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Abstract. The median operator is a nonlinear image transformation celebrated for its noise cleaning capacities. 
It treats the foreground and background of an image identically, i.e., it is self-dual. Unfortunately, the median 
operator has one major drawback: it is not idempotent. Even worse, subsequent iterations of a given image 
may lead to oscillations. This paper describes a general method for the construction of morphological operators 

which are self-dual. This construction is based upon the concept of a switch operator. Subsequently, the paper 
treats a class of operators, the so-called activity-extensive operators, which have the intriguing property that every 

sequence of iterates of a given image is pointwise monotone and therefore convergent. The underlying concept is 

that of the activity ordering. Every increasing, self-dual operator can be modified in such a way that it becomes 
activity-extensive. The sequence of iterates of this modification converges to a self-dual morphological filter. 
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1. Introduction 

The median operator is likely to be one of the most 
frequently used transformations in image processing 
which is nonlinear. In fact, this operator (see Section 3 
for a formal definition) fits quite well in the framework 
of mathematical morphology [10, 13, 14, 3]; it is in­
creasing, translation invariant, and can be decomposed 
as a finite union of erosions. The median operator is 
eminently suited for the elimination of noise [7J. Fur­
thermore, it affects foreground and background noise 
in an identical manner. This is usually expressed by 
saying that the median operator is self-dual; see Sec­
tion 2 for a formal definition. The major disadvantage 
of this operator is its non-idempotence: repeated appli­
cation of the operator may change the outcome further 
or make previous changes undone. Even worse, iterat­
ing this operator may lead to oscillations. With regard 
to noise cleaning purposes, this is an undesirable prop­
erty [14, 12). 

Most of the operators discussed in this paper will be 
illustrated through their action on one particular noisy 

binary image X with a resolution of 128 x 128 pixels; 
see the left-most image in Fig. 1. The second image 
in this figure shows µ,(X), whereµ, is the median op­
erator. The sequence of images obtained by iteration 
converges pixel-wise to a limit image µ, 00 (X); see the 
third image in Fig. 1. The right-most image shows all 
pixels which have been flipped at at least one iteration 
step; note that this set may be substantially larger than 
the symmetric difference of X and µ, 00 (X). 

1\vo other important operators known from mathe­
matical morphology, are the opening and the closing. 
These operators have interesting noise cleaning capa­
bilities, too, and they are idempotent. Unfortunately, 
however, they lack self-duality. As a matter of fact, 
opening and closing are complementary in the sense 
that the opening affects noise particles with high inten­
sities, whereas the closing affects noise particles with 
low intensities. 

Idempotence of an operator is a useful property as 
it guarantees that a second pass of this operator has 
no further effect on the image; for operators which are 
not idempotent, such as the median operator, it is not 
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Figure 1. Prom left to right: the original image X, the transfonn µ,(X), whereµ is the median operator, the limit image µ,"" (X), and the sel 

of pixels which have been flipped at at least one iteration step. 

known in advance how often it must be applied before 
the transformed image reaches a state which remains 
fixed or is periodic. Even worse, it is unknown in 
general if such a state will be reached at all. 

In mathematical morphology the so-called Duality 
Principle plays an important role [3]. It says that ev­
ery "morphological concept" has a dual counterpart, 
obtained by reversing the underlying partial ordering 
(set inclusion in the binary case). According to this 
principle, erosion is dual to dilation, opening is dual 
to closing, etc. On the level of (binary) images, this 
duality refers to the foreground and the background 
of an image. Erosion of the background of an image 
has the same effect as applying the dual (or negative) 
dilation to its foreground. An operator which treats 
foreground and background identically is called self­
dual. Self-duality of an operator is a desirable property 
since it does not require an a priori distinction between 
what is foreground (what are the "objects") and what 
is background. 

The major question addressed in this paper is the 
following: "Can we find a general method to design 
morphological operators which are self-dual and idem­
potent?" A partial answer to this question was given 
in our previous work [3, Chapter 13], [4]. In this pa­
per we will review this work and supplement it with a 
substantial number of new results and examples. 

The basic idea underlying our approach is to con­
struct self-dual operators 1/1 which are not necessar­
ily idempotent, but which do satisfy the (weaker) con­
straint that they are activity-extensive. The latter means 
that the sequence of iterates if!, 1{1 2 , 1/13 , •.. is increas­
ing with respect to the so-called activity ordering on 
the set of all operators; this ordering was introduced by 
Serra [ 14] and will be reviewed in Section 2. If if! is an 
activity-extensive operator, then repeated application 

of 1fr to an image yields a convergent sequence. This 
leaves us with the problem of finding self-dual oper­
ators which are activity-extensive. This part of the 
problem will constitute the main body of the present 
paper. 

In Section 2 we recall the basic concepts which we 
need in this paper. As much as possible we adopt the 
terminology and notation of (3]. We point out that we 
use the terminology "operator" for an arbitrary trans­
formation; the word "filter" is preserved for operators 
which are increasing and idempotent. In Section 3 we 
will make some general statements about self-dual op­
erators; in particular, we will recall the notions of a 
(weighted) rank and median operator. We also estab­
lish a lattice isomorphism between the self-dual opera­
tors provided with the activity ordering at the one hand, 
and the anti-extensive operators with the pointwise or­
dering at the other. In Section 4 we define switch op­
erators and indicate their importance in relation to our 
problem of finding increasing, self-dual operators. We 
study an important instance of a switch operator corre­
sponding with the situation that we want to eliminate 
isolated noise points. Here the word "isolated" has to 
be interpreted in terms of some prescribed adjacency 
relation on the underlying point set. From Section 5 
onwards, we will restrict attention to operators which 
are translation invariant. Under this restriction we can 
give a complete characterization of switch operators, 
and hence, of increasing, self-dual operators. Subse­
quently, in Section 6 we show how an arbitrary increas­
ing, self-dual operator can be modified such that it be­
comes activity-extensive; then this modification can be 
used to construct a self-dual filter by iteration. A large 
number of examples will be presented in Section 7. We 
end with some conclusions in Section 8; there we will 
also point out some open problems. 



2. Terminology and Basic Facts 

We presume that the reader is familiar with the basic 
notions of mathematical morphology. Throughout this 
paper we are mainly concerned with the space of dis­
crete binary images 'P(Z2). If <f>, 1fl are two operators 
on this space, then </J :S i/! means </> ( X) s; lfr ( X), for 
every X s; 'Z}. Furthennore, 1/N/> denotes the com­
posed operator given by (i/!</> )(X) = 1/f{</>(X)). If tjr;, 
i e J, is a collection of operators then Ate! l/t; and 
Vie/ 1/11 denote the infimum and supremum of this col­
lection, respectively; see e.g., [3]. 

If X f; :l.2 and h E 'l} then Xh denotes the trans­
lation of the set X along the vector h. Sometimes we 
interpret X as an indicator function. Then X (h) = 1 if 
h E X and 0 otherwise. Given a translation invariant 
operator 1/1 on P('l!}), we say that 1/1 is a/mite-window 
operator if there exists a fil).ite set M s; '!!} such that 
h E o/(X) *==? h E 1/!(X n Ah) for every h E 'l}, 
X s;; Z2 and A 2 M. If 'if! is increasing then it suffices 
to consider A = M. 

In [ 14] Serra introduces a partial ordering on the 
complete lattice of all operators on .C, where C is a 
complete Boolean lattice. Here we specialize to the 
case C = P('ll,2). Given two operators</>, 1/1 on 'P('l}), 
we say that t/f is more active than</>. written</>~ ifr, if 

id A i/r ::; id A</> and id v 1/1 ~ id v cf>. 

Here id is the identity operator which maps every set 
onto itself. The infirnum of a collection of operators 
l/J";, i E /, with respect to the activity ordering is de­
noted by A.;EJ''/f;. It is given by the expression 

. J... 1/11 = (id A v 1/li) V /\ 1/1;. 
iel iel iel 

This operator is sometimes called the centre of the oper­
ators i/f;. Dually, their supremum, denoted by Y;e11/J;, 

is given by 

and is called the anti-centre. Here v is the complement 
operator given by 

v(X) = xc. 

It is obvious that id and v are the least and greatest 
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operator, respectively, with respect to the activity or­
dering. The negative ifl* of an operator l/t is given by 
1/t* = vijtv, i.e., 1/l*(X) = (1/l(Xc)y. 

The operator 1/1 is called activity-extensive if 

n = 0, 1, 2, ... 

This means that, for a fixed set X s; 7Ll, the se­
quence ifr11 (X) is pointwise monotone: the sequence 
1/ln(X)(h), where h E Z2 is given, is monotone, ei­
ther increasing or decreasing. As such sequences con­
sist exclusively of O's and l 's, they must be of the 
form 0, 0, ... , 0, 1, 1, ... or 1, 1, ... , 1, 0, 0, .... We 
call { tf!n (X) I n = 0, 1, 2, ... } the orbit starting at 
1/1°(X) = X. 

3. Self-Dual Operators 

Before entering a general discussion on the construc­
tion of self-dual operators we present some examples 
based on Boolean functions; see also [3, Section 4.5]. 
Let A = { a1 , az, ... , an} be a finite structuring ele­
ment, and let b be the threshold function with realiza­
tion vector (w1, ... , Wn Is), i.e., 

b(u1, ... , Un)= [t w;u; ~ s]; 
J;) 

here w1, ..• , Wn, s E Z. Here we use the following 
convention. The expression [P] equals 1 if P is true 
and 0 if P is false. Now 

i/fb(X) = (x E 'll2 tw;X(x +a;)~ s) . 
1=1 

is an increasing, translation invariant, morphological 
operator. We call this operator weighted rank oper­
ator. If the weights wi as well as the threshold s 
are positive integers, then this operator has the fol­
lowing interpretation: the point x lies in 1/lb(X) if the 
sth value of the sequence which is obtained by putting 
the values X(x + ai) (counted Wi times) in decreas­
ing order equals one. If w; ~ 0 for every i, then 
1/lb is an increasing operator. Its negative if!; is given 
by 

1/fb(X) = { x E 7l21 t WiX(x+a;)?:: t W;-s+l} 
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It follows immediately that 1/tb is self-dual if and 
only if 2s = L:7=1 w1 + 1. In thls case t/lb is 
called a weighted median operator. A weighted 
rank operator can be represented by a matrix con­
taining the weights Wi in which the position of the 
origin is marked; see Example 3.1 below for an 
illustration. 

If all weights w1 have the value 1, and if s E 

{1, 2, ... , n}, then 1/lb is called rank operator, this 
operator is denoted by PA,s. It is easy to show that 
h e PA.s(X) if and only if X n Ah has at least cardi­
nality s. In particular, 

PA,1(X) = x e A and PA,n(X) = x e A. 

Furthermore, 

PA,n :S PA,n-l ::5'. • • • ::5'. PA,l· 

If n is odd and s = (n + 1) /2 then PA.s is self-dual; we 
use the notation 

/.LA = PA,(n+l)/2• 

if n is odd, and we call µA the median operator. 
Let 'ljt be an operator on 'P('Z.2) with negative 1/1'". 

The centre of 1/J and 1/1* is given by 

y = (id A (1/J V lfr*)) V (lfr A lfr*). 

The anti-centre is 

K = (v /\ (l/J V lfr*)) V (1/f /\ t/J*), 

where v is the complement operator. It is easy to see 
that both y and " are self-dual. Furthermore, y is 
increasing if t/I is increasing. 

Example 3.1. Let A be the 3 x 3 square centred at 
the origin, and let PA.s• 1 ::::; s ::::; 9, be the associated 
rank operators. The negative of PA.s is PA,10-s. and 
PA,s ~ PA.tO-s ifs?: 5. Definees asthecentreofpA,s 
and PA,10-s; hence 

Bs =(id/\ PA,IO-s) V PA,s• s = 5, 6, 7, 8, 9. 

Note that es == JLA, the median operator. Obviously, 
every ()s is self-dual. Furthermore, it is easy to show 
that 

In Fig. 2 the action of these operators is illustrated 
by means of an example. It is easy to show that ()k 

Figure 2. From left to right and top to bottom: original image X and its transforms Ilg (X), 87(X), 66(X). 8s(X). This picture illustrates nicely 
that Ba~ 0-, ~ 86 ~ 6s. 



corresponds with the weighted median operator repre­
sented by the matrix 

( 1 1 1) 
w= 1 2k-9 1 ; 

1 1 1 

the centre of the matrix corresponds with the origin, 
and the threshold s equals k. 

Let us have a closer look at the median operator /.lA 
defined in the previous example. When a point h lies 
in the complement of X, then h E µA (X) if it is sur­
rounded by at least five neighbours which lie in X like 
in one of the following 56 configurations: 

GG··o··o· · • h • . h • • h • 
. . . . . . . . . 

DD··o·· . h • . h • 

• • • • • • 

Note that there correspond eight rotations with every 
structuring element depicted. Dually, when h lies in X, 
then h lies outside /.lA (X) if it has at least five neigh­
bours in the complement of X. 

Consider an arbitrary self-dual operator 1/f. We de­
note the points which are contained in X but not in 
'ifr(X) by a(X). Hence 

a(X) = X\1/t(X) == X n (1/t(X))c 

(3.1) 

Here we have used that 1fr is self-dual, hence 

It is easy to check that 1/1 can be recovered from a by 
means of the formula: 

1/J(X) = (X\a(X)) U O"(Xc). (3.2) 

Motivated by the above observations we define two 
mappings on CJ, the lattice ofoperators on P ('li.2). 

Definition 3.2. Let the mappings E, IJI : 0 ~ 0 be 
defined by 

"£(t/I) = id/\ 1/fv, 1/1 E 0, (3.3) 

Self-Dual Morphological Operators and Filters 19 

IJl(a) = (id/\ vcr) v av, a E 0. (3.4) 

Observe that (3.1) and (3.2) can be reformulated as 
er = "J](1/f) and l/! = IJl(cr), respectively. Furthennore 

O" ~id{::::=} av ~ v {::::} v ~ v<1, (3.5) 

for every operator (f. This means in particular that 
qt ( (f) is the centre of V(f and a v if O" is anti-extensive. 

We denote by Osd and Oae the self-dual and anti­
extensive operators on P('l-2), respectively. It is obvi­
ous that (Oae, :::;) is a complete sublattice of (0, :'.S). 
From the fact that both the centre and the anti-centre 
of a family of self-dual operators is self-dual (cf. [3, 
Prop. 3.42]), we conclude that (Osd. ~) is a complete 
sublattice of (0, ~). 

P.-oposition 3.3. 

(a) I:: (Osd. ~) ~ (Oae. :'.S) is increasing. 
(b) '11: (Oae• ~) ~ (Osd. ~)is increasing. 

Proof: 

(a) It is evident that E ( 1fr) is anti-extensive. Let l/!1, 1fr2 
be self-dual operators and 1"1 ~ l/!2. Then id v 
1{11 ::::: id v 1{12, hence v v 1/11 v = (id v 1/11 )v ~ 
(id v 't/f2)v = v v 1/f2v. Taking the infimum with 
id we get id /\ (v v 1/11 v) ~ id/\ (v v 1/12 v), that is, 
id /\. 1/11 v :::; id /\ 1/12 v. 

(b) FirstwemustshowthatlJl(a)isself-dualifa ~id. 
This is done as follows: 

'l'(cr)* = v\ll(cr)v 

= v((id /\VO') v crv)v 

= v((v /\. V<1V) v a) 

= v(v /\ vav) A va 

= (id V O"V) /\ V(f 

= (id/\ va) v av 

= W(a); 

here we have used that av ~ va by the anti­
extensivity of a. To show that IJI is increasing, let 
a 1 :::; 02:::; id, and let \ll(a1) = l/f1, IJl(a2) = 1/12. 
We show that 1/1'1 ~ 'ifrz. First, 

id A 1fr1 = id/\ ((id/\ va1) v (f1 v) 

= (id/\ (id /\ va1)) v (id/\ a1 v) 
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= (id/\ va1) v (id/\ a1 v) 

=id/\. VO"J, 

since va1 ~ u1 v by (3.5). Now u1 :S: u2 implies that 
id /\ 1/11 ~ id /\ 1/12. We also find 

Clearly, u1 :::::; u2 implies that id v 1fr1 :S id v if!2. Thus 
we find that ifr1 ~ 1/f2• D 

Proposition 3.4. The mappings :E: (OsJ, ~) -+ 

(Oae• :S) and '11: (Oae• :S:) -+ (08J, ~) are bijective 
(onto and one-one). Furthermore, these mappings are 
each other's inverses, i. e., 

E('l'(a)) =a, for a E Oae; (3.6) 

'11CE(1/r)) = 1/r, for 1{I E Osd· (3.7) 

Proof: We prove (3.6) and leave (3.7) as an exercise 
for the reader. Note that the validity of these two rela­
tions implies the bijectivity of the mappings 'E and W. 

Let a be anti-extensive; then 

:E(W(a)) =id/\ IJ.l(a)v =id/\ ((id/\ va) v av)v 

= id/\ ((v /\ vav) Vu) 

=(id/\ v /\ vuv) v (id/\. a) 

=id/\ a= a. 

Here we have used that id/\ v = o, the operator which 
maps every set onto the empty set. D 

The following relations are easily derived from the 
previous result. 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

Here we prove (3.8). Let i/l; be self-dual operators for 
i E /, and let a; = '£(1/r;). Since Vtj ~ Y1Ef'i/I; for 

j E /,we obtain crj ::: "E(Y;E['t/r;). This implies that 

Viel a; :S: 'L.(Y;E(i/r;), hence that u1 :S Viel ai :S 
"f;(Y;Eii/!;). Applying W we arrive at 

Taking the activity supremum over all j at the left-hand 
side, we get 

But then all three terms must be equal, meaning that 

.Y 1/ri = w(v O"i)· 
!E/ ie/ 

Applying ~ on both sides and using that L, W = id, 
gives 

The least and greatest operator with respect to the 
activity ordering are id and v, respectively. It is easy 
to check that :E(id) = o and "E(v) =id, the least resp. 
greatest anti-ex.tensive operator. 

Remark 3.5. Let ifr be an operator, not necessar­
ily self-dual. The centre ifr .A 1/r* and the anti-centre 
1/1 Y i/,r* are self-dual. A straightforward calculation 
shows that 

'£(1/1 .A ifr*) = '£(1/1 /\ l/f*) =id/\ (i/lv /\ vi/f); 

L.(1/t Y i/l*) = Li(l/I v l/f*) =id/\ (1{1v v v'ijf). 

The results given so far provide a general method to 
construct self-dual operators. We give some special 
attention to the class of translation invariant operators. 
It is a well-known fact [l], [3, Section 4.21 that every 
translation invariant operator ifr can be decomposed as 
a union of hit-or-miss operators. Recall that the hit­
or-miss operator with structuring elements A, B is the 
map X i-+ X @(A, B), where 

In order that X@ (A, B) s; X for every X we must 
demand that 0 E A. Thus we may conclude that every 
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Figure 3. The first image is X, the second ifr(X), with ifr as defined in Example 3.6. The sequence 1/ln(X) converges to a period-2 orbit 
containing two images. The third image represents one of these two images Y. The right-most image shows the symmetric difference Y t;,, ifr(Y). 

anti-extensive operator a can be written as a union of 
hit-or-miss operators X H- X ®(A, B) with 0 E A. 

Example 3.6. Consider the following eight struc­
turing elements (A contains the central black pixel, 
B contains the white pixels) respectively called 
(Ai, B1), ... , (As, Ba). Theunderlined(central)pixel 
is located at the origin. 

D[JO·o··o·O 0_!• O,!• •!_0 
O·· OOO ·OO 

G[J··m··moo O,!· · f.O ·,!O 
0 0 . 0 0 0 . . 0 

In [3, Example 4.6] these same patterns are used to 
obtain the pseudo-convex hull of a discrete set by iter­
ations of the corresponding thickenings X 0 (A, B) = 
XU X ®(A, B). Here we define 

8 

a(X) = LJ X ® (Ab Bk). 
k=I 

Note that a ~ id. Let 1jr = '11 (a) be the corresponding 
self-dual operator. In Fig. 3 we depict an image X and 
its transfonn lfl(X). If we compute the sequence of 
iterates if!n (X) we find that this sequence converges to 
a period-2 orbit consisting of two images Y and ijr(Y). 
In Fig. 3 we depict Y and the symmetric difference 
y b i{t(Y). 

Example 3.7. Let IX be an opening and a(X) = 
X\tX(X); in other words, a = id/\ vo:. The corres­
ponding self-dual operator if! = 1¥(0-) equals r/t = 
(v /\ /3) vet. = (v vet.) /\ f3, where f3 is the negative 
of IX. Note that if! is the anti-centre of o: and {3, i.e., 
1/J = ex: Y fJ. In Fig. 4 we have illustrated a Y {3, where 
a is the translation invariant, structural opening by the 
3 x 3 square. The first image is the original image X, 
the second image is 1/!(X). In this particular case, the 
sequence 1.frn(X) tends to a limit 1/f00(X) as n -+ oo; 
this is the right-most image in Fig. 4. 

There do also exist images Y such that 1/fn(Y) con­
verges to a period-2 orbit. For example, if Y is such that 
a(Y) = a(rc) = 0, then a(Y) = Y and o-(rc) = re. 
Thus 1/t(Y) = ye and i{t(Yc) = Y. This means that the 
pair {Y, ye} forms a period-2 orbit. 

Figure 4. From left to right: the original image X, the transformed image Y,(X), and the limit 1ft00 (X). Here l{I =a Y {3, where et is the 
structural opening by the 3 x 3 square and {J is the negative closing. 
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4. Switch Operators 

The self-dual operators 1/f in Examples 3.6-3.7 are not 
increasing. In this section we will answer the follow­
ing question: which conditions must a satisfy in order 
that the corresponding self-dual operator 1/1 = \l1 (a) is 
increasing. Assume that X s; Y. From the interpreta­
tion of a(X) as the points in X which are deleted by 1/t 
we make the following observations. If a point h E X 
is not contained in a (X) then it must not be contained 
in cr(Y), for otherwise h E t/f (X) but h ~ 1/t(Y). This 
leads us to the following condition: 

(i) h E X, h (j! a(X) =? h ~ a(Y). 
A similar condition must hold for background 
points: 

(ii) h Eye, h </. a(Yc) =? h </. a(Xc). 
Suppose, finally, that a point h lies in Y but not in 
X. To avoid that h is mapped out of Y and at the 
same time into X we must assume: 

(iii) h E a(XC) =:} h ~ a(Y). 

It is easy to see that (i)-(iii) amount to the following 
conditions: 

(Sl) X ~ Y implies that X n a(f) f;; a(X). j 

I (S2) a(X u {h}) no-ex· u {h}) = 0, h E Z2, x ~ zi. j 

We show that (iii) follows from (Sl)-(S2); note, how­
ever, that (iii) is not equivalent to (S2). Assume that 
h e cr(Xc) and h E a(Y); we must show that this 
leads to a contradiction. From (S2) we conclude that 
h ~ a(X U {h}). As XU {h} ~ Y we conclude from 
(Sl) that 

(Xu {h}) n a(Y) £ a(X U {h}). 

But then h e u(X U {h}), a contradiction. 

Definition 4.1. An anti-extensive operator er is called 
a switch operator if (Sl) and (S2) hold. 

The adjective "switch" indicates that the operator G' 

yields all points which switch value from 1 to 0 (points 
in a (X)) or from 0 to 1 (points in er (Xc)) by application 
of the self-dual operator ifr = \II (er). 

In the previous paragraphs we have established the 
following result. 

Theorem 4.2. Let a be anti-extensive and 1fr = 
IJl(u); then t/l is increasing if and only if a is a switch 
operator. 

If t/J is a self-dual increasing operator, and TJ is increas­
ing and extensive, then 

1// = (id/\ 1/!ri) v 1/!TJ* 

is the centre of 1/ITJ and its negation ijn7*; note that 
T/* ;::: TJ. Therefore, 1/t' is self-dual and increasing 
too. The following result expresses the corresponding 
switch operator :E(1/t') in terms of 'E(t/l) and 17. 

Proposition 4.3. Let G' be a switch operator, 1/1 = 
W(a), and let TJ be increasing and extensive; then er'= 
id/\ G'1'] is a switch operator too, and \ll(a') = (id/\ 
1/!TJ) v 1/!TJ*. Furthermore, er' ::; er and ifr' ~ 1/f. 

Proof: We show that W(cr') = (id/\ 1/ITJ) v tfr'fJ*, and 
therefore increasing. This yields automatically that (j' 

is a switch operator. 

W(o- 1) = (id/\ vcr') v a'v 

= (id/\ v(cr17 /\ id)) v (O'T/ /\ id)v 

=(id/\ (va17 v v)) v (C1TJV /\ v) 

= (id/\ VG'TJ) v (a11v /\ v). 

Now we substitute that C1 = "£(1/f) =id/\ t/f v, and use 
that VTJ :::: V :S T}V: 

W(cr') = (id/\ v(id /\ 1/IV)TJ) V ((id/\ t/f v)11v /\ v) 

= (id/\ (v v 1/l)TJ) v ((TJV A.1/ITJ*) /\ v) 

= ((id/\ v17) v (id/\ i/111)) V (if/17* /\ v) 

= (id/\ 1/rri) v (v /\ 1/111*). 

Since r/" :5 17 we have id/\ 1/111* :::: id/\ 1/f TJ; thus 

W(a') = (id/\ l/tri) v (17/\1/111*) v (id/\ 1/111*) 

= (id/\ i/lri) v 1/171*. 

This concludes the first part of the assertion. 
Using (S 1) and the extensivity of TJ we get that X n 

0'(7J(X)) ~ G'(X) for every X, hence o-' ::s a. Now 
Proposition 3.3 gives that 1/1' ~ 1fr. This concludes the 
proot D 

From the following section onwards we will restrict 
ourselves to operators which are translation invariant. 



Before we do so we will present a class of self-dual 
operators (and their corresponding switch operators) 
based on the notion of adjacency. 

Let E be an arbitrary non-empty set and let ~ be a 
symmetric relation on E x E. Thus x ,....., y iffy ,.,., x, 
for x, y E E. In this case we say that x and y are 
adjacent. The set of points adjacent to x is denoted by 
adj(x): 

adj(x) = {y EE Ix"' y}. 

N.B. It is not assumed that"' is reflexive; hence x "" x 
may not be satisfied. 

When the set E is finite we can supply it with a graph 
structure by considering the unordered pairs {x, y} with 
x ,..... y as edges. We define the operator 

a(X) = {h EX I adj(h)-!- 0 and adj(h) n X = 0}. 
(4.1) 

Proposition 4.4. a is a switch operator. 

Proof: First we prove (Sl). Let X £; Y; we show 
that X n a(Y) £; a(X). If x E X n a(Y), then x E Y 
and adj(x) n Y = 0. This implies that adj(x) nx = 0, 
too, hence x e,a(X). 

Toprove(S2), assumethath e O'(XU{h}) n a(Xcu 

{h}). Then adj(h) -:/: 0 and adj(h) n (Xu {h}) = 0 
and adj(h) n (Xc U {h}) = 0. But this yields that 
adj(h) = 0, a contradiction. 
This concludes the proof. D 

From this point onwards we assume that 

adj(h) -:/: 0, for every h E E. 

Let 1/f be the increasing, self-dual operator on P(E) 
associated with a. The action of if! can be described 
as follows: l/f switches the state of a point if and only 

Figure 5. A period-2 orbit. 
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if all its adjacent points have a different state. Or, to 
put it differently, 1/t switches the state of the isolated 
points. Therefore, if x, y are adjacent and have the 
same state, then both points are left unaltered by 1/1 
(and its subsequent iterates). 

Define the dilation 8 by 

8(X) = {h E E I adj(h) n X =I= 0}. (4.2) 

The negative erosion e = 8* is then given by 

e(X) = {h E E I adj(h) 5; X}. (4.3) 

Note that these two operators are known from the con­
text of graph morphology [6J. 

Evidently, the pair (e, 8) constitutes an adjunction. 
It is easy to check that va = v v 8 and that a v = v /\e. 
Substitution in l/J = (id/\ va) v O'V gives us 

1fr = (id/\ 8) v (v /\ e). 

Using that e ::: 8 we get id/\ e ::: id/\ 8, and therefore 

1{r = (id/\ 8) v (v /\ e) v (id/\ e), 

that is 
l/f =(id/\ 8) v e = (id v s) /\ 8. (4.4) 

We present a condition on the adjacency relation which 
guarantees that the operator l/f is idempotent. In gen­
eral, however, ijr will not be idempotent. In Fig. 5 for 
example, we depict a binary image on a graph whose 
edges represent the adjacency relation, which shows 
period 2 oscillations under iteration of l/f. 

Definition 4.5. Let x, y, z E E; we call {x, y, z} an 
adjacency triple if x ,..., y rv z ,....., x. 

The points x, y, z need not be distinct. In fact, if x ,..,,, x, 
then {x, x, x} is an adjacency triple. 
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The following intuitive argument shows that 'I/! is 
idempotent if every point in E is a member of at least 
one adjacency triple. Suppose namely thatpointx E X 
has no adjacent points inside X. Si.nee it is a member of 
an adjacency triple {x, y, z} with y, z· E xc, the point 
x will be mapped outside X by "'1. However, the points 
y, z stay inside xc because they constitute an adjacent 
pair. In subsequent iterations the points x, y, z will 
stay in xc. 

Proposition 4.6. Assume that every point in E is a 
member of at least one adjacency triple, then 1/1 is idem­
potent. 

Proof: We show that i/! :::: 1fr2. Then, taking the 
negative at both sides and using that 1/1* = 1/! we get 
'I/! ~ 1/f 2 as well. 

Leth e tfr(X). There are two alternatives: h E X 
and h fj. X. Assume first that h E X; then h r/ a(X), 
whichmeansthatadj(h)nX-:/; 0. Letx E adj(h)nX, 
then h E adj(x) n X, and therefore x fj. a(X). We 
conclude that x E 1/J(X). But then h r/. a(Y,(X)), 
meaning that h e 1/12(X). 

Assume next that h r/. X. Then h E a (Xc) and thus 
adj(h) n xc == 0. By assumption, h is a member of 
some adjacency triple: h ,..., x ,..,, y ,.._, h. Necessarily, 
x, y EX. But thenh, x, y E 1/!(X) and it follows that 
h E tfr2(X) (as well as x, y E 1/!2(X)). 
Tiris concludes the proof. D 

It is obvious that the adjacency triple condition is not 
satisfied in the example of Fig. 5. 

Let us apply this result to the case that E = 'li} 
(or 'lli), where ,.._, is translation invariant, i.e., x ,.._, y 
implies thatx +h,..., y +h for all x, y, h E Z2. Putting 
A = adj(O), we have adj(h) = Ah. The fact that 
the adjacency relation is symmetric implies that A is 
symmetric; i.e., A = A, where A = {-a I a E A}. 
The adjacency triple condition can be formulated as 
follows: 

0 E A Ee A$ A. 

Furthermore 

o(X) = X Ee A, e(X) = X e A. 

We arrive at the following result. 

Theorem 4.7. Let A ~ Z2 be a symmetric structur­
ing element (A = A) which satisfies 

0 EA Ee A EeA. (4.5) 

Then the increasing, translation invariant operator i/t 
given by 

i/t(X) = (X n (X Ee A)) u (X e A) (4.6) 

is self-dual and idempotent. 

Note that the conditions on A are satisfied by 

D A= 
• 

The operator 1/J in Theorem 4.7 switches all pix­
els whose state is different from that of all their 
8-neighbours (i.e., the isolated pixels}; see also 
Example 10 in Section 7. 

5. Switch Operators Which are Translation 
Invariant 

Arriving at this point, the most obvious question is: 
how to design switch operators? Below we shall give 
a complete characterization of translation invariant 
switch operators. But first we give a characterization of 
the kernel of a translation invariant self-dual operator. 
Recall that the kernel of a translation invariant operator 
1fr on P('ll}) is defined as [13, 3]: 

V(i/I) ={A~ Z2 l 0 E i/l(A)}. 

Every increasing, translation invariant operator i/I can 
be written as a union of erosions: 

1/l(X) = U X e A. (5.1) 
AEV(\I") 

Recall also that [3] 

v(Ai/t;) = n V(i/I;) 
ie/ ie/ 

and 

(5.2) 

Proposition 5.1. Let "lft be a translation invariant 
operator, then "lft is self-dual if and only if 



If, moreover, 1/! is increasing, then 

A, BE V(1f;)::::} An B =/= 0. 

Proof: A E V(l/r) iff 0 E 1/r(A) = i,lr"(A) = 
( 1/! (Ac) y. This implies the first assertion. 

Assume that 1/! is also increasing. If A, B E V( i/t) 
and A n B = 0, then A ~ Bc. This implies that 
0 E i,lr(A) s; ijt(Bc), a contradiction. o 

Assume that ift is an increasing, translation invariant, 
self-dual operator, and let a = '2; ( ift). Using (5 .1) we 
get 

a(X) = LJ X n (Xc 8 A). 
AEV(l/I) 

If 0 E A then X n (Xc 8 A) = 0, and thus we find 

cr(X) = u X n (Xc 8 A). 
AEV(ifrlM'A 

Using a = id /\ 1frv and (5.2) we obtain V(a) = 
V (id) n V ( ift v). This is equivalent to 

Define 

a(a) ={As; Z 2 I Ac E V(a)}. (5.3) 

Proposition 5.1 gives that An B =/= 0 for A, B E a(a). 
We have thus shown the following result. 

Proposition 5.2. Let a be a switch operator and let 
a(a) be given by (5.3); then 

0 ¥.A and An B =f 0, for A, B E a(O'). (5.4) 

Furthermore, a is given by 

O'(X) = x n LJ xc e A. (5.5) 
AEa(ct) 

The following question arises. If 1fr is an increas­
ing, translation invariant, self-dual operator, then i/! 
can be represented as a supremum of erosions, i/! = 
V AEV(i/t) SA, where SA is the erosion BA (X) = X 8 A. 
The corresponding switch operator a = :E ( 1ft) is char­
acterized completely by a subset ofV(l/!), namely those 
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structuring elements which do not contain the origin. It 
is easy to see that i/! '.::'.: V AEa(ct) EA; in general, equality 
does not hold. Yet the collection a(cr) is sufficiently 
large to recover 1/1. How can we express 1/1 in terms of 
this collection? 

More generally, let A be a collection of structuring 
elements which obey 

Let 

0 r/. A and A n B # 0, for A, B EA. (5.6) 

cr(X) = O'A(X) = X n U Xc 8 A, 
AeA 

(5.7) 

that is, 

aA =id A v EAV. (5.8) 
AeA 

To show that a is a switch operator, we compute 
1/1 A = '11 ( cr A) and show that it is an increasing, self­
dual operator. 

Since An B =!= 0 for A, B EA we get that ox 2: £B 

for A, B E A. This implies that id /\ /\AeA J x > 
id/\ V Ae.A SA, which leads us to 

VrA =(id/\/\ ox) v(vA V sA) v (id AV BA) 
Ae.A AE.A AEA 

=(id/\ A ox) v V eA· 
AEA AEA 

In other words, 1/;A is the centre of the increasing op­
erator V AEA s A and its negation /\AEA o A. 

Theorem 5.3. Every translation invariant switch op­
erator a is of the form O' =er A, where A is a collection 
of structuring elements satisfying (5.6). The corre­
sponding self-dual operator 1frA = W(O'A) is given by 

1/1.A(X) = (x n n x ©A) u u x e A. (5.9) 
AEA AEA 
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If rr is a switch operator and A a collection of structur­
ing elements satisfying (5.6) such that a = O'A, then 
we say that rr is generated by A. Note that, in general, 
A is a subcollection of a (a). To compute the set a (a A) 

observe that 

or 

B E V(i/IA) {::::::} B E v(id /\ /\ 8 x) 
AeA 

BE v(v BA)· 
AeA 

Elements B E V(id /\ /\.AeA 8J) contain the origin, 
and as .such they are not contained in a(oA). Further­
more, B e V(V AeA·sA) yields that A ~ B for some 
A E A. Thus we conclude that 

a(a.A.) ={BI 0 rt B andA SB for some A EA}. 

A structuring element B E A is redundant if there 
exists another structuring element A E A which is a 
strict subset of B. 

Note that OA can also be written as a union of hit-or­
miss operators, namely 

aA(X) = LJ X ~ ({O}, A). 
Ae.A 

We conclude this section with the following result. 

Proposition 5.4. 

(a) Let a, a' be translation invariant switch operators; 
then 

a ::: <1 1 ::} a(a) S a(a1). 

(b) Let A, !3 be subsets of 'P('l}). If A S B then 
a.A:::: as. 

(c) The following two assertions are equivalent: 

(i) OA ::: <iB; 

(ii) for every A E A there exists a B E B such 
that B ~A. 

Proof: {a) and (b) are obvious (in fact, (b) is a conse­
quence of (c)). We prove (c). First assume (i) and let 
A e A. ThenO EN andO E a.A(Ac). As<iA :Sas, 
we conclude that 0 E O'B(Ac); so there exists a B e B 
such that B S A. This proves (ii) 

The proof that (ii):::}{i) is straightforward. o 

Corollary 5.S. If A, Bare subsets of P (Z2) such that 

(i) ES A; 
(ii) for every A E A there exists a B E B such that 

B s; A; 

then O' A = <1B. 

Example 5.6. Consider the operators B5, B6, ••• , (}9 

defined in Example 3.1, and define ak = E(Bk), 
k = 5, ... , 9. Then O'k is generated by the collec­
tion At of subsets A of the 3 x 3 square centred at the 
origin with 0 rt A and card(A) = k. This collection 
Ak contains<!) subsets (which equals 0 if k = 9). For 
example, Ao consists of 28 structuring elements: 

DD .. o·· . : . . : . 
• • • • • • 

D +rotations 

• 
Refer to Section 6, Examples 7 and 8, for some addi­
tional results conceming this example. 

6. Construction of Self-Dual Filters 

In [12, 5, 3] it has been shown how to construct mor­
phological filters by iteration. We recall the following 
result. 

Proposition 6.1. Let 1/1 be an increasing, finite­
window operator, let 1/f 00 be an increasing operator, 
and assume that 1/Jn -7 l/1 00 (pointwise) as n ~ oo. 
Then 1/J00 is a morphological filter. 

It is obvious that the sequence y,n converges to a limit if 
1/J is extensive or anti-extensive. In Section 2 we have 
seen that an activity-extensive operator 1/t has the prop­
erty that every sequence 1/Jn (X) is pointwise monotone, 
and hence convergent. Therefore, Proposition 6.1 ap­
plies to operators which are activity-extensive. 

Suppose that 1/1 is an increasing, translation invari­
ant, self-dual operator. Is there a simple way to verify 
whether or not 1/1 is activity-:extensive? A simple, but 
very useful, criterion is given by the following result. 

Proposition 6.2. Let 1/1 be an arbitrary operator, and 
assume that there exists a set X such that 1/l(X) =/: X 



and 1/f P (X) = X for some integer p > 1. Then 1/1 is 
not activity-extensive. 

In this case we call X periodic with respect to 1/f. If 
p > 1 is the smallest integer for which i.frP (X) = 
X then we say that X is p-periodic, or alternatively, 
that X has period p. For example, the chess board is 
2-periodic with respect to the median operator which 
uses the rhombus (origin and its four 4-neighbours) as 
structuring element. 

Let 1fr be an increasing, translation invariant, self­
dual operator with "£, ( 1/t) = OA. If A E A, then 0 fj 
A and 0 E 1/f(A). If there exists an integer p > I 
such that 0 f/. 1frP (A), then the sequence i.frn (A) is not 
pointwise monotone, and therefore 1{r is not activity­
extensive. On the other hand, suppose that 0 E 1frn (A) 
for every n :'.'.: 1 and A E A. We show that i.fr is activity­
extensive. Suppose, namely, that 1/f is not activity­
extensive. Then there exists a set X such that 't{tn (X) is 
not pointwise monotone. Without loss of generality we 
can assume that 0 ¥. X, 0 E 1/r(X), and 0 ~ 1frP(X) for 
some integer p > l. Thus 0 E a (Xc), which means 
that A s;: X for some A E A. But then, by assumption, 
0 E 1/f" (A) f; 1/1" (X) for every n ::: 1, a contradiction. 
We have proved the following result. 

Proposition 6.3. Let 1/1 be an increasing, transla­
tion invariant, self-dual operator with switch opera­
tor a A. Then 1/1 is activity-extensive if and only if 
0 E 1/!"(A), n =::: 1,for every A EA 

In practice, the structuring elements in A are finite and 
the sequence ifr'1(A) becomes stationary (i.e., constant) 
after finitely many iterations. In such cases, verification 
of the condition in Proposition 6.3 requires only finitely 
many computations. 

Example 6.4. (a) The operator e6 defined in Example 
3 .1 is not activity-extensive since 

(b) The operator 87 is activity-extensive, since 

D D .. 
!i • .! • !i idem. 

• • • 
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and 

The other structuring elements in A7 are 90° -rotations 
of these two elements. 

In [ 4] and [3] we have explained how one can modify 
an increasing, self-dual operator which is not activity­
extensive in such a way that it becomes activity­
extensive. In fact this approach is based on the 
following two results. 

Proposition 6.5 (See [14] and [3, Chapter 13]). As­
sume that</>, 'tj! are.finite-window operators,</>~ t/;, 
and that</> is an inf-overfilter and ifr a sup-underfilter. 
Then the centre y = (id A ifr) v </> is activity-extensive 
and the sequence yn converges to the strong middle 
filter of <P and 1/f. 

Proposition 6.6 (See [3, Proposition 6.28]). Let 1/f 
be an increasing operator. 

(a) If a is an opening with a ~ ljJ then ljJa is an inf­
overfilter. 

(b) If f3 is a closing with fJ ;:::. 1/1 then i./1/3 is a sup­
underfilter. 

If we combine the previous two results with Proposition 
4.3 we arrive at the following construction method for 
self-dual morphological filters. 

Proposition 6.7 (Construction of Self-Dual Filters). 
Let 1/1 be an increasing, self-dual operator with switch 
operator f7 = "E('if/). Let a be an opening~ 1/r. and 
let fJ = a* be the negative closing. Then 

is an increasing self-dual operator with 'E(:rr) = id/\ 
f7{J. The operator n is activity-extensive and satisfies 
:rr ~ 1/1. 

If the operators lfr, a, f3 are finite-window operators, 
then Jr is a finite-window operator too, and rcn con­
verges towards a strong self-dual morphological filter 
:rr 00• (Jn fact, rr 00 is the middle filter of 1/fa and 1/rf3.) 

This result makes clear that we must look for openings 
a which are .:5 1/f. Recall that the structural opening 
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as is given by aB(X) = X o B. It is a well-known 
fact [3] that 

The following result characterizes all structuring ele­
ments B with this property. 

Proposition 6.8. Assume that 1/1 is increasing and 
self-dual, and that the switch operator a = 'E('ljl) can 
be represented as r:r = r:rA. for some collection A s;; 
'P('llh The following assertions are equivalent: 

(i) 1/l(B) :::: B; 
(ii) u(B) = 0; 

(iii) V b E B V A E A : Ab n B ::/: 0; 
(iv) VA E A: 0 e A •B. 

Proof: 
(i~ii): using (3.1) we get 

u(B) = 0-<==? B n 1/J(Bc) = 0 

{=::? 1/l(BC) £: BC 

{=::? B s; (1/l(Bcnc = 1/l*(B) = 1/l(B). 

(ii~iii): using the expression for a A in (5.7) we get 

aA(B) = 0 {::::::::} B n U nc e A= 0 
AeA 

~ V b e B : b fj U Be 6 A 
AeA 

{::::::::} v b e B v A e A : b 'f. Be e A 

{::::::::} v b E B v A E A: Ab S"f BC 

{::::::::} V b E B VA E A: Ab n B ::/: 0. 

(iii~iv): above we have seen that (iii) is equivalent 
with 

v be B v A e A: b Ft Bee A. 

This implies 

v b E B v A E A: b E (BC e A)c = B EB A 
=AeB 

-<==?VA e.A:B~AEBB 
-<==? v A e A: o e (A EB B) e B = A.. B. 

This concludes the proof. O 

A structuring element B which satisfies the equiv­
alent properties in Proposition 6.8 is called persistent 
with respect to l/J. Note that, unless 1fr = id, singletons 
are not persistent. It is obvious that the collection of 
persistent sets is closed under unions: if B; is persis­
tent for every i in some index set I, then Uie/ B; is 
persistent, too. 

Assume that i/J, 1/1' are increasing, self-dual opera­
tors, and that 1/t' ~ 1/1. If B is persistent with respect to 
1/1 then it is also persistent with respect to 1/f'. 

7. Examples 

In this section we present several increasing, transla­
tion invariant, self-dual operators 1/1 on 'P('l}). All 
examples contain the following ingredients: 

• characterization of a (minimal) collection of struc­
turing elements A such that r:r A is the switch operator 
associated with 1/f; 

• an examination of the activity-extensivity of 1/1; 
• (in case that 1/1 is not activity-extensive) characteri­

zation of a collection of structuring elements which 
are persistent with respect to 1/r. 

In the latter case one can use the opening a(X) = 
V;61 XoB;,whereB,, i E l,arepersistentstructuring 
elements, to obtain a self-dual operator 

.1t =(id/\ 1/fa*) v 1/ta (7.1) 

which is activity-extensive (see Proposition 6.7). It 
should be evident that our interest goes to "small" per­
sistent structuring elements, as these cause the small­
est "loss of activity" if one replaces 1/1 with .1t. The 
operators l/f, '1i in Example i are denoted by 1/li, 'Ji;, 

respectively (i = 1, 2, ... , 13) 

1. Let A be the rhombus comprising the origin and its 
four horizontal and vertical neighbours. Let PA.s be 
the rank operators defined in Section 3, and let 1/11 

be the centre of the operator PA.2 and its dual PA.4• 

i.e., 1fr1 = (idAPA,2)V PA.4 (cf. Example 3.1); then 
'ljl1 is self-dual. It is easy to verify that 1/11 = 1/IA. 
where A contains one structuring element: 



The operator 1/11 is not activity-extensive for the 
chess board is a periodic structure. The elements 

~and GJ 

are persistent. The operator 1/11 switches the state 
of all pixels which are isolated in the 4-connected 
sense. Let A be the structuring element depicted 
above, then 1/11 is given by (4.6). However, the 
adjacency triple condition governed by ( 4.5) is not 
satisfied. 

2. Again, let A be the rhombus, and let ifr2 be the 
corresponding median operator. Then 1/12 = 1/1.A 
with 

A= D + 90°-rotatio"' 

Like in the previous example, 1/12 is not activity­
extensive since the chess board is 2-periodic with 
respect to 1/12. The operator 1/12 has an infinite num­
ber of persistent elements which cannot be decom­
posed into smaller parts which are persistent, for 
example: 

r.-;i 
~ D • • 

• • • • 
• • 
• • • 
• • • 

In fact, every structuring element in which every 
pixel has at least two 4-neighbours is persistent. 

3. Consider the median operator 1/13 associated with 
the 3 x 3 square. In Section 3 we have depicted 
the structuring elements in A such that T/f3 = 1/1.A; 
we recall them here for the sake of convenience. 

Do. ·o· ·o· · . .: . . .: . . .: . 
. . . . . . . . . 

DD··o·· . .: • · .: • +rotations. 
• • • • • • 
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1{13 is not activity-extensive, because the following 
structure is 2-periodic: 

• • • • 
• • • • 

• • • • etc. 

• • • • 

The set 

• • 
• • • • 
• • • • 
• • • • 

• • 

is a persistent structuring element. Let a be the 
corresponding structural opening, and let 11"3 be the 
modification of lft3 resulting from (7.1). The me­
dian operator lft3, its modification 7r3, and the filter 
rrf obtained by infinite iteration are illustrated in 
the second row of Fig. 6. 

4. Consider the subcollection B of A in Example 3 
which lacks the first structuring element along with 
its three 90°-rotations. The corresponding self­
dual operator 1{14 is less active than 1/f3. However, 
it is not activity-extensive for the structure depicted 
in 3 is 2-periodic. Of course, the persistent element 
in 3 is also persistent with respect to 1/14 , but there 
also exists a smaller element which does the job, 
namely 

~ 
~ 

Denote by rr4 the modification of 1/f 4 resulting from 
(7.1), where a is the opening by this structuring 
. element. Refer to the third row in Fig. 6 for an 
illustration. 

5. Consider the subcollection C of A in 3 which Iai:;ks 
the 45°, 135°, 225° and 315°-rotations of the first 
structuring element, i.e., the elements 

OD .. o·· o·· . .: . . .: . . .: . 
• • • • • • • • • 

Then i/rs := 1/Jc is less active than 1/f3 but it is not 
activity-extensive for, again, the structure depicted 
in 3 is 2-periodic with respect to lfts. In this case 
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;~l~~,. '<:,J;'f f ;,'.t~ 
i/;~;:."-' 

Figure 6. The top-right image is the original image X. The four subsequent rows show (from left to right) the itn!lges 1/J; (X), rr; (X), TC;"° (X) 
defined in examples i = 3, 4, 5, 6, respectively. For a better understanding of the usefulness of the modifications n; and their iterates one should 
compare these images with the ones in Fig. I. 



the rhombus 

is persistent with respect to 1/f 5. 

Denote by :rr5 the modification of 1/Js resulting 
from (7 .1 ), where ex is the opening by this struc­
turing element. The operators in this example are 
illustrated in the fourth row of Fig. 6. 

6. We can combine 4 and 5 and consider the subcol­
lection V of A which lacks the eight rotations of 
the first structuring element in .A, i.e., 'D = B n C. 
It is relatively easy to show that av = O'B A ere 
(here one must use that B E E and C E C implies 
that D £ B U C for some D E 'D). Now we con­
clude from (3.11) that 1/16 := 1/Jv is the centre of 
i/f4 = 1/l's and 1/fs = 1/fc: 

In this case 

are persistent with respect to t/16· Let Jr5 be the 
modification of i/16 resulting from (7 .1) if we talce 
for et the union of the structural openings by these 
two elements. The action of the operators in this 
example are depicted in the bottom row of Fig. 6. 

7. Consider again the operator 85 introduced in Exam­
ple 3.1; see also Example 5.6. Here we shall denote 
this operator by 1/11. The collection of structuring 
elements associated with 'J:, ( 1/r1) is given by 

OD .. o·· . . . . . . - -
• • • • • • 

D +rotations 

• 
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The operator 1/17 is not activity-extensive since the 
pattern 

• • • • • • 

• • • • • • etc. 

is 2-periodic. The elements 

are persistent. Let rr7 be the modification of 1/f1 
obtained from (7.1) if one takes for a the opening 
by these two structuring elements. The second row 
in Fig. 7 depicts the action of 1/11, n1, and 7if. 

8. Consider the subcollection 'f3 of At; which is ob­
tained by deleting the elements 

D . . + 45° -rotations, 

D . • + 90° -rotations, 

D + 90° -rotations . 

• 

We use Proposition 6.3 to show that i/f8 = l/f B is 
activity-extensive. Thereto we must consider the 
sequences 1/1; (B) for B e B. First we note that the 
elements 

~ r.-1 ~ ~ 
~~~~ 

are invariant under 1/ls. Now 
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,"~-· .· 
o. _. , T 

.:t . ~I r .:. 
'- 'I T • 

Figure 7. The top-right image is the original image X. The second row illustrates the operators 1{17, rr1, and nf discussed 'in Example 7. The 
bottom row depicts l/Js(X) and iftr(X) exarnineifin Example 8. 

1:71 ~ I : ; : I !i idem. 
~ ... 

This implies that !/Is is activity-extensive. The 
bottom row in Fig. 7 depicts the transformed sets 
1/ls(X) Oeft) and i/l::'CX) (right). These figures 
show clearly the invariance of the triangles de­
picted above. 

9. Consider the operator fJ., introduced in Exam­
ple 3.1. We define 1/f9 := 61. The associated col­
lection A7 consists of eight structuring elements: 

A1 = D +rotations. 

Using Proposition 6.3 it is easy to show that t/19 is 
activity-extensive. Use namely that 

In Fig. 8 we depict X, 1fl9(X) and 1/tr(X). 
10. Consider the operator t/110 := 8s; here As contains 

one structuring element, namely 



see Example 9 

The structuring element in As satisfies condition 
(4.5) m Theorem 4.7, meaning that 1he result­
ing operator is idempo!e11t. Its action con­
sists hereof lilat it removes isofo.1ed foreground 
and backf_rrmmd pixels (isolated in the sense of 8-
neighbours). An illustration can be found in Fig. 2. 

11. Consider the weighted median operator Y,11 with 
matrix 

and threshold 11. The collection of structuring 
elements A yielding the corresponding switch op­
erator is 

1:: :f 1: '. :11. '. :! :: .. 
I . • . I i . . . I . . -~ L_·--~ 

li •• •• · 1· 

. + 90'-rorntions 
I 
1 · ·I 

r--·~ 
i • • ! 
I - i 

i • . . I 

If B is the collection of structuring elements asso­
ciated with tlle rhombus median operator (see Ex­
ample 2) then condition (ii) in Proposition 5.4(c) is 
satisfied, hence the operator is less active than 
the rhombus median operator. The chess board is 
periodic with respect to lfr1 i and therefore l/f 11 is 
not activity-extensive. The pat.tern 

1.-;l 
II. • I 
l___J 

is persistent. Let n 11 be the resulting activity­
extensive modification of 1frt 1. In Fig. 9, second 
row, we depict 1/111 (X), rr11 and n~(X). 
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12. Lei p be the weighted rank operator obtained by 
changing the threshold in the previous exa.'nple to 
9. Let be the centre of p and its negative . It 
is eviden! that this operator is less active than the 
one in l l. The switch operator I: ( 1fr12 ) is generated 
by the structuring elements: 

Dn· ... A= • . • 
I . ~ . I 

D + 90"-rotations 

• 

We use Proposition 6.3 to show that 1/!12 is activity­
cxtensivc: 

I • • · I \1'12 

LJ~ 
idem. 

idem. 

idem. 

This implies that l/112 is activity-extensive. Ob­
serve that the elementary triangles 

• • i. • D Q CJ CJ • • I· • I • 
are persistent. In the third row in Fig. 9 we depict 
tfrn(X) (left) and 1/r~(X) (right). TI1ese images 
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.:. . 

Figure 9. The top-right image is the original image X. The second row illustrates the operators i/r11. :rr11. and :rrfi'. The third row illustrates 
1/112 and 1/tl'f, and the bottom row depicts the operators 1/113, ir13, and :rrfr. 

show clearly the invariance of the elementary tri­
angles. In this respect this example resembles the 
one in Example 8. 

13. If we add 

D • • 
+ 90° -rotations 

to the collection A in 11 we obtain an operator 
Y,13 which is more active than the one in 11. Note 
that this operator corresponds with the weighted 
median with matrix 

H) 



and threshold 8. The chess board is periodic and 
therefore 1/113 is not activity-extensive. Again 

~ 
~ 

is persistent. Let n 13 be the corresponding activity­
extensive modification of 1/f13 . In the bottom row 
of Pig. 9 we depict l/f13(X), 7l'13(X), and::ir13'(X). 

8. Conclusions and Open Problems 

The basic morphological operators like dilations, ero­
sions, openings, closings, and alternating sequential 
filters are not self-dual. The best known morphologi­
cal operator which is self-dual is the median operator 
J.l. Unfortunately, this operator has a property which is 
undesirable from the view point of noise filtering: the 
sequence of iterates µ,n (X) of an input image X needs 
not be convergent. In fact, it is easy to find images X 
such that {X, J.L(X)} constitutes a period-2 orbit. 

In this paper two goals have been accomplished. 
First, we have presented a general method, based on 
the concept of a switch operator, for the construction 
of increasing operators which are self-dual. Under the 
extra assumption of translation invariance we have de­
rived a general formula for self-dual operators: 

1/JA(X) = (x n n x EB A) u u x e A, (8.1) 
AEA A€A 

where A is an arbitrary collection of structuring ele­
ments satisfying 

0 r:j. A and An B =fa 0, for A, BE A. 

In this paper we have restricted ourselves to binary im­
ages for simplicity. Yet, it is obvious that formula (8.1) 
carries over immediately to grey-scale images, and in 
fact, this remark applies to most of the results estab­
lished in this paper. 

A second accomplishment is that we have derived a 
general method for the modification of an arbitrary in­
creasing, self-dual operator if! yielding another increas­
ing, self-dual operator rr which is Jess active than 1/1, 
but which has the desirable property that it is activity­
extensive. This means in particular that :rrn converges 
to a self-dual morphological filter JT 00 (presumed that 
it is a finite-window operator). 
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We have illustrated our theoretical results with a 
large number of examples. We have limited our­
selves to the square grid, and we have only consid­
ered structuring elements which fit inside a 3 x 3 
window. Furthermore, the structuring elements have 
been chosen in such a way that the resulting operator, 
besides being translation invariant, is invariant under 
rotations about 90 degrees. From a theoretical point 
of view there is no need to make such restrictions. 
In fact, in an earlier paper [2] we have investigated 
modifications of the median operator on the hexago­
nal grid, such as the Maisonneuve filter [9]; see also 
[3, Example 13.59]. 

We have resisted the temptation to make quantitative 
statements about the noise cleaning capacities of the 
operators and filters discussed in our examples, oth­
ers than those in terms of the activity ordering. For 
example the illustration of Example 8 in Fig. 7 and 
Example 12 in Fig. 9 show that 1/!S°(X) is very sim­
ilar to 1/!fl.(X), though both images differ at a few 
points. The only theoretical support for this resem­
blance is that both operators keep elementary triangles 
unchanged. 

The research described here also raises a number of 
intriguing theoretical questions which fall outside the 
scope of this paper, but which, nevertheless deserve to 
be mentioned in this final section. 

Question 1. Do there exist operators which have or­
bits with period greater than 2? 
Period-3 orbits may be of special interest because of 
the possible analogy with the famous result obtained by 
Li and Yorke (8] in the context of dynamical systems 
theory which says that "period three implies chaos". 

The following question is related to the previous one. 

Question 2. Given an increasing, translation in­
variant (self-dual) operator 1/r (e.g. the median op­
erator). What kind of behaviour can the orbits 
{X, 1/f(X), 1/!2(X), ... } exhibit? Do they necessarily 
"converge" to a periodic orbit? Can such morpholog­
ical dynamical systems exhibit "chaotic behaviour"? 

These appear to be difficult questions which require 
a lot of fundamental research. Maybe one can find 
(partial) answers from the literature on cellular au­
tomata [15]. To our knowledge however, the overlap 
between these two fields, that is, mathematical mor­
phology on the one hand and cellular automata on the 
other, is almost completely unexplored up till today; re­
fer to [11] for some related discussions. Hopefully, the 
theory developed in this paper will serve as a stimulus 
to fill this gap. 
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