag{19}
\end{equation*}
$$

Here $d(I, J)$ and $d(A, B)$ are the densities of the corresponding subgraphs of H.
This can be derived similarly as (in fact, easier than) Szemerédi's regularity lemma above.
3. Polynomial approximation. Let $k \leq n$. Each polynomial $p \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ can be uniquely written as $p=\sum_{\mu} \mu p_{\mu}$, where μ ranges over the set M of all monomials in $\mathbb{R}\left[x_{1}, \ldots, x_{k}\right]$ and where $p_{\mu} \in \mathbb{R}\left[x_{k+1}, \ldots, x_{n}\right]$. If p is homogeneous of degree d, we say that p is ε-concentrated on the first k variables if

$$
\begin{equation*}
\sum_{\substack{\mu \in M \\ \operatorname{deg}(\mu)<d}} \max _{\substack{x \in \mathbb{R}^{n-k} \\\|x\|=1}} p_{\mu}(x)^{2} \leq \varepsilon\|p\|^{2}, \tag{20}
\end{equation*}
$$

where $\|p\|$ is the square root of the sum of the squares of the coefficients of p.
Theorem 4. For each $\varepsilon>0$ and $d \in \mathbb{N}$ there exists $k_{d, \varepsilon}$ such that for each n, each homogeneous polynomial of degree d in n variables is ε-concentrated on the first k variables after some orthogonal transformation of \mathbb{R}^{n}, for some $k \leq k_{d, \varepsilon}$.

This can be derived by setting R to be the set of all polynomials ($\left.a^{\top} x\right)^{d}$, with $a \in \mathbb{R}^{n}$ and $\|a\|=1$ for some n (setting $x=\left(x_{1}, x_{2}, \ldots\right)$), taking the inner product of $\left(a^{\top} x\right)^{d}$ and $\left(b^{\boldsymbol{\top}} x\right)^{d}$ equal to $\left(a^{\boldsymbol{\top}} b\right)^{d}$. (This corollary strengthens a 'weak regularity' result of Fernandez de la Vega, Kannan, Karpinski, and Vempala [2].) For details, we refer to [6].

References

[1] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
[2] W. Fernandez de la Vega, R. Kannan, M. Karpinski, S. Vempala, Tensor decomposition and approximation schemes for constraint satisfaction problems, in: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC'05), pp. 747-754, ACM, New York, 2005.
[3] L. Lovász, B. Szegedy, Limits of dense graph sequences, Journal of Combinatorial Theory, Series B 96 (2006) 933-957.
[4] L. Lovász, B. Szegedy, Szemerédi's lemma for the analyst, Geometric and Functional Analysis 17 (2007) 252-270.
[5] G. Regts, A. Schrijver, Compact orbit spaces in Hilbert spaces and limits of edge-colouring models, preprint, 2012. ArXiv http://arxiv.org/abs/1210.2204
[6] A. Schrijver, Low rank approximation of polynomials, preprint, 2012. http://www.cwi.nl/~lex/lrap.pdf
[7] E. Szemerédi, Regular partitions of graphs, in: Problèmes combinatoires et théorie des graphes (Proceedings Colloque International C.N.R.S., Paris-Orsay, 1976; J.-C. Bermond, J.-C. Fournier, M. Las Vergnas, D. Sotteau, eds.) [Colloques Internationaux du Centre National de la Recherche Scientifique N ${ }^{o}$ 260], Éditions du Centre National de la Recherche Scientifique, Paris, 1978, pp. 399-401.

[^0]: ${ }^{1}$ CWI and University of Amsterdam. Mailing address: CWI, Science Park 123, 1098 XG Amsterdam, The Netherlands. Email: lex@cwi.nl.
 ${ }^{2}\|\cdot\|_{p}$ is the L^{p}-norm, here for the finite-dimensional space $\mathbb{R}^{f(z)}$.

[^1]: ${ }^{3}$ A pseudometric space is totally bounded if for each $\varepsilon>0$ it can be covered by finitely many balls of radius ε (cf. [1]).

[^2]: ${ }^{4}$ This follows from the fact that if $0 \leq b \leq a \leq 1$, then for each $t \in[1,2]: a^{t}-b^{t} \leq a^{t}-b^{t}+\left(a^{2-t}-\right.$ $\left.b^{2-t}\right)(a b)^{t-1}=(a-b)\left(a^{t-1}+b^{t-1}\right) \leq 2(a-\bar{b}) \leq 2(a-b)^{\varepsilon}$, and for each $t \in[\varepsilon, 1)$, by the concavity of the function $x^{t}: a^{t}-b^{t} \leq(a-b)^{t} \leq(a-b)^{\varepsilon}$.

