
Classification in Mathematics, Discrete Metric Spaces, 

and Approximation by Trees 

To Willem Kuyk 

Michie! Hazewinkel 
CW! 

P.O. Box 94079. 1090 GB Amsterdam, The Netherlands 

email: mich©cwi. nl 

This is partly an introductory survey paper to clustering and classification prob
lems with particular emphasis on the classification of lists of key words and 
phrases from a given scientific domain such as mathematics. In addition the pa
per contains a number of new concepts and results; a number of open questions, 
and some as yet untried embryo clustering ideas. New are the idea of Urysohn 
distance (Section 3), the idea of using Lipshitz distance (Section 4 ). the universal 
lower bound in terms of Lipshitz distance for any fixed depth hierarchical classi
fication scheme (Section 8). the optimality of single link clustering with respect 
to Lipshitz distance (Section 8); in addition there are new results on what I have 
started to call the Buneman tree of a metric space (Section 9); also new are the 
ideas of third party support (Section 11) and power set metrics (Section 10). 

l. THE CENTRAL MATHEMATICAL PROBLEM 

The central mathematical problem that I am concerned with in these notes is 
simply stated: given a discrete metric space, or more generally, a dissimilarity 
space (definition below), what is the 'best' classification tree to describe it. 
The motivation comes from classification problems in mathematics and other 
sciences and the intended application is to a large set of 'key words' and 'key 
phrases' of a discipline like all of mathematics, or all of physics, or substantial 
subfields like 'Lie algebras' or 'Surface physics'. It could help for much of what 
follows to keep this intended application in mind. In particular there is no claim 
that everything in this essay is relevant for all kinds of taxonomic problems. 

It is a little peculiar and disturbing how pervasive and popular tree classifi
cation schemes are. One even finds statements in the scientific literature to the 
effect that if you cannot organize your knowledge in the form of a tree it is not 
worth doing anything. I must disagree with emphasis. Indeed, I do not think 
that our brains store knowledge in that way. I submit that the preoccupation 
with trees as an organizing principle comes from the tyranny of the classically 
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printed word. It is just about the only kind of interconnectedness scheme that 
can be conveniently printed in book form. 

To formulate the mathematical problem of classifying things precisely re
quires making precise what is meant with a classification tree and what is 
meant with 'best'. Also, what is a discrete metric space (for completeness) and 
a dissimilarity space. 

1.1. Dissimilarity spaces 
A dissimilarity space is a (finite) set M together with a function d : M x M -> lR 
such that 

d(x,y) = d(y,x)? 0, Vx,y EM 

d(x,x) = 0, VxEM 

A dissimilarity space M is a metric space if in addition: 

d(x,y)=O=>x=y 

d(x, y) :$ d(x, z) + d(y, z), Vx,y,z EM 

(1.1.1) 

(1.1.2) 

(1.1.3) 

(1.1.4) 

If (1.1.4), for distinct x, y, z, is always satisfied with the strict unequal sign, I 
shall say that the strict triangle inequality holds. 

1. 2. Classification trees 
A (undirected) graph (without multiple edges) r is a finite set V, of which the 
elements are called nodes or vertices, together with a set E of unordered pairs 
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of nodes called edges. We shall only consider graphs without loops, i.e. there 
are no edges of the form { x, x}. A path in r from a vertex x to a vertex y of k 
steps is a sequence of edges ei, ... , ek so that :r: E e1 , ei and ei+ 1 have precisely 
one node in common, and y E ek. A node x is incident with an edge e iff x E e. 
The degree of a node is the number of edges it is incident with. 

A tree is a graph such that for every pair of vertices there is precisely one 
path from the one to the other. A rooted tr-ee is a tree with one distinguished 
node called the root. The nodes which are maximal in number of steps from 
the root are called the leaves. These are also precisely the nodes of degree l. 

A classification tree for a dissimilarity space (Af, d) is a rooted tree, r, 
together with a mapping of </> : M -+ V to the nodes of r. For a standard 
classification tree for M, the mapping </> is required to be to the leaves of 
r. Often this mapping will be injective, but this need not necessarily be the 
case, especially when distances zero occur between distinct elements of the 
dissimilarity space (M, d). 

That trees should be used for classification purposes is natural. Their role 
in clustering is emphasized in e.g. [23]. 

For a standard classification tree, the points of M are supposed to be the 
leaves of the rooted tree. For a nonstandard one, this need not be the case. 
In the illustrations I shall use small black filled circles for vertices of the tree 
that correspond to elements of M and small white circles for nodes that do not 
correspond to elements of Af. Thus Figure 1 depicts a standard classification 
tree. 

A classification tree is of uniform depth if the number of steps from the 
root to a leaf is always the same. Thus Figure 1 is a uniform depth standard 
classification tree of depth ;). Figure 2 depicts a nonstandard classification tree 
of non-uniforrn depth. 

Let us further admit that the edges of the tree, or the nodes, can have 
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weights attached to them. The leaves of a tree, rooted or not, will always 
have weight zero; all other weights will be required to be strictly positive. 
Thus, above on the left, there is an edge-weighted standard classification tree 
of uniform depth 2 (Figure 3) and on the right there is a nonstandard and 
nonuniforrn node-weighted classification tree (Figure 4). The latter are special 
kinds of edge-weighted trees: the edges issuing from a node towards its children 
(viewed from the root) are all given half the weight of that node. By convention 
a non edge-weighted tree has all edges weighted by 1/2. An edge-weighted 
graph is also called a network; it is a tr·ee network if the underlying graph is a 
tree. Every tree network, r, and more generally every network, defines a path 
length and from that a distance on its set of vertices by: 

k 

l(p)=Lw(e;), p=e1 ... eA: (1.2.1) 
i=l 

where p is a path in r, and w(e) denotes the weight of an edge e, and 

dr (x, y) = min{ l(p)} 
p 

(L2.2) 

where p runs over all paths from :i: to y in r. Of course if r is a tree there is 
precisely one path from x to y. The distance on M defined by a standard or 
nonstandard, uniform or nonuniforrn, edge-weighted or not, classification tree 
</> : M __. I' for (M, d) is a new dissimilarity dq, on M defined by 

dq,(x, y) = dr(</>(x), <f;(y)) ( 1.2.3) 

If the classification</>: M __. r is injective this will be a new metric on A1. 

1.3. Best approximating classification tree 
Now, to define the notion of a best approximating classification tree of a given 
kind it remains to define a suitable notion of distance between different metrics 
or dissimilarity measures on a set, or more generally, between different metric 
spaces. A very easy choice would be to observe that metrics and dissimilarity 
measures on a given set M are simply special kinds of functions on A1 x Af 
and to use any of the well known distance notions for functions on a set such 
as l2-distance, giving: 

(1.3.1) 

I shall use 5' s to designate distances between (different) metric spaces, and d's 
to denote the distances defined on a given set. 

Alternatively one could use the uniform, or lp, or weighted- l2, or any other 
favourite norm on function spaces. These are in fact the usual distances tradi
tionally used in mathematical taxonomy, [18, 33, 34, 53]. There is something 
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very unsatisfactory in this. Distances are very special kinds of functions and to 
compare them using notions designed for dealing with the immeasurably larger 
collection of all functions is a little like using a classification scheme for all of 
the vegetable and animal kingdom to grade a batch of apples according to a 
handful of sizes. 

Below I shall discuss a few other notions of distance between metric spaces 
which are more specific for that class of objects. Perhaps the most natural is 
Urysohn distance (Section 3), but it has the disadvantage that I know of no 
way to calculate it in concrete cases. Another which is very calculable and 
which seems to be well-suited to mathematical taxonomy is Lipshitz distance 
(Section 4). Finally in Section 5 a few distances between graphs are mentioned, 
which may be worth considering when dealing with classification problems. 

Once a notion of distance between metric spaces (or dissimilarity spaces) 
has been chosen, the problem of finding the best approximating classification 
tree (of a specified type) is well defined, though, of course, there may be more 
than one solution. 

2. THE MOTIVATION 

The classification scheme currently used in mathematics (The Mathematics 
Subject Classification Scheme (MSCS), developed by Mathematical Reviews 
and Zentralblatt for Mathematik and Grenzgebiete) is essentially top-down. It 
incorporates enormous expertise and a vast amount of effort from specialists in 
the various (sub )fields; it is very valuable as an information finding tool, but I 
am convinced that even better tools can be developed. 

To a large extent the MSCS reflects how mathematics evolved historically 
and split into finer and finer subspecialisms. There is no check on whether 
the classification tree that is used reflects the actual, present day occurrence in 
the mathematical literature (in relation to each other) of the various technical 
mathematical terms used. 

Exactly the same things can be said about PAC, the most used Physics and 
Astronomy classification scheme. 

The mathematical literature currently grows at well over 50 OOO journal and 
proceedings articles per year and with more than 1200 books a year. All in 
all, world-wide, even with the current funding crises, a considerable amount of 
(financial) resources is spent on new mathematical research; very little is spent 
on making sure that a result (a mathematical fact), once discovered, will ever 
be found again when needed, [26, 29]. The problem is serious and occasionally 
recognized as such, [13]. 

The MSCS is a uniform depth classification tree with near 5000 leaves. As 
a result whole books and (rarely) even whole journals can fall within a single 
leaf, and the number of articles that are assigned to a given leaf classification 
number can run in the thousands. Here is a small random sample with the 
minimum and maximum {in this sample) marked: 
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03E55 (Large cardinals): 
03F55 (Intuitionistic mathematics 
03G05 (Boolean algebras in logic) 
05C05 (Trees) 
14022 (Fine and course moduli spaces) 
14H52 (Elliptic curves) 
14L05 (Formal groups) 
20F28 (Automorphism groups of groups) 
20G15 (Linear algebraic groups over arbitrary fields) 
31B05 (Harmonic, sub- and superharmonic functions) 
34020 (Lyapunov stability for ODE) 
35K22 (Evolution PDE of any order) 
35L65 (Conservation laws for PDE of hyperbolic type) 
46El5 (Banach spaces of .... functions) 
46L35 (Classification of C*-algebras, factors) 
58F07 (Completely integrable systems) 
90Cl0 (Integer programming) 

M. Hazewinkel 

880 
575 
807 

3147 
163 +-

326 
465 
398 

1254 
1081 
4321 
1453 
1355 
1748 
636 

1504 
4348 +-

Inevitably there are overlaps. These are handled with 'see references'. All in 
all the number of such (indicated) overlaps (between nodes at the finer levels) 
is quite small. 

2.1. Control list (glossary, thesaurus) 
I estimate that a control list (also called thesaurus or glossary) is needed of 
some 120000 items(= key-phrases and key-words) in order to give reasonably 
effective descriptions of journal articles by assigning them items from this con
trol list. Ideally, these items will also provide descriptions of the leaves of the 
MSCS in terms of (probably overlapping) clusters. 

2.2. The web of mathematics 
Once the control list is established, the items in it can be considered as the 
nodes of an edged weighted graph where two items are connected if they occur 
together in the same mathematical paper (or other suitable unit) and where 
the weight is inversely proportional to how many of such co-occurences there 
are. There are of course many ways of doing this. This topic of turning 
similarity indicators (such as co-occurences) into a metric or dissimilarity has 
had considerable attention in the classification and taxonomy literature, and I 
will say nothing more about it here. 

There results a network of nodes and labelled links, a web, which I call 
the web of mathematics. Such a web will form one of the main navigation 
structures in the future hypertext-organized, interactive, electronic, CDROM
based, four-fold expanded Encyclopaedia of Mathematics, [24, 25, 27] (the 
KREEM project), and an electronic version of [5], the VEIG project. 

One thing which will no doubt come out of this study is the discovery of 
numerous notions from different parts of mathematics which are completely or 
mostly the same. I was once lucky that way, [30], and have no doubt that there · 
are many such cases, mostly unrecognized, except by an occasional individual. 
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One function of the control list is to provide the list of such alternatives when 
they exist. Whence the alternative name 'thesaurus' for the control list. 

2. 3. Local search 
This web also provides the possibility for the creation of a refined mathematical 
information finding tool in that one can search for occurences of phrases and 
papers that are within a specified distance of a given node (local search). 

2.4. BUC'M, bottom-'Up classification in mathernat'ics 
Once the web of mathematics is constructed one has a metric space, and one 
can try to find the best classification tree (of a desired kind), approximating 
it. This is the intended application of the research program outlined in this 
essay. I call it BUC'M, Bottom-up Classification in Mathematics. It will, I 
expect, provide valuable supplementary classification information to the top
down MSCS scheme, [28]. 

It works from the actual scientific data in the form of the published literature 
and aims to establish the 'best' classification tree on that basis and then to 
compare the results with the existing classification scheme. 

Once established it will also provide tools for the automatic assignment 
of key-words and key-phrases to articles and the automatic classification of 
articles in terms of the MSCS and BUC'M classification trees. These matters, 
providing key-words and key-phrases, are currently often left to authors (a 
haphazard procedure), scientific editors ( almost equally unreliable), or even 
desk-editors employed at scientific publishers (totally unreliable). 

3. URYSOHN DISTANCE 

Probably the most intrinsic notion of distance between metric spaces is what I 
shall call here Urysohn distance. To define it I need the notion of the Hausdorff 
distance between two subsets of a metric space. 

3.1. Hausdorff distance 
Let X, Y be two subspaces of a metric space . Then the Hausdorff distance 
between them is defined by: 

H d(X, Y) = max{ sup inf { d(x, y)}, sup inf_{ d(:r, y)}} 
a:EX yEY yEY xEX 

(3.1.1) 

(Sometimes a variant is employed in which instead of the max, the sum of the 
two terms is taken; there are also of course all the possibilities of lp-type).The 
Urysolrn distance between two metric spaces is now defined as 

(3.1.2) 

where the infimum is taken over all isornetries a, /3 of M 1 and A12 into a third 
rnetric space N. 
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3.2. Urysohn spaces 
There exist universal metric spaces. More precisely URYSOHN, see [37, 56, 57, 
58], proved that there is a unique complete metric space that is 'N0 -universal 
and No-homogeneous. Here these phrases mean the following. A metric space 
U is 'N0-universal if for every metric space Af of countable cardinality, there 
is an isometric inbedding Af --+ U; a metric space U is N0-homogeneous if for 
every finite metric space Y and subspace X of Y and isometry a : X --+ U, 
there is an isometry f3 : Y --+ U, that restricts to n on X. Actually such spaces 
exist for all cardinals and not only for 'N0 . One way to construct them is as 
inductive limits over all (isometry classes of) relevant spaces with respect to 
the filtered system of isometries between them. 

This means that in the definition (3.1.2) it is not necessary to vary N over 
all (finite) metric spaces; it suffices to consider only isometries of lvfi and M 2 

into a Urysohn space U. 

3.3. Theorem. The Urysohn distance as defined by {3.1.2) is a metric on the 
set of all isometry classes of finite metric spaces. 

PROOF. It is obvious that 15u(M1 , M2) 2: 0, and that 15u(M1 , M2) = 0 if and 
only if M 1 and .1\.12 are isometric. It remains to prove the triangle inequality. 
So let n1 : M1 --+ U', n2 : M2 --+ U', and, /32 : M2 --+ U, {33 : lvf3 --+ Ube 
isometric inbeddings such that 

Hd(n1(M1), n2(M2)) :S l5u(M1, M2) + E 

Hd(/32(M2),f33(M3)) :S l5u(M2,M3) +c: 

(3.3.l) 

( 3.3.2) 

for some positive (small) real number c:. Replacing, if necessary, U' with the 
union of the images of M1 and M2 , we can assume that U' is finite and view, 
via n2, M2 as a subspace of U'. By the homogeneity property of U, there exists 
an isometry "( : U' --+ U, that extends the isometry /32 . Then 1n2 = (32 , and 
Hd(o:1(M1),0:2(M2)) = Hd('Yo:1(M1),f32(M2)), and hence 

l5u(M1,M3)::; Hd('Yo:1(M1),/J3(M3)) :S 

Hd(/0:1(M1),(33(M2)) + Hd(/32(M2),(33(M3)) :S (3.3.3) 

This proves the triangle inequality for the Urysohn distance. 0 

The Urysohn distance as defined by (3.1.2) (with a fixed Urysohn space U if 
desired instead of all finite metric spaces N) is completely intrinsic. However, 
I know of no way to compute this distance between two given metric spaces. 

These ideas extend to. dissimilarity spaces. I.e. there should also exist a 
universal dissimilarity space for all finite dissimilarity spaces, and then that one 
can be used for defining a Urysohn dissimilarity between dissimilarity spaces, 
using the Hausdorff dissimilarity between two subsets of a dissimilarity. All 
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these will be defined completely analogously to (3.1.1) and 3.1.2). 

4. LIPSHITZ DISTANCE 

A completely different idea of comparing metric spaces is based on the idea of 
Lipshitz mappings. This is probably the origin of the name 'Lipshitz distance'. 
It is eminently calculable and has the additional merit of having proved its 
worth in another field of mathematics, viz. Riemannian geometry, [17, 20, 
46). It is essentially limited to comparing two different metrics on the same 
underlying set, or, equivalently, on two sets of the same cardinality. The paper 
[40] contains some results concerning inbeddings of finite metric spaces into 
Euclidean spaces with minimal Lipshitz distance between the original metric 
and the induced metric. 

4.1. Lipshitz distance 
Consider a set M and two metrics, d1 , d2 defined on it. 
with respect to d1 is defined by 

The distortion of d2 

d. ( ) d2(x,y) 
istor d2, d1 =sup d ( ) 

1 x,y 
(4.1.1) 

where the sup is taken over all x, y EM, x-/:- y. The Lipshitz distance between 
di, d2 is now defined as 

(4.1.2) 

Note that if the two distances are proportional, their Lipshitz distance is zero. 
This is really an advantage in our setting because in classification problems like 
these a constant scalar factor should not matter. 

It is easy to see that: 

4.2. Proposition. The Lipshitz distance 8L defines a metric on isometry classes 
up to a scalar factor of metrics on a fixed set M. 

5. VARIOUS GRAPH DISTANCES 

Several distances between (not edge labelled) graphs have been defined in the 
literature. The underlying ideas can probably be usefully extended to the case 
of edge labelled graphs, i.e. networks. I mention a few. A selection from the 
literature is [1, 2, 8, 36, 52, 54, 61], and the material in this section comes from 
there (mostly [54]). I shall not do anything with these distances in this essay. 
All the same it will certainly be interesting to compare these distances with 
Urysohn distance and Lipshitz distance. 

For two G, H graphs define: 

Um(G), the set of isomorphism classes of subgraphs of G 

with m vertices; 

U(G), the union of all the Um(G) 

(5.0.1) 

(5.0.2) 
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u(H,g), the number of subgraphs of G isomorphic to H; 

G n H, the largest, in number of vertices, graph that is 

isomorphic to both a subgraph of G and to a subgraph of H; 

GU H, the smallest, in number of vertices, graph that contains 

a subgraph isomorphic to G and a subgraph isomorphic to H. 

5.1. Zelinka distance 
The Zelinka distance between two graphs is now defined as 

8z(G,H) = max{#V(G),#V(H)}- #V(G n H) 

where #X denotes the number of elements of a set X. 

5. 2. Some other graph distances 
Define 

m1(G, H) = min{m: Um(G) "# Um(H)} 

m2(G,H) = min{m: 3£ such that #V(L) = m, 

u(L, G) "# u(L, H)} 

Using these, one defines the graph distances 

{ 
max{#V(G),#V(H)} + 1- m 1 (G, H) 

81(G, H) = 
0 

{ 
max{#V(G), #V(H)} + 1 - m2(G, H) 

82(G, H) = 
0 

{ m1(G,H)-1 if G':f.H 
83(G, H) = O 

if G':::.H 

{ m,(G,H)-1 if G':f.H 
84(G, H) = 

0 if G':::.H 

if G':f.H 

if G-:::::.H 

if G':f.H 

if G-:::::.H 

(5.0.3) 

(5.0.4) 

( 5.0.5) 

(5.1.1) 

(5.2.1) 

(5.2.2) 

(5.2.3) 

(5.2.4) 

(5.2.5) 

(5.2.6) 

85 (G, H) = #E(G) + #E(H) - 2#E(G n H) + l#V(G) - #V(H)I (5.2.7) 

86(G, H) = -#E(G) -#E(H) +2#E(GnH) + l#V(G)- #V(H)l(5.2.8) 

If in (5.2.7) one replaces the three E's with V's, the Zelinka distance is re
obtained (more precisely twice the Zelinka distance). 



Classification in Mathematics; Approximation by Trees 335 

5.3. Proposition. The formulas (5.1.1), (5.2.3)-(5.2.8) all define distances on 
the set of isomorphism classes of graphs. 

Still another distance is the edge ro-
tation distance defined on the set of 
(isomorphism classes of) graphs with 
a fixed number of edges and vertices. 
That distance is measured by the least 
number of edges that must be rotated 
to get from one graph to the other. 
Here an edge rotation is a local modifi
cation operation such as illustrated on 
the right. Here on the left side of the 
picture there is not supposed to be an 
edge from 1 to 3. It is a not totally ob
vious fact that one can always go from 
one graph to any other (with the same 
number of edges and vertices) by means 
of such edge rotation operations. 

6. CLUSTERING 

1 • 
I 
• 2 • 3 • 2 

1 

• 
\ • 3 

A nonoverlapping clustering on a set of objects M is simply a standard clas
sification tree for M. All clusterings in this section will be nonoverlapping. 
Overlapping clusterings will be discussed below in Section 10. To carry out 
a clustering procedure is to construct such a classification tree. More precise 
definitions follow. 

6.1. Definitions 
A single layer clustering on a set of objects M is simply a partion of M; i.e. a 
splitting up of M into clusters C1 , C2, ... , Ck such that 

k 

Ci n Ci = 0 if i =f. j, and LJ Ci = M (6.1.1) 
i=l 

A (hierarchical) clustering of M is a collection 7t of subsets of M, such that: 

{m} E 1-t, 'rim EM 

ME 7t (6.1.2) 

VG, D E 1-t, C n D = 0, or C c D, or D c C 

By adding to the sets making up a single layer clustering the whole set and 
the singleton sets (in so far as not already present) such a partition defines a 
hierarchical clustering of depth 2. 

The classification tree of a hierarchical clustering 'H. consists of the elements 
of rt , ordered by inclusion, with M as the root and the singleton sets as the 
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leaves. 
There are a great many methods in the classification literature for obtaining 

clusterings. A few will be briefly mentioned below. 

6.2. Single link clustering 
Define the single link dissimilarity between two subsets X, Y of a metric space 
Mas 

sld(X, Y) = inf {d(x, y)} 
.rE)(,yEY 

(6.2.1) 

Then an algorithm for single link clustering can be described as follows: 

1) Let 7-l consists of all singleton sets. Set i=O. (6.2.2.) 
2) Set i := i + 1. Find the minimal single link distance i= 0 between the 

(current) elements of 7-l. Let d be this minimals ingle link distance. Let T 
denote a set of temporary clusters. Set T = 0. 

3) Set 7-l = 7-l U T. Joint any two clusters in 7-l at sld d and add the new 
cluster to T 

4) Repeat 3 until no more clusters are left in 7-l at sld d. Now let (the new) 
7-l be the union of (the old) 7-l and the maximal elements of T. 

5) If M E 7-l, stop; otherwise go to step 2. 

There is choice involved in step 3). But it is easy to see that this does not 
matter for the end result. Step 3) and 4) together can be conceptually cleaner 
described as follows. 

Two clusters 7-l in are related if their sld is equal to d. Take the transitive 
closure of this relation. From the unions of the elements in the equivalence 
classes for this equivalence relation and add those to H. (6.2.3) 

FIGURE 5. 

In the network example of a metric space above all distances indicated by short 
edges are equal to 1, and the three long ones, i.e. the three distances to object 



Classification in Mathematics; Approximation by Trees 337 

M /0\ 
0 0 

//~ I 
•• • • 1 2 12 13 

/\ 
{1, ... ' 12} 13 

I \ 

FIGURE 6. FIGURE 7. 

13, are equal to 2. When single link clustering is applied to this example the 
result is as sketched in Figure 6. 

This certainly illustrates what is perhaps the major defect of single link 
clustering, known as chaining: long extended chains of objects are put into 
single clusters. Other clustering methods have been invented to avoid this, but 
the price for that appears high. More about that below. More about single 
link clustering and its many good properties can be Sections 7 and 8. 

A third way to think about single link clustering is as follows. List the distances 
that occur in the metric space under .eonsideration. 

(6.2.5) 

Given this here is a third description of single link clustering. 

For each i = 1, ... , n draw the graph with as vertices the elements of Mand 
with two elements connected if and only if their distance is less or equal to 
di. The connected components of these graphs for i = 1, ... , n are precisely 
the members of the single link hierarchy for M. (6.2.6) 

It is in fact more customary to use single link clustering to construct a fixed 
depth standard classification tree. That means that if in the procedure (6.2.6) 
for different i some clusters are the same these are retained and placed at all 
levels at which they occur. Thus the result of single link clustering on the 
network of Figure 5 will become as in Figure 7 above on the right rather than 
as in Figure 6. 

6.3. Complete link clustering and some others 
Complete link clustering as it is often described proceeds exactly like (6.2.2) 
except that the distance qetween two clusters is calculated differently. Instead 
of the dissimilarity 'dsl', the complete link distance 'cld' is used as defined by: 

cld(X, Y) = sup {d(x, y)} (6.3.1) 
xEX,yEY 
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FIGURE 8. FIGURE 9. 

Incidentally, cld is a distance; but sld is not (it does not necessarily satisfy the 
triangle inequality). 

For complete link clustering the choices involved in step 3 of (6.2.2) do 
matter and the results obtained from different choices can be dramatically 
different. Two examples are above. It is clear that the results can be very 
unsatisfactory. 

For this reason JARDINE and SrnsoN [34] strongly argue that at each stage 
the transitive closure of the nearest distance relation between clusters should 
be taken. This makes complete link clustering exactly analogous to single link 
clustering in the form (6.2.3), except that the distances between clusters are 
measured by cld instead of sld. In the example above this version of complete 
link clustering gives exactly the same as single link clustering. The example 
is not large or diverse enough for the different ways of measuring distances 
between non-singleton sets to show up. 

Still other ways, intermediate between complete link and single link clus
tering, have been frequently explored in the literature. For instance average 
link clustering, where the distance between two clusters is defined by 
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ald(X, Y) = (#X)- 1(#Y)- 1 L d(x, y) ( 6.3.2) 
xEX,yEY 

In case the data set M is inbedded in a Euclidean space, still other ways 
of defining distances between sets can be natural leading to for instance the 
centroid clustering method. Hausdorff distance between sets, cf (3.1.1) above, 
could also be used. That possibility I have not (yet) seen in the literature. All 
of these suffer from the same choice difficulty as complete link clustering. 

One can examine the many many clustering methods that are in the lit
erature and that are being used from the axiomatic viewpoint. This means 
that one makes a list of desirable properties that a method should have and 
checks which methods satisfy which desirability axiom. This has been done for 
a substantial collection of methods in [16, 34, 58]. 

According to [34] only the single link method survives this critique except 
for overlapping variants of the single link method in which overlap between 
clusters is permitted of a maximal fixed in advance number of elements or a 
fixed in advance percentage of the size of the clusters involved. 

Single link clustering has in addition a number of very nice properties (be
sides being also easy to implement). Some of these will be discussed in the 
next section. 

7. SINGLE LINK CLUSTERING 

As has already been mentioned a defect of single link clustering is 'chaining': 
quite distant groups of objects get joined by long tenuous chains. This can 
take quite serious forms as the example of Figure 10 above illustrates. On the 
other hand single link clustering has very many good properties including some 
categorical ones. It solves a universal problem in the sense of category theory. 
Most of this section is devoted to that. 
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7.1. Cha·ining example 
Imagine that in a scientific subject classification situation like the one we are 
envisaging a quite nice constant depth standard classification tree has been 
found which really describes the interrelatedness of the concepts involved per
fectly. As depicted in Figure 10. Now some talented maniac discovers a first 
tenuous comH'ction between some quite distant parts. The intermediate con
cepts he defined for this purpose are interesting and taken up by a few more 
people. And shortly afterwards the situation is like depicted in the upper part 
of Figure 11, where the new objects are in grey. Now apply single link clustering 
to the new situation. Not only do to quite distant clusters get joined, but also 
a number of higher level groupings are destroyed (and the new classification 
tree in this example suddenly has depth two instead of three). 

7.2. Ultramel'ric spaces 
A metric d on a set M is ultrametric if it satisfies the following ultrarnetrie 
property 

d ( .1", lJ) :::; max { d ( .r, z) , d ( y, z) } , Vx,y,z EM (7.2.1) 

It is easily checked that the metric defined on its set of leaves by a standard 
constant depth classification tree is always ultrametric. The inverse is also true. 

7.3. Theorem (JOHNSON, [35]) 
A dissim£larity space (M, d) is an 'Ultmmctric space if and only if it ·is the 
metric defined by a standard, constant depth, vertex weighted classification tree 
for (M, d). 

7.4. S-ubdominance of single link clustering 
Let (M, d) be a metric space. Let 0 < d1 < d2 < ... < di.: be the distances 
occurring. Construct the single clink clustering constant depth standard classi
fication tree by, say, (6.2.6). Give the vertices at i steps from a leaf the weight 
!(d, -d;_ 1), where do= 0. The weighted classification tree thus defined defines 
a new metric on M, which will be denoted dsl· Then: 

7.4.1. Theorem (see e.g. [34]). The metric dsl is uniformly smaller than d; i.e. 
dsz (x, y) :S d( x, y) for all x, y E M. The metric dsl is ultra metric and for every 
ultrametric that is uniformly smaller than d, denoted d' :S d, d' :S dsl. If d is 
ultrametric dsl = d. 

Thus dsl is the largest amoung the ultrametrics dominated by d. This property 
is referred to as the subdominance property of d.1• 

7.5. Universality of single link clustering 
A property like the subdominance property above smells like universality prop
erties and adjoint functor properties. An example of these, familiar to alge
braists, is the universal enveloping algebra of a Lie algebra g, which is defined 
by the following universality property. It is an associative algebra U g, together 
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with a map of Lie E : g __, U g algebras such that for every map of Lie alge
bras from g to an associative algebra A, </> : g -+ A, there is a unique map of 
associative algebras J : U g -+ A, such that ~ o E = </>. In the present setting 
of metric spaces it is not so clear what is the appropriate notion of morphism 
which should be used. Let us for the moment settle on the category of metric 
spaces and contracting maps. 

Within this setting, the single link classification 
space has the exact analogous property. Let l'vfsl 

be the set Af with the metric given by its single link 
classification tree (which is ultrarnetric). The canon
ical map M __, M 81 is contracting, and for every con
tracting map of M into an ultrametric space there 
is a unique factorization through Af,1. This is im
mediate from theorem 7.4.1. (The map is uniquely 
defined by the fact that as sets M and 1\1sl are identi
cal, and the contractiveness of the factorization map 
then follows from the subdominace property). So, 
technically, the single link classification tree functor 
from metric spaces to ultrametric spaces is adjoint 
to the forgetful functor from ultrametric spaces to 
metric spaces. 

A 

In [51], Roux gives an algorithm for turning a given metric space into an 
ultrarnetric one. It will be interesting to find out the relevance of this procedure 
to the single link way of producing an ultrametric from a given one. 

8. LIPSHITZ DISTANCE AND CLUSTERING 

8.1. Lipsh'itz distance and tmditional cfoster'irig desirnbilities 
Consider for the moment the problem of finding a single layer clustering for a 
given discrete metric space and consider what trying to find minimal Lipshitz 
distance between d and the resulting classification tree distance implies. Let 
M = C1 U ... UC,,, be a partition of .M. Then the corresponding classification 
distance is 

dr(x, y) = { ~ 
2 

if :z; = y 
if ::h such that :r, y E C; 
otherwise 

(8.1.1) 

By the definition of Lipshitz distance, see ( 4.1.2), we must try to minimize 

d(x, y) dT(X, y) 
sup sup 

dr(x,y) d(x,y) 
(8.1.2) 

over all x =f. y. For subset~ X and Y of M, let 

s(X)= inf {d(x,y)}, diam(X)= sup {d(x,y)} 
x,yEX,xo,iy :t,yEX 

(8.1.3) 
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and let cld(X, Y), sld(X, Y) be the complete link and single link distances 
between X and Y as defined in Section 6 above. Then minimizing the Lip
shitz distance between d and dr means trying to minimize simultaneously the 
following quantities 

cld( C;, Cj) cld(C;, Cj) diam(Ci) 2diam( Ci) 

sld(CA-. Ci)' 2s(Ck) s(Ck) ' sld(Ck, C;) 

There are no absolute relations between these four types of quantities. But 
something can be said 'generically'. As a rule not every pair of objects that 
are maximally close together should finish up in different clusters. That makes 

inf{s(Ck)} = s(X), 
k 

so that keeping the third type of expression in (8.1.4) under control means 
keeping the diameters uniformly reasonably small. (If all closest pairs are 
broken up, the fourth term will dominate the third and tend to get rather 
large). 

Given that, the fourth type of term says to keep the clusters well separated 
and the first and second type of term then also argue in favour of keeping 
the diameters small and to keep the number of clusters relatively small as 
otherwise some of the cld distances will get near to diam(X). These are all 
considerations that are frequently found in the clustering literature and which 
are all of course intuitively right. Thus optimization with respect to Lipshitz 
distance seems to capture much of what seems intuitively right when looking 
for a good clustering. 

Similar heuristic arguments give information on the sort of thing to try 
when trying to find the clusterings at a given level in a hierarchy. 

8. 2. Some examples 
Let us again consider the example of Figure 5 and compare in terms of Lipshitz 
distance some intuitive clusterings with the results of single link clustering. 
Here are the clusterings that we shall examine. For convience the metric space 
itself is also reproduced. Give all vertices weight 1/2. The clusterings 12.2 and 
12.3 come from single link clustering. The Lipshitz distances from the original 
metric to the new ones defined by these clusterings are as follows: 
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12.2: log(9) 
12.3: log(9) 
12.4: log(9) 
12.5: log(9) 
12.6: log(15/2) 
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Clusterings 12.4 and 12.5, though intuitively perhaps more appealing, are no 
better, in terms of Lipshitz distance, than single link clustering, showing that 
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it is in fact not so easy to do better. The clusters themselves are indeed better, 
but the price of breaking up closest neighbour pairs like 4, 5 or 7, 8 or 8, 9 for 
these clusterings is high. This is a general phenomenon which argues for single 
link clusterings. It will be made more precise below. 

8.3. Step across separation and a universal lower bound 
A path P from x to y in M is simply a sequence of points x = x 0 , x 1 , ... , Xn = y. 
The step length of P is equal to 

sl(P) =. max {d(xi,X;+1)} 
i=O, ... ,n-1 

The step-across-separation of two unequal points x, y E M is defined as 

sas(x,y) = min{sl(P)} 
p 

(8.3.1) 

(8.3.2) 

where the minimum is taken over all paths P from x toy. Finally the 'distance 
step-across-separation quotient' of M is defined as 

dsq(M) = max d(x, y) 
x#y sas(x,y) 

8.3.3 

8.3.4. Theorem. Let 7r = (7ro, 7r1 , ... 7rn) be a constant depth standard classifi
cation tree on M with associated d-istance dT. Then 5 L ( d, dT) :?:: log( dsq( M)). 

PROOF. Let x, y EM be such that the maximum in (8.3.3) is assumed for this 
pair. Moreover let x = x0 , x1 , ... , Xn = y be a path for which the step length 
is equal to sas(x,y). Let dT(x,y) = dj. Then 

distor( d, dT) :?:: d( xd, y) 
J 

(8.3.5) 

Now consider the chain x = xo,x 1 , ... ,Xn = y. Let 7rj = {01 , ... ,Cm}· We 
can assume that x, y E 0 1 . Suppose that in 7rj-l the set 0 1 splits up into the 
disjoint sets C 11 , ... , C 1k. We can assume that x E C 11 , and then y r:J. C ll · 
Therefore there is a first x; that is not in 0 11 . There are two possibilities. If 
Xi E 0 1 , then dT(x;_ 1,xi) = dj; if x; tf. 0 1 , then the finest partition with a set 
in it that contains both x;_ 1, x.; has index > j, so that 

dT(Xi-1,Xi):?:: dj+l > dj (8.3.6) 

Also d(x;_ 1 , Xi) :::; sas(x, y). Combining these two we see that 

distor(dT,d):?:: ~i ) 
sas x,y 

(8.3.7) 

Inequalities (8.3.5) and (8.3.7) together prove the theorem. 0 



Classification in Mathematics; Approximation by Trees 345 

8.4. Single link clustering and Lipshitz distance 
It is in fact not an accident that in the examples of Figures 12, all the con
stant depth clusterings did not improve on single link clusterings. We shall see 
here that in fact single link clustering is optimal (though there may be other 
clusterings that are equally Lipshitz close to the original metric). 

Single link clustering yields the following hierarchy. Let d1 < d2 < ... drr, 
be the distances that actually occur. Let Gj be the graph on M which has two 
vertices linked if and only if their distance in M is :S dJ. Then the partition 
'Trj has level dj and it consists of the connected components of the graph Gj. 
Let d8 1, the single link clustering hierarchy distance, be the distance defined by 
this classification tree. 

8.4.1. Theorem. Single link clustering is optimal with respect to Lipshitz dis
tance. More precisely: 

8L(ds1, d) = log(dsq(M)) 

PROOF. In view of theorem 3.4, it suffices to show that 

8L(ds1, d) :S log(dsq(M)) 

Let x,y EM, x =f. y. Then sas(x,y) = dsz(x,y). It follows that 

distor(d, dsz) =sup d(~, y\ :S dsq(M) 
dst x,y 

(8.4.2) 

( 8.4.3) 

(8.4.4) 

On the other hand, as has already been observed, theorem 7.4.1, d8 1(x, y) :S 
d(x, y) for all x, y E M. Hence 

distor( dsz, d) :S l. (8.4.5) 

The combination of (8.4.4) and (8.4.5) establishes (8.4.3) and hence (8.4.2) and 
the theorem. D 

9. THE BUNEMAN TREE OF A DISSIMILARITY SPACE 

9.1. Tree metrics and the four-point condition 
Let T be a tree and M a subset of the vertices of T. Let the edges of T be 
labelled with strictly positive numbers. This makes T a network (of a special 
kind), and induces on M a metric as follows: 

d( x, y) = length of the unique path in T from x to y. (9.1.1) 

Such a metric on M will be called a tree metric. There is something special 
about this kind of metrics. They satisfy the socalled four-point condition: 

d(x, y) + d( u, v) ::::;· max{ d(x, u) + d(y, 11), d(x, v) + d(y, tl)} (9.1.2) 

for all x, y, u, v E M. This condition is easiest remembered by noting that 
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there are three ways of splitting up four points into two pairs. The sum of 
the distances of each such pair now must be smaller than the maximum of 
the other two sums. It follows that at least two of these sums are equal and 
maximal. Taking u = v, one sees that the four-point condition implies the 
triangle condition. The fourpoint condition in fact characterizes tree metrics. 

9.1. 3. Theorem. A metric on M is a tree metric if and only if it satisfies the 
f O'Ur-point condition. 

This was proved independently by BUNEMAN [6] and DOBSON [15]. Another 
proof is in [49]. Buneman, however, did much more. He associated in a canon
ical way, with every metric space M an edge labelled tree BTM, together with 
a map (3 : M --+ BTM, such that if the metric on M was a tree metric than j3 
is injective and the induced tree metric on M by is the original one. The next 
subsection summarizes the constructions and results from [6]. 

9.2. The B'Uneman constntction 
Let X be any set. A splitting, a, of X is a two element partition of X, i.e. 

a= {A,B}, X =AUE, anB = 0 (9.2.1) 

Two splittings, a 1 = { A1, Bi}, a2 = { A2, B2}, are compatible if at least one of 
the four intersections 

(9.2.2) 

is empty. Let a0 be the trivial splitting: ao = {X,0}. Let I;= {aj,· .. ,am} 
be a compatible set of splittings. Such a set of splittings defines a tree, T,,,, as 
follows. The vertices of the tree are collections of sets 

{C1,C2, ... ,Cm}, Cj E O"j, j = l, ... ,m (9.2.3) 

such that 

C.i n CJ # 0, Vi,j = 1, ... , m (9.2.4) 

It turns out that there are precisely m + 1 vertices if a 0 =f. I;, and m vertices 
otherwise. Two vertices 

{C1, ... 'Cm}, {D1, ... 'Dm} (9.2.5) 

are linked in the tree TB if and only if there is precisely one index j E { 1, ... , m} 
such that C1 # D1 (and hence Ck =Dk for all k =f. j). This edge can and will 
be identified with the splitting O"j which determines it. Note that the trivial 
splitting does not define an edge. As it turns out, all others do. One now has: 

9.2.6. Theorem, (6}. Let there be given a set of compatible splittings,L;, of m 
elements. Then the definitions (9.2.3) - (9.2.5) define a connected tree ofrn+l 
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vertices and m edges if ero fJ. :E, and with m vertices and m - 1 edges if a0 E 'E. 

9.2. 7. Remark. Admitting the trivial splitting is a slight departure from Bune
man's paper. It makes very little difference, but does make the treatment below 
a little cleaner. 

Now let (M, d) be a metric space (or, more generally, a dissimilarity space). 
For each splitting er= {A, B} of M, define 

µu = -21 inf {d(a, b) + d(a', b') - d(a, a') - d(b, b')}. 
a,a'EA; b,b'EB 

(9.2.8) 

A splitting er = {A, B} is admissible if and only if µo > 0. Note that the trivial 
splitting is always admissible. 

9.2.9. Lemma, [6]. Two admissible splittings are compatible. 

Now define 'E(M) to be the set of all admissible splittings, and the Buneman 
tree, BTM, of Mas the tree defined by :E(M) according to Theorem 9.2.6. 

For each vertex v = { Ci, ... , Cm}of BTM, define its support by 

m 

supp(v) = n Ci (9.2.10) 
j=l 

This support can well be empty. Finally for each a EM let f3(a) be the unique 
vertex in BTM characterized by 

f3(a) = v = {C1, ... ,Cm}~ a E Ci, i = 1, ... ,m. (9.2.11) 

This defines a canonical map 

{3: M--+ BTm. (9.2.12) 

Finally let dr be the network metric on BTM determined by giving edge er 
weight µ,n and let dB be the dissimilarity on M defined by 

dB(x, y) = dr(f3(x), f3(y)) (9.2.13) 

Because f3 need not be injective it can happen that dB takes the value zero for 
two unequal points x, y; otherwise it satisfies, of course, the triangle condition 
and the four-point condition. 

9.2.14. Theorem, [6]. For all x, y EM, dB(x, y) :::; d(x, y). If dis a tree metric, 
i.e. if it satisfies the four-point condition, dB =d. 

This concludes the summary of [6] needed for what will follow. 

The whole construction has a very canonical feel to it and has the flavour of 
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the kind of thing that solves a universal problem of some kind. In contrast to 
the case of ultrametric spaces, cf 7.5 above, I have no idea of what would be 
the right categories and morphisms for this in this case. 

9.3. Examples 
In each of the examples below the original metric space is given first 
as a network, and its Buneman tree is next to it or below it. In the network 
representation of the metric space all edges have length 1 unless something else 
is explicitely indicated. 

A vertex of the Buneman tree whose support is precisely one element is 
depicted by a filled black circle, a vertex with empty support is depicted by an 
open circle and a vertex whose support consists of more than one element is 
given by a small black filled square. 

- In the Buneman tree on the right of Figure 13, all edges have weight 1/2, 

·---· I I ·--· FIGURE 16. 

• 
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so that the original metric is exactly reproduced in this case. 
Figure 14 shows that the canonical map need not be injective. It also 
shows that the new dissimilarity dB need not be the suboptimal four-point 
dissimilarity with respect to d. In this case an edge distance 2 between the 
two vertices of the Buneman tree would still be uniformly smaller than d. 
This can also happen if the canonical map is injective. 

- In the right half of Figure 15 the four edges all have weight 1. 
- For the metric space of Figure 16 there is no other admissible splitting than 

the trivial one. This is one good reason to admit the trivial splitting. 
- Finally in Figure 17 the Buneman tree is given of the standard example, 

that has been discussed before from various points of view (Figure 5, Figure 
12.1). In Figure 17.2 all edges (including the 'vertical' one) have weight 1 
except the ones around the empty support vertices on the left and right; 
the edges from these two groups of three all have weight 1/2. 

a b' • • "'-a 2 b I 

2 ·v1 
/~~" • •c· 

d 

FIGURE 18. 
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9.4. Continuity 
The Buneman tree construction is continuous. More precisely the assignment 
d f--7 dB is continuous. This is easily seen. Indeed every admissible splitting 
for a given d will remain admissible under a sufficiently small perturbation of 
d. Abo the weight of the corresponding edge will change less than 2c- if the 
original distance function changes less than c. It may happen that additional 
splittings become admissible, as in the example of Figure 18. However, the 
corresponding edges will have lengths less than 2c:. As an example consider 
again the network of Figure 15. But now let the diagonal distances, i.e. the 
distances from a to c and from b to d be 4 - c: instead of 4 (and correpondingly 
the distance from a' to c is 5 - c, etc.). Then the Buneman tree changes to the 
one depicted in Figure 18 where the middle four edges have weight ~c:. 

This example also illustrates that even when the canonical map is injective, 
dB need not be a maximal four-point distance that is uniformly smaller than 
the original distance. 

9. 5. Locality and circuits 
Let us for this occasion define a circuit in a metric space as a sequence of 

points Xo,x1, ... ,Xn-1,Xn = Xo, with distances d(xi-1,xi) = d;, such that 
the distance from x; to Xj, i < j, is either equal to di+ 1 + ... + dj, or equal 
to D - (d;+1 + ... + dj), where D = d1 + d2 + ... + dn. Now consider a 
metric space that consists just of one circuit (as in Figure 19). The canonical 
map from such a circuit space to its Buneman tree will be injective if and 

only if 2(dmin + drnax) > D, where and duiin = min{d1, ... ,d.,,} and dmax = 
max{ d 1, •.. , dn}. The presence of such circuits seems to be the major reason 
why the canonical map from a space to its Buneman tree need not be injective. 
It also seems that the construction of the Bunernan tree is more or less localized 
where 'local' is to be understood in terms of minimal circuits of length 4 or 
more. 

9. 6. The strict triangle ineq·ual'ity ca.se 

Let M be a metric space that satisfies the strict triangle inequality for all 

triples of points. Then for all x E M, a~' = { { x}, M\ { .1:}} is an admissible 
splitting. It follows that the canonical map is always injective in this case. It 
is also clear that for all :r E /3, j'J(:i:) will be a leaf of the Bunernan tree whose 
sole incident edge is precisely (J":i:. Indeed there can clearly be only one vertex 
v = { C 1 , ... , Cm.} which ha:o at (]",, the component { x} (because we must have 

C; n Cj =/=- 0 for all ·i,j). These remarks also solves the following question. 
Which metrics are such that the four-point condition holds as well as the strict 
triangle inequality. These are precisely the tree metrics induced on the set of 
leaves of a tree. 

9. 7. Perturbation8 
The easiest way to ensun~ that the canonical map of a metric space to its 
Buneman tn~e is injective is to rnake sure that the strict triangle inequality 

holds. So the question arises whether that can be done systematically. This is 
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in fact very easy. Let {} be a function from the nonnegative real numbers to 
the nonnegative numbers such that 

iJ(O) = 0 

iJ(x) > iJ(y) if x > y (monotonicity) (9.7.1) 

'19(>..x) < >..iJ(x) if >.. > 1 (sublinearity) 

Then 'IJ(a + b) < 'IJ(a) + 'IJ(b), and it follows that 

dfl(x,y) = iJ(d(x,y)) (9.7.2) 

defines a new metric on M for which the strict triangle inequality always holds. 
Of such functions {) there are many. For instance any monotone convex function 
taking zero to zero such as or a ~ Ja or a ~ log( 1 +a). (But a (differentiable) 
function that satisfies (9.7.1) need not be convex.) It is perhaps even easier to 
do the following. Let again (M, d) be a metric space. Now change the metric 
d as follows 

d.,,(x,x) = 0 

d.,,(x, y) = d(x, y) + 77 if x =j:. y 
(9.7.3) 

where 77 is a small positive number. Then d.,, is a new metric on M (which 
differs but little from the original one) for which the strict triangle inequality 
holds. It is possible to describe exactly what happens to the Buneman tree of 
M under the change d ~ d.,,. This needs the following lemma which says that 
for a metric space it is never just a triangle equality that prevents a splitting 
from being admissible. (For dissimilarity spaces this lemma need not hold). 

9. 7.4. Lemma. Let M be a metric space and let a= {A, B} be a splitting S'UCh 
that both A and B have two or more elements. Suppose that for all fo'Ursomes 
of different elements a., a' E A, a =j:. a'; b, b' E B b =j:. b' 

d(a, b) + d(a', b') > d(a, a')+ d(b, b') (9. 7.5) 

Then a is admissible. 

PROOF. Because of (9.7.5), if a were not admissible, this must be the case 
because there is an a E A such that 

d(a, b) + d(a, b') = d(b, b') (9.7.6) 

for certain b, b' E B(or a similar situation with A and B interchanged, which is 
treated similarly). 
Besides (9.7.5) we also have 

d(a', b) + d(a, b') > d(a, a')+ d(b, b') (9.7.7) 
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Adding this to (9.7.5), aud using (9.7.G), we obtain 

d(a'. b) + d(a'. b') - d(b, b') - 2d(a, a') > 0 

On the other hand by the triangle inequality 

d(a'. b) :S: d(a, a')+ d(a, b) 

d(a'.b') :S: d(a,a')+d(a,b') 

Adding these two, and using (9.7.6) again, gives 

d(a',b) +d(a',b') :S: 2d(a,a') +d(b,b') 

>vhich is in conflict with (9.7.8). 

M. Hazewinke/ 

(9.7.8) 

0 

Now let me describe what happens to the Buncrnan tree of a metric space 
(M. d) when d is changed to d,1• In any case for all :r E M, the splitting 
a.,. = { { J:}. M\ { x}} becomes admissible if it were not already so. And this is 
the only thing that happens. Indeed for pairs a =I a', b =I b' the admissibility 
condition does not change when d is replaced by d.,1 and the lemma says that 
for splittings that are not of the form a_,. a triangle equality cannot be the only 
cause of nonadmissibility. It is now not difficult to figure out what happens to 
the Buneman trre itself. The result is: 

An interior vertex with empty support remains as before (complete with 
incident edges) 
An interior verkx with 11011cmpty support gets wplaced with an interior 
vertex with empty s11pport.. The original incident. Pclgcs with the original 
vertex now bec0!1l(' illcidcnt. with the 1ww empty support vertex. In addi
tion there appear as mauy extra leaves as t.lwre wcn• support elements and 
these are all linked to the uew empty support. vertex. This is illustrated in 
Figure 20. 

As an example consider thP rnd.ric space givc11 by t hc 11etwork depicted on the 
left side of Figure 21. The Bu1w111a11 tree of t hr• origiual 11wt.ric space is in the 
cent.re and the Bunernan tree of tlw p<·rtmhcd mf'tric spa('.(• is 011 tlic right. 

9.8. Buneman clusterH 
It seems to uw that. tlw Burwrna.11 tn•<• of a lll<'l.ric span· µ,ivPs valuable infor
mation as what clusiPrs might. lw worth consideration. One crnild for instance 
find a Bunernan tree like t.lw one depicted in Figme 22. This one suggests 
the vario11s dust.em (110t all at. th<· low<·st. J<.wl) whi<"h an· indicatwl. A precise 
definition of what clusU~rn are dPfin<'d li.v th<' Bu1H•111a11 treP of a md.ric space 
needs to be given . 

.9 . .9. Open problem" mnc1i·rnin.1J ln·1· 111.1"(ri1·s 
In rny opinion tlw Buw·rn;w <"onst.nwt io11 is lik1.fy to prnw illlport.ant.. Let. me 
list a varil't.y of opP11 quest.ions co111·1·rni11g it. 
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A. The construction has a functorial flavour. It is however far from obvious 
what should be the categories and classes of morphisms to bring out this 
functoriality. 

B. The Buneman metric da of a metric space (A-1, d) is always smaller than 
the original metric. It is however not necessarily maximal amoung the 
tree metrics that are smaller than d. The problem thus arises to find the 
maximal tree metrics smaller than a given one. In [51], Roux gives a 
convergent algorithm for changing a metric into a tree metric which could 
be examined in this setting. Is there a suboptimal tree metric? 

C. Are there systematic ways of constructing the Buneman tree of a network 
by collapsing parts of minimal circuits and the like? 

D. If the metric space satifies the strict triangle inequality (which can always 
be ensured by a arbitray small perturbation, cf 9.7 above), the original 
space identifies with the leafs of the Buneman tree. This gives a first level 
clustering; the clusters are those groups of leafs that have an immediate 
common ancestor. Now define a metric between these clusters by taking the 
Hausdorff distance and repeat. This gives a classification scheme. What 
are its properties'? 
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10. OVERLAPPING CLUSTERING 

M. Hazewinkel 

For overlapping clusterings, hierarchical or not, one asks for coverings of the set 
M instead of partitions. A covering of A1 is a set of subsets"'( = {Vi, V2, · · ·, Vm} 
such that 

(10.0.1) 

There is a totally trivial way of obtaining a 'classfication scheme' for a dissim
ilarity space (M, d) which still has its points. 

10.1. The poset of balls 
For each h define a ball of diameter h in Mas a maximal subset B(h) such that 

d(x, y) ::; h, Yx, y E B(h) (10.1.1) 

The maximality here means that if z ~ B(h), then there is an x E B(h) such 
that d(x, z) >h. The partially ordered set (poset) of balls of (M, d) is now the 
collection of all balls ordered by inclusion. It comes with a function on it which 
to each ball associates its diameter. The metric (or dissimilarity) can be easily 
recovered from these data: the distance between two points is the diameter of 
the smallest ball in which they are both contained. This is just about totally 
trivial. 

In the example of Figure 23 the distances of the four sides of the diamond 
are 4, the two vertical pieces are 3 and the two horizontal ones are 2. Thus, the 
construction is trivial but in concrete cases this may well be the only thing that 
needs to be done. In any case listing all finest level balls with their members 
and the inclusion relations between balls can be a vastly more efficient way 
of describing a metric space (compared to giving the distance function) when 
the overlap between balls at each level is modest like, say, 10%. Take e.g. a 
constant depth 4 situation with some 4000 leaves, 20 first generation children, 
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each of which has on average some 10 second generation children; these have 
in turn on average 6 children and those have again some 6 children. These 
are the kind of parameters one finds in actual existing classification schemes. 
Assuming 103 overlap, the ball poset description will be a factor of about 104 

more efficient. The situation is anlogous to the socalled 'watchmaker paradox'. 
Not all partially ordered sets can arise in this way. They obviously have 

the following property. For each element x of a poset P with largest element, 
define 

m(x) = {y E P: y-< x, y is minimal in P} (10.1.2) 

Then the poset of balls of a dissimilarity space satisfies 

y-< x? m(y) c m(x) (10.1.3) 

10.2. Powerset metrics 
Let M be a set and Pow(M) the set of all subsets of M. Let X be a subset 
of Pow(M) which includes all one element subsets, and let t : X --..; lR be a 
function such that 

t(V) 2 0 for all V E X 

t(V) = 0 if and only if #V = 1 (10.2.1) 

t(Vi) > t(Vi) if Vi ::::> V2 and Vi -:/:- V2 

These data define a metric on M as follows. Construct the network with 
vertices the elements of X and with edges between V and W if and only if 
V C W, V -:j:. W, and there are no elements of X strictly in between V and 
W. Give this edge the weight t(W) - t(V). Now identify M with the single 
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diameter 4 

element subsets of Pow(M) (which are all in X), and take the metric on M 
induced by that network metric of X. I will call such metrics on M powerset 
metrics. 

Now take a metric space (M, d) and take for X the poset of balls of it. 
Define t: X-+ IR by t(B(h)) = ~h. This defines a new metric, di, on M which 
need not be the old one as the example of Figure 24 shows. In this example the 
dt of the leftmost and rightmost point becomes 3 (while it was 4 originally). 

Completely open is the question of which metric spaces are such that the 
powerset metric defined by their poset of balls is equal to the original one. 

Also open is the question of what special properties powerset metrics have. 
For example the metric space of the left half of Figure 24 cannot come from a 
powerset metric for which the set X consists of balls. 

11. THIRD PARTY SUPPORT 

We have seen that in the case of the example that has been considered several 
times (Figure 5, Figure 12.1) single link clustering is just as good as several 
others. Still some of the others definitely look better. 

In our intended applications the distance function comes from the number of 
cocitations of two terms or phrases. That is, it comes from a direct comparison 
of the two items involved while ignoring more indirect relatedness. I would 
submit that the two outer points in the middle part of Figure 25 are more 
related than the two outer points in the upper part and that this is still more 
the case in the lower part. This is what is intended with the phrase 'third party 
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support'. 
Let us think in terms of networks (which is not really a limitation at all). 
For two points , define their relatedness as 

r(x,y) = Ll(p)-2 (11.0.1) 
p 

where the sum is over all paths from x to y without loops. And then define a 
new distance 

dr(x, y) = r(x, y)- 2 (11.0.2) 

Now perform single link clustering on the new space (M, dr)· This is one way 
of trying to incorporate the idea of indirect relatedness. It will be of interest 
to try this out on real data. Note that the powerset metric dt defined by the 
poset of balls also incorporates something of the idea of third party support ( cf 
Figure 24). 

What exponent is taken in (11.0.1) and (11.0.2) is largely open. Probably 
at least two to avoid something like an analogue of the Olber paradox from 
astronomy. 

12. GRAVITY CLUSTERING AND OTHER UNTRIED IDEAS 

Here are some more possibilities that I feel should be tried out and that I have 
not found in the literature. 

12.1. Gravity clustering 
Define the weight of a point x E M by 

w(x) = L d(x, y)-2 (12.1.1) 
x=;6yEM 

A sink is a point whose weight is greater than the weights of all its nearest 
neighbours. In this proposed scheme these sinks determine clusters. They are 
the basins of attraction of the sinks. Let the sinks be x 1 , x2, ... , Xn- Then 
y E M belongs to cluster i iff 

(This can cause mild overlap). 
To get a hierarchy repeat with as the new data set the clusters formed 

provided with Hausdorff distance. 
Here also, the exponent to be used can be changed. 

12.2. Cut-set clustering 
A cut-set in a network is a collection of edges such that their removal causes 
M to decompose into several connected components. Define the strength of a 
cut-set E as 
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s(E) = 2: Z(e)- 1 (12.2.1) 

eEE 

where l(e) is the length of the edge e. Now proceed as follows. Find the 
smallest s for which there is a cut-set of strength s. Remove all edges which 
are in cut-sets of strength s. This defines the first level clusters. Now repeat 
with each cluster to get the next partitioning. Or go on to the next strength 
of cut-sets. 

13. DUAL CLUSTERING AND BIPARTITE GRAPHS 
So far I have exclusively discussed matters from the point of view of clustering 
objects from one single space, which is thought of as a space of scientific key 
words and phrases. This does not reflect the background situation completely. 
In fact we have two spaces: a space of key items and a space of documents and 
they are related as a bipartite graph with a key item and a document linked if 
and only if that key item occurs in that document. Moreover the two metrics 
on these two (dual) spaces are both derived from the incidence matrix, i.e from 
this bipartite graph. 

Thus a good clustering of one of the spaces should tell us things about the 
other space, and the two clustering problems, one for documents, one for key 
items, should be treated together. The desirability of doing this is discussed in 
[ll]. 

Concerning the mathematical problems that arise in such a setting virtually 
nothing has been done so far. But see [7] for one initial idea. 

In particular, there is a well-known other technique for clustering docu
ments, viz co-citation analysis. This leads for instance to research fronts, [50, 
55, 60]. These research fronts in turn should give rise to information on key 
item clustering. This has not yet been explored at all. 
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