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Tree-Tree Matrices and Other Combinatorial Problems 
from Taxonomy 

M!CHIEL HAZEWINKEL 

Let A be a bipartite graph between two sets D and T. Then A defines, via Hamming 
distance, metrics on both T and D. The question is studied which pairs of metric spaces can 
arise this way. If both spaces are trivial, the matrix A comes from a Hadamard matrix or is a 
BIBO. The second question studied is how A can be used to transfer (classification) 
information from one of the two sets to the other. These problems find their origin in 
mathematical taxonomy. 
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1. INTRODUCTION 

A great deal of the literature in mathematical taxonomy focuses on clustering; i.e. 
summarizing the information present in a metric or dissimilarity on a set X by means of 
a classification tree or something similar. 

Here, we focus directly on the situation that one finds in the taxonomic problems of 
scientific disciplines. Often, the data are in the form of a collection of documents and a 
collection of key words and key phrases that is supposed to be sufficiently rich to 
describe (up to a point) the scientific field in question. Here, I am not concerned with 
how such a control list or thesaurus is generated. 

The data are thus in the form of a bipartite graph A (or, equivalently, a relation) 
between two sets, a set D (of documents) and a set T (of terms). The bipartite graph A 
tells us which terms occur in which documents. 

These data can be used to define a metric space structure on both T and D by means 
of Hamming distance-the distance between two terms is the number of documents in 
which one term occurs and the other not. A first question that arises is what pairs of 
discrete metric spaces can arise this way. For trivial metric space structures on both T 
and D it turns out that A must be very regular (a Hadamard matrix, a Hadamard 
matrix minus one row or column, or a symmetric BIBD). Section 2 below is devoted to 
some results in this direction. 

It arises frequently in practice that on one of the spaces T or D there is available 
metric information coming from other sources. For instance, in the case of a body of 
scientific literature, co-citation analysis can be used to define 'research clusters' or 
'research fronts' of strongly linked clusters of documents. The question then arises how 
to transfer such information from one of the sets, in this case D, to the other by means 
of the bipartite graph between them. This matter is discussed in Section 3. 

Finally, in Section 4 some recent ideas and results concerning metrics on the space of 
all metrics on a given finite set are summarized. These things are fundamental for 
addressing the question of finding, for instance, the best approximative ultrametric to a 
given metric or dissimilarity. 
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2. THE TREE-TREE PROBLEM 

2.1. Definition of the problem. As indicated above, we shall take as the basic 
available data a bipartite graph A between terms and documents. Or, equivalently, A is 
a 0-1 matrix with the set of terms as column indices and the set of documents as row 
indices. A 1 at spot (i, j) means that the term j occurs in the document i. These data 
define two metric spaces as follows: 
(i) The column space of A, cs(A) = T(A). As a set, this is the set of terms. The 
distance between two terms t, t' is the Hamming distance between the corresponding 
columns, i.e. the number of row indices with different entries at spots t and t'. 
(ii) The row space rs(A) = D(A) of A. As a set, this is the set of documents. The 
distance between two documents d, d' is the Hamming distance between the 
corresponding rows, i.e. the number of column indices with different entries in rows d 
and d'. 

This leads immediately to a number of natural basic questions, such as: 
(i) Which metric spaces can arise as a T(A) or a D(A)? 
(ii) To what extent is A determined by D(A) and T(A)? 
(iii) Which pairs of metric spaces D, T can arise from a 0-1 matrix A? 

In this paper I concentrate on the last question. Trees and classification schemes 
(which are special kinds of treess) are ubiquitous in (mathematical taxonomy). Thus it 
is important and natural to start with the question when both the column and row 
spaces of a 0-1 matrix are trees or related to trees. 

2.1.l. DEFINITIONS. A tree is an unoriented connected graph such that there is a 
unique path between any two given vertices. A leaf of a tree is a vertex with just one 
edge incident with it. An edge weighted tree is a tree with each edge labelled with a real 
number> 0. An example is shown in Figure 1. The distance between two vertices of an 
edge weighted tree is the sum of the weights of the edges occurring in the unique path 
between those vertices. This defines a metric on the set of vertices (and on any subset, 
particularly the set of leafs). A rooted tree is a tree with a special, selected vertex called 
the root. An hierarchical tree is a rooted edge weighted tree such that each leaf has the 
same distance to the root. 

Figure 1 is not a hierarchical tree but Figures 2 and 3 are. In these figures and those 
below an unlabelled edge is supposed to have weight 1. An hierarchical tree defines an 
ultrametric on its set of leaves: and, inversely, [6, 11], every finite ultrametric space 
arises that way. By inserting, if necessary, extra vertices of valency two (as was done in 
Figure 3), each ultrametric space arises as the space of leafs of some 'hierarchically 
organized' tree like the one in Figure 3 in which, for each vertex, all the edges pointing 
towards the leafs have the same weight. 

It is rather easy to see that each edge weighted tree with integer weights can be 
realized as a T(A) (or a D(A)). Things are rather different if both T(A) and D(A) are 
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required to be trees or tree-like (definition below). This appears to be quite difficult to 
realize. In particular, it seems difficult to realize a pair of spaces that are not (nearly) 
isomorphic. This is, roughly, what I like to call the tree-tree problem. To make the 
problem more precise, let us make the following definition. 

2.1.2. DEFINITION. A finite metric space (X, m) is tree-like if it is isometric to a 
subspace of the vertex metric space defined by an edge weighted tree. 

2.1.3. TREE-TREE PROBLEM. Which pairs of tree-like spaces can be realized by a 0-1 
matrix? 

I view these 0-1 matrices as some sort of generalized hierarchical block designs. The 
reason for that is Theorem 2.2.5 below. 

Related to the tree-tree .problem is the problem of finding a good characterization of 
those matrices for which both the column. metric space and the row metric space are 
tree-like. 

Of course, tree-like metric spaces are characterized by the so-called four-point 
condition. 

2.1.4. FouR-PoINT CONDITION. A finite metric space (X, m) is tree-like iff, for all 
not necessarily distinct four points a1 , a2 , b1 , b2 E X, 

This gives a necessary and sufficient condition for a 0-1 matrix A to yield a pair of 
tree-like spaces-but certainly a very inelegant and unsatisfying one. 

2.1.5. ULTRAMETRIC TREE-TREE PROBLEM. Which pairs of ultrametric spaces can be 

realized by a 0-1 matrix? 

2.1.6. COMPLETE TREE-TREE PROBLEM. Which (complete) pairs of edge weighted 

trees can be realized by a 0-1 matrix? 

2.2. Trivial tree-trivial tree matrices and BIBDs. Let us start with some very simple 
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examples in which the column and row metric spaces are 'trivial' in the sense of the 
definition below. 

2.2.1. DEFINITION. A trivial discrete metric space (X, m) is a metric space such that 
there is a positive number a such that 

m(x, y) =a for all x ""'y in X 

(and of course m(x, x) = 0 for all x EX). 

2.2.2. EXAMPLE: HADAMARD MATRICES. A Hadamard matrix is an n x n matrix H 
with entries 1, -1 such that 

It follows that also HHT = nln (and that n is even, n = 2k). It is immediate from 
these two properties that for each two rows there are precisely k entries that are equal 
and k entries that are unequal-and similarly for the columns. Let A be the matrix 
obtained from H by replacing each -1 with 0. Then both the column and the row space 
of A are the trivial metric space of n = 2k points with distance k. 

2.2.3. EXAMPLE: HADAMARD MATRICES WITH ONE Row OR COLUMN DELETED. Now 
let H be a Hadamard matrix for which one row or column consists entirely of + 1 's or 
entirely of -1 's. Delete that row or column. Again replace -1 with 0 everywhere. The 
result is a 0-1 matrix with trivial column and trivial row space of sizes n and n - 1 and 
distance n/2. 

Not every Hadamard matrix has such a column or row. However, if D is diagonal 
with each diagonal element equal to 1 or -1, and if His an Hadamard matrix, then so 
are HD and DH. So it is easy to modify a Hadamard matrix so as to obtain one with 
such a column or row. 

2.2.4. EXAMPLE: SYMMETRIC BIBDs. A balanced incomplete block design (BIBD) is 
a zero-one matrix A such that each row has the same number, r, of 1 's each column 
has the same number, s, of 1 's, and further, for each pair of column indices i ?6 j there 
are precisely A rows which have a 1 at both locations i and j. This last condition is the 
same as saying that each two different columns have A common 1 's. 

A BIBD is symmetric if A is square. It then follows that r = s and that each two 
distinct rows also have A common 1 's (see, e.g., [3]). 

It follows immediately that the row space and the column space of a symmetric 
BIBD are trivial metric spaces with n points and distance 2(r - A). 

2.2.5. THEOREM. Let A be an m x n zero-one matrix such that both the column space 
and the row space are trivial. Then A is one of the Examples 2.2.2-2.2.4; i.e. A 'is' a 
Hadamard matrix, a Hadamard matrix with one constant row or column deleted, or it is 
a symmetric BIBD. 

Let B be the matrix obtained from A by replacing each 0 with -1. Then the trivial 
column and row space condition on A translates for B into the statement that the rows 
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of B form a system of m length n vectors, all of whom make the same angle with one 
another, and the columns form a system of n vectors of length m that also all make the 
same angle with one another. 

2.2.6. PROOF OF THEOREM 2.2.5. Let B be the m x n matrix obtained from A by 
replacing each ? with -1. Let d be the distance between each two distinct rows of B ( ;r 
A) and e the distance between each two distinct columns. Then 

BBT ~(r 
p 

D n 

p 

p = n -2d, (2) 

BTB ~(I 
q 

l) m 

q 

q = m -2e. (3) 

Interchanging rows and columns if necessary, we can assume that m;;;:: n. By the lemma 
below, the m X m matrix BET is non-singular except when p = n or n = -(m - l)p. 
The first case cannot happen because d > 0. The second case can happen. Then, 
because m;;;;:: n, n = m - 1 and p = -1. Now, add one column of 1 's (or -l's) to B to 
obtain an m X m matrix B. It follows that fJ is a Hadamard matrix. Therefore, in this 
case, we are dealing with an instance of Example 2.2.3. 

Continuing, we can assume that BET is non-singular and hence that 

n =m. (4) 

Let c1 , c2 , •.. , en be the column sums of B, and let r1, r2 , ... , rn be the row sums of B. 

Multiply (2) with B on the right, to obtain 

(5) 

and, using n = m, multiply (3) on the left with B, to obtain 

(r1 ri) 
BBTB=(n-q)B+q: : · 

rn . . . rn 

(6) 

Subtracting (6) from (5), we see that the matrix (q - p )B is equal to a m~t~ix of .rank 
.s;2. If n = m ;;;;:: 3 this is only possible if p = q and hence e = d, because B is mvert1ble. 

Now there are two cases: 
(i) Cas'e 1; p = q = 0. Then, B is a Hadamard matrix by (2). 
(ii) Case 2; p = q ¥- O. Then, it follows from (5) and (6) that 

C1 = ... = Cn = T1 = .. · = Tn, 

so that A is a symmetric BIBD with r = (n + c1)/2 entries 1 in each column and row 

and A = (n + c 1 - d)/2. 
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This proves the theorem for n, m;;;;.:: 3; it is trivial to deal with the remaining cases. 
D 

2.2.7. LEMMA. The determinant of them X m matrix in (2) is equal to 

det(~ .~. :n:)=(n-pr-1(n+(m-l)p). 
p ... p 

PROOF. The proof is straightforward. D 

Using similar but more complicated arguments, one can show that if A is an m X n 
zero-one matrix such that each two distinct rows have exactly µ ones in common and 
each two distinct columns have exactly A ones in common, then A is a symmetric 
BIBD. Interpreting the column indices of A as points and the row indices of A as lines, 
this gives the following [8). 

2.2.8. THEOREM. Let X be a finite set (of points), with a system of subsets called 
lines. Let there be n points and m lines. Suppose that lines distinguish points (i.e. no two 
distinct points have the same set of lines through them) and points distinguish lines, and 
that: 
(i) each two distinct lines meet in µ.,points; and 
(ii) through each pair of distinct points there pass A lines. 
Then n = m and A = µ, each line has r points and through each point there pass r lines 
(where r(r -1) = A(n - 1)). 

This is a special case of a more general result of Rohmel [16]; see also [3, p. 102ff.]. 

2.3. More examples. Using the various symmetric BIBDs as main building blocks, a 
variety of examples of tree-tree matrices can be constructed. Here is a small selection. 
In the illustrations below (and above), the black nodes in a tree make up the tree-like 
space that is being realized. 

2.3.1. EXAMPLE. 

1 1 1 1 0 0 

/o""' 1 1 1 0 1 0 

1 1 1 0 0 1 0 0 A= cs(A) = rs(A) = 

/I\ /I\ 1 0 0 1 1 1 

0 1 0 1 1 1 • • • • • • 
0 0 1 1 1 1 FIGURE 4 
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2.3.2. EXAMPLE. 

1 1 1 1 1 1 1 

1 1 1 1 1 0 0 /·~ 1 1 1 1 0 1 0 
0 0 

A= 1 1 1 1 0 0 1 cs(A) = rs(A) = /I\ /I\ 1 1 0 0 1 1 1 

1 0 1 0 1 1 1 • • • • • • 
FlGURE 5 

1 0 0 1 1 1 1 

2.3.3. EXAMPLE. Let A' be the matrix obtained from that of Example 2.3.2 by 
deleting the top row. Then the row space of A' is equal to the space of Figure 4, while 
the column space is that of Figure 5. 

2.3.4. EXAMPLE. Let En denote the n X n matrix with every entry equal to 1, let In 
denote the n x n unit matrix, and let 0 denote whatever size matrix of zeros is 
appropriate. Then: 

• 

A=G 
0 

~} /I~ 
£3 cs(A) = rs(A) = 0 0 0 

/I\ I /I\ /3 /3 

• • ••••• 
FIGURE 6 

2.3.5. EXAMPLE. 

0 

E, I,) /~ 
A=( -0 

0 0 

/3 £3 
cs(A) = rs(A) = /\ /\ £3 /3 ' 

0 
/3 £3 

0 0 0 0 

/I\ /I\ /I\ /I\ •••••••••••• 
FIGURE 7 

2.3.6. EXAMPLE. 

0 

A=(~ 
0 0 0 

f} cs(A)= Ii~· 
112/\12 

1 0 0 
rs(A) = 

1 1 0 
0 0 

/\ I\ 1 1 1 • • • • 
FIGURE 8 •••• 

FIGURE 9 
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2.3.7. REMARK. It is not possible to realize the tree-like space depicted in Figure 10 
with a 4 X 4 matrix. Here, as always, unlabelled edges have weight 1. 

2.3.8. EXAMPLE. 

1 0 0 0 

0 1 0 0 

A= 0 0 1 0 

1 1 1 1 

1 1 1 1· 

2.3.9. EXAMPLE. 

0 0 

0 0 

0 0 

0 1 

1 0 

/\ 
0 0 

/\ I\ 
•••• 

FIGURE 10 

cs(A) = di~ rs(A) = 
/\ 

0 0 

II\ I\ ••••• 
FIGURE 11 ••••• 

FIGURE 12 

cs(A) = rs(A) = 

/o~ 

/\ /\ 
0 0 0 0 

fl~ fl~ /I\ /I\ •• • • • • • • • • • • •• 
FIGURE 13 

2.3.10. REMARK. Call a rooted tree for which the number of edges towards any of 
its leafs is equal to a, a tree of a levels. Using similar techniques as in the proof of 
Theorem 2.2.5, there is a great deal that one can say about the zero-one matrices that 
produce tree-like spaces of level :S;2 for their row and column spaces. I intend to return 
to this in a future paper. 

2.4. Tree-like spaces of unbounded height. There is a systematic iterative construction 
that yields trees and tree-like spaces of any number of levels. 

2.4.1. THE ZERO CONSTRUCTION. Let A be a zero-one matrix of size m x n, and 
suppose that: 
(i) all columns have distance :S;dc to one another; 
(ii) all rows have distance :S;dr to one another; 
(iii) the rows of A all have precisely wr ones; 
(iv) the columns of A have precisely w, ones; 
(v) 2wr > dn n > Wr > 0, and 2Wc > d0 0 <We< m; and 
(vi) the row space of A and the column space of A are both tree-like. 
Now consider the k X k block matrices 

A~=(~ .~. 
0 ... 0 

(7) 
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w,71~ 
Tr(A) Tr(A) Tr(A) 

FIGURE 14 FIGURE 15 

Then, if Tr(A) denotes the row tree-like space of A, and Tc(A) is the column tree-like 

space, then the row space and column space of A£ look like Figures 14 and 15. 
Note that 

dr(A£) = 2wn dc(A£) = 2wc, wr(A2) = Wr. wc(A£) =We. (8) 

As a rule: if A_ is just an arbit~ary 0-1 ~atrix with tree-like column and row spaces this 

~onstru~hon gives a 0-1 matnx for which neither the row space, nor the column space 
is tree-hke. 

2.4.~. THE ONE CONSTRUCTION. A very similar construction can be carried out with 

ones. i_nstead of zeros in (7). Let A be as before in Section 2.4.1, except that the 

cond1t1ons (v) are replaced by 

(v') 2(n-w,)>dn n >w,>O, and 2(n -wc)>dc, O<wc<m. 

In this case, consider the k X k block matrices 

(

A E 

A1 = ~ _A 

E ... 

: .. ~) . . 
· .. E ' 

E A 

where E is the m X n matrix consisting completely of ones. Then, the row space and 

column space of Al look like Figures 14 and 15, except that w, - d,/2 and we - d,-12 are 

replaced by n - w, - d,/2 and n - we - d,/2, respectively. 

Furthermore, 
d,(Al) = 2(n - w,), 

w,(Al) = (k - l)n + w,, 

dc(Ak) = 2(n - We), 

wc(Al) = (k - l)m +we. 

(9) 

(10) 

2.4.3. ITERATING THE CONSTRUCTIONS. It is now easy to check that if A satisfies the 

conditions for the zero construction, then A2 satisfies the conditions for the one 

construction, and that if A satisfies the conditions for the one construction, then Al 
satisfies the conditions for the zero construction. 

Indeed AZ is an km X kn matrix (k ~ 2). So, 

2(kn - w,(A£)) = 2kn - 2w, > 2wr = d,(A2), 

because k ~ 2 and n > w,. Also, 0 < w, = w(A£) < n <kn. The column conditions are 

checked similarly, and it follows that the conditions for the one construction are 

satisfied for AZ. 
Analogously, Al is also a km X kn matrix, and 

2w,(Al) = 2(k - l)n + 2w, > 2(n - w,) = d,(A1) 

because k ~ 2k and n > wr Also, 0 < (k - 1 )n + w, = w,(Al) <kn. The column condi

tions are checked similarly and it follows indeed that A1 satisfies the conditions for the 

zero construction. 
Thus, provided that a starting A can be found, the two constructions can be applied 

alternatively to yield tree-like spaces with an arbitrary number of levels. 

There are many possible starting matrices: e.g. the unit matrix of size 3 or more 
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satisfies the conditions for the one construction; the matrix En - In, n ~ 3, satisfies the 
conditions for the zero construction, and the incidence matrix.M of the projective space 
P2 (F2), i.e. 

1 1 0 0 0 1 0 

0 1 1 1 0 0 0 

1 0 1 0 1 0 0 

M= 1 0 0 1 0 0 1 

0 1 0 0 1 0 1 

0 0 1 0 0 1 1 

0 0 0 1 1 1 0 

satisfies the conditions for both the zero construction and the one construction. 

2.5. Complete trees. To conclude this selection of examples, here are some in which 
both the row and column space are not just tree-like (i.e. isometric to a subspace of the 
vertex space of an edge labelled tree) but isometric to the full vertex space of an edge 
labelled tree. 

Let Tk be the following k x k matrix 

T,=(l 
and let E denote matrices consisting entirely of 1 's of the appropriate sizes. Consider 
the block zero-one matrix 

1 E E E 

E Tk, E E 

A= E E Tk, 

E 

E E E Tkm 

The column and row spaces of A are both complete trees with just one node of valence 
>2, as depicted in Figure 16. They consist of one central node of valencey m, from 

/i~ • • • I I I • • • I I I • • • 

• • • 
FIGURE 16 
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which issue m branches with k; nodes, i = 1, ... , m. These are the only kind of 
exa~pl~s I know for which both the row and column space are compiete trees. 
Mod1fymg the example a bit, the edges can be given arbitrary positive integer weights. 

3. TRANSFER OF METRICS 

As noted in the Introduction, a bipartite graph connecting terms and documents 
should also permit the transfer of information about one of the two sets to the other. 
This section is devoted to aspects of that problem. 

3.1. The transfer problem.. Loosely stated, the transfer problem is concerned with the 
following situation. Let I' c D x T be a bipartite graph (or, equivalently, a relation) 
between a set D of documents and a set T of terms. Let there be given a metric on D 
(resp. T). What is the 'best' corresponding metric on T (resp. D). 

This sort of situation frequently arises in practice. In the case of the taxonomy of a 
scientific field for instance, the technique of cocitation analysis ( cf. e.g. [ 5, 20] gives 
clustering type information on the set D of documents, and the question arises how to 
transfer this information optimally to classification information on the set of terms. 

3.2. The canonical embedding in function space. To discuss various aspects of the 
transfer problem we first need to describe a canonical embedding of a (discrete) met~ic 
space into the space of functions on it. 

3.2.1. DEFINITION. Let (X, m) be a (discrete) metric space. let F(X) be the space of 
all real valued functions on X. Give F(X) the max (or sup) norm metric: 

mp(f, g) = max \f(x) - g(x)\. 
X<'X 

(11) 

The canonical embedding of X into F(X) is given by 

ax:X ~F(X), (12) 

3.2.2. LEMMA. The canonical embedding axis an isometry. 

The proof of this lemma is a straightforward application of the triangle inequality. 

3.3. The Hausdorff metric. Below, the Hausdorff metric is defined. only for .finit~ 
metric spaces. The definitions extend to more general cases. To do this, replace max 

by 'sup' and 'min' by 'inf'. 

DEFINITION. Let (X, m) be a finite metric space, and_ let A and B be subsets 
of 3}.·hen, the Hausdorff distance between the sets A and B is defined as 

m (A B) = max{max min m (a, b), max min m (a, b)}. (13) 
Hd ' aEA bEB bEB a<'A 

It is well known that the Hausdorff metric is a metric on the set of all su~sets of X. i:~: 
' ' 
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it satisfies mHd(A, B) ~ 0, mHd(A, B) = O~A = B, and the triangle inequality 
mHd(A, B)::;:;; mHd(A, C) + mHd( C, B), cf., e.g., [2, 17]. 

3.3.2. DEFINITION (extension of the canonical embedding). For a subset A of X 
define 

gA(x) = minm(a, x). 
aeA 

3.3.3. PROPOSITION. For all subsets A and B of X: 

mF(gA, gs) = mHd(A, B). 

(14) 

(15) 

PROOF. Take x EX. Let a1 EA be such that gA(x) = m(a1, x). Let b1 E B be such 
that m(a1, b1) ::;;;;m(a1, b) for all b E B. We have 

mHd(A, B) = max{max min m(a, b), maxmin m(a, b)} 
aeA beB beB aeA 

~ max min m(a, b) 
aeA beB 

~ min m(a 1 , b) = m(a 1, b1). 
beB 

Now, 

Hence 
gB(x) - gA(x)::;;;; mHd(A, B) 

and, similarly gA(x) - g8 (x)::;;;; mHAA, B), showing that 

'Vx EX lgA(x) - gs(x )I::;;;; mHd(A, B). 

On the other hand, switching A and B is necessary, we can assume that 

mHd(A, B) = max min m (a, b ). 
beB aeA 

Let this maximum be assumed at b2 E B. Then gA(b2 ) = mHd(A, B) and gs(b 2 ) = 0. 
Hence also 

mp(gA, gB) ~ lgA(b2) - gB(b2)I = mHd(A, B) 

and the proposition is proved. D 

3.3.4. REMARK. In the literature, one also frequently encounters the following 
different definition of Hausdorff distance: 

mHd(A, B) = max min m(a, b) + max min m(a, b ). 
aeA beB beB aeA 

Proposition 3.3.3 fails for this alternative definition. Instead, one has 

mHd(A, B) = max (gs(x)- gA(x)) + max (gA(x) - g8 (x)). 
x x 

This is proved in practically the same way. 

(16) 

(17) 

3.4. Five transfer procedures. Now, let us return to the basic situation in which we 
have a bipartite graph between two sets D and T and we want to transfer a given 
metric on D to one on T (or vice versa). In this subsection I describe five potential 
methods for doing this. They have different background philosophies and which one (if 
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any of these five) is appropriate in a given situation will probably depend on the 
particular circumstances. All need further investigation. 

3.4.1. HAUSDORFF TRANSFER. Given r c D x T, for each t E T let 

D, = {d ED: (d, t) E I'}. 

Now, given a metric mv on D, a metric m 7 = 'Pr(mv) on T is defined by 

mT(t, t') = (mv)Hd(D1, D,.). 

This transfer method has a number of advantages (and looks very natural). For 

instance, if D is a trivial metric space (no information) then so is the induced metric on 
T. Another nice aspect is the following. 

3.4.2. PROPOSITION. If the metric m on D is an ultrametric, then so is m' = !fr(m) 

on T. 

PROOF. This is an immediate consequence of the lemma below. 

3.4.3. LEMMA. Let (X, u) be an ultrametric space. Let ii be the Hausdorff merric on 

the subsets of X defined by formulas (13). Then ii is an ultrametric. 

PROOF. By definition 

u(A, C) = max{max minm(a, c), max min m(a, c)}. 
aeA ceC ce-C ae.A 

Interchanging A and C if necessary, we can assume that 

u(A, C) = u(a 1 , c1) = max min u(a, c) 
a c 

for a certain a 1 EA and c1 E C. Consider the set {u(a 1 , b ): b E B} and let the minimum 

be assumed at b1 E B. If u(a 1 , b1) ~ u(b1, c1), then 

u(a1, c1) ~ max{u(a 1 , b1), u(b1, c1)} = u(a1. bi) 

= min u(a 1 , b) ~ max min u(a, b) ~ u(A, B) 
b a b 

and we are through. It remains to deal with the case 

u(a1, bi)< u(b1, c1). ( 18) 

Consider the set {u(b, ci): b E B} and let the minimum be assumed at b2· If 

u(b 2 , c 1 ) ~ u(a 1 , b2), then we have 

u(a 1, c1),,;:; max{u(a1, b2), u(b 2 , c1)} = u(b2, C1) 

= min u(b, c1) ~ max min u(b, c) ~ ii(B, C) 
b c b 

and we are through. It remains to deal with the case 

u(b2 , c1) < u(ai. b2)· 
(19) 
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Thus, in total, it remains to deal with the case in which both (18) and (19) hold. By the 
ultrametric inequality, we then have: 

u(a1> c1) = u(ai. b2) > u(b2, c1), 

u(a1, c1) = u(bi. c1) > u(ai, bi)· 

Now suppose that u(b 1, c1)..:;; u(bi. c) for all c E C. Then 

u(a1, c1) = u(b 1, c1) = min u(b1i c),,.,;;; max min u(b, c):..:;; ii(B, C) 
c b c 

(20) 

and we are done. Thus it remains to deal with the case in which there exists a c2 e C 
such that 

But then, using (21) and (20), 

contradicting that 

This finishes the proof. 

u(a1, c2)..:;; max{u(a1, b1), u(b1, c2)} 

< max{u(a1, c1), u(b1, c1)} 

= u(a1, c1), 

u(a 1 , c1) = min u(a1, c) 
c 

(21) 

D 

3.4.4. REMARK. Proposition 3.4.2 fails if the alternative definition (16) is taken for 
the Hausdorff distance. 

3.4.5. ANOTHER DESCRIPTION OF THE HAUSFORFF METRIC OF AN ULTRAMETRIC. Let 
TC= {Y1, ... , Yn} be a partition of X. For each subset J of {1, 2, ... , n}, J # 0, let 

P1 = {A c X: A n }j ¥= 0 for all j e J and A n Ji = 0 for all j ~ J}. 

Then, as is easily checked, the ~ form a partition JI of 2P(X), the set of subsets of X. 
Now, an ultrametric u on X is given by a series of coarser and coarser partitions 

{singletons}= TCo < TC1 < · · · < nk = X, 

with levels d0 , dl> ... , dk attached to them. Then u(x, y) = d1 if I is the index of the 
finest partition of these that does not separate x and y. Associated to the sequence of 
partitions above there is the sequence of partitions 

{singletons}= II0 < Il1 < · · · < n = 2P(X). 

Then the Hausdorff metric on 9J>(X) is defined by this series of partitions with the same 
levels as above, i.e. u(A, B) = d1 if l is the index of finest partition from the II; that does 
not separate A and B. 

3.4.6. AVERAGING TRANSFER. The central idea here is that given two terms t, t' it is 
unknown which of the documents in D1 and D,. really represent t and t'. This leads to 
the idea that the dissimilarity of t and t' should be measured by the average distance of 
documents in D1 and D,., i.e. 

1 1 
S(D,, D,.) = #D #D L m(d, d'). 

t t' d.eD1,d'eD1• 
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However, this expression does not define a metric. It does suggest, however, 
considering the averaging transfer. This transfer method attaches to a metric m on D 
the metric q/f'(m) on T defined by: 

mav(A, B) = mF(DJ(#1A 2: gd, #lB L gd·), 
deA d'eB (22) 

cp'f'(m)(t, t') = m0 v(D,, Dr·) 

Another way to think about this is that mav somehow measures the distance between 
the (non-existing) centres of Dr and Dr'· (For a subspace of the line, and non-interlacing 
subsets of it, this is exactly the case.) 

This idea is reinforced by the following observation. For a subset A of X with metric 
m, let 

Then, for any x e X, 

as is easily proved. 
Note that the metric on T comes again, via r, from a metric on the set of all subsets 

of D, as defined by the first part of (22). Observe that, for all A, B c X, 

o(A, B);;;.: mav(hA, hs) 

and it could well be that it is the largest metric subordinate to the averaging 
dissimilarity o. 

Easy examples show that there is no particular relation between the Hausdorff 
distance, mHd' on the set of all subsets 9J(X) of a metric space (X, m) and the 
averaging distance, m0 ,,, on 9J(X). 

3.4.7. TRANSFER VIA WEIGHTS. Lett, t' e T be terms, A= Dt> A'= D,., and XA• XA· 
be the characteristic functions of these subsets. Then the Hamming distance between t 
and t' is equal to the sum (or integral) 

In this formula, all d e D are given equal weight. Now let there be given a metric m on 
D. This can be used to assign a measure of relative importance to the elements of D in 
which 'central elements' acquire more weight than 'peripheral' ones. For instance, we 
could proceed as follows: 

s 
µ.(y)= ' 

LxeDm(x, y) 
S= L m(x,y). 

x,yeD 

Now, fort, t' e T, define 

q;[{m)(t, t') = L IXA(d)- XA·(d)I µ.(d). 
d 

3.4.8. The last two transfer of metrics procedures, 3.4.9 and 3.4.10 below, require 
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that there is given a metric on the space of all metrics on Tor D, so that it is possible 
to talk about a best approximating metric from a given class to a given metric. Matters 
pertaining to this will be discussed briefly in the next section. For the moment, Jet us 
assume that we have a suitable metric µ, on the set .M(X) of all metrics on X, where X 
is Tor D. 

3.4.9. TRANSFER BY APPROXIMATION. The basic idea is here that the bipartite graph 
linking D and T perhaps embodies only part of the information linking D and T, and 
that some other information is hidden in the given metric m on D which comes from a 
similar source (perhaps another, overlapping, document collection). 

Consider all possible bipartite graphs I" between D and T. For each I", we have the 
following numbers: 
(i) the Hamming distance between I' and I"; and 
(ii) µ,(m, m0 (I")), 
where m0 (I") is the Hamming distance on D defined by I''. Let v(m, I") be the set of 
all I" that minimize a suitable chosen convex linear combination of these two numbers. 
Now define cp'I{m) on T as the average of the Hamming distances on T defined by the 
bipartite graphs in v(m, I"). 

3.4.10. INVERSE HAUSDORFF TRANSFER. For each d ED, let Td be defined by 

Td = {t E T: (t, d) E I'}. 

Assign the number m(d, d') to the pair of subsets TJ, Td'· Now define cpij!d(m) as (the 
average of) the metric(s) m' on T for which the induced Hausdorff metric m' on the 
collection {Td: d ED} best approximates the metric m(TJ, TJ·) = m(d, d') on that same 
collection. 

A important question here is what the conditions are for a metric on a collection of 
subsets s1 c 9P(X) to be such that it is the Hausforff metric induced by a metric on X. 
Preliminary to this is the question what collections of subsets s1 are such that the 
associated functions gA for A E s1 (see (14)) span the linear space F(X). 

4. CLUSTERING AND TRANSFER 

Much of the literature on mathematical taxonomy and clustering has focused on the 
question of 'abstracting' from a given dissimilarity a suitable (classification) tree. See 
[1, 4, 7] and the references therein for some recent results and ideas. Standard 
references on clustering are [10, 15, 18]. A central question is as follows: Given a 
metric on a space X, which is the metric of a special kind that best approximates the 
given one? Very often 'special kind' means ultrametric, so that there is a corresponding 
hierarchical classification scheme. More generally, tree-like metrics are also often 
considered. Still more generally, (cf. [l]), it is very interesting (and very natural in 
some cases) to consider metrics that are sums of splits, and best approximation by such 
metrics. 

I will not discuss here the question of whether trees are really as appropriate for 
classification and information-finding purposes as one would infer from the dominance 
of these structures in the literature. It may well be that we have here a relic of the hard 
copy period: trees are just about the only classification schemes that can be more or 
less decently printed. 

As remarked, the question of best approximating metrics is central. That in turn 
raises the question of finding a good metric on the set of all metrics. This section is 
mostly concerned with some matters pertaining to that question. 
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4.1. Urysohn distance. Let X and Y be metric spaces. The most natural distance 
between X and Y is probably the Urysohn distance, which is defined by 

Bu(X, Y) = infHd(a(X), J3(Y)) 
«,/3 

where the infimum is over all inbeddings a, f3 of X and Y into a third metric space Z, 
and where Hd denotes the Hausdorff distance. Because of the existence of universal 
metric spaces (Urysohn spaces) in which each metric space (of cardinality less than a 
given cardinal) can be inbedded, the space Z in the above can be taken to be a fixed 
Urysohn space. 

As said, this is probably the most natural idea of distance between metric spaces. 
However, I know of no way to calculate it in concrete cases. 

4.2. Function space distance. Consider a fixed set X and the set .«.(X) of all metrics 
on X. Each metric m in .M(X) defines an isometric inbedding am: X - F(X). Now 
define the distance between two metrics on X by 

8F(m, m') = Hd(am(X), am·(X)). 

This is quite probably related to Urysohn distance, because one of the constructions of 
Urysohn space uses similar function spaces and embeddings [13]. 

4.3. Lipshits distance. Consider a set X and two metrics (or dissimilarities), ml> m2, 
defined on it. The distortion of m2 with respect to m 1 is defined by 

. nlz(X, y) 
d1stor(m2, m 1) =sup ( ) , 

m1 x,y 

where the sup is taken over all x, y e X, x ¥= y. The Lipshits distance between m1, m2 is 
now defined as 

8L(m 1, m 2) = log(distor(m 2 , m1) distor(m1> m2 )). 

Note that if the two distances are proportional, their Lipshits distance is zero. This is 
really an advantage for classification problems, because a constant scalar factor should 
not matter. 

It is easy to see the following. 

4.3.1. PROPOSITION [12, 14]. The Lipshits distance 8L defines a metric on isometry
classes-up-to-a-scalar-factor of metrics (or definite dissimilarities) on a fixed set X. 

Lipshits distance is well adapted to one popular clustering technique. 

4.3.2. THEOREM [9]. The single-link clustering technique applied to a dissimilarity m 
on X yields an ultrametric u on X that is maximally close to m in the sense of the Lipshits 
distance (compared to all other ultrametrics on X). 

I know of no other metrics on .M(X) that are linked to a well known clustering 
method in precisely this way. See, however, [19], in whi~h a connection is establis~ed 
between local optima for the L 2 distance between rnetncs and the average clustermg 

method. 

4.4. Transfer and clustering. A clustering method can be seen as a mapping 
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y: .Atl(X)-"' O/l(X), where O/l(X) is a chosen subset of .JU(X). Now choose any transfer 
method (or two of them) to go back and forth from D to T. The combination of such a 
transfer with a clustering method on, say, .JU(D), yields a clustering method on .JU(T). 
What can be said about the resulting clustering method? 
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